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Vacancy is one of the most frequent defects in metals. We study the impacts of magnetism on vacancy
formation properties in fcc Ni, and in bcc and fcc Fe, via density functional theory (DFT) and effective
interaction models combined with Monte Carlo simulations. Overall, the predicted vacancy formation energies
and equilibrium vacancy concentrations are in good agreement with experimental data, available only at the
high-temperature paramagnetic regime. Effects of magnetic transitions on vacancy formation energies are found
to be more important in bcc Fe than in fcc Fe and Ni. The distinct behavior is correlated to the relative roles
of longitudinal and transversal spin excitations. At variance with the bcc-Fe case, we note a clear effect of
longitudinal spin excitations on the magnetic free energy of vacancy formation in fcc Fe and Ni, leading to its
steady variation above the respective magnetic transition temperature. Below the Néel point, such effect in fcc
Fe is comparable but opposite to the one of the transversal excitations. Regarding fcc Ni, although neglecting the
longitudinal spin excitations induces an overestimation of the Curie temperature by 220 K, no additional effect
is visible below the Curie point. The distinct effects on the three systems are closely linked to DFT predictions
of the dependence of vacancy formation energy on the variation of local magnetic-moment magnitudes and
orientations.
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I. INTRODUCTION

Vacancy is one of the simplest and most frequently encoun-
tered structural defects in transition-metal systems. Vacancy
concentration [V ] is a key parameter controlling atomic
transport via the vacancy mechanism [1]. The equilibrium
monovacancy concentration [V ]eq can be linked with the va-
cancy formation free energy G f via the expression [2–4]

[V ]eq = exp
(
− G f

kBT

)
, (1)

where kB and T are, respectively, the Boltzmann constant and
the absolute temperature, and G f includes all the nonconfig-
urational entropy contributions (electronic, vibrational, and
magnetic) [5]. However, neither [V ] nor G f can always be
directly measured in experiments. [V ] can be determined from
differential dilatometry, but in a thermal-vacancy regime, the
technique is only applicable at very high temperatures (some-
times near the melting point) due to the limited experimental
resolution [6]. Other methods such as electrical resistivity
measurement and positron annihilation spectroscopy usually
provide the temperature dependence of [V ] rather than its
absolute value [7]. For pure systems, G f can also be indirectly
estimated as Ga − Gm, where Ga is the diffusion activation
free energy determined from tracer diffusion experiments
[8,9], and Gm is the vacancy migration free energy coming

from resistivity recovery, internal friction, or magnetic after-
effect experiments [10–13].

In magnetic metal systems, several thermodynamic and
kinetic properties are affected by thermal magnetic excita-
tions and the magnetic transition. The additional magnetic
degree of freedom makes an accurate prediction of those
properties more difficult, particularly from an atomistic-
simulation point of view. Experimental measurements of self-
and solute diffusion coefficients in bcc Fe revealed strong ef-
fects of magnetism [9,14–17]. These experimental evidences
have motivated various recent theoretical studies [18–24].
However, very little is known about such effects on the
vacancy-related properties in other magnetic systems (for
example fcc Fe, fcc Ni, and bcc Cr) that exhibit important
longitudinal spin fluctuations at finite temperatures [25–28].

The thermal magnetic effects can be very system depen-
dent. Here we focus on fcc Fe and fcc Ni, which are the
major constituents for the technologically important austenitic
steels. At variation with the bcc-Fe case, experimental data
on the vacancy concentration and the vacancy formation free
energy are only available for the paramagnetic (PM) states of
fcc Fe [29–33] and fcc Ni [6,34–36], due to the low magnetic
transition temperatures (67 K for fcc Fe [37] and 627 K for
fcc Ni [38]). On the theoretical side, previous first princi-
ples investigations on the vacancy formation and diffusion
properties in the PM regime were often informed by results
on the ferromagnetic (FM) state of fcc Ni [39–43] and the
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nonmagnetic (NM) state in the case of fcc Fe [44–46]. It is still
an open question whether these results, calculated with or-
dered or nonmagnetic states, are representative for those in the
PM state. For example, the vacancy formation energy obtained
for NM fcc Fe is 2.37 eV, much higher than the experimental
values (1.40–1.83 eV [29–33]). More advanced descriptions
of PM state properties can be achieved via the disordered
local moment (DLM) approach [47,48], the spin-wave method
[49], spin dynamics [50–52], spin-lattice dynamics [53,54],
and Monte Carlo simulations based on magnetic model
Hamiltonians [55–58] (see Ref. [59] for a recent review), etc.
Most of these studies [47–58,60,61] only considered defect-
free systems. Regarding the vacancy properties in the PM
state, most of the investigations addressed bcc Fe [20–24],
while there are very few such studies of fcc Fe [62] or fcc
Ni. Furthermore, the effects of longitudinal spin fluctuations,
which can be important in the PM regime, are often ne-
glected. Taking into account such effects requires, for example
in the DLM approach, a more sophisticated statistical treat-
ment combined with constrained local-moment calculations
[25,28,63], leading to very CPU-demanding calculations.
Finally, the previous theoretical studies in fcc Fe and Ni ad-
dressed the vacancy properties in the magnetic ground state
and the high-temperature ideal PM state, whereas a systematic
understanding of the temperature-dependent magnetic effects,
which involve simultaneous longitudinal and transversal spin
excitations, is missing.

In this study, we intend to provide a detailed analysis of the
effects of longitudinal and transversal spin excitations and the
magnetic transitions on vacancy formation properties, based
on DFT parametrized magnetic effective interaction models
(EIMs). The investigations are performed on fcc Fe and fcc
Ni, using the EIMs parametrized in this work, and on bcc Fe
with the EIM from a previous study [24]. A systematic com-
parison of the effects between the three systems is performed.

