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Metastable antiphase boundary ordering in CaFe2O4

H. Lane,1,2,3 E. E. Rodriguez,4 H. C. Walker ,3 Ch. Niedermayer ,5 U. Stuhr,5 R. I. Bewley,3 D. J. Voneshen,3 M. A. Green,6

J. A. Rodriguez-Rivera ,7,8 P. Fouquet ,9 S.-W. Cheong,10 J. P. Attfield,2 R. A. Ewings,3 and C. Stock1

1School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
2School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom

3ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxon OX11 0QX, United Kingdom
4Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA

5Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
6School of Physical Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom

7NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
8Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA

9Institute Laue-Langevin, 6 rue Jules Horowitz, Boite Postale 156, 38042 Grenoble Cedex 9, France
10Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA

(Received 4 June 2021; revised 5 August 2021; accepted 6 August 2021; published 2 September 2021)

CaFe2O4 is an S = 5/2 antiferromagnet exhibiting two magnetic orders that shows regions of coexistence
at some temperatures. Using a Green’s function formalism, we model neutron scattering data of the spin wave
excitations in this material, elucidating the microscopic spin Hamiltonian. In doing so, we suggest that the low-
temperature A phase order (↑↑↓↓) finds its origins in the freezing of antiphase boundaries created by thermal
fluctuations in a parent B phase order (↑↓↑↓). The low-temperature magnetic order observed in CaFe2O4 is thus
the result of a competition between the exchange coupling along c, which favors the B phase, and the single-ion
anisotropy, which stabilizes thermally generated antiphase boundaries, leading to static metastable A phase order
at low temperatures.

DOI: 10.1103/PhysRevB.104.104404

I. INTRODUCTION

The manipulation of the domain-wall motion of ferromag-
nets via a coupling to external fields has been suggested
as a promising mechanism for the design of logic gates
[1] and racetrack memory devices [2,3] for the next gen-
eration of quantum devices. Additional attention has been
paid to the control of antiferromagnetic domain walls, which
overcome the practical difficulties of the large stray fields
associated with their ferromagnetic counterparts, yet cannot
be controlled with a simple external field [4]. Nonetheless,
mechanisms have been suggested for the control of antiferro-
magnetic domain walls ranging from thermal activation [5] to
spin-orbital torques [6] and magnon-driving [7].

One antiferromagnetic system, which may prove instruc-
tive in the study of magnon-soliton interactions and antiphase
boundary effects, is the S = 5

2 antiferromagnet CaFe2O4. Po-
larized neutron diffraction data show the existence of spatially
extended Bloch walls separating antiphase regions of anti-
ferromagnetic order [8]. The antiphase boundaries have been
found to carry an uncompensated local moment and are hence
tunable in field [8]. Furthermore, the low-energy magnetic
excitation spectrum was found to exhibit discrete modes [9],
perhaps indicative of confinement of solitons within a nonlin-
ear potential that arises due to frustration between domains on
weakly coupled chains [10]. Knowledge of the microscopic
spin Hamiltonian is a necessity before a full understanding

of the antiphase boundaries can be gained, yet a consistent
picture of the magnetic interactions in CaFe2O4 has proved
elusive.

CaFe2O4 exhibits two magnetically ordered phases. The
high-temperature B phase consists of two-dimensional net-
works of coupled zigzag chains that are stacked along c in the
(↑↓↑↓) pattern [see Fig. 1(a)]. As temperature is decreased,
the A phase develops, which differs only in its (↑↑↓↓) c axis
stacking [9,11]. These two phases are observed to coexist,
yet the temperature range of this coexistence and the ulti-
mate low-temperature structure differ between single crystals
and powder samples [12,13]. In single crystals the ordered
moment does not saturate at 5μB, with spectral weight redis-
tributed to momentum-broadened rods of scattering along c∗,
confirmed by polarization analysis to be magnetic in origin
[9], indicative of antiphase boundaries along c. From polar-
ized diffraction data of the momentum-broadened component,
at T = 5 K the correlation length along c was determined
to be ∼1–2 unit cells [9], indicating highly localized cor-
relations. The ability to measure magnetic diffuse scattering
in powders without polarization analysis or a large amount
of diffuse spectral weight is limited, making the presence of
antiphase boundaries in powder samples difficult to detect.
However, the ordered moment is observed to be suppressed
in polycrystalline samples [13]. A full characterization of the
magnetic excitations at both high and low temperature has not
yet been presented.
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FIG. 1. Structure of CaFe2O4 in the A (a) and B (b) phases, which differ in their c-axis stacking. The couplings J1a and J1b link parallel
spins along b, with the J2a and J2b linking parallel and antiparallel spins in the A and B phases, respectively. The exchanges J3 and J4 define
antiferromagnetically aligned chains in both phases. (c) Magnetic structure along the c axis showing the (↑↑↓↓) and (↑↓↑↓) configuration of
the A and B phases, respectively. The effect of an antiphase boundary (APB) in the B phase order is illustrated, giving rise to local A phase
order (golden rectangle). The mapping onto the matrix M is demonstrated, with each spin pair mapped onto ±1. (d) Temperature dependence
of the order parameters of the A and B phases, Q = (1, 0, 2) and (1,0,1), respectively. Black points show the temperature dependence of the
static component, α, of neutron spin echo (NSE) at Q = (1, 0, 1.5); data reproduced from Ref. [9].

In this paper, we address the nature of the magnetic order
in CaFe2O4 and offer an explanation for the differing behavior
observed in powders and single crystals. The low-temperature
A phase is shown to be metastable, with short-range correla-
tions, analogous to the field-induced metastable states recently
reported in CoV2O6 [14], in which antiphase boundaries order
to form a new phase with a different translational symmetry
[15]. These arguments are supported by neutron scattering
data at both high and low temperatures, demonstrating the
nature of the magnetic fluctuations in single-crystal CaFe2O4.
Finally, using a random phase approximation (RPA) Green’s
function formalism, we model the magnetic excitations in
CaFe2O4 and determine the spin Hamiltonian.

II. ANTIPHASE BOUNDARIES

A. Structure

CaFe2O4 crystallizes in the orthorhombic Pnma space
group (a = 9.230 Å, b = 3.017 Å, c = 10.689 Å), with cou-
pled zigzag chains of Fe3+ (S = 5/2, L = 0) ions in the a-b
plane [11,16–18]. Previous studies have reported the stabi-
lization of two competing magnetic orders below TN ≈ 200 K

[9,11–13,19]. In the low-temperature A phase [Fig. 1(a)], the
stacking along c is (↑↑↓↓) with the couplings J2a and J2b

connecting parallel spins. In the high-temperature B phase
[Fig. 1(b)], the c axis stacking is (↑↓↑↓) with J2a and J2b

coupling antiparallel spins.
The behavior observed is qualitatively different between

powder and single-crystal samples and is summarized in
Table I. To examine the magnetic structure of the powder sam-
ples, we used the BT-1 diffractometer at the NIST Center for
Neutron Research (NCNR) with wavelength λ = 2.0782 Å
(Ge 311 monochromator). The low- and high-temperature
diffraction patterns are shown in Figs. 2(a) and 2(b),

TABLE I. Magnetic structures observed in CaFe2O4. Data from
the Cr-doped sample reproduced from Ref. [13].

Sample B phase A phase Coexistence?

