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Optomagnonic Josephson effect in antiferromagnets
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Combining advanced technologies of optics and antiferromagnetic spintronics, we present a method to
realize ultrafast spin transport. The optical Barnett effect provokes quasiequilibrium Bose-Einstein condensates
(BECs) of magnons associated with the fully spin-polarized state in insulating antiferromagnets (AFs). This
optomagnonic Barnett effect enables us to exploit coherent magnons of high frequency over the conventional
ones of (sub-) terahertz associated with the Néel magnetic order. We show that the macroscopic coherence of
those optical magnon BECs induces a spin current across the junction interface of weakly coupled two insulating
AFs, and this optomagnonic Josephson effect realizes ultrafast spin transport. The period of the optomagnonic
Josephson oscillation is much shorter than the conventional one of the order of picoseconds. Thus we propose a
way to realize ultrafast spin transport in AFs by means of the macroscopic coherence of optical magnon BECs.
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I. INTRODUCTION

For the realization of rapid and efficient transmission of
information over electronics, inventing methods to handle a
fast and flexible manipulation of spin transport is a central task
in the field of spintronics [1–7]. For this goal, antiferromag-
nets (AFs) [8–16] have an advantage over ferromagnets (FMs)
[17–20] in that spin dynamics is much faster. The energy
scale of FMs is characterized by the macroscopic and classical
magnetic dipole interaction in gigahertz (GHz) regime [17],
and hence the spin Josephson oscillation [21] operates of
the order of nanoseconds (ns) [4,22]. On the other hand, the
energy scale of AFs arises from microscopic and quantum-
mechanical spin exchange interactions. Therefore AFs can
operate at much higher frequency. Thus AFs are expected to
be the best platform for ultrafast transport of spin information
[3,5,8–10]. The observation of spin currents by means of
sub-terahertz (sub-THz) spin pumping in AFs was reported
in Refs. [13,14]. Making use of the property of AFs, spin
Josephson effects of THz associated with the Néel magnetic
order [23] were theoretically proposed in Refs. [24,25]. The
spin Josephson oscillation operates of the order of picosec-
onds (ps).

Another significant development in the manipulation of
magnetism is the utilization of laser-matter coupling [26–29].
By means of the optical method [30–36], the reversal of
magnetization was achieved experimentally [37–40], and an
optical analog of the conventional Barnett effect [41–43],
i.e., laser-induced magnetization [44,45], was proposed
theoretically [35,36]. This optical Barnett effect even pro-
vokes quasiequilibrium Bose-Einstein condensates (BECs) of
magnons [46], i.e., optical magnon BECs, and this behavior
is especially called the optomagnonic Barnett effect [47].
Thus the interdisciplinary field between optics and magnonics
[11,48–50], dubbed optomagnonics, has been attracting much
attention.

In this paper, using the macroscopic coherence of the opti-
cal magnon BECs, we propose a method for the realization of
ultrafast spin transport in insulating AFs. The optical Barnett
effect realizes the fully spin-polarized state of insulating AFs.
This enables us to exploit coherent magnons of high frequency
over the conventional ones of (sub-) THz associated with the
Néel magnetic order. We show that the macroscopic coher-
ence of the optical magnon BECs induces a spin current across
the junction interface of weakly coupled two insulating AFs
(Fig. 1). We refer to this phenomenon as the optomagnonic
Josephson effect. The period of the optomagnonic Josephson
oscillation is much shorter than the conventional one of the
order of picoseconds. This ultrafast phenomenon intrinsic to
AFs, the optomagnonic Josephson effect, is the result from
the confluence of optics and antiferromagnetic magnonics. We
also discuss an experimental scheme for the observation.

We remark that in this paper using the scheme of
Refs. [44,45], we consider transport of the optical magnon
BECs in AFs, i.e., magnon BECs out of equilibrium, asso-
ciated with the fully spin-polarized state of high frequency
over the conventional one of (sub-) THz associated with the
Néel magnetic order [51] (cf. Sec. III A). See Refs. [52,53]
for magnon BECs in equilibrium subjected to a static
magnetic field.

This paper is organized as follows. In Sec. II we quickly
review the optical Barnett effect. Then we investigate the
prominent application, the optomagnonic Josephson effect, in
Sec. III and give an estimate for the experimental feasibility
in Sec. IV. Finally, we remark on several issues in Sec. V and
summarize in Sec. VI. Technical details are described in the
Appendices.

II. OPTICAL BARNETT EFFECT

Before going to the main subject, for readers’ convenience
let us quickly review the mechanism of the laser-induced
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FIG. 1. Schematic picture of the optomagnonic Josephson junc-
tion. The two insulating AFs are separated by a thin film of a
nonmagnetic insulator and weakly exchange coupled. We assume
an identical material for each AF subjected to a circularly polar-
ized laser with the opposite polarization η = ±. In the vicinity of
� = �BEC, the optical Barnett effect realizes the quasiequilibrium
magnon BEC, i.e., the optical magnon BEC, associated with the fully
spin-polarized state in the high frequency regime, where spins in the
left (right) AF are along the +(−) z axis due to the opposite circular
polarization (cf. Tables I and II).

magnetization [44,45], i.e., the optical Barnett effect [35,36].
See Refs. [44,45] for details [54], especially for the im-
portance of modulating laser frequency adiabatically by the
chirping technique [55,56].