The paper is organized as follows. We introduce the com-
putational details in Sec. II and demonstrate the accuracy of
the EIMs in Sec. III. The vacancy formation properties from
first principles calculations and the EIM predictions are dis-
cussed in Sec. IV, for various temperature regimes across the
magnetic transition. Finally, conclusions are given in Sec. V.

II. COMPUTATIONAL DETAILS

The present modeling strategy is as follows. We first per-
formed DFT calculations in fcc Fe and Ni systems, with and
without a vacancy (Sec. II A). Then, these results were used
to parametrize EIMs (Sec. II B), which were later employed
in on-lattice Monte Carlo simulations (Sec. II C), for the study
of temperature-dependent vacancy formation properties.

A. DFT calculations

DFT calculations were performed using the projector aug-
mented wave (PAW) method [64,65] as implemented in the
Vienna ab initio simulation package (VASP) code [66–68].
3d and 4s electrons of Fe and Ni atoms were considered
as valence electrons. The plane-wave basis cutoff was set to
400 eV. The Methfessel-Paxton broadening scheme with a
smearing width of 0.1 eV was used [69]. The convergence cut-

off for the electronic self-consistency loop was set to 10-6 eV.
The k-point grids were adjusted according to the cell size to
achieve a k-sampling equivalent to a cubic unit cell with a
163 shifted grid following the Monkhorst-Pack scheme [70].
Atomic magnetic moments were obtained by an integration
of spin-up and spin-down charge densities within the PAW
spheres, with a radius of 1.302 Å for Fe and 1.286 Å for Ni.

We mainly adopted the generalized gradient approxima-
tion (GGA) for the exchange-correlation functional in the
Perdew-Burke-Ernzerhof (PBE) parametrization [71]. Some
additional local density approximation (LDA) calculations
were performed for fcc Ni to examine the effects of the
exchange-correlation functional on the vacancy formation
energies.

We use the following notations for different magnetic
states: NM, FM, and PM denote nonmagnetic, ferromagnetic,
and paramagnetic states, respectively; AFS and AFD denote
the antiferromagnetic single-layer and double-layer states, re-
spectively; Z1 denotes the magnetic structure consisting of
three consecutive spin-up layers and one spin-down layer
along one direction. The PM state in DFT is approximated
by magnetic special quasirandom structures (mSQS) [59].

DFT calculations were performed with various collinear
magnetic structures for fcc Fe and Ni, and a few noncollinear
ones for fcc Fe. For magnetically ordered states (NM, FM,
AFS, AFD, and Z1), the atomic positions, the volume, and
the cell shape were fully optimized. For other magnetic states
with local or global magnetic disorders, the atomic positions
were fixed to those in the magnetic collinear ground states
(namely AFD Fe and FM Ni) while the volume and the cell
shape were optimized.

For the defect-free systems, supercells of various sizes
containing up to 128 atoms were used. In total, we considered
more than 120 and 60 different magnetic configurations for
fcc Fe and Ni, respectively.

For the systems containing a vacancy, we performed calcu-
lations with either fully relaxing the magnetic configurations
or constraining atomic magnetic moments. In the former case,
108-site and 128-site supercells were used. They were re-
spectively constructed as 3 × 3 × 3 four-atom face-centered
cubic (fcc) unit cells and 4 × 4 × 4 two-atom body-centered
tetragonal (bct) unit cells. In the constrained-magnetism case,
we used 54-site (3 × 3 × 3 two-atom unit cells) and 72-site
(3 × 3 × 4 two-atom unit cells) supercells. The vacancy for-
mation energy E f was calculated as

E f = Etot,V − N − 1

N
Etot,0 (2)

with Etot,V and Etot,0 the total energies of the systems with
and without a vacancy. We verified that E f calculated for
a given magnetic configuration but with different supercell
sizes differs by at most 5 meV. In total, we considered around
140 and 90 different magnetic configurations (containing a
vacancy) for fcc Fe and Ni, respectively.

Vibrational entropies of vacancy formation of the mag-
netic collinear ground states were calculated within the
harmonic approximation in 3 × 3 × 3 supercells using VASP
and PHONOPY [72]. They were then added to the vacancy
formation magnetic free energies from Monte Carlo simu-
lations. Consequently, the magnon-phonon coupling effects
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[21,22,73] and the anharmonic effects [5,74,75] were ne-
glected. The many-electron effects, which were found to
be relevant to the magnetic properties in Fe according to
dynamical mean-field theory calculations [76–78], were not
considered in the present study.

B. Effective interaction models (EIM)

We adopt a model Hamiltonian similar to those used to
investigate magnetic properties, phase stability [55–57,61],
and vacancy formation and diffusion properties [24,58,79]
of Fe-based systems. The Hamiltonians for the present pure
systems are as follows:

Etot =
∑

i

σi ·
(

εi + AiM
2
i + BiM

4
i +

∑
j

σ j · Ji jMiM j

)
,

(3)

where i denotes the ith lattice site, σi is the occupation variable
and is equal to 1 (0) for an occupied (empty) lattice site, εi

is the onsite nonmagnetic parameter, Mi is the local mag-
netic moment, Ai and Bi are the onsite magnetic parameters
controlling the magnitudes of magnetic moments, Ji j are the
exchange interaction parameter controlling the orientations of
magnetic moments, and

∑
j is a sum over all the neighboring

sites up to the fourth neighbor shell. The Hamiltonian has a
generalized Heisenberg form enabling both longitudinal and
transversal spin variations. The effects of the presence of a va-
cancy are included via a dependence of the model parameters
on the distance between the ith atom and the vacancy [80], in a
similar way as in Refs. [24,58]. Specifically, we consider three
sets of values for the model parameters for the cases where
the atom is at the first or second nearest neighbor shells or
beyond the second nearest neighbor shell of the vacancy. This
choice is based on the DFT results showing that the presence
of a vacancy modifies mainly the local electronic structure and
therefore the local magnetic-moment magnitude of its first and
second nearest neighbors. Please note that the present models
are only parametrized to consider isolated vacancies.