CaFe2O4 single crystal 200–5 K 175–5 K 175–5 K
CaFe2O4 powder 200–150 K 175–5 K 175–150 K
CaCr0.5Fe1.5O4 powder 200–5 K
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FIG. 2. Neutron diffraction data of a powder sample of CaFe2O4 measured on BT-1 at (a) T = 7 K and (b) T = 230 K. (c) Magnetic
moment of the Q = (1, 0, 1) and (1,0,2) Bragg peaks in the powder sample. The small window of coexistence and loss of the B phase at low
temperature shows a qualitatively different behavior to the single crystal sample [9].

respectively. In the powder samples, B phase order, as indi-
cated by the presence of the Q = (1, 0, 1) peak, is observed
on cooling below T ≈ 200 K and is maximal at T ≈ 175 K.
Below this temperature, the Q = (1, 0, 2) peak begins to ac-
cumulate spectral weight, overtaking the B phase in intensity
at T ≈ 150 K [Fig. 2(c)]. The B phase peaks are observed
to disappear at around T = 125 K after a brief temperature
window of coexistence between T ≈ 125 K and T ≈ 175 K.
The powder diffraction data would thus indicate a preferential
A phase ordering at low temperature, with (↑↑↓↓) stacking
along c, rather than the B phase order with its (↑↓↑↓) ar-
rangement. This result is in agreement with the findings of
Songvilay et al. [13], who have further shown that chemical
doping with Cr prevents the stabilization of A phase order,
observing only the B phase in CaCr0.5Fe1.5O4. Pure CaCr2O4

shows an altogether different magnetic structure, with an in-
commensurate cycloidal propagation vector [20–22].

The story is somewhat different in single-crystal samples.
Between T ≈ 200 K and T ≈ 100 K, B phase magnetic or-
der is dominant, as seen in Fig. 1(d). This is confirmed by
magnetic susceptibility measurements [12] showing a feature
at the onset of B phase order. Below T ≈ 100 K the A
phase becomes the more prevalent magnetic order [Fig. 1(d)].
The existence of a transition to the A phase is argued on
the grounds of the appearance of the peak at Q = (1, 0, 2),
however it is important to note that no thermodynamic mea-
surements have been reported showing the existence of a
second phase transition, and only a single order parameter was
detected in the Mössbauer spectroscopy measurements, show-
ing a power-law temperature dependence [23]. Observing the
relative intensities of the (1,0,2) and (1,0,1) peaks, the two
phases can be seen to saturate in a 2:1 ratio at low temperature
[Fig. 1(d)].

It has previously been suggested that the phase coexistence
could originate from a fine balancing of the exchange param-

eter J2a/b on the ferromagnetic/antiferromagnetic threshold,
which is sensitive to subtle changes in the bond angle as
a function of temperature [13]. However, these arguments
rely on an element of exchange disorder to account for the
persistence of B phase order down to low temperatures in the
single-crystal samples, and the region of phase coexistence in
the high-temperature phase of the powder. Moreover, the dis-
crepancy between the powder and single-crystal data remains
unexplained. We now present an alternative explanation for
the temperature dependence of the phase coexistence based
on antiphase domain formation.

We first discuss the single crystal before turning our at-
tention to the powder samples. The single crystals described
in this paper are the same as those used in Refs. [8–10]
and were grown using a mirror furnace, as described in the
supplemental material of Ref. [9]. Previous studies of these
single crystals [8,9] have demonstrated the presence of rods of
diffuse magnetic scattering along [0, 0, L] indicating that cor-
relations along c are short-range. Furthermore, at T = 200 K
neutron spin echo (NSE) measurements reveal the dynamical
nature of this diffuse scattering [8,9], with the static com-
ponent increasing rapidly as the sample was cooled below
T = 100 K [Fig. 1(d)]. By examining the magnetic structure
in the two phases, we can see that the creation of an antiphase
domain boundary in global B phase order gives rise to a local
A phase stacking (and vice versa) as demonstrated in Fig. 1(c)
[8]. Consequently, we argue that the phase coexistence at low
temperature can be understood as arising due to the freezing-
in of antiphase boundaries in a parent B phase order. To
demonstrate this, we introduce the following toy model of
domain formation.

The chain along c is split into pairs of spins, with each pair
assigned the value of +1 or −1 depending on the orientation
of the spin pair [Fig. 1(c)]. In a pure B phase arrangement, the
magnetic structure can be represented by the infinite array,
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M = ±[1, 1, 1, 1, . . . ], where ± labels the two degenerate
spin configurations (of which we select the positive state
from now on, for definiteness). To introduce a domain wall
at position i, we flip the signs from position i + 1 onwards,
M = [1, 1,−1,−1, . . . ], for example. Let F (i, p) be the op-
erator that has a p(%) chance of flipping the signs on all sites
after site i, hence creating an antiphase boundary at site i.
After operating on each element of the array with the nonlocal
operator

M′ =
N∏
i

F (i, p)M, (1)

we then analyze the local order by examining the relative
signs on each site. Each occurrence of the pattern M′ =
[. . . ,±1,±1, . . . ] can be assigned to the B phase, with M′ =
[. . . ,±1,∓1, . . . ] belonging to the A phase, leading to an
array of length N − 1, P = [A, B, B, A, . . . ], for example, de-
scribing the local order.

For p = 67%, the ratios of A to B phase are found to be 2:1,
in agreement with the low-temperature neutron diffraction
data [9]. The B phase magnetic unit cell consists of two spins
along c (or one element of M), and hence a flipping ratio
of p = 67% gives rise to domains with an average size of
1.5 elements, corresponding to 1.5 unit cells, in agreement
with the measured correlation length of 1–2 unit cells, from
neutron diffraction [9]. The same analysis can be applied to
a parent A phase order, with p = 33%, leading to an average
domain size of four elements of M, which again corresponds
to a correlation length of 1.5 unit cells (due to the doubled
magnetic unit cell of the A phase). However, the appearance
of the Q = (1, 0, 1) peak at TN along with a significant compo-
nent of magnetic dynamical diffuse scattering, which becomes
static on the onset of A phase order, is suggestive of the former
scenario. We thus conclude that the single-crystal data are
consistent with a parent B phase order with antiphase domain
boundaries that freeze in at low temperature leading to local
A phase order. This is still suggestive of a small J2a/b so that
the energy cost of creating an antiphase boundary is of the
order of the temperature, but we conclude that this bond must
be strictly antiferromagnetic, in order that the parent magnetic
order is B phase.

The persistence of the B phase (1,0,1) peak down to low
temperature in the single-crystal sample is indicative of do-
main pinning effects arising due to the presence of oxygen
vacancies, known to be present in CaFe2O4 single crystals
[12,24]. If the flipping ratio were to tend towards p = 100%,
we would expect pure A phase order at low temperature and
a disappearance of the B phase Bragg peaks, precisely as
observed in the CaFe2O4 powder samples [13]. This is to be
expected if the powder samples were to have fewer oxygen
vacancies and hence facilitate the full conversion of B phase
to A phase order. The magnetization measurements of Das
et al. [12] demonstrate that vacancy-driven disorder alone
cannot account for the discrepancy between the powder and
single-crystal samples; indeed another ingredient is needed.