We consider a magnetic insulator with a large electronic
gap described by the Hamiltonian H0 which has the U (1)
symmetry about an axis, and we take the z axis for conve-
nience. Due to the large electronic gap, spins in the circularly
polarized laser interact only with the magnetic component of
the laser through the Zeeman coupling. We take the polar-
ization plane of the laser as the xy plane. We adiabatically
apply the laser of the frequency � > 0 with the magnetic field
amplitude B0 > 0. For the generation of the optical Barnett ef-
fect, the driving field amplitude B0 > 0 should take a nonzero
value B0 �= 0 of being strong enough that B0 > |u0|, where
u0 is the potential energy of magnons in the lattice formed
by surroundings (e.g., phonons and impurities, etc.). Since
throughout this paper we assume the clean magnet at low tem-
peratures, the condition is satisfied. The spin system subjected
to the laser is described by the time-periodic Hamiltonian
Ĥ(t ) = Ĥ0 − B0[Ŝx

tot cos(�t ) + ηŜy
tot sin(�t )], where the sign

η = +(−) represents the left (right) circular polarization and
Sx(y,z)

tot := ∑
j Sx(y,z)

j is the summation over spin operators on
all the spin sites. Using the unitary transformation, we obtain
an effective static Hamiltonian in the rotational frame [57] of

the frequency η� around the z axis as [44,45]

Ĥeff = Ĥ0 − ηh̄�Ŝz
tot + O(B0). (1)

Hereafter we assume a weak laser field B0 � h̄� where
the B0Sx

tot term is negligibly small. In Eq. (1), the effective
magnetic field �/γ with the gyromagnetic ratio γ may be
regarded as an optical analog [35,36] of the conventional
Barnett field [41–43] along the z axis. This optical Barnett
field develops the total magnetization of magnets. The direc-
tion of the optical Barnett field is controllable by means of
the change of the laser chirality η = ±. The effective static
Hamiltonian Ĥeff [Eq. (1)] has the U (1) symmetry.

We remark that modulating laser frequency � slowly
enough through the chirping technique [55,56], the adiabatic
time evolution is realized [44,45]. Therefore the spin con-
figuration is determined in the way that the energy of the
Hamiltonian Ĥeff [Eq. (1)] per site is minimized.

III. OPTOMAGNONIC JOSEPHSON EFFECT

A. Optical magnon BEC in AF

We apply the optical Barnett effect [Eq. (1)] to an insulat-
ing AF described by the Hamiltonian

Ĥ0 = J
∑
〈i, j〉

Ŝi · Ŝ j + D
∑

i

(
Ŝz

i

)2
, (2)

where Ŝi( j) = (Ŝx
i( j), Ŝy

i( j), Ŝz
i( j) ) represents the spin operator on

the i( j)th site having the spin quantum number S, J > 0 is
the exchange interaction between the nearest neighbor spins
〈i, j〉, and D > 0 is the easy-plane single ion anisotropy that
stabilizes the Néel magnetic order on the xy plane. Hereafter,
we consider a cubic lattice.

First, the optical Barnett field [Eq. (1)] develops the total
magnetization of the AF along the z axis continuously. We find
from a microscopic calculation [51] that in the high frequency
regime � > �BEC defined as

�BEC := 2(6J + D)S/h̄ (3)

spins are fully polarized along the ηz axis, and confirmed the
absence of the first order transition in the vicinity of �BEC

[51]. This assures the validity of the description in terms of
the magnon picture [58]. Hence we move to the analysis by the
magnon theory next. For the details of the calculation, see the
Appendices [51].

Note that magnons acquire the effective magnetic field
in the corotating frame as [51] Beff = (Bx

eff , 0, Bz
eff ), where

Bx
eff := B0 along the x axis and Bz

eff := h̄(� − �BEC) + 6JS
along the z axis. Since 6JS � B0 in general, the effective
magnetic field along the x axis Bx

eff = B0 is negligibly small
compared with the z component Bx

eff � Bz
eff even in the vicin-

ity of � ≈ �BEC. Throughout this paper we work under the
assumption that 0 < |u0| < B0 � h̄�, 6JS.

Next, decreasing the frequency � from above the critical
value �BEC in which spins are full polarized, magnon BEC
transition is provoked on the point � = �BEC and magnons
of π mode, k = π := (π/a, π/a, π/a), begin to condensate,
where k is the wave number and a is the lattice constant.
We refer to this behavior as the optomagnonic Barnett effect,
and the resulting magnon condensate as the optical magnon
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TABLE I. Comparison of the optical magnon BECs in the junc-
tion of AFs shown in Fig. 1.

Left BEC Right BEC

Frequency O(10) THz O(10) THz
Circular polarization η = + η = −
Spin polarization +z axis −z axis
Spin angular momentum − +
Macroscopic coherent state bL = √

NLeiθL bR = √
NRe−iθR

BEC [47]. In the frequency � < �BEC, the AF acquires a
transverse component of local magnetization associated with
the spontaneous U (1) symmetry breaking, and thus forms a
macroscopic coherent state. The optical magnon BEC state is
described by the effective Hamiltonian in the rotational frame
of the frequency η� around the z axis as [51]

Ĥeff (k = π) = h̄(� − �BEC)â†
πâπ + Uâ†

πâ†
πâπâπ, (4)

where â(†)
π is the bosonic annihilation (creation) operator for

magnons of the π mode in condensation,

U := h̄�BEC

2SN
(5)

represents the magnitude of magnon-magnon interactions,
and N is the number of spin sites. The magnon-magnon
interaction is repulsive U > 0. Therefore the magnon
BEC characterized by the expectation value 〈âπ〉 �= 0 are
stable [52].

Finally, the effective Hamiltonian for the optical magnon
BEC in the rotational frame is recast into the Hamiltonian in
the original stationary reference frame as [51]

Ĥk=π = −h̄�BECb̂†
πb̂π + Ub̂†

πb̂†
πb̂πb̂π, (6)

where b̂(†)
π is the magnon operator in the reference frame

and â(†)
k = R̂†b̂(†)

k R̂ for R̂ := exp(ηi�t Ŝz
tot ). This Hamiltonian

depends solely on the material parameters �BEC [Eqs. (3) and
(5)], while it is independent of laser frequency. Note that the
number of magnon BECs is characterized as a function of
laser frequency [51].

We remark that condensation of the π mode magnons does
not induce a Josephson-like effect in the single AF since the xy
components of the nearest neighbor spins are in the opposite
direction and this results in sin(±π ) = 0.

B. Optomagnonic Josephson junction

In this paper, using the optical magnon BEC in the vicinity
of � = �BEC, we investigate the application of the macro-
scopic coherence to ultrafast spin transport. To this end, we
consider a junction of weakly exchange-coupled two insulat-
ing AFs shown in Fig. 1. The two AFs are separated by a thin
film of a nonmagnetic insulator [24] and weakly exchange
coupled. The AFs are subjected to a circularly polarized laser
of the frequency � < �BEC with the opposite polarization
η = ±. Thus optical magnon BECs are realized and spins of
the left (right) AF are aligned along the +(−) z axis due to the
opposite circular polarization (Table I).