In this work, we investigate the vacancy formation prop-
erties in fcc Fe and Ni, and compare them with those in bcc
Fe. For bcc Fe, our previously developed model is used [24].
For fcc Fe and Ni, we parametrize new EIMs as follows.
First, the magnetic parameters of bulk atoms are fitted to
energy differences between various magnetic states of defect-
free fcc Fe and Ni systems. Then, the magnetic parameters
of the atoms in the first and second coordination shells of
the vacancy are fitted to the energy differences between dif-
ferent magnetic structures containing a vacancy. Finally, the
nonmagnetic parameters are fitted to the vacancy formation
energies of AFD Fe and FM Ni (the respective collinear mag-
netic ground states). The numerical values of the parameters
can be found in the Supplemental Material [80].

C. On-lattice Monte Carlo simulations

On-lattice spin Monte Carlo (SMC) simulations for fcc Fe
and Ni are performed on fcc supercells consisting of 163 cubic
unit cells (16 384 fcc sites) with periodic boundary conditions.

For bcc Fe, we use bcc supercells consisting of 203 cubic unit
cells (16 000 bcc sites).

The spin system is equilibrated at a given temperature
by performing Metropolis SMC steps. At each SMC step,
a random variation of the magnetic moment of a randomly
chosen atom is attempted with the acceptance probability
min[1, exp(�E/η)]. Within the classical statistics, η is equal
to kBT . However, a quantum statistics treatment of spins
at low temperatures was shown to be necessary for various
magnetic and vacancy properties [24]. As detailed in the
Supplemental Material [80], the quantum effects on mag-
netism can be incorporated through the scaling factor η

calculated based on the temperature-dependent magnon den-
sity of states (mDOS) [54,81]. An accurate determination of
temperature-dependent mDOS at the DFT level is beyond the
scope of the present study. Instead, we first obtain magnon
dispersion relations from the dynamical equation [82] using
our model parameters. From them, the ground-state mDOS
is calculated and then used to determine the temperature-
dependent mDOS based on the quasiharmonic approximation
(QHA) [54,81]. The QHA method is known to exaggerate the
quantum effects at higher temperatures [81]. For instance, we
find a strong exaggeration of the quantum effects in fcc Ni,
due to its high magnon energies as compared with the values
of bcc and fcc Fe [80,83,84].

In principle, the vacancy formation energy E f can be
calculated in a brute-force manner by Eq. (2), using the ther-
modynamic averages of the total energies for the systems with
and without a vacancy. However, it is extremely computation-
ally inefficient to achieve a desired accuracy (e.g., 1 meV) due
to the large fluctuations in the total energies. Furthermore,
at finite temperatures, we need to determine the magnetic
entropy and free energy of vacancy formation, respectively S f

and G f . Their calculation from the integration of E f requires
a even higher accuracy of the E f . In this work, we use the
efficient Monte Carlo schemes detailed in the Supplemental
Material [80,85] to calculate directly G f with a satisfactory
accuracy (<1 meV). Once G f is obtained, S f and E f can
be easily evaluated from usual thermodynamic relations. We
verify that these schemes yield the same results as those from
the aforementioned brute-force method [80], and one of them
was already successfully applied to the study of bcc Fe [24].

III. ACCURACY OF THE EIMs

As shown in Table I, the energetic hierarchy of sev-
eral collinear magnetic states of fcc Fe from the EIM is in
good agreement with the DFT results. The magnetic ground
state of Fe predicted by the EIM is a spin spiral with

TABLE I. Energies (in meV/atom) of several magnetic states
(with respect to AFD) of fcc Fe by the DFT and EIM predictions
in this study and the predictions from a previous model [55].

Noncol-AF AFD AFS FM NM

DFT – 0 19 22 82
EIM −0.5 0 17 29 105
EIM in Ref. [55] −2 0 0 32 51
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FIG. 1. Energy of AFD fcc Fe as a function of spin magnitude
from the DFT and EIM predictions in this study and the prediction
from a previous model [55].

q = 2π
a (0, 0, 0.3), which has a slightly lower energy than the

AFD state.
Experimentally, the magnetic ground state of fcc Fe is a

spin spiral with q = 2π
a (0.3, 0, 1) [86–88]. First principles

calculations also predicted a spin spiral ground state, but with
q = 2π

a (0, 0, 0.6) [89–91]. Within the collinear approxima-
tion, the ground state is the AFD state [91–94], with q =
2π
a (0, 0, 0.5).

We fit the EIM parameters of fcc Fe on the DFT results of
various magnetic states, in particular on the energy of the AFD
state as a function of magnetic-moment magnitude (Fig. 1).
The latter energy landscape is not well captured by a recent
effective interaction model in Ref. [55], which also gives an
overestimated equilibrium spin magnitude for the AFD Fe.
Note that it is crucial to well reproduce such an energetic
landscape, because it dictates the description of longitudinal
spin excitations at finite temperatures, which are important in
fcc Fe and Ni [26–28]. Furthermore, our DFT results show
that the vacancy formation energies are sensitive to the spin
magnitudes.

The EIM of pure Ni is also fitted on the DFT results of var-
ious collinear states and the energy-versus-moment relation in
the FM state. In agreement with the DFT results, the magnetic
ground state of Ni predicted by the EIM is FM with a magnetic
moment of 0.65 μB.

IV. RESULTS AND DISCUSSIONS

In this section, we present and discuss the DFT and EIM
predictions of bulk and vacancy formation properties in fcc
Fe and Ni, with a comparison to those in bcc Fe.

A. Magnetic properties of the defect-free bulk systems

As shown in Table II, the generalized Heisenberg (GH)
EIMs reproduce well the experimental Curie temperatures of
bcc Fe and fcc Ni, and give a closer prediction of the measured
Néel temperature of fcc Fe than that of 450 K from a previous
model [55]. Though the predicted Néel temperature is still
somehow overestimated, it is ensured that fcc Fe is already
paramagnetic at the room temperature.