Crucial to the survival of the low-temperature A phase is
the presence of an anisotropy gap that stabilizes the A phase
structure at low temperature despite the frustration of J2a/b.
We note that the neutron scattering measurements of Songvi-

lay et al. suggest a significant reduction in the anisotropy
gap in the Cr-doped samples [13], which may explain the
failure to stabilize A phase order at low temperatures. In the
3d5 high spin complexes, due to the absence of an orbital
moment, the spin Hamiltonian is expected to be isotropic.
The observed anisotropy gap is thus evidence of the mixing of
higher-energy multiplets into the ground-state orbital singlet,
6S. This mixing occurs due to higher-order processes such as
a second-order process involving the spin-spin interaction and
an axial crystal field via the 6D state [25] or to fourth order via
squares of the spin-orbit and distortion terms [26]. Ultimately,
the anisotropy terms that appear in the effective spin Hamilto-
nian must respect the crystal symmetry [27] and hence should
be proportional to Steven’s parameter, μ ∼ B0

2 [28,29]. The
vital role of the axial distortion term in mixing higher-order
multiplets into the 6S ground state indicates that the anisotropy
should couple strongly to strain in CaFe2O4, which exhibits a
significant distortion of the local octahedral environment [16].
It is therefore unsurprising that doping suppresses the mag-
nitude of the anisotropy [13] and that the magnetic behavior
shows a strong dependence on the density of oxygen vacancies
[12], since both processes affect the local axial crystal field.
The role that anisotropy plays in the stabilization of the A
phase in turn suggests an explanation for the differing behav-
ior in powder and single-crystal samples. In powder samples,
the grinding process introduces strain, which would indicate
an enhancement of the single ion anisotropy parameter, μ,
promoting the stabilization of A phase order. We now further
explore the temperature dependence of the anisotropy gap in
single-crystal samples using neutron scattering.

B. Anisotropy

Temperature-dependent constant Q scans at the Q =
(−1, 0, 2) position were conducted on the RITA-II triple-axis
spectrometer at the Paul Scherrer Institute (Villigen, Switzer-
land) [30] [Fig. 3(a)]. The asymmetric line shape arises from
the finite resolution and the curvature of the dispersion curve.
The peaks are resolution-limited, and for convenience we
approximate the asymmetric line shape with an antisymmetric
Lorentzian function,

I (E ) ∝ [n(ω) + 1]

(
1

1 + (E−�0
�

)2 − 1

1 + (E+�0
�

)2

)
, (2)

whose peak width is allowed to vary sigmoidally,

�(E ) = 2�0

1 + exp[a(E − �0)]
, (3)

such that the degree of asymmetry is controlled by a single
parameter, a, and for a = 0 the width becomes symmetric,
� = �0 [31]. The value of the asymmetry parameter, along
with �0, �0, and an overall scaling factor, were fitted using
the HORACE package [32]. The value of the gap follows a
power-law behavior, vanishing above T ≈ 200 K, concomi-
tant with the loss of order along c. This is in good agreement
with the temperature at which the Q = (1, 0, 1) peak vanishes
[Fig. 1(d)]. At T = 1.5 K a second peak is seen above the gap
∼4 meV, in Fig. 3(b), which can be understood in terms of the
discrete nonclassical excitations reported previously in this
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FIG. 3. (a) Temperature dependence of the gap at Q = (−1, 0, 2)
measured on the RITA-II spectrometer. Solid lines are fits to asym-
metric Lorentzians. (b) Anisotropy gap at T = 1.5 K with � =
3.14(5) meV. A low-intensity peak at 1 meV is seen originating from
in-gap mode, discussed in Ref. [8], in addition to a discrete mode
at 3.9 meV originating from nonclassical excitations [8–10]. (c) Ex-
tracted magnitudes of the gap as a function of reduced temperature, t .
The data have been corrected for the Bose-Einstein population factor
at each temperature.

system [8–10]. By plotting the gap as a function of reduced
temperature t = (T − Tc)/Tc, we can fit a dimensionless scal-
ing exponent and critical temperature according to � ∼ |t |β .
The fitted value of β = 0.28(3) is below the expected scaling
exponent for the 3D Ising model [β = 0.3265(15)] [33]. The
departure of the gap’s scaling exponent from the expected
critical exponent of the order parameter indicates the presence
of some temperature dependence of the anisotropy parameter,
beyond a simple renormalization due to a thermal fluctuation-
driven reduction of the magnetization, and hence a decoupling
of the magnetic order parameter and the anisotropy param-
eter. Such a temperature dependence has been observed in
other ferrites and materials exhibiting strong magnetostrictive
effects [34–36]. The ramifications of this temperature depen-
dence of the anisotropy parameter will be discussed further
later in the paper. We now analyze the phonon excitations
which would be sensitive to any structural domains.

C. Acoustic phonons

The spin-wave analysis presented here shows that the
magnetic excitations in CaFe2O4 can be consistently under-
stood in terms of the same exchange constants in the high-
(B phase) and low- (A phase) temperature phases, up to a
small temperature renormalization. To confirm the lack of

FIG. 4. The transverse acoustic phonons propagating along
(a) the c axis and (b) the a axis. The resolution is depicted by
solid horizontal lines. Part (c) illustrates the temperature dependence
of both phonon modes. No measurable anisotropy or temperature
dependence is observed.

temperature-dependent structural effects, we discuss the trans-
verse acoustic phonons.

The lifetime and energy positions of acoustic phonons are
sensitive to the formation of structural defects or localized
structural domains. This has been shown in scattering stud-
ies of, for example, localized polar domains [37] in relaxor
ferroelectrics such as Pb(Zn, Mg)1/3Nb2/3O3 [38–41] and the
disordered perovskite K1−xLixTaO3 [42]. To confirm the lack
of any structural domains forming that may drive either the
antiphase boundaries discussed above or the transition from
the B phase to the A phase, on cooling, we investigated
the temperature dependence of transverse acoustic phonons
propagating along both the c and a axes in CaFe2O4. Acous-
tic phonon measurements were performed on the EIGER
triple-axis spectrometer (PSI, Switzerland) [43]. The incident
neutron beam was monochromated with a vertically focused
PG(002) monochromator defining Ei, and the final energy
was fixed to E f = 14.6 meV with a PG(002) analyzer, with
the energy transfer defined by E = Ei − E f . Collimation was
set to 80 min before and after the sample position, and a
pyrolytic graphite filter was used after the sample to remove
higher-order contamination of the neutron beam. The sample
was aligned such that Bragg reflections of the form (H K 0)
lay within the horizontal plane.

Constant momentum cuts through the transverse acoustic
phonons propagating along the c and a axes are illustrated
in Figs. 4(a) and 4(b). The solid line is a fit to a damped
simple-harmonic oscillator characterized by the antisymmet-
ric Lorentzian line shape [Eq. (2)], with �0 defining the
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energy position of the phonon and � the half-width in energy,
inversely proportional to the lifetime τ . The full width 2�

is shown in Fig. 4(c) for phonons propagating along both
directions. The function defined in Eq. (2) consists of the
Bose factor multiplying an odd function, which ensures that
the scattering cross section satisfies the principle of detailed
balance [44].