First, we assume an identical material for each AF. From
Eq. (6) the optical magnon BEC in the left (right) AF is

described by the Hamiltonian ĤL(R) in the original stationary
frame as [51]

ĤL = h̄�Lb̂†
Lb̂L + ULb̂†

Lb̂†
Lb̂Lb̂L, (7a)

ĤR = h̄�Rb̂†
Rb̂R + URb̂†

Rb̂†
Rb̂Rb̂R, (7b)

where

�L = �R := −�BEC < 0, (8a)

UL = UR := U > 0, (8b)

and b̂(†)
L(R) is the bosonic annihilation (creation) operator for

magnon condensates of the π mode in the left (right) AF.
Next, we focus on the junction interface connecting the

two AFs. Due to a finite overlap of the wave functions of
the localized spins that reside on the relevant two-dimensional
boundaries of each insulator, there exists in general a finite ex-
change interaction between the boundary spins [22,59]. This
induces a tunneling process of magnons across the junction
interface. Let us denote the tunneling amplitude as |K|. Since
two AFs are separated by a thin film of a nonmagnetic insula-
tor [24], those are weakly exchange coupled. In the tunneling
limit the energy scale is assumed to be |K| � |h̄�L(R)| and
|K| � J . During the tunneling process, the spin angular mo-
mentum is exchanged between the left and the right BECs via
magnons. Since spins in the left (right) AF are aligned along
the +(−) z axis by the opposite circular polarization η = ±,
the magnon of the left BEC carries the spin angular momen-
tum δSz

L = −, while that of the right BEC carries the opposite
δSz

R = +. Therefore, within the low energy regime (i.e., in
the lowest order of magnon operators), from the conservation
law of the total spin angular momentum, the tunneling pro-
cess at the junction interface is effectively described by the
Hamiltonian [51] V̂ = −K (b̂Lb̂R + b̂†

Lb̂†
R), where sgn(K ) =

± in general [24,60]. Note that the total number of magnons
is not conserved due to this tunneling process.

Finally, the total Hamiltonian for the optomagnonic
Josephson junction, Fig. 1, is summarized as Ĥtot = ĤL +
ĤR + V̂ . See the Appendices for the tunneling amplitude in
spin language [51].

C. Optomagnonic Josephson equation

Starting from the Hamiltonian Ĥtot of the junction system,
we derive the spin Josephson equation of the optomagnonic
Barnett effect. First, since the optical magnon BEC is a
macroscopic coherent state, it acquires a macroscopic co-
herence 〈b̂L(R)(t )〉 =: bL(R)(t ) �= 0 characterized as bL(t ) =√

NL(t )eiθL (t ) ∈ C and bR(t ) = √
NR(t )e−iθR (t ) ∈ C, where

NL(R)(t ) is the number of magnon BECs in the left (right)
insulator and θL(R) is the phase [4]. The sign change in the
phase, iθL(t ) and −iθR(t ), arises from the fact that spins of
the left (right) AF are aligned along the +(−) z axis by the
opposite circular polarization η = ±; the spin raising opera-
tion corresponds to the magnon annihilation in the left BEC,
while to the magnon creation in the right BEC (Table I).

Next, using the Heisenberg equation of motion for Ĥtot

and taking the expectation value 〈b̂L(R)(t )〉 =: bL(R)(t ), we
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derive [51] the two-state model [22,61] for the optical magnon
BECs:

ih̄
dbL(t )

dt
= h̄�LbL + 2ULNLbL − Kb†

R, (9a)

ih̄
dbR(t )

dt
= h̄�RbR + 2URNRbR − Kb†

L. (9b)

Then we divide Eqs. (9a) and (9b) into the real and imaginary
parts as

d

dt
[NL(t ) − NR(t )] = 0, (10a)

d

dt
[NL(t ) + NR(t )] = −4K

h̄

√
NLNRsin(θR − θL), (10b)

−h̄
dθL(t )

dt
= (h̄�L + 2ULNL)

− K

√
NR

NL
cos(θR − θL), (10c)

h̄
dθR(t )

dt
= (h̄�R + 2URNR)

− K

√
NL

NR
cos(θR − θL). (10d)

Equations (10a) and (10b) mean that the total number of
magnons in condensation N+(t ) := NL(t ) + NR(t ) is not con-
served due to the tunneling process, while the total spin
angular momentum N− := NL(t ) − NR(t ) is conserved. This
ensures that the left BEC acquires the spin angular momentum
lost in the right BEC, and vice versa. The initial condition
N+(0) and N−(0), i.e., NL(R)(0), is characterized as a function
of laser frequency [51].

Finally, we introduce the variable z(t ) to describe the spin
current across the junction interface as z(t ) := N+(t )/N−,
and define the relative phase as θ (t ) := θR(t ) − θL(t ), where
|z(t )| � 1 by definition. In this work, without loss of
generality, we assume the initial condition N−(0) > 0 for
convenience. Since N− := NL − NR is constant, this en-
sures z(t ) � 1. In terms of the variables z(t ) and θ (t ),
Eqs. (10a)–(10d) are summarized as [51]

dz(t )

dt
= −2K

h̄

√
z(t )2 − 1sinθ (t ), (11a)

dθ (t )

dt
=

[
(�L + �R) + UL − UR

h̄
N−

]
+

(UL + UR

h̄
N−

)
z(t )

− 2K

h̄

z(t )√
z(t )2 − 1

cosθ (t ). (11b)

This is the spin Josephson equation for the junction of the
AFs shown in Fig. 1 subjected to the optomagnonic Bar-
nett effect. We refer to this equation as the optomagnonic
Josephson equation. Equation (11a), dz(t )/(dt ) ∝ sinθ (t ),
describes the Josephson spin current across the junction in-
terface, and Eq. (11b), dθ/(dt ), shows the time evolution of
the relative phase. The numerical plot of the Josephson spin
current is depicted in Fig. 2. Equation (11a) means that due
to the macroscopic coherence of the optical magnon BEC,
the spin current of O(K ) arises from the phase difference.
This is in contrast to the junction of noncondensed magnons

I(t)

 t 
4×10

-2
8×10

-2 [ps]

FIG. 2. Plot of the rescaled Josephson spin current I (t ) :=
[h̄/(2K )][dz/(dt )] as a function of time in the vicinity of � =
�BEC = 75 THz obtained by numerically solving Eqs. (11a) and
(11b) with the initial condition z(0) = 102 and θ (0) = 0 for exper-
imental values given in the main text. Assuming K = 0.375 μeV,
the period of the optomagnonic Josephson oscillation becomes
O(10−2) ps.

