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Uncovering band topology via quantized drift in two-dimensional Bloch oscillations
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We propose to measure band topology via quantized drift of Bloch oscillations in a two-dimensional Harper-
Hofstadter lattice subjected to tilted fields in both directions. When the difference between the two tilted fields
is large, Bloch oscillations uniformly sample all momenta, and hence the displacement in each direction tends
to be quantized at multiples of the overall period, regardless of any momentum of initial state. The quantized
displacement is related to a reduced Chern number defined as a line integral of Berry curvature in each direction,
providing an almost perfect measurement of Chern number. Our scheme can apply to detecting Chern number
and topological phase transitions not only for the energy-separable band, but also for energy-inseparable bands
which cannot be achieved by conventional Thouless pumping or integer quantum Hall effect.

DOI: 10.1103/PhysRevB.104.104314

I. INTRODUCTION

Topological band theory [1] provides a general framework
for exploring a variety of topological states and phenomena
such as integer quantum Hall effects [2,3], topological insu-
lators [4–8], and Thouless pumping [9–12]. A key notion is
topological invariant (e.g., Chern number and winding num-
ber) which characterizes the robust global property of Bloch
states of certain energy bands. Topological phase transition
happens when a topological invariant changes. Extending the
topological states from solid-state materials to ultracold atoms
in optical lattices have attracted tremendous interest in re-
cent years [13–16]. Ultracold atomic system, as an excellent
platform for quantum simulations, provides unprecedented
opportunities for studying topological states, in particular,
uncovering band topology.

Many schemes were proposed to explore band topology
and some of them have been realized in experiments of
ultracold atoms. In momentum space, the bulk topological
invariants can be determined by tomography of Bloch states
[17,18], spin textures [19,20], linking numbers [21,22], band-
inversion surfaces [23–25] in quench dynamics, and dynamic
winding number [26] based on time-averaged spin textures.
However, these dynamical methods need to measure different
observables involving all momentum states at different times,
which turn out to be redundant and inefficient. In real space,
winding number can be measured by a mean chiral displace-
ment in quantum walks [27–29], and Chern number can be
extracted by a mean displacement in Thouless pumping or
transverse velocity in the integer quantum Hall effect [10,11].
However, these methods in real space require that the initial
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state uniformly occupies all the momentum states of a band,
which in general is a challenge. It becomes a dilemma about
either suffering labored measurements or overcoming diffi-
culty in preparing an input state.

The above dilemma may be solved by utilizing Bloch oscil-
lations under external tilted fields, which have been proved to
be a powerful method for exacting various geometric features
of Bloch bands, including Berry phase [30,31], Berry cur-
vature [15,32,33], and Chern number [34–37]. In particular,
Berry curvature was proposed to be mapped from semiclas-
sical dynamics by using two-dimensional Bloch oscillations
(i.e., applying external forces in two dimensions) [32]. How-
ever, to further extract Chern number, this protocol needs
to measure the displacement difference under positive and
negative forces to cancel the contribution of group velocity
from energy dispersion, and then to average the displace-
ment difference under different initial momenta. Recently we
have shown how to directly extract Chern number via a one-
dimensional quantized topological pumping assisted by Bloch
oscillations that does not require uniform band occupation
[37]. This is because Bloch oscillations uniformly sample
all the momenta. It is highly nontrivial to directly and effi-
ciently measure band topology via Bloch oscillations in two
dimensions.

In this paper we reveal a quantized drift of Bloch os-
cillations as a direct measurement of Chern number in a
two-dimensional Harper-Hofstadter-like lattice subjected to
external fields in both x and y directions. Such a scheme
is readily accessible with typical experimental settings of
ultracold atomic gases in optical lattices [13,34]. We give
analytical expressions for the mean displacement in both x and
y directions via the adiabatic transport theorem. As the ratio
between external fields in x and y directions approaches to 0
or ∞, we find that the mean displacement in each direction
is almost perfectly quantized and independent of the initial
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momentum. The quantized displacement in each direction is
given by a time integral of Berry curvature dubbed as reduced
Chern number (RCN), which is directly related to the con-
ventional Chern number. According to the quantized drift in
the overall period of Bloch oscillations, one can successfully
detect topological phase transitions and Chern number for
an energy-separable band. With the increase of ratio of tilts
in two directions, the accuracy of Chern number near the
phase transition point will be gradually improved. Impor-
tantly, we show a direct measurement of the Chern number
for an energy-inseparable band via RCN, which can never be
achieved by the conventional Hall-response scheme with tilt in
only one direction [34]. Compared with Ref. [32], our method
has several advantages listed as follows. (i) Our protocol auto-
matically cancels the group velocity from energy dispersion,
and directly gives the Chern number via displacement in a
single wave packet dynamics, in which there is no need to
inverse the force to eliminate the contribution of displacement
from energy dispersion. (ii) We also reveal that the quantized
drift in Bloch oscillations is independent of the momentum
of the initial Gaussian wave packet, reducing difficulty of the
initial state preparation and many wave packet dynamics with
different initial momenta. (iii) We give a direct measurement
of superband topology which has never been discussed in
Ref. [32].

The rest of the paper is organized as follows. In Sec. II we
give a physical description of the model. In Sec. III we give
the definition of RCN and establish the relation between RCN
and the quantized displacement in two-dimensional Bloch
oscillations. In Sec. IV we show how to use Bloch oscillations
to extract Chern numbers for an energy-separable band in
Sec. IV A and for an energy-inseparable band in Sec. IV B.
Finally, we give a conclusion and discussion in Sec. V.

II. TILTED HARPER-HOFSTADTER LATTICE

We consider a single particle in a two-dimensional tilted
superlattice in the presence of a uniform flux per plaquette,
see Fig. 1. The corresponding Hamiltonian consists of three
parts,

H = H1 + H2 + H3, (1)

with

H1 = −
∑
m,n

τxc†
m+1,ncm,n + τyei2πβmc†

m,n+1cm,n + H.c.,

H2 = −
∑
m,n

δ

2
[(−1)m + (−1)n]c†

m,ncm,n,

H3 = −
∑
m,n

(Fxm + Fyn)c†
m,ncm,n. (2)

Here H1 is the conventional Harper-Hofstadter Hamiltonian
[38–41], and the Peierls phase accounts for the presence of a
flux φ = 2πβ per plaquette. c†

m,n (cm,n) creates (annihilates) a
particle at site (m, n), and τx and τy are the hopping strengths
along x and y directions. H2 describes a staggered detuning δ

between sublattices in two directions, which can be used to
induce topological phase transition [34]. When τx = τy = τ ,
|δ| � 2τ and |δ| < 2τ correspond to topologically trivial and

FIG. 1. Schematic diagram of the Hofstadter-like optical lat-
tice with additional tilts along x and y directions. τx(y) and Fx(y)

are the hopping strength and tilted strength along x(y) direction,
(A, B,C, D) denote the sublattices in a unit cell with on-site energies
(−δ, 0, 0, +δ), and φ is the accumulated phase per plaquette due to
the gauge field.

nontrival phases, respectively. H3 represents the tilts of the
square lattice, where Fx and Fy are the tilted