It is known that longitudinal spin fluctuations are more sig-
nificant in fcc Fe and Ni than in bcc Fe [26–28]. This point is
also confirmed by the EIM results shown in Fig. 2. Compared

TABLE II. Experimental and calculated Curie temperature of bcc
Fe and fcc Ni and Néel temperature of fcc Fe. GH and CH denote
the generalized Heisenberg (i.e., freely evolving spin magnitudes)
and classical Heisenberg (i.e., fixed spin magnitudes) simulations,
respectively.

System Expt. GH CH

bcc Fe 1044 K [38] 1050 K 1080 K
fcc Fe 67 K [37] 220 K 240 K
fcc Ni 627 K [38] 620 K 880 K

to the bcc-Fe case, fcc Ni and fcc Fe show a stronger variation
of the average spin magnitude versus temperature, and a larger
dispersion of the spin magnitudes.

Our generalized Heisenberg EIMs naturally account for
longitudinal spin fluctuations. To demonstrate the effects of
such fluctuations on the magnetic transition temperatures TC,
we also perform classical Heisenberg (CH) simulations based
on the same EIMs, by constraining the spin magnitudes to the
ground-state values. The difference between T GH

C and T CH
C is

then due to the fact that the temperature-dependent variation
of the average spin magnitude, and the dispersion of spin
magnitudes are neglected in CH simulations. The effects of
neglecting the variation in the average spin magnitude can be
roughly estimated as follows. Since the magnetic transition
temperature is proportional to Ji jM2, T CH

C can be estimated as

T CH
C = T GH

C × M2(0K )

M2
(
T GH

C

) (4)

where M2(0K )/M2(T GH
C ) according to Fig. 2(a) is equal to

1.07, 1.14 and 1.53 for bcc Fe, fcc Fe and fcc Ni, respectively.
These estimations are consistent with the results obtained
from CH simulations (Table II). The actual difference in the
transition temperatures between the GH and CH simulations
is small for bcc and fcc Fe, but it becomes quite large in fcc Ni,
showing the necessity of taking into account the temperature
variation of spin magnitudes. On the other hand, if we impose
the Ni spin magnitudes (in CH simulations) to be the average
value from the GH simulations at the T GH

C , the obtained T CH
C

is 60 K lower than the T GH
C . This suggests a minor but non-

negligible effect of the dispersion of atomic spin magnitudes
at a given temperature.

FIG. 2. Variation with temperature of (a) average spin magni-
tudes and (b) standard deviation of the spin magnitudes, scaled by the
respective ground-state moments |M|GS . The vertical lines denotes
the corresponding magnetic transition temperatures.
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TABLE III. Ef (in eV) in different magnetic states computed
from DFT. The collinear magnetic ground state values are marked
in bold.

System NM FM AFS AFD mSQS

fcc Fe 2.37 1.85 2.00 1.83 2.04
fcc Ni 1.38 1.43 1.47 1.53 1.52
bcc Fe 0.57 2.20 0.94 1.86 1.59

B. Vacancy formation energies at 0 K from DFT

The vacancy formation energies E f in various magnetic
states are computed from DFT (Table III). The dispersion
in E f among different magnetic states is much larger in bcc
Fe than in fcc Fe and Ni, suggesting a stronger magnetic
effects on E f in bcc Fe. Please note that such dispersions are
related to not only the ordering of local magnetic-moment
orientations but also the atomic spin magnitudes. The latter
can differ by as much as 0.9 μB between different magnetic
states (excluding the NM one) in bcc and fcc Fe.

To check the dependence of E f on the atomic spin magni-
tudes |M|, we perform the DFT calculations by constraining
all the local |M| to the same values. The results for the three
systems are shown in Fig. 3.

E f is less dependent on |M| in fcc Ni than in fcc and bcc
Fe. In fcc Ni, E f of the FM state is lower than most of other
magnetic states with the same |M|. Consequently, E f in fcc Ni
at finite temperatures is expected to be larger than that of the
FM ground state.

In fcc Fe, E f for all the spin-orientation orderings tends to
decrease with increasing |M| for |M| below 2 μB. Figure 3
also shows that the difference of E f is relatively small be-
tween various spin orderings with the same |M|, whereas the
variation in E f with |M| is relatively large for a given spin
ordering. This suggests E f in fcc Fe has a stronger dependence
on the atomic spin magnitudes than on the spin orientations. In
particular, consider the AFD state and the mSQS. According
to the results obtained with optimized magnetic moments
(Table III), E f in the AFD state is 0.2 eV lower than that in
the mSQS. From Fig. 3, it is clear that E f of the mSQS and
the AFD state is very similar for the same |M|. Therefore,
the difference of E f between the two states in Table III is
mainly due to the fact that the optimized |M| is smaller in the

mSQS (on average 1.5 μB) than in the AFD state (2.0 μB).
This indicates that E f in the mSQS with optimized magnetic
moments cannot be taken as the value in the PM state, since
longitudinal spin fluctuations in the high temperature PM state
lead to an increase in |M|.

Contrary to the fcc-Fe case, E f in bcc Fe is much more de-
pendent on the spin-orientation orderings than on the atomic
spin magnitudes, as demonstrated in Fig. 3(c). Furthermore,
the variation in |M| is also expected to be small in bcc Fe:
The optimized magnetic moments in the mSQS are on average
2.05 μB, rather close to 2.20 μB in the FM ground state; it
is also shown in the previous section that the thermal longi-
tudinal spin fluctuations in bcc Fe are small. Therefore, the
temperature-dependent vacancy formation properties in bcc
Fe are expected to be mainly determined by the arrangement
of spin orientations. We note that our EIMs reproduce satis-
factorily the above DFT predictions in Table III and Fig. 3.