[59], where spin currents of O(K2) are generated, e.g., by the
temperature difference. Note that being independent of the
sign of the parameter K , the spin Josephson effect is induced;
Eqs. (11a) and (11b) are invariant under the transformation
K → −K and θ (t ) → θ (t ) + π . Thus the effect of the sign
change sgn(K ) = ± is absorbed into the initial condition of
the relative phase and the transport property remains un-
changed essentially.

We remark that the quasiequilibrium magnon BEC of π

mode corresponds to a macroscopic coherent spin precession
where the xy components of the nearest neighbor spins in
the single AF are in the opposite direction. This does not
affect the Josephson effect in the junction of the AFs since
the Josephson equations [Eqs. (11a) and (11b)] are invariant
under the transformation θ (t ) → θ (t ) + 2π .

D. Optomagnonic Josephson spin current

The transition point for the optical magnon BEC of the
AF amounts to �BEC = O(10) THz. Under some conditions,
Eq. (11b) approximately reduces to dθ (t )/(dt ) ≈ �L + �R

and essentially results in θ (t ) = (�L + �R)t + θ (0). From
Eq. (11a) we find that dz(t )/(dt ) ∝ sin[(�L + �R)t + θ (0)].
The period of the optomagnonic Josephson oscillation is esti-
mated to be 2π/|�L + �R| = O(10−2) ps. Thus ultrafast spin
transport is realized in AFs. We refer to this phenomenon as
the optomagnonic Josephson effect. The analytic estimation
agrees with the numerical calculation shown in Fig. 2.

IV. EXPERIMENTAL FEASIBILITY

For an estimate we assume the following experiment
parameter values for an insulating AF, NiO, as [62–64]
J = 6.3 meV, D = 0.1 meV, and S = 1. We find that the
transition point for the optical magnon BEC amounts to
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TABLE II. The comparison of the spin Josephson effect in
the AF-AF junction; the conventional spin Josephson effect of
Refs. [24,25] and the optomagnonic Josephson effect of this study
(Fig. 1).

Conventional Optomagnonic

Order Néel magnetic order Fully spin-polarized state
Coherence e.g., AF resonance Optical Barnett effect
Frequency Sub-THz or O(1) THz O(10) THz
Period O(1) ps O(10−2) ps

�BEC = 75 THz, which is much higher than the conventional
one �res = O(1) THz or sub-THz for the antiferromag-
netic resonance associated with the Néel magnetic order
[13,14,24,25]. The numerical plot of the optomagnonic
Josephson effect is in Fig. 2 with the parameter values in its
caption. Given these estimates we expect that, while being
challenging, our proposal will be within experimental reach
with current device and measurement technologies, e.g., fem-
tosecond mid-infrared pump-probe spectroscopy [30,65–68]
for the ultrafast spin dynamics, and Brillouin light scattering
(BLS) [17,69] for the optical magnon BEC and the resulting
Josephson effect. Reference [70] reported the observation of
the AC Josephson effect of magnon BECs in 3He -B. We
expect from a theoretical viewpoint that to use the inverse spin
Hall effect [71] by attaching a metal to the insulating AF will
be one of the most promising strategies for the observation of
the magnon Josephson effect in magnets.

V. DISCUSSION

We remark on the difference between this study and other
works on spin Josephson effects proposed in Refs. [22,24,25].
In the conventional low frequency region of the AF, coherent
magnons associated with the Néel magnetic order are avail-
able, e.g., by antiferromagnetic resonance [15]. However, the
frequency of the conventional coherent magnons can amount
only to �res = O(1) THz or sub-THz [13,14]. Thus the pe-
riod of the resulting Josephson-like effect is estimated to be
O(1) ps [24,25]. Note that the quasiequilibrium magnon BEC
of Ref. [22] through microwave pumping in FMs is in the
O(1) GHz regime [17], in much lower frequency, where the
spin Josephson oscillation operates of the order of ns.

There is a distinction also in the spin Josephson equation
due to the direction of the macroscopic coherent spin pre-
cession in the BEC phase. In the same way as in Ref. [22],
the Josephson spin current of this work [Eqs. (11a) and
(11b)] is proportional to sinθ (t ). However, in contrast to
Ref. [22], the relative phase of this work is described essen-
tially as the sum of the frequency �L(R) of the left (right)
BEC as θ (t ) = θR(t ) − θL(t ) = (�L + �R)t + θ (0) where
sgn(�L) = sgn(�R) [Eq. (8a)]. This arises from that through
the optomagnonic Barnett effect of the opposite circular po-
larization η = ±, spins in the left (right) AF are aligned along
the +(−) z axis, see Fig. 1 (cf. Table I). Consequently, the di-
rection of the macroscopic coherent spin precession in the left
BEC phase becomes opposite to the one in the right. There-
fore the relative phase becomes the sum of the frequency as
θ (t ) = (�L + �R)t + θ (0) with sgn(�L) = sgn(�R). On the

TABLE III. The comparison of the spin Josephson effect; the
FM-FM junction of Ref. [22] through microwave pumping, and the
AF-AF junction of this work (Fig. 1) through the optomagnonic
Barnett effect, where sgn(ωL ) = sgn(ωR ) and sgn(�L ) = sgn(�R ),
respectively. See Ref. [22] for the details of the frequency ωL(R) of
the left (right) BEC in the FM-FM junction.