In analogy to the relaxor ferroelectrics mentioned above
where nanoregions of polar order are present, we would ex-
pect that phonons traveling along the c axis, where antiphase
domain boundaries exist, might be damped, and this damping
would be temperature-dependent. Figure 4 shows three key
results; first, the acoustic phonons are not measurably broader
than the resolution defined by the spectrometer; second, there
is no observable temperature dependence to the linewidth;
third, there is no observable anisotropy to the linewidth with
phonons traveling along both the a and c axes showing similar
responses. While we are constrained by the energy resolution
of the spectrometer and also the possibility that any effect
from the domains affects lower-energy phonons, this result
does support the idea presented in this paper that there are
no observable structural changes with temperatures that drive
the magnetism.

III. FLUCTUATIONS AND NEUTRON SCATTERING

The arguments presented in Sec. II rely on knowledge of
the exchange parameters in the spin Hamiltonian. To validate
our model of A phase formation through antiphase boundary
freezing, we turn to the low-energy dynamics.

We present neutron scattering data for CaFe2O4 show-
ing the magnetic fluctuations in both the high- and low-
temperature phases. Following Refs. [45–48], we apply a
Green’s function formalism to model the low-energy excita-
tions in both phases, demonstrating the utility of this method
in systems without an orbital degree of freedom. A complete
derivation of the Green’s function for a general collinear sys-
tem can be found in Appendix A. In applying the Green’s
function formalism to CaFe2O4, we show that, in the case of
a single-ion Hamiltonian that consists solely of a mean-field
term, the Green’s function collapses to a simple expression
allowing the calculation of the dispersion relation and dy-
namical structure factor. Finally, we fit the neutron scattering
data, extracting exchange constants and determining the mi-
croscopic spin Hamiltonian.

A. Magnon excitations

We now discuss the dynamics of CaFe2O4. Previous stud-
ies have shown the presence of rods of diffuse scattering,
indicating the presence of antiphase boundaries and revealing
the short-range nature of correlations along c [8,9]. Despite
this, at low temperature, a measurable dispersion along L is
observed [9]. We now present data from the cold chopper
spectrometer LET [49] at ISIS Pulsed Neutron and Muon
Source (Didcot, UK), concerning the low-energy dynamics
along L. The incident energy was selected to be Ei = 8 meV,
with the high flux chopper in the 280/140 configuration, giv-
ing an elastic resolution of �E = 0.2 meV.

FIG. 5. Dispersion along c∗ at (a) T = 5 K and (b) T = 190 K.
Overlaid is the calculated low-temperature dispersion, with the fitted
exchange constants from Sec. III B. Spectral weight is concentrated
in the mode whose minimum is at Q = (2, 0, 0). As temperature
is increased, the signal broadens and becomes incoherent as cor-
relations along c are lost. Dispersion along H at (c) T = 5 K and
(d) 175 K, measured on MERLIN. Dispersion along K at (e) T = 5 K
and (f) 175 K. The intensities for both datasets on each instrument
have been corrected for the Bose-Einstein population factor.

At T = 5 K, a broad gapped low-energy mode is observed,
extending up to ∼7 meV as seen in Fig. 5(a). The gap is
∼3 meV, in agreement with the data from RITA-II [Fig. 3(b)].
Upon heating to T = 190 K the gap closes, in agreement
with the RITA-II data [Fig. 3(c)], and the scattering broadens
becoming incoherent, consistent with the loss of correlations
along c. It is important to note that our calculations for the
dispersion (in both the pure A phase and pure B phase struc-
tures) suggest that two modes are present, crossing at L = 0.5
[Fig. 5(a)]. Only one of these modes is observed to carry any
spectral weight.

To map out the excitations to higher energies in the (H, K )
plane, neutron scattering was carried out on the time-of-flight
spectrometer MERLIN at ISIS Neutron and Muon Source
(Didcot, UK) [50]. The sample was cooled to T = 5 K and
an incident energy of 70 meV was selected, with a gadolin-
ium chopper spinning at ν = 300 Hz, allowing for an elastic
resolution of �E = 3.6 meV. Strongly dispersive modes were
observed along H [Fig. 5(c)], extending up to ∼35 meV,
in agreement with Ref. [9]. Steeply dispersing spin waves
were also measured along K [Fig. 5(e)], confirming the three-
dimensional nature of the spin waves in this system.
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(a) (b) (c)

(d) (e) (f)

FIG. 6. (a) Cut along [H,−H ] at T = 5 K, showing the presence of two modes, with nontrivial structure factor variation. (b) Constant Q
cut at the zone boundary. Red line is the fit to the Green’s function model. (c) Constant energy cut at E = 27.5 meV with the fitted Green’s
function model. (d)–(f) T = 175 K data showing a broadening of excitations and a small bandwidth renormalization. The intensities for both
datasets have been corrected for the Bose-Einstein population factor.

The sample was then warmed to T = 175 K and the mea-
surement repeated [Figs. 5(b), 5(d) and 5(f)]. The excitations
broaden at this temperature, along with a small renormaliza-
tion of the bandwidth. The dispersion remains qualitatively
similar at this temperature, with similar structure factor mod-
ulation. Figure 6 shows the dispersion along [−H, H]. At low
temperature, two modes are seen with two peaks observed
at the zone boundary [Fig. 6(b)]. At high temperature, once
again the dispersion looks qualitatively similar, but the broad-
ening obscures many of the features seen at low temperature,
and the two peaks at the zone boundary are no longer re-
solved. We now construct a microscopic spin Hamiltonian to
model the spin wave excitations measured at high and low
temperatures.

B. Theory

The Fe3+ (S = 5
2 , L = 0) ions in CaFe2O4 are surrounded

by an octahedron of oxygen ions [16]. The distorted nature
of these octahedra allows for the presence of an easy-axis
anisotropy term μ ∼ B0

2 [28,29], breaking spin rotational sym-
metry and aligning the spins along b. The dependence of
the anisotropy parameter on Steven’s parameter, B0

2, suggests
an origin for the anomalous temperature dependence of the
anisotropy gap presented in Sec. II B, as the anisotropy pa-
rameter is coupled to the local crystalline environment of
the Fe3+ spins due to the mixing of higher-energy multiplets
into the ground-state orbital singlet [25–27]. As such, very
subtle changes in lattice parameters originating from magne-
toelastic coupling, as reported for CaFe2O4 in Ref. [13], can

be expected to have a marked effect on the strength of the
anisotropy, despite having only a small effect on the Fe-O-Fe
bond angle.

The absence of an orbital degree of freedom motivates a
spin-only Hamiltonian,

H =
∑

i j

Ji jSi · S j + μ
∑

i

(
Ŝz

i

)2
, (4)

where μ < 0 represents an easy-axis single-ion anisotropy.
We perform the sum over j > i so that each bond is counted
only once. The existence of two crystallographically inequiv-
alent Fe3+ sites, in conjunction with the magnetic order,
necessitates the use of an enlarged magnetic supercell of four
sites in the B phase. The breaking of inversion symmetry in
the low-temperature A phase further enlarges the unit cell
to eight sites and necessitates the averaging of the spin-
inverted structure factors since S+−(q, ω) 
= S−+(q, ω). The
spin Hamiltonian can be separated into single- and interion
terms, H = H1 + H2, by performing a mean-field decou-
pling, Si,γ → 〈Siγ 〉 + δSiγ , and discarding terms ∼O(δSiγ )2,

H1 =
∑

iγ

Ŝz
iγ

(
2

∑
jγ ′

Jγ γ ′
i j

〈
Ŝz

jγ ′
〉 + 2μ

〈
Ŝz

iγ

〉)
, (5a)

H2 =
γ γ ′∑
i j

J γ γ ′
i j Ŝz

iγ

(
Ŝz

jγ ′ − 2
〈
Ŝz

jγ ′
〉)

+ 1

2

γ γ ′∑
i j

J γ γ ′
i j

(
Ŝ+

iγ Ŝ−
jγ ′ + Ŝ−

iγ S+
jγ ′

)
. (5b)
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FIG. 7. (a) Visualization of the splitting of the 2S + 1 single-ion
energy levels for an S = 5/2, L = 0 ion, due to a molecular mean
field. The separation between energy levels is given by ω01 = ω1 −
ω0. (b), (c) The effect of the operation of Ŝ− on sites in the ↑ (b) and
↓ (c) state [53].