Finally, we would like to comment on the effects of
exchange-correlation functionals on E f . In this work, we
parametrize the EIMs of fcc Fe and Ni based on the GGA-PBE
results. It is well known that GGA describes the bulk (in
particular magnetic) properties of Fe better than LDA [91].
For Ni, LDA, and GGA equilibrium lattice parameters (a0)
are 3.416 Å and 3.514 Å, respectively, the latter being closer
to the experimental value of 3.52 Å [95]. By performing LDA
calculations using the GGA a0, we verified that adopting LDA
results only introduced a constant shift in E f for all the mag-
netic states compared with GGA values, namely the relative
difference in E f between different magnetic states is the same
using LDA and GGA. Therefore, the choice of exchange-
correlation functionals influences only the parametrization of
the nonmagnetic part of the EIMs. This point will be further
discussed for Ni in Sec. IV C 1.

C. Vacancy formation properties at finite
temperatures from EIM

We show in Fig. 4 the temperature-dependent vacancy
formation properties calculated from GH simulations for the
three systems. Here, Emag

f is the vacancy formation energy,
Smag

f is the magnetic contribution to the vacancy formation
entropy, and Gmag

f (=Emag
f − T Smag

f ) is the vacancy formation
magnetic free energy (without the vibrational or other entropic
contributions). In the following, we first describe the overall

FIG. 3. DFT results of Ef in the three systems as a function of constrained local magnetic moment, with respect to Ef in the collinear
magnetic ground states (1.43 eV for FM fcc Ni, 1.83 eV for AFD fcc Fe and 2.20 eV for FM bcc Fe). The vertical lines denote the spin
magnitude of the magnetic ground states.
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FIG. 4. Magnetic contribution to vacancy formation properties in the three systems calculated from GH simulations (i.e., with both
transversal and longitudinal spin fluctuations). Gmag

f and Emag
f are given with respect to the ground-state values (1.43 eV for FM fcc Ni,

1.83 eV for AFD fcc Fe, and 2.20 eV for FM bcc Fe). The vertical lines denote the EIM-predicted magnetic transition temperatures.

behavior versus temperature and compare our results with
experimental data. Then, the effects of magnetism in different
temperature ranges are analyzed separately.

1. Overall behavior and comparison with experiments

We first consider bcc Fe in which the vacancy activation
energy strongly depends on the magnetic state as evidenced
by experiments [9,96]. Theoretical studies reveal that both
vacancy formation and migration energies are lower in the
fully PM than in the FM state [18–24]. As can be seen in
Fig. 4, compared with the FM values, the asymptotic Gmag

f

and Emag
f are reduced by 0.17 and 0.20 eV, respectively.

At variance with the well-known case of bcc Fe, magnetic
disorders in fcc Fe and Ni do not lead to a strong decrease
of Gmag

f . In the PM region close to the magnetic transition,
�Gmag

f = Gmag
f (T ) − Gmag

f (0K ) is negligible in fcc Fe but it
is positive in fcc Ni. Furthermore, there is a steady variation
in Gmag

f of fcc Fe and Ni in the PM region, which is differ-
ent from the saturation behavior observed in bcc Fe. These
distinct behaviors will be further analyzed in Sec. IV C 3.

The vacancy formation energies in the magnetic ground
state and the PM state are compared with other calculations
and experiments in Table IV. In bcc Fe, our FM value agrees
with the previous calculated results ranging between 2.15–
2.23 eV based on the same exchange-correlation functional
GGA-PBE [18,22,23], whereas the GGA-PW91 prediction
gives a lower value of 1.95 eV [92], or 2.13 eV if using
the experimental a0 [19]. Our fully PM value is consistent
with the previous results, and the dispersion in the calculated
values may be due to the different atomic-position relaxation

schemes [19–23]. Before comparing with experimental data,
it should be noted that the measurement of E f in bcc Fe is
extremely sensitive to the presence of interstitial impurities
such as carbon, which could lead to an underestimation of E f

in earlier studies [96]. Compared with the experimental data in
bcc Fe, both our ground-state and PM values are on the higher
limit. A very relevant quantity to compare is the difference
between the GS and PM energies. It summarizes the overall
effect of the magnetic transition, and a cancellation of sys-
tematic errors can occur in both calculations and experiments.
This difference from our prediction is in good agreement with
the result of Schepper et al. [96].

For fcc Fe, our results agree with the previous ab initio pre-
dictions [62,93]. On the experimental side, the measurements
on E f are performed in the PM state. Unlike the bcc-Fe case,
the measurement in fcc Fe is less affected by the presence of
impurities [29]. The experimental uncertainty is rather due to
its limited temperature window of stability [33]. The predicted
E f of PM fcc Fe is consistent with the measured values within
the experimental uncertainty. We note that this value is much
lower than the one in NM fcc Fe (2.37 eV). The NM state
is therefore a poor representative phase to study diffusion
properties in fcc Fe, although it has been used in some recent
ab initio studies on diffusions in PM fcc Fe [44–46].

To the best of our knowledge, there is no theoretical result
for the PM E f and no experimental data for the FM E f in fcc
Ni. The experimental E f ranges between 1.5 eV and 1.8 eV
(see Ref. [5] and references therein). Smedskjaer et al. [34]
suggested that the experimental discrepancies arise from the
different analysis methods and the associated assumptions
between positron annihilation spectroscopy experiments, and

TABLE IV. Vacancy formation energies (in eV) in the collinear magnetic ground state and the PM state from calculations and experiments.
For the PM state, we show both Emag

f and Gmag
f (given inside the parentheses) calculated at 1500 K. The small difference between Emag

f and
Gmag

f comes from the longitudinal spin entropy as explained in Sec. IV C 3.