FM-FM junction AF-AF junction

Magnon BEC Microwave pumping Optical Barnett
Total magnon number Conserved Nonconserved
Spin angular momentum Conserved Conserved
Josephson oscillation sin[(ωL − ωR )t] sin[(�L + �R )t]
Frequency O(1) GHz O(10) THz
Period O(1) ns O(10−2) ps

other hand, since spins in the FM-FM junction of Ref. [22] are
aligned along the same direction, the relative phase is charac-
terized essentially as the difference of the frequency ωL(R) of
the left (right) BEC as (ωL − ωR)t where sgn(ωL) = sgn(ωR).
For the details of the frequency ωL(R), see Ref. [22]. Thus,
using the scheme of Fig. 1 we can enhance the frequency of
the Josephson oscillation. For all of these reasons, ultrafast
spin transport is realized in our AF-AF junction. Those are
summarized in Tables II and III.

Several comments on our approach are in order. First, in
this paper we assume not the easy-axis anisotropy but the
easy-plane anisotropy. Therefore a spin-flop transition [72]
is absent in this setup [51]. Second, we find that a DC spin
Josephson effect might be induced but realized unstably in
this setup [51]. Third, for the difference between the inverse
Faraday effect [30,32] and the optical Barnett effect [35,36],
i.e., the laser-induced magnetization [44,45], see Ref. [47].
Last, throughout this paper we have assumed a sufficiently low
temperature where phonon degrees of freedom ceases to work
[73–76]. It will be interesting to study the effect of phonons
on the spin Josephson effect, which we leave for future work.

We remark that Ref. [77] reported experimental signatures
of spin superfluid in Cr2O3 subjected to a strong magnetic
field along the easy axis. For the generation of the spin su-
perfluid [53], the easy-plane anisotropy is essential, while
originally Cr2O3 possesses the easy-axis anisotropy. From
this, it is expected that the applied magnetic field changes the
spin anisotropy of Cr2O3 and effectively makes it the easy
plane. Thus we can control the spin anisotropy. Still, to find
the insulating AF which intrinsically possesses the perfect
easy-plane anisotropy, i.e., the U (1) spin-rotational symmetry
within the easy plane, is of significance. To the best of our
knowledge, this remains a challenge of the antiferromagnetic
spintronics study.

VI. CONCLUSION

Using the macroscopic coherence of the optical magnon
Bose-Einstein condensates intrinsic to insulating antiferro-
magnets, we have proposed the optomagnonic Josephson
effect. The optomagnonic Barnett effect associated with the
fully spin-polarized state enables us to exploit coherent
magnons of high frequency over the conventional ones of
(sub-) terahertz associated with the Néel magnetic order.

104402-5



KOUKI NAKATA PHYSICAL REVIEW B 104, 104402 (2021)

Applying the optomagnonic Barnett effect to the junction
of weakly coupled two insulating antiferromagnets, we have
shown that the ultrafast spin Josephson effect of those optical
magnon Bose-Einstein condensates is realized. The period of
the optomagnonic Josephson oscillation is much shorter than
the conventional one of the order of picoseconds. Our work
builds a bridge between optics and magnonics, and is expected
to become the key ingredient for the ultrafast manipulation of
spin information.
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APPENDIX A: CLASSICAL SPIN THEORY

In this Appendix we derive the critical frequency �c for the
fully spin-polarized state of AFs, and evaluate the magnetiza-
tion along the z axis as a function of laser frequency (Fig. 3).
First, we consider the antiferromagnetic model described by

0

1.0

0

mA
z

Ω

(a)
B A

B A

B A

(b)

(c)

x
z(a)(b)(c)

=12ΩBEC

FIG. 3. Plot of the magnetization along the z axis mz
A = mz

B for
η = 1 as a function of the rescaled frequency �̃ := h̄�/J obtained
by numerically solving Eq. (A4b), i.e., minimizing the energy ε,
with the experimental parameter values given in the main text. The
optical Barnett field develops the magnetization continuously. The
absence of the first order transition, i.e., jump of mz

A(B), assures
the validity of the description in terms of magnons. (a) In the high
frequency regime �̃ > �̃BEC = 12, spins are fully polarized along
the z axis. (b) Decreasing the frequency, the optical magnon BEC
transition is provoked on the point �̃ = �̃BEC, where the AF acquires
a transverse component of local magnetization associated with the
spontaneous U (1) symmetry breaking. Thus a macroscopic coherent
state is formed. (c) In the low frequency regime �̃ ∼ 0, the Néel
magnetic order is developed on the xy plane and we take it the x axis
without loss of generality. Throughout this paper we study the optical
magnon BEC (b) in the vicinity of �̃ = �̃BEC.

the Hamiltonian

Ĥ0 = J
∑
〈i, j〉

Ŝi · Ŝ j + D
∑

i

(Ŝz
i )2. (A1)

The easy-plane single ion anisotropy D > 0 stabilizes the
Néel magnetic order on the xy plane. Under the application of
circularly polarized laser, the effective Hamiltonian reduces to
(see the main text)

Ĥeff =Ĥ0 − ηh̄�
∑

i

Ŝz
i . (A2)

The AF consists of the sublattice A and B. The classical spin
configuration is determined in the way that the energy per
spin ε,

ε = E

N
(A3a)

= z0J

2
SA · SB + D

2

[(
Sz

A

)2 + (
Sz

B

)2] − ηh̄�

2

(
Sz

A + Sz
B

)
(A3b)

is minimized, where N is the number of spin sites, E denotes
the total energy, z0 represents the coordination number, and
SA(B) is the spin on the sublattice A (B).