The first term is the Zeeman term describing the molecular
mean field felt by each site H1 = ∑

iγ hMF
iγ Ŝz

iγ . This splits the
2S + 1 degenerate energy levels (Fig. 7). The commutators
[Ŝα

i′γ̃ ,H] can be calculated to mean-field level; only the trans-
verse elements survive,

[Ŝ+
i′γ̃ ,H] =

∑
jγ ′

Aγ̃ γ ′
i′ j Ŝ+

jγ ′ , (6a)

Aγ̃ γ ′
i′ j = −hMF

i′γ̃ δi′ jδγ̃ γ ′ + 2J γ̃ γ ′
i′ j

〈
Ŝz

i′γ̃

〉
. (6b)

This commutator can be inserted into the Green’s func-
tion equation of motion (Appendix A) to yield the following
Green’s functions:

ωG+−
γ̃ γ̃ ′ (i′ j′, ω) = 〈[Ŝ+

i′γ̃ , Ŝ−
j′γ̃ ′]〉 +

∑
jγ ′

Aγ̃ γ ′
i′ j G+−

γ ′γ̃ ′ ( j j′, ω).

(7)

This can be written as∑
jγ ′

G+−
γ ′γ̃ ′ ( j j′, ω)

[
ωδi′ jδγ̃ γ ′ − Aγ̃ γ ′

i′ j

] = 〈[Ŝ+
i′γ̃ , Ŝ−

j′γ̃ ′]〉. (8)

Taking the Fourier transform and performing the summation,
we can write Eq. (8) as a matrix equation. In doing so, the
Green’s functions take the convenient form

G+−(q, ω) = B[Iω − A(q)]−1, (9)

where Bγ̃ γ̃ ′ = δγ̃ γ̃ ′ 〈Ŝγ̃ 〉. This expression for the transverse
Green’s function is similar to the expression found by dy-
namical mean-field theory [51], where the correlation function
is found from the Landau-Lifshitz equation. The dispersion
relation can be found analytically by diagonalizing the matrix
Aγ̃ γ̃ ′

(q) and the Green’s function found by calculating the
matrix product on the right-hand side of Eq. (9) on a grid in
energy-momentum space. The dynamical structure factor can
then be calculated via the fluctuation-dissipation theorem [52]

S(q, ω) = − 1

π
[1 + n(ω)]ImG(q, ω). (10)

Expressions for A(q) and B can be found in Appendix B.
We add a small imaginary offset to the energy, ω → ω + iε, to
give the intensity peak a finite width. The resultant line shape
takes the form of a Lorentzian of width 2� = 2ε, which in our
low-temperature analysis will be set to a value smaller than the
instrument resolution.

The six shortest bonds have bond lengths of between 3.01
and 3.66 Å, therefore it is not clear by distance alone which

should be the strongest. The shortest two bonds J1a and J1b

are of the same length, both linking parallel spins along b, but
are crystallographically inequivalent, with J1a and J1b forming
the legs of the blue and cyan zigzag chains, respectively. The
presence of antiphase domain boundaries, and the near 90◦ Fe-
O-Fe exchange path along a shared octahedral edge, indicates
that the next two shortest bonds J2a and J2b are likely to be
small [54]. The measurable dispersion along H and L (Fig. 5)
is suggestive of a non-negligible J3 and J4. Thus in order to
write down the minimal physically motivated model, we must
include the six shortest bonds [Fig. 1(a)],

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J1a J2a 0 J3 0 J4 0 0
J2a J1a J3 0 J4 0 0 0
0 J3 J1b J2b 0 0 0 J4

J3 0 J2b J1b 0 0 J4 0
0 J4 0 0 J1b J2b 0 J3

J4 0 0 0 J2b J1b J3 0
0 0 0 J4 0 J3 J1a J2a

0 0 J4 0 J3 0 J2a J1a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

The MERLIN data at T = 5 K were fitted using HORACE [32]
with values of μ, J2a, and J2b fixed. The TOBYFIT package
was used to account for the resolution function on MERLIN,
and contributions from the guide, chopper, and moderator
were considered. In accordance with our conclusion that the
underlying magnetic order is B phase, we used a B-phase-only
model. These parameters were then refined by fitting the LET
data using the values obtained from the MERLIN fit. This
process was iterated until good agreement was achieved. The
effect of taking J2a 
= J2b is to open a gap at the crossing point
along L (Fig. 8). Such a gap is not seen in the data, so we set
J2a = J2b = J2. The refined values of the exchange constants
are listed in Table II. The dominant exchange couplings were
determined to be J3 and J4, with J2 confirmed to be small.
The frustrated nature of the bonds J1a and J1b gives rise to
the archlike dispersion at (−2, 0, L) (Fig. 6), which is well
reproduced in our model (Fig. 9). Crucially, J2 was determined
to be small, J2 < 0.05 meV, meaning that the creation of an
antiphase boundary carries a small energy cost, and thermal
fluctuations at high temperature can overcome this barrier,
thus explaining the significant fraction of dynamical diffuse
scattering [8].

The effect of nonzero J2 warrants some consideration. In
one of the two magnetic structures, this bond is expected to be
frustrated, and hence two copies of the dispersion curve along
c∗ would be expected (with a different gap and bandwidth) if
both phases were to contribute to the signal along c∗. No such
duplication of modes is observed [Fig. 8(a)]. Furthermore,
we can rule out J2 < 0 since the mode whose minimum lies
at Q = (2, 0, 0) carries the most spectral weight, contrary
to the simulation [Fig. 8(c)]. This is in agreement with our
conclusion based on the neutron diffraction data. Finally, the
dispersion along all other directions, along with the mea-
sured anisotropy gap, put strong constraints on the values of
the exchange parameters. With positive J2, the magnitude of
anisotropy required to stabilize spin waves in the A phase
is inconsistent with the observed gap from RITA-II (Fig. 3),
LET [Figs. 5(a) and 5(b)], and MERLIN [Figs. 5(c)–5(f)]. We
thus conclude that the low-temperature A phase is metastable
in our single-crystal sample. This phase obtains a long life-
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FIG. 8. Comparison of calculated dispersion along c∗ against
(a) the data from LET at T = 5 K for a model consisting of (b) B
phase order with antiferromagnetic J2. (c) A phase order and (d) A
and B phase order in a 2:1 ratio. It is clear that for J2 < 0 the mode
that is maximal at Q = (2, 0, 0) lights up, in contrast to the data.
Furthermore, for J2 > 0 and two modes are seen and the A phase
leads to imaginary eigenvalues (red dispersion) using the fitted values
unless μ is large.

time due to the anisotropy, which prevents the relaxation of
the antiphase domain boundary disordered high-temperature
state into the B phase ground-state structure. The extracted
exchange constants do not give rise to stable A phase spin
waves, as shown in Fig. 8(d). Note that in the powder samples,
the story need not be identical. With an expected increased
value of μ due to the inevitable finite strain induced by the
grinding of the powders, it may in fact be possible to stabilize
spin waves in the A phase, despite the lower energy of the
B phase configuration. Indeed, the smaller magnitude of the
anisotropy gap measured in the low-temperature phase [13]
as compared to single crystals (Fig. 3) could be due to the
suppression of the gap originating from the frustrated J2 bond.
We now turn our attention to the T = 175 K data.