bcc Fe fcc Fe fcc Ni

FM PM AFD PM FM PM

This work 2.20 2.00 (2.03) 1.84 1.85 (1.78) 1.43 1.48 (1.50)
Other calculations 1.95–2.24 [18–23,92] 1.54–1.98 [19–23] 1.82 [93] 1.86 [62] 1.43 [39]
Experiments 2.0 ± 0.2 [96] 1.79 ± 0.1 [96] 1.40 ± 0.15 [33] 1.73 ± 0.07 [36]

1.81 ± 0.1 [97] 1.74 ± 0.1 [97] 1.7 ± 0.2 [32] 1.7 ± 0.1 [35]
1.60 ± 0.15 [29] 1.53 ± 0.15 [29] 1.83 ± 0.14 [30] 1.6 ± 0.1 [35]

1.56 ± 0.04 [98]
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FIG. 5. Calculated [V ]eq as a function of temperature, compared
to available experimental data in fcc Ni [98,100–102].

uncontrolled metallurgical variables for other techniques such
as positron lifetime spectroscopy. In the light of this sugges-
tion, the recommended value of E f in Ref [6] is 1.79 eV. The
results from the recent experiments [35,36,98] are shown in
Table IV. Though being higher than the recommended value
in Ref. [6], our prediction of E f for PM Ni is within the
uncertainty of the experiments [33,35,98,99], including the
most recent one using differential dilatometry [98] to measure
directly the equilibrium vacancy concentration.

Indeed, the experimental E f is indirectly deduced from
the temperature dependence of the equilibrium vacancy con-
centrations. Therefore, the latter may allow a more direct
comparison. To the best of our knowledge, such measure-
ments on vacancy concentrations have been performed in fcc
Ni, but not in bcc and fcc Fe. To determine these concentra-
tions, we have calculated via DFT the vacancy vibrational
formation entropy for FM fcc Ni (2.15 kB) and included it
to the magnetic free energy of vacancy formation obtained
using the EIM. As shown in Fig. 5, the calculated equilib-
rium vacancy concentrations of fcc Ni agree well with the
experimental concentrations, which exhibit a larger dispersion
at temperatures below 1400 K. We note that E f deduced as
the slope of the experimental curve is very sensitive to this
dispersion of the experimental data: The estimated E f ranges
between 1.5 to 1.6 eV if only data above 1400 K are consid-
ered, and between 1.45 to 1.80 eV if all data are considered.

On the theoretical side, E f of FM Ni is sensitive to the
choice of exchange-correlation functional, for instance be-
tween the GGA-PBE and the LDA functionals used in DFT
calculations [103]. As discussed in Sec. IV B, the choice
affects only the EIM prediction of E f of FM Ni but not
the temperatures evolution �Gmag

f (T ). To evaluate the LDA-
based prediction of equilibrium vacancy concentrations, we
calculated the vacancy formation energy (1.65 eV) and the
vacancy vibrational formation entropy (0.43 kB) of FM Ni
via DFT using LDA and combined them with �Gmag

f (T )
predicted by the EIM. Since the experimental a0 of Ni is well
reproduced by GGA-PBE but underestimated by LDA, we
also applied LDA with the GGA-PBE a0 to calculate the va-
cancy formation energy (2.02 eV) and the vacancy vibrational

FIG. 6. Comparison of �Gmag
f (= Gmag

f (T ) − Gmag
f (0K )) as a

function of temperature between the GH and CH values. For each
pure system, the CH curve is rescaled to have the same magnetic
transition temperature as the GH curve. The vertical lines denote the
magnetic transition temperatures of the GH curves. TNéel of fcc Fe
is 220 K (240 K) from the GH (CH) calculations; TCurie of fcc Ni is
620 K (880 K) from the GH (CH) calculations; TCurie of bcc Fe is
1050 K (1080 K) from the GH (CH) calculations.

formation entropy (0.44 kB) for FM Ni. We note the latter
is much lower than the GGA-based value (2.15 kB) and the
experimental result (3.3 ± 0.5 kB [98]). As shown in Fig. 5,
the two LDA-based predictions substantially underestimate
the experimental equilibrium vacancy concentrations. This
may be due to the large vacancy formation energy and the
small vacancy vibrational formation entropy obtained with the
LDA functional. Therefore, we conclude that the GGA-based
prediction is more consistent with the experimental vacancy
concentrations.

Finally, we also compare the relative importance of the
vibrational and magnetic effects on the equilibrium vacancy
concentration in fcc Ni. As can be seen from Fig. 5, neglect-
ing the magnetic effects (namely G f = Gmag

f (0K ) − T Svib
f )

changes very little the predicted vacancy concentrations,
whereas neglecting the vibrational contribution [namely G f =
Gmag

f (T )] would underestimate the vacancy concentration by
one order of magnitude. In fact, for the three systems, the
vibrational contribution to the vacancy concentration determi-
nation is stronger than the magnetic contribution. The latter
is small in fcc Fe and Ni, but it is more significant in bcc Fe
as neglecting this can lead to an underestimation of vacancy
concentration by up to a factor of 5.

2. Vacancy formation below magnetic transitions

The EIMs for bcc Fe and fcc Ni predict the same FM
ground state as with DFT, therefore the ground state E f for
bcc Fe and fcc Ni are correctly reproduced. For fcc Fe, the
collinear magnetic ground state by DFT is AFD, whereas the
EIM predicts a spin spiral ground state with a slightly lower
energy (by 0.5 meV/atom) than the AFD state. The E f of the
spin spiral is found to be slightly higher (by 0.01 eV) than the
AFD value.