Next, we focus on the vicinity of the critical frequency
�c (Fig. 3). Since Eq. (A3b) has the U (1) symmetry, with-
out loss of generality, we assume that SA and SB are in
the xz plane as SA = (S sin θ, 0, ηS cos θ ) =: (mx

A, 0, mz
A) and

SB = (−S sin θ, 0, ηS cos θ ) =: (mx
B, 0, mz

B). Then Eq. (A3b)
is rewritten as

ε = z0JS2

2
cos(2θ ) + DS2 cos2 θ − h̄�S cos θ (A4a)

= (z0J + D)S2 cos2 θ − h̄�S cos θ − z0JS2

2
. (A4b)

We call the 0 < θ < π case as the V-shape phase, which
corresponds to the magnon BEC phase as we see below, since
the sublattice magnetization SA and SB form the V shape. For
the stability of the V-shape phase 0 < θ < π , the condition

z0J + D > 0 (A5)

is necessary. This condition corresponds to the repul-
sive interaction between magnons in the spin wave theory
(cf. Appendix B). The energy of Eq. (A3b) takes the
minimum at θ = 0 for h̄� � 2(z0J + D)S and at θ =
arccos{h̄�/[2(z0J + D)S]} �= 0 for h̄� < 2(z0J + D)S. Thus
the critical frequency for the fully spin-polarized state of AFs
is given as

h̄�c = 2(z0J + D)S. (A6)

Finally, magnetization along the z axis per spin is given as

ηSz = S cos θ (A7a)

= h̄�

2(z0J + D)
(A7b)

= �

�c
S. (A7c)

The numerical plot is provided in Fig. 3.
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APPENDIX B: MAGNON THEORY

In this Appendix we derive the transition point for the
magnon BEC, �BEC, associated with the fully spin-polarized
state in the high frequency regime, and evaluate the number of
magnon condensates in the vicinity of � = �BEC. The ground
state is fully polarized S = (0, 0, ηS) for � > �c. First, we
perform the Holstein-Primakoff transformation,

ηŜz
i = S − n̂i,

Ŝx
i + ηiŜy

i =
√

2S

(
1 − n̂i

2S

)1/2

âi,

Ŝx
i − ηiŜy

i =
√

2Sâ†
i

(
1 − n̂i

2S

)1/2

,

where â†
i and âi are creation and annihilation operators for

bosons, i.e., magnons, and n̂i ≡ â†
i âi is the number operator.

We make an expansion and retain up to the fourth order terms
of âi and â†

i ,

ηŜz
i = S − n̂i,

Ŝx
i + ηiŜy

i =
√

2S

(
1 − n̂i

4S

)
âi,

Ŝx
i − ηiŜy

i =
√

2Sâ†
i

(
1 − n̂i

4S

)
.

Using the magnon operator, the Hamiltonian [Eq. (A2)] is
rewritten as

Ĥeff = JS
∑
〈i, j〉

(â†
i â j + H.c.) − J

4

∑
〈i, j〉

(â†
i n̂iâ j + â†

i n̂ j â j +H.c.)

− z0JS
∑

i

n̂i + J
∑
〈i, j〉

n̂in̂ j − 2DS
∑

i

n̂i + D
∑

i

n̂2
i

+ h̄�
∑

i

n̂i, (B1)

where constant terms are dropped. We consider the cubic lat-
tice and the configuration number is z0 = 6. After the Fourier
transform for the positional vector ri as

âk =
√

1

N

∑
i

e−ik·ri âi, â†
k =

√
1

N

∑
i

eik·ri â†
i , n̂k = â†

kâk,

we obtain

Ĥeff = 2JS
∑

k

[cos(kxa) + cos(kya) + cos(kza)]n̂k

+ (−z0JS − 2DS + h̄�)
∑

k

n̂k + Û , (B2)

where a is the lattice constant. The interaction term Û is
represented as

Û = − J

2N

∑
k1,k2,k3,k4

[cos(k1,xa) + cos(k1,ya) + cos(k1,za)]â†
k1

â†
k2

âk3 âk4δk1+k2,k3+k4

− J

2N

∑
k1,k2,k3,k4

[cos(k4,xa) + cos(k4,ya) + cos(k4,za)]â†
k1

â†
k2

âk3 âk4δk1+k2,k3+k4

+ J

N

∑
k1,k2,k3,k4

{cos[(k1,x − k2,x )a] + cos[(k1,y − k2,y)a] + cos[(k1,z − k2,z )a]}â†
k1

âk2 â†
k3

âk4δk1+k3,k2+k4

+ D

N

∑
k1,k2,k3,k4

â†
k1

âk2 â†
k3

âk4δk1+k3,k2+k4 . (B3)

The magnon Hamiltonian in the corotating frame [Eq. (B2)]
consists of the kinetic energy, the magnon-magnon inter-
action, and the Zeeman energy of the magnetic field in
the magnet. The effective magnetic field Beff = (Bx

eff , 0, Bz
eff )

magnons acquired in the corotating frame is Bz
eff :=

h̄(� − �BEC) + 6JS along the z axis, while Bx
eff := B0 along

the x axis. Since 6JS = O(10) meV ∼ O(102) T and con-
sequently 6JS � B0 in general, the effective magnetic field
along the x axis Bx

eff = B0 is negligibly small compared
with the z component Bx

eff � Bz
eff even in the vicinity of

� ≈ �BEC. When � is decreased from the large value, the
band 2JS[cos(kxa) + cos(kya) + cos(kza)] − z0JS − 2DS +
h̄� touches the zero energy at the wave number k = π :=
(π/a, π/a, π/a). Therefore the magnons created by â†

π con-
densate at

h̄�BEC = 2(6J + D)S, (B4)

which coincides with h̄�c [Eq. (A6)].

Next, we consider the interaction term. Since magnons
condensate at k = π, we only keep the term with k1 = k2 =
k3 = k4 = π in Eq. (B3) as

Û = 3J

N
â†

πâ†
πâπâπ + 3J + D

N
â†

πâπâ†
πâπ (B5a)

= 6J + D

N
â†

πâ†
πâπâπ + 3J + D

N
n̂π. (B5b)

Thus 6J + D > 0 corresponds to repulsive interaction. The
k = π sector in the Hamiltonian of Eq. (B2) is given as

Ĥeff (k = π) =
(

−12JS − 2DS + h̄� + 3J + D

N

)
n̂π

+ 6J + D

N
â†

πâ†
πâπâπ. (B6)
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Since we treat a macroscopic system, the number of spin sites
N is large enough to approximate as

Ĥeff (k = π) � (−12JS − 2DS + h̄�)n̂π

+ 6J + D

N
â†

πâ†
πâπâπ (B7a)

= h̄(� − �BEC)n̂π + h̄�BEC

2NS
â†

πâ†
πâπâπ. (B7b)

In order for the magnon BEC state with finite 〈n̂π〉 to be
stabilized, the repulsive interaction 6J + D > 0 is necessary,
which corresponds to Eq. (A5).