TABLE II. Fitted exchange constants, Ji, and anisotropy param-
eter, μ, for the bonds labeled in Fig. 1(a).

Ji Distance (Å) Value (meV)

J1a 3.018 0.03(1)
J1b 3.018 0.38(1)
J2a 3.077 0.047(2)
J2b 3.096 0.047(2)
J3 3.570 3.4(3)
J4 3.659 3.2(3)
μ – –0.035(1)

We explained earlier in Sec. II A how the magnetic A phase
arises, not as a distinct phase in the bulk but locally in an-
tiphase boundaries between different B phase domains. This
explanation, of the low-temperature A phase not existing in
bulk, means that its formation is not driven by, for example, a
change in sign of J2 arising from a change in crystal structure.
We note that although the c lattice constant does show some
temperature dependence [13], this is on the order of 10−2 Å
and hence is unlikely to affect either the sign or magnitude
of J2. In the absence of a temperature dependence of the
exchange parameters, the primary effects of the increased
temperature should be the damping and renormalization of
the spectrum due to higher-order terms in the Dyson series.
The damping can be accounted for phenomenologically by
increasing the value of ε, thereby increasing the Lorentzian
linewidth [55]. The renormalization takes the form of a re-
duced spin moment and can be treated straightforwardly by
renormalizing the exchange parameters and the anisotropy
parameter, {Ji j, μ} → {γJi j, γμ}, where γ is some constant
between zero and unity. This follows from the fact that S is a
dimensionless parameter and so only appears in the dispersion
as a multiple of an exchange or anisotropy parameter, allowing
us to absorb the renormalization factor into the exchange pa-
rameters. As discussed in Sec. II B, the anisotropy gap shows
an anomalous temperature dependence, and so we expect a
further suppression of μ beyond that expected by spin mo-
ment renormalization alone. Fixing the fitted low-temperature
exchange parameters and setting ε = 2.5 meV, we fitted an
overall renormalization factor, γ = 0.930(4), showing excel-
lent agreement with the data (Fig. 9). At high temperature,
the Q = (1, 0, 1) neutron diffraction peak is not resolution-
limited and the width is expected to vary in both energy
and momentum due to magnon-magnon and magnon-soliton
interactions [56]. The value of ε was selected according to the
approximate width of the peak at the zone boundary. Using the
value of the anisotropy gap at T = 175 K, we diagonalized the
Hamiltonian with the fitted renormalized exchange parame-
ters and solved for the high-temperature anisotropy parameter
μ175 K = −0.0098(2) meV.

From our fitted exchange parameters, we can estimate the
Curie-Weiss temperature

kB�CW = 1

3
S(S + 1)

∑
n

Jn, (12)

where we sum over nearest neighbors. Due to the inequiva-
lence of J1a and J1b, we take the average of their fitted values.
The expression above stems from a mean-field treatment of
the single ion, and hence we attach a minus sign to the frus-
trated J1a and J1b bonds. Evaluating Eq. (12), we find �CW ≈
435 K. We note that this is significantly larger than that found
by Das et al. [12], and much larger than the magnetic ordering
temperature of T ≈ 200 K. However, one should note that
the loss of correlations along c, due to the small value of
J2, renders CaFe2O4 quasi-two-dimensional at high temper-
atures. The absence of spontaneous symmetry breaking for
d � 2 [57] thus makes long-range order marginal. Long-range
order is stabilized by the presence of single-ion anisotropy,
however the vanishing of the gap at T = 200 K, due to the
cooperative effect of spin-moment renormalization and subtle
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FIG. 9. (a) Constant Q plot of a path through reciprocal space at T = 5 K, showing strongly dispersing excitations in the (H, K ) plane.
(b) Simulation of the data using the resolution convoluted Green’s function model and the fitted parameters. (c) T = 175 K data. (d) Simulation
at T = 175 K. The intensities for both datasets have been corrected for the Bose factor.

magnetoelastic changes to the local crystalline environment,
precludes any long-range magnetic order above this temper-
ature. The large Curie-Weiss temperature also explains the
relatively modest renormalization of the bandwidth, with an
observed moment reduction of ∼10% at T = 175 K, despite
the proximity to the magnetic ordering temperature.

IV. CONCLUSION

In this paper, we have shown that the magnetic phase co-
existence in CaFe2O4 can be understood as originating from
a parent B phase magnetic order with local A phase order
arising due to the freezing of antiphase boundaries which be-
come static below T ≈ 100 K. This is consistent with the lack
of temperature dependence of the acoustic phonon linewidth,
which is sensitive to instabilities in the crystal structure that
would lead to changes in the magnetic structure. We have
presented neutron scattering data showing the temperature-
dependent opening of the anisotropy gap, which stabilizes
the low-temperature A phase order. We then showed that the
magnon excitations are qualitatively consistent at high and
low temperature, albeit broadened at high temperature by the
dynamical antiphase boundaries. Using a Green’s function
formalism, we showed that the spectrum can be modeled
with the same exchange constants in both phases, save for
a renormalization factor at high temperature, but with two
different anisotropy parameters due to the anomalous tem-
perature dependence of μ. The extracted exchange constants
are consistent with the picture of antiphase boundary freezing,
with a small value of J2. By analysis of the spectrum, it was
shown that stable spin waves cannot exist in the A phase and
that this phase is metastable, frozen-in at low temperatures
due to the growth of the single-ion anisotropy. The anisotropy
acts to lock the antiphase boundaries in place, preventing

relaxation of the magnetic structure back to the ground-state
B phase order.
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APPENDIX A: CALCULATION OF GREEN’S FUNCTIONS
FOR A GENERAL COLLINEAR SYSTEM

In inelastic neutron scattering experiments, the dynamical
two-point spin correlation function is probed, which, through
the fluctuation-dissipation theorem [52], can be related to the
system’s linear response function. This underlying connection
between the dynamical structure factor, measured in experi-
ment, and the linear response function of the system makes
Green’s functions the natural language to describe the neutron
scattering response. Previous studies [45–47] have shown the
utility of describing systems comprising inequivalent sublat-
tices or those exhibiting nontrivial single-ion physics using the
Green’s function formalism. Here we present a general form
of the Green’s function formalism for interacting spins within
the random phase approximation. The approach presented
is similar to the SU(N) spin wave theory or “flavor wave”
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approaches [58–63], however the direct calculation of the
Green’s function lends itself to the calculation of the neutron
response, and by way of Wick’s theorem, the calculation of
magnon-scattering terms.