The vacancy formation properties below the magnetic
transitions can be influenced by the transversal and the lon-
gitudinal spin fluctuations, and the effects of two types of
fluctuations cannot be easily decoupled. In Fig. 6, we compare
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the temperature evolution of �Gmag
f predicted by GH and CH

simulations.
Below the magnetic transitions, the CH results (without

longitudinal spin fluctuations) follow the same trend as the
GH values for bcc Fe and fcc Ni, indicating the effects of
the longitudinal spin fluctuations are small. This is expected
for bcc Fe in which longitudinal spin fluctuations are not
significant. For fcc Ni, longitudinal spin fluctuations are rather
strong, and the Curie temperature (880 K) from the CH sim-
ulations is much higher than the GH value (620 K). However,
the CH and GH results of �Gmag

f would be similar if they are
rescaled to the same Curie temperatures. This is in agreement
with the DFT results in Sec. IV B where E f in fcc Ni is found
to be rather insensitive to the spin magnitudes, especially for
the FM state.

For fcc Fe below the Néel temperature, the CH values
decrease with temperature while the GH values remain nearly
unchanged. This suggests that below the magnetic transition
in fcc Fe, the transversal spin fluctuations lead to a decrease
in Gmag

f , while the longitudinal spin fluctuations lead to an
increase in Gmag

f . Indeed, the spin magnitudes tend to decrease
with temperature before the Néel temperature (Fig. 2), which
leads to an increase in Gmag

f according to our DFT results in
Fig. 3(b).

On the other hand, the spin magnitudes tend to increase
with temperature above the Néel temperature, so Gmag

f is
expected to decrease with temperature according to the DFT
results in Fig. 3(b). As shown later, there is a steady decrease
in Gmag

f with temperature in PM fcc Fe. This demonstrates that
the longitudinal spin fluctuations play a dominant role over
the transversal ones in the temperature evolution of Gmag

f of
fcc Fe.

3. Vacancy formation properties in the PM regime

As shown in Fig. 6, Gmag
f always saturates in the PM region

in the CH simulations. From thermodynamic relations, it can
thus be concluded that Emag

f also saturates while Smag
f vanishes

at high T . Indeed, for CH models, the magnetic contribution
to the vacancy formation energy is zero in the ideal PM state,
since the thermodynamic average of the spin-spin correlation
〈M iM j〉 is zero in the ideal PM state.

The steady variation in Gmag
f in the PM region in Fig. 4(a)

is thus related to the longitudinal spin fluctuations and is
observed only with the GH models. This behavior can be
quantitatively understood as follows. In the ideal PM region
where the spin-spin correlations are negligible, the magnetic
Hamiltonian can be approximated by a simplified form, re-
taining only the onsite terms, namely

Emag
tot =

∑
i

emag
i =

∑
i

AiM
2
i + BiM

4
i , (5)

where emag
i = AiM2

i + BiM4
i is the onsite magnetic energy for

the ith atom. The partition function can be expressed as

Ztot =
∫

e−βEmag
tot dM1...dMN =

∏
i

zi (6)

zi =
∫

e−βemag
i dM i. (7)

FIG. 7. (a) �Gmag
f and (b) Smag

f predicted from the complete
and simplified EIMs. The vertical lines denote the EIM-predicted
magnetic transition temperatures.

The total magnetic energy of the system can then be calculated
as

Gmag
tot = −kBT · lnZtot =

∑
i

gmag
i (8)

gmag
i = −kBT lnzi, (9)

where gmag
i is the magnetic free energy of the ith atom. In

our EIMs, there are three sets of the onsite parameters for
each pure system depending on the distance from the vacancy.
Consequently, there are three possible values of gmag

i for a pure
system containing a vacancy. We use the subscript i equal to 0,
1, and 2 to represent the bulk atoms and those in the first and
second neighboring shells of the vacancy, respectively. The
vacancy formation free energy can then be expressed as

Gmag
f = Gmag

tot,V − N − 1

N
Gmag

tot,0

=
∑
i=1,2

ni · (
gmag

i − gmag
0

)
, (10)

where ni is the coordination number of the ith shell.
The simplified EIMs allow a direct numerical evaluation of

zi and thus all the subsequent quantities. It should be noted that
even though the contribution of transversal spin fluctuations
to the averaged total energy is negligible in the PM state, its
contribution to the total entropy is not zero. This is fully taken
into account in Eq. (7), where it is equally possible for Mi

to take any direction, as expected for the perfectly PM state.
In this way, the transversal part of the entropy per atom is
maximized and the same for all the atoms independent of their
distances from the vacancy. This entropic contribution is thus
canceled out in Eq. (10).

The results of Gmag
f and Smag

f are compared between the
complete and the simplified EIMs for fcc Fe and Ni in Fig. 7.
In the PM region, Gmag

f and Smag
f using the simplified EIMs

converge to those from the complete EIMs, confirming that
the simplified EIMs are very good representations of the com-
plete ones at high temperatures. The different variation trends
in Gmag

f between fcc Fe and Ni are related to the signs of Smag
f .

This can also be understood with the simplified Hamiltonians
that contain only the onsite magnetic energy AiM2

i + BiM4
i .

As shown in Fig. 8, for a given temperature (e.g., 1000 K
as indicated in the figure), the atoms around the vacancy can
explore a larger interval of |M|, and thus has a larger entropy
than the bulk atoms in fcc Fe, while the case is reversed for
fcc Ni.
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FIG. 8. Onsite magnetic energies AiM2
i + BiM4

i for the bulk
atoms and first and second nearest neighbors of a vacancy.

The current analysis can provide insights into the impact
of longitudinal spin variations on vacancy formation at high
temperatures. That is, due to the difference of spin magni-
tudes in the PM state between the atoms near the vacancy
and in the bulk, a steady variation of Gmag

f with temperature
is expected, which is at variance with the predictions from
classical Heisenberg models. In this case, it is also nontrivial
to apply the well-known Ruch model [104], which proposes

Gmag
f (T ) − Gmag

f (0K )

Gmag
f (PM ) − Gmag

f (0K )
= 1 − S2, (11)

where S is the magnetic long-range order parameter, and
Gmag

f (PM ) is the vacancy formation magnetic free energy in
the ideal PM state. Gmag

f (PM ) can be taken as the saturated
value for bcc Fe, but the definition of Gmag

f (PM ) is ambiguous
for fcc Fe and Ni in which Gmag

f (T ) does not saturate at high
temperatures.