Finally, by minimizing Eq. (B7a) we obtain

〈n̂π〉 = 12JS + 2DS − h̄�

2(6J + D)
N (B8a)

= �BEC − �

�BEC
NS. (B8b)

Thus the number of magnon condensates is characterized as a
function of laser frequency � for � < �BEC. The magnetiza-
tion along the z axis per spin is provided as〈

η
∑

i Ŝz
i

〉
N

= S −
〈 ∑

i n̂i
〉

N
(B9a)

� S − 〈n̂π〉
N

(B9b)

= �

�BEC
S, (B9c)

which corresponds to Eq. (A7c).

APPENDIX C: REFERENCE FRAME

In this Appendix we give the description in the original
stationary reference frame. Note that in Appendices A and B
we describe the system in the rotating frame. We represent the
transformation R := exp(ηi�tSz ) to the rotating frame. The
observables transform as

(S̃x, S̃y) = R−1(Sx, Sy )R

= [cos(�t )Sx + η sin(�t )Sy,−η sin(�t )Sx

+ cos(�t )Sy].

The Heisenberg equation of motion is as

i∂tÕ = i∂t (R
†OR)

= (i∂t R
†)OR + R†(i∂tO)R + R†O(i∂t R)

= (i∂t R
†)RÕ + R†[O,H]R + ÕR†(i∂t R)

= [Õ, H̃ + R†(i∂t R)].

Thus the effective Hamiltonian is given as H̃ + R†(i∂t R) =
H̃ − η�Sz.

The purpose of this Appendix is to give the description in
the original stationary reference frame. First, we represent the
magnon operators in the reference frame as b̂(†), i.e.,

â(†)
k = R̂†b̂(†)

k R̂, (C1)

where R̂ = exp(ηi�t Ŝz
tot ) = exp[i�t (NS − ∑

k â†
kâk)]. The

time evolution is evaluated as

ih̄∂t b̂
(†)
k = ih̄∂t (R̂â(†)

k R̂†)

= (ih̄∂t R̂)â(†)
k R̂† + R̂(ih̄∂t â

(†)
k )R̂† + R̂â(†)

k (ih̄∂t R̂
†)

= −h̄�R̂

(
NS −

∑
k

â†
kâk

)
R̂†R̂â(†)

k R̂† + R̂[â(†)
k , Ĥ]R̂† + h̄�R̂â(†)

k R̂†R̂

(
NS −

∑
k

â†
kâk

)
R̂†

= −h̄�

(
NS −

∑
k

b̂†
kb̂k

)
b̂(†)

k + [b̂(†)
k , R̂ĤR̂†] + h̄�b̂(†)

k

(
NS −

∑
k

b̂†
kb̂k

)

=
[

b̂(†)
k , R̂ĤR̂† + h̄�

(
NS −

∑
k

b̂†
kb̂k

)]

=
[

b̂(†)
k , R̂ĤR̂† − h̄�

∑
k

b̂†
kb̂k

]
. (C2)

Next, we focus on the k = π sector. The effective Hamiltonian in the rotating frame is given as Eq. (B7b);

Ĥeff (k = π) = h̄(� − �BEC)â†
πâπ + h̄�BEC

2NS
â†

πâ†
πâπâπ.

Finally, from Eq. (C2) we obtain the corresponding Hamiltonian in the original stationary reference frame as

R̂Ĥeff (k = π)R̂† − h̄�b̂†
πb̂π = −h̄�BECb̂†

πb̂π + h̄�BEC

2NS
b̂†

πb̂†
πb̂πb̂π (C3a)

=: Ĥk=π. (C3b)
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The equation of motion is given as

ih̄∂t b̂π =
[

b̂π,−h̄�BECb̂†
πb̂π + h̄�BEC

2NS
b̂†

πb̂†
πb̂πb̂π

]

= −h̄�BECb̂π + h̄�BEC

NS
b̂†

πb̂πb̂π, (C4a)

ih̄∂t b̂
†
π =

[
b̂†

π,−h̄�BECb̂†
πb̂π + h̄�BEC

2NS
b̂†

πb̂†
πb̂πb̂π

]

= h̄�BECb̂†
π − h̄�BEC

NS
b̂†

πb̂†
πb̂π. (C4b)

If we approximate b̂†
πb̂π = â†

πâπ � [(�BEC − �)/�BEC]NS,
cf., Eq. (B8b), those reduce to

ih̄∂t b̂π = −h̄�b̂π, ih̄∂t b̂
†
π = h̄�b̂†

π. (C5)

These equations represent the precession with the frequency
� in synchronization with the laser field.

APPENDIX D: OPTOMAGNONIC JOSEPHSON EQUATION

In this Appendix, starting from the Hamiltonian Ĥtot =
ĤL + ĤR + V̂ for the junction of weakly coupled two
magnon BECs (see the main text), we derive the opto-
magnonic Josephson equations in the main text. First, the
Heisenberg equation of motion provides

ih̄
db̂L

dt
= [b̂L, ĤL + V̂ ] (D1a)

= h̄�Lb̂L + 2ULb̂†
Lb̂Lb̂L − Kb̂†

R, (D1b)

ih̄
db̂R

dt
= [b̂R, ĤR + V̂ ] (D1c)

= h̄�Rb̂R + 2URb̂†
Rb̂Rb̂R − Kb̂†

L. (D1d)

Taking the expectation value 〈b̂L(R)〉 =: bL(R) ∈ C, we obtain
the two-state model in the main text.

Next, noting that (dbL(R)/dt )/bL(R) = (d/dt )lnbL(R) and
multiplying the two-state model by 1/bL(R), it is recast into

ih̄
d

dt
lnbL = h̄�L + 2ULNL − K

b†
R

bL
, (D2a)

ih̄
d

dt
lnbR = h̄�R + 2URNR − K

b†
L

bR
. (D2b)

Since bL(t ) = √
NL(t )eiθL (t ) and bR(t ) = √

NR(t )e−iθR (t ),
those are rewritten as

ih̄

(
1

2

1

NL

dNL

dt
+ i

dθL

dt

)
= h̄�L + 2ULNL − K

√
NR

NL
ei(θR−θL ),

(D3a)

ih̄

(
1

2

1

NR

dNR

dt
− i

dθR

dt

)
= h̄�R + 2URNR − K

√
NL

NR
ei(θR−θL ).

(D3b)

Dividing Eq. (D3a) into the real and imaginary parts, we
obtain

−h̄
dθL

dt
= (h̄�L + 2ULNL) − K

√
NR

NL
cos(θR − θL), (D4a)

h̄
dNL

dt
= −2K

√
NLNRsin(θR − θL). (D4b)

In the same way, Eq. (D3b) provides

h̄
dθR

dt
= (h̄�R + 2URNR) − K

√
NL

NR
cos(θR − θL), (D5a)

h̄
dNR

dt
= −2K

√
NLNRsin(θR − θL). (D5b)

Here we remark that the calculation of Eq. (D4b) −
Eq. (D5b) gives

d

dt
(NL − NR) = 0. (D6)

This means that the total spin angular momentum is conserved
and N− := NL − NR is constant. On the other hand, the calcu-
lation of Eq. (D4b) + Eq. (D5b) provides

d

dt
(NL + NR) = −4K

h̄

√
NLNRsin(θR − θL). (D7)

This describes the magnonic Josephson spin current flowing
across the junction interface. Introducing N+(t ) := NL(t ) +
NR(t ) > 0 and defining z(t ) := N+(t )/N−, it satisfies

|z(t )| � 1. (D8)

In this work, without loss of generality, we assume the initial
condition N−(0) > 0 for convenience. Since N− := NL − NR

is constant, this ensures z(t ) � 1 and

z2 = N2
− + 4NLNR

N2−
(D9a)

= 1 + 4
NLNR

N2−
, (D9b)

resulting in
√

NLNR

N−
=

√
z2 − 1

2
. (D10)

Finally, using the relation, from Eq. (D7) we obtain

dz(t )

dt
= −2K

h̄

√
z(t )2 − 1sinθ (t ), (D11)

where θ (t ) := θR(t ) − θL(t ) is the relative phase. The calcu-
lation of Eq. (D4a) + Eq. (D5a) gives

h̄
d

dt
(θR − θL) = (h̄�L + h̄�R) + 2(ULNL + URNR)

− K

(√
NR

NL
+

√
NL

NR

)
cos(θR − θL).

(D12)
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Since√
NR

NL
+

√
NL

NR
= 2√

z2 − 1
z, (D13a)

ULNL + URNR = UL + UR

2
N−z + UL − UR

2
N−, (D13b)

Eq. (D12) is rewritten as

dθ (t )

dt
=

[
(�L + �R) + UL − UR

h̄
N−

]
+

(
UL + UR

h̄
N−

)
z(t )

− 2K

h̄

z(t )√
z(t )2 − 1

cosθ (t ). (D14)

Equations (D11) and (D14) are the optomagnonic Josephson
equation in the main text.

We remark that introducing the normalized time

τ := 2K

h̄
t, (D15)

the optomagnonic Josephson equations [Eqs. (D11) and
(D14)] are recast into the dimensionless form as

dz(τ )

dτ
= −

√
z(τ )2 − 1sinθ (τ ), (D16a)

dθ (τ )

dτ
=

[
h̄(�L + �R)

2K
+ UL − UR

2K
N−

]

+
(UL + UR

2K
N−

)
z(τ ) − z(τ )√

z(τ )2 − 1
cosθ (τ ).

(D16b)

APPENDIX E: TUNNELING AMPLITUDE

In this Appendix we estimate the tunneling amplitude in
spin language. Due to a finite overlap of the wave functions of
the localized spins that reside on the relevant two-dimensional
boundaries of each insulator, there exists in general a finite
exchange interaction between the boundary spins. Let us as-
sume that it is described by the boundary spin Hamiltonian

as V̂s = −JtunŜL · ŜR, where ŜL(R) is the spin operator for
the boundary spins forming the macroscopic coherent state;
the spin quantum number in the left (right) insulator is SL(R)

and Jtun of |Jtun| � J is the weak spin exchange interaction
between the boundary spins. By means of the magnon theory,
it reduces to the tunneling Hamiltonian V̂ in the main text
as V̂s ≈ −Jtun

√
SLSR(b̂Lb̂R + b̂†

Lb̂†
R). Thus we find that the

tunneling amplitude is represented in spin language as

|K| = |Jtun|
√

SLSR. (E1)

Note that sgn(K ) = sgn(Jtun ) = ± in general, see the
main text.

APPENDIX F: AN ANALYSIS ON OPTOMAGNONIC DC
JOSEPHSON EFFECT

In this Appendix under the assumption that magnon
BECs are realized stably, we discuss an attempt to real-
ize an optomagnonic DC Josephson effect. Assuming the
initial condition z(0) � 1 and tuning the parameters as
h̄(�L + �R) + (UL − UR)N− = 0 and UL + UR = 0, the op-
tomagnonic Josephson equation in the main text is recast into

dz(τ )

dτ

∣∣∣∣
τ�1

= −z(τ )sinθ (τ ), (F1a)

dθ (τ )

dτ

∣∣∣∣
τ�1

= −cosθ (τ ), (F1b)

where τ := (2K/h̄)t is the normalized time. Noting that
dθ (τ )/(dτ )|τ�1 = 0 when θ (0) = ±π/2, we find that
the functions, z(τ )|τ�1 = −z(0)τ + z(0) and z(τ )|τ�1 =
z(0)τ + z(0), approximately satisfy the Josephson equation
for θ (0) = π/2 and θ (0) = −π/2, respectively. This implies
that the DC Josephson effect satisfying dz(τ )/(dτ )|τ�1 =
(const.) and dθ (τ )/(dτ )|τ�1 = 0 is induced for τ � 1.

From this, one might suspect that the DC Josephson effect
is realizable. However, it requires the condition UL + UR = 0,
which means that the magnon-magnon interaction is attractive
on one side. Therefore, the magnon BEC state itself is unsta-
ble on one side as long as one employs this setup.
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