For a system consisting of interacting spins, the Hamilto-
nian can be written as

H =
γ γ ′∑
i j

{
J γ γ ′

i j Siγ · S jγ ′ + H′(i, γ )
}
, (A1)

where H′ is the single-site Hamiltonian, which may include
contributions from spin-orbit coupling and crystal-field distor-
tions. Again, we perform the sum over j > i to avoid double
counting. The labels γ and γ ′ index the sublattice, allowing
for the treatment of lattices with multiple atoms within the
unit cell. Treating the system at the mean-field level, one can
separate the Hamiltonian into single-ion, H1, and interion,
H2, terms,

H = H1 + H2, (A2a)

H1 =
∑

iγ

Ŝz
iγ

[
2

∑
jγ ′

J γ γ ′
i j

〈
Ŝz

jγ ′
〉] +

∑
iγ

H′(i, γ ), (A2b)

H2 = 1

2

γ γ ′∑
i j

J γ γ ′
i j

(
Ŝ+

iγ Ŝ−
jγ ′ + Ŝ−

iγ Ŝ+
jγ ′

)

+
γ γ ′∑
i j

J γ γ ′
i j Ŝz

iγ

[
Ŝz

jγ ′ − 2〈Ŝz
jγ ′ 〉

]
. (A2c)

The equation of motion for the Green’s function,
Gαβ

γ̃ γ̃ ′ (i′ j′, t ) = −i�(t )〈[Ŝα
i′γ̃ (t ), Ŝβ

j′γ̃ ′ ]〉, can be written as

i∂t G
αβ

γ̃ γ̃ ′ (i′ j′, ω) = δ(t )
〈[

Ŝα
i′γ̃ (t ), Ŝβ

j′γ̃ ′
]〉

− i�(t )
〈[

i∂t Ŝ
α
i′γ̃ (t ), Ŝβ

j′γ̃ ′
]〉
. (A3)

Using the Heisenberg equation of motion, the time-dependent
spin operator in the second term can be replaced with a com-
mutator, and after a temporal Fourier transform, the Green’s
function can be recast as a function of energy,

ωGαβ

γ̃ γ̃ ′ (i′ j′, ω) = 〈[
Ŝα

i′γ̃ , Ŝβ

j′γ̃ ′
]〉

+ Gγ̃ γ̃ ′
([

Ŝα
i′γ̃ ,H

]
, Ŝβ

j′γ̃ ′ , ω
)
. (A4)

In the case in which H1 consists solely of a mean-field
term, and Ŝz is conserved, the only nonzero Green’s functions
within the random phase approximation scheme are trans-
verse. In the general case, the commutators [Ŝα

i′γ̃ ,H] must be
calculated. We can write the spin operators in terms of the
creation operators of the single-ion Hamiltonian,

Ŝα
iγ =

∑
pq

Sγ
αpqc†

p(i)cq(i), (A5)

where Sγ
αpq = 〈p| Ŝα

γ |q〉, with the single-ion eigenstates |p〉.
Using this transformation, the commutator within the Green’s
function can be calculated. Each term is quartic in bosonic
operators but can be decoupled into quadratic terms through
the random phase decoupling scheme,

c†
p(i)cq(i)c†

m( j)cn( j)

= fp(i)δpqc†
m( j)cn( j) + fm( j)δmnc†

p(i)cq(i), (A6)

with fp(i′), the Bose occupation factor of level p on site i′.
Following the mean-field decoupling, we are left with four
terms from the commutator [Ŝα

i′γ̃ ,H] = ∑4
s=1 Cs,

C1 =
lkpq∑
jγ γ ′

φqp(i′)c†
k ( j)cl ( j)Sγ̃

αqpSγ
+pqSγ ′

−klJ
γ γ ′

i j , (A7a)

C2 =
lkpq∑
jγ γ ′

φqp(i′)c†
k ( j)cl ( j)Sγ̃

αqpSγ
−pqSγ ′

+klJ
γ γ ′

i j , (A7b)

C3 =
lkpq∑
jγ γ ′

φqp(i′)c†
k ( j)cl ( j)Sγ̃

αqpSγ
zpqSγ ′

zklJ
γ γ ′

i j , (A7c)

C4 =
∑

pq

(ωp − ωq)c†
q(i′)cp(i′)Sγ̃

αqp, (A7d)

where φqp(i′) = [ fq(i′) − fp(i′)]. Taking advantage of the
linearity of the Green’s function, we can now insert the com-
mutators into Eq. (A4). Setting J γ γ ′

i j = 0, we recover the
single-ion susceptibility

gαβ

γ̃ γ̃ ′ (ω) =
∑
qp

Sγ̃
αqpSγ̃ ′

βpqφqp

ω − (ωp − ωq)
, (A8)

where we assume that single-ion eigenstates are the same for
all sites, and we drop the site index on fp. For the calculation
of one-magnon processes, the sum is performed over transi-
tions to and from the ground state. This step is equivalent
to the elimination of the ground-state operators in SU(N)
spin wave theory via the local constraint, b0(i) = b†

0(i) =√
1 − ∑N−1

m=1 b†
m(i)bm(i) [58,60,63]. After a spatial Fourier

transform, the full expression for the Green’s function can be
found,

Gαβ

γ̃ γ̃ ′ (q, ω) = gαβ

γ̃ γ̃ ′ (ω) +
∑
γ γ ′

Jγ γ ′ (q)gα+
γ̃ γ (ω)G−β

γ ′γ̃ ′ (q, ω)

+
∑
γ γ ′

Jγ γ ′ (q)gα−
γ̃ γ (ω)G+β

γ ′γ̃ ′ (q, ω)

+ 2
∑
γ γ ′

Jγ γ ′ (q)gαz
γ̃ γ (ω)Gzβ

γ ′γ̃ ′ (q, ω). (A9)

The symmetry of the single-ion environment can significantly
simplify Eq. (A9). For octahedral and tetragonal crystalline
environments, S+pq = S−pq = 0, even in the presence of a
trigonal or tetragonal distortion. However, a rhombic distor-
tion, for example, gives rise to nonzero terms in these matrices
[45]. Assuming a sufficiently symmetric single-ion environ-
ment, the g++

γ γ ′ (ω) and g−−
γ γ ′ (ω) terms vanish and the three

nonvanishing Green’s functions can be written as

G+−
γ̃ γ̃ ′ (q, ω) = g+−

γ̃ γ̃ ′ (ω)

+
∑
γ γ ′

Jγ γ ′ (q)g+−
γ̃ γ (ω)G+−

γ ′γ̃ ′ (q, ω), (A10a)

G−+
γ̃ γ̃ ′ (q, ω) = g−+

γ̃ γ̃ ′ (ω)

+
∑
γ γ ′

Jγ γ ′ (q)g−+
γ̃ γ (ω)G−+

γ ′γ̃ ′ (q, ω), (A10b)

104404-11



H. LANE et al. PHYSICAL REVIEW B 104, 104404 (2021)

FIG. 10. (a) Feynman diagrams showing the Dyson series struc-
ture of the expression for the Green’s function obtained in Eq. (A9).
(b) Dyson series for the magnon Green’s function showing the first-
and second-order perturbative corrections to the magnon propagator
for a collinear spin system. (c) Decay and source channels for three
magnon interactions.

Gzz
γ̃ γ̃ ′ (q, ω) = gzz

γ̃ γ̃ ′ (ω) + 2
∑
γ γ ′

Jγ γ ′ (q)gzz
γ̃ γ (ω)Gzz

γ ′γ̃ ′ (q, ω).