4. Impact of magnetic transitions on vacancy formation

It has been shown in Fig. 4 that the effect of the magnetic
transition is much stronger in bcc Fe than in fcc Fe and Ni.
This is mainly related to the change in the exchange interac-
tion energy across the magnetic transitions. To illustrate this,
we begin with the CH models where Ji j are the same for the
atoms in the bulk and near the vacancy, and we focus on the
vacancy formation energy Emag

f for simplicity. In this case,
the exchange interaction energy Ji jMiM j does not contribute
to Emag

f in the ideal fully PM state. In the magnetic ground
state, this contribution to Emag

f is equal to half the ground-state
exchange interaction energy per atom. Therefore, the variation
in Emag

f across the magnetic transition is equal to half the
ground-state exchange interaction energy per atom. The latter
value is expected to be larger in bcc Fe than in fcc Fe and Ni in
view of the DFT results [94,105], which show that the energy
difference between various magnetic states is more significant
in bcc Fe than in fcc Fe and Ni. For a quantitative comparison,
we show in Table V the different contributions to the vacancy
formation energies of the three systems. Although there is a
compensating variation between the onsite (longitudinal) and
exchange (transversal) contributions in the three systems, the
latter contribution is much stronger in bcc Fe than in fcc Fe
and Ni.

TABLE V. Contributions of different terms in the Hamiltonians
to the vacancy formation energy in the magnetic ground state and the
PM state, expressed in eV. The PM value is obtained at 1500 K where
the transversal contribution is negligible in all three systems.

bcc Fe fcc Fe fcc Ni

Contribution GS PM GS PM GS PM

NM εi 2.00 2.00 2.37 2.37 1.43 1.43
Onsite AiM2

i + BiM4
i −0.07 0.00 −0.47 −0.53 0.14 0.06

Exchange Ji jM iM j 0.27 ≈0 −0.07 ≈0 −0.13 ≈0
Total 2.20 2.00 1.84 1.85 1.43 1.48

V. CONCLUSION

We investigated magnetic effects on vacancy formation
properties in fcc Ni, and in bcc and fcc Fe. We performed
density functional theory calculations and Monte Carlo simu-
lations with effective interaction models.

DFT calculations were performed for a large set of mag-
netic configurations of the three systems, with or without
a vacancy. These results reveal a dispersion of the vacancy
formation energies E f among various magnetic states, which
is larger in bcc and fcc Fe than in fcc Ni. The dispersion is
related not only to the ordering of spin orientations but also to
the spin magnitudes. We have shown that the spin ordering has
a dominant influence on the vacancy formation energy in bcc
Fe, while this formation energy in fcc Fe is more dependent
on the spin magnitudes; in fcc Ni both types of effects are
small.

The DFT-parametrized models, with a generalized-
Heisenberg form, were used in Monte Carlo simulations
enabling the thermal fluctuations of spin orientations and
magnitudes. Regarding magnetic properties of the defect-free
systems, the Monte Carlo results reveal that the longitudinal
spin fluctuations are more significant in fcc Fe and Ni than
in bcc Fe. In particular for fcc Ni, neglecting the temperature
evolution of spin magnitudes leads to an overestimation by
220 K of the Curie point. Based on an efficient Monte Carlo
scheme, the vacancy formation energy, magnetic entropy, and
magnetic free energy were determined as functions of temper-
ature for the three systems.

Overall, the predicted vacancy formation energies and
equilibrium vacancy concentrations are in good agreement
with the experimental data, which are available only at high
temperatures. Concerning the determination of the equilib-
rium vacancy concentration, the vibrational entropy has a
stronger contribution than the magnetic one for all three sys-
tems. But the latter is non-negligible in bcc Fe, as neglecting
this contribution leads to an underestimation of the equilib-
rium vacancy concentration by a factor of 5.

The overall impact of the magnetic transition on the va-
cancy formation properties are found to be more significant
in bcc Fe than in fcc Fe and Ni. The substantial decrease of
the vacancy formation energy from the ferromagnetic to the
paramagnetic regime in bcc Fe is mainly due to the transversal
rather than the longitudinal spin excitations. This is coher-
ent with the strong dependence of the formation energy on
the spin-orientation ordering in bcc Fe as predicted by DFT.
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Consistently, a weaker dependence of the vacancy formation
energy on the spin ordering in fcc Fe and Ni leads to a
smaller variation of the vacancy properties below and above
the magnetic transition.

We note a significant effect of longitudinal spin excitations
on the magnetic free energy of vacancy formation in fcc Fe,
resulting in its steady decrease above the Néel point. Also,
below its Néel point, such effect is comparable but opposite
to that of the transversal excitations. These are consistent with
the DFT results in fcc Fe, which demonstrate a stronger de-
pendence of vacancy formation energy on the spin magnitude
rather than the spin ordering. Interestingly, it is noted that
the predicted vacancy formation energy in the paramagnetic
state is close to the AFD-state value, but it is 0.52 eV lower
than the formation energy obtained with nonmagnetic fcc Fe.
Although the latter has been used in some recent studies on
diffusion properties in fcc Fe, our results suggest that the para-
magnetic fcc Fe is better represented by the AFD state than
the nonmagnetic state. Regarding the vacancy formation in fcc
Ni, the transversal spin excitations just below the Curie tem-
perature lead to a sudden increase of the vacancy formation
magnetic free energy, while the longitudinal spin fluctuations

above the Curie temperature lead to a steady increase of this
quantity.

The cases of fcc Fe and Ni reveal a relevant effect of
longitudinal spin excitations on the vacancy formation proper-
ties, which cannot be well captured by a classical Heisenberg
model. Also, at variance with the bcc-Fe case, the widely used
Ruch model cannot be applied in these systems to predict the
temperature evolution of energetics of vacancy formation.
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