(A10c)

In the RPA, fluctuations on different sites are taken to
be uncorrelated so that g+−

γ γ ′ = 0 for γ 
= γ ′. These coupled
equations can be solved analytically and summed in order to
calculate the total Green’s function for the system [46]. The
coupled equations are most straightforwardly solved as matrix
equations,

G+− = g+− + g+− · J · G+−, (A11a)

G−+ = g−+ + g−+ · J · G−+, (A11b)

Gzz = gzz + 2gzz · J · Gzz. (A11c)

By examining Eq. (A10), the reasoning behind our deci-
sion to label gαβ (ω) as the single-ion susceptibility becomes

clear. The equations for G have the form of a Dyson equa-
tion [64], where the single-ion susceptibility plays the role
of the bare propagator, and the self-energy is the Fourier
transform of the exchange interaction, J (q) [Fig. 10(a)]. The
single-ion Hamiltonian was treated according to the harmonic
approximation, and the interion interaction can be considered
as a first-order perturbative correction, which we decoupled
in the direct channel by way of the mean-field decoupling,
from which the random phase approximation derives its
name.

The magnon propagator itself satisfies a Dyson equation,
and hence by performing this calculation in terms of Green’s
functions, we can go beyond the single magnon picture and
calculate the effect of magnon-magnon scattering on the in-
elastic neutron response by using Feynman diagram rules.
The effect of these higher-order terms is, at the one-loop
level, to dress the magnon propagator with a self-energy
depending on the magnon density. At higher orders in per-
turbation theory, we add corrections to this self-energy. Two
irreducible topologically distinct Feynman diagrams can be
written down [65], with their interaction potentials calculable
from the Dyson-Maleev or Holstein-Primakoff Hamiltonian
[66,67], since the single-ion physics has been treated in the
bare magnon propagator, and the spin correlator can equally
be written in terms of magnon creation operators. These
higher-order terms each carry a factor of 1/S per vertex [66]
and are small for S → ∞. The two-loop diagram [Fig. 10(b)]
provides a real contribution to the self-energy [65] and hence
it renormalizes the spectrum. The next diagram contains a real
part and an imaginary part which represents a damping term.
This gives an energy broadening to the magnon linewidth,
which depends on momentum [65].

In some cases, there are further vertices that should be
considered. In systems in which gzz(ω) is nonzero, that is
to say, 〈Ŝz〉 is not conserved, the extension beyond the har-
monic approximation yields vertices where three lines meet.
These terms are absent from spin rotationally symmetric
models, as is evident from the absence of cubic terms in
the Holstein-Primakoff Hamiltonian for collinear systems.
Similar terms appear in noncollinear systems where SO(2)
symmetry is broken [68]. These terms represent two magnon
decays into a single magnon or vice versa. Using Wick’s
theorem, any n-point correlator can be decomposed into a
sum of all possible contractions of the two-point correlators,
thus we can calculate the effect of these decay vertices from
the Green’s functions evaluated by the approach outlined here
[Eq. (A9)],

S(q, ω) ∝ −Im

[ ∑
θφτν

{ ∫
dq1

∫
dq2

∫
dω1

∫
dω2Gθφ (q1, ω1)Gτν (q2, ω2)δ(ω − ω1 − ω2)δ(q − q1 + q2)

}]
, (A12)

where we have ensured conservation of momentum and en-
ergy. The decay amplitudes are governed by kinematics. In
particular, it has been argued that the longitudinal mode Gzz is
particularly susceptible to decay into two lower-energy trans-
verse spin waves [69]. Though the calculation of these terms
has been simplified by formulating the spin wave calculation

in terms of Green’s functions, it still remains a formidable
task to evaluate this integral in systems that disperse in more
than one direction. This is especially true for the fitting of
neutron scattering data measured on a time-of-flight spec-
trometer where one typically integrates over a finite window
in momentum space to improve statistics.
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APPENDIX B: EXPRESSIONS FOR Aγ̃ γ̃ ′
AND Bγ̃ γ̃ ′

The calculation of the transverse Green’s function [Eq. (9)] requires knowledge of the matrix elements, Aγ̃ γ̃ ′
and Bγ̃ γ̃ ′

. The
low-temperature A phase structure necessitates an eight-site model, due to the broken inversion symmetry. The matrix B encodes
the magnetic structure of the ground state in each phase [Figs. 1(a) and 1(b)], and it can be written as

B
A

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−S 0 0 0 0 0 0 0
0 −S 0 0 0 0 0 0
0 0 S 0 0 0 0 0
0 0 0 S 0 0 0 0
0 0 0 0 S 0 0 0
0 0 0 0 0 S 0 0
0 0 0 0 0 0 −S 0
0 0 0 0 0 0 0 −S

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B1a)

B
B

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S 0 0 0 0 0 0 0
0 −S 0 0 0 0 0 0
0 0 S 0 0 0 0 0
0 0 0 −S 0 0 0 0
0 0 0 0 S 0 0 0
0 0 0 0 0 −S 0 0
0 0 0 0 0 0 S 0
0 0 0 0 0 0 0 −S

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B1b)

in the A and B phase, respectively, where S = 5
2 . Note that the site labeling has been chosen to match that of Eq. (11). The matrix

for the B phase can be written as a scalar matrix whose elements are 4 × 4 matrices, reflecting the inversion symmetry of the B
phase magnetic structure. The mean molecular field can be calculated by expanding the spin operators around their expectation
values [Eq. (5)]. The presence of the bond inequivalence, J1a 
= J1b and J2a 
= J2b, gives rise to two molecular mean-field terms,

hMF
a = −2J1aS + 2J2aS + 2J3S + 2J4S − 2μS, (B2a)

hMF
b = −2J1bS + 2J2bS + 2J3S + 2J4S − 2μS, (B2b)

where the minus sign in front of the first term reflects the fact that J1a and J1b couple parallel spins, while the other exchanges
couple spins that are antiparallel. The matrix Aγ̃ γ ′

(q) consists of a contribution from the molecular mean field and from the
Fourier transform of the exchange interaction [Eq. (11)], A = AMF + Aexch. Its matrix elements can be calculated using Eq. (6b),

AMF
A

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−hMF
a 0 0 0 0 0 0 0

0 −hMF
a 0 0 0 0 0 0

0 0 hMF
b 0 0 0 0 0

0 0 0 hMF
b 0 0 0 0

0 0 0 0 hMF
b 0 0 0

0 0 0 0 0 hMF
b 0 0

0 0 0 0 0 0 −hMF
a 0

0 0 0 0 0 0 0 −hMF
a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B3a)

AMF
B

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hMF
a 0 0 0 0 0 0 0
0 −hMF

a 0 0 0 0 0 0
0 0 hMF

b 0 0 0 0 0
0 0 0 −hMF

b 0 0 0 0
0 0 0 0 hMF

b 0 0 0
0 0 0 0 0 −hMF

b 0 0
0 0 0 0 0 0 hMF

a 0
0 0 0 0 0 0 0 −hMF

a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B3b)

Finally, the contribution from the exchange term can be calculated by taking the product of 2B and the Fourier transform of
Eq. (11), which is the same for both phases,

Aexch
A/B

= 2B
A/B

· J (q). (B4)

By diagonalizing the matrix A one can obtain an expression for the spin wave dispersion, and the Green’s function can be
calculated using Eq. (9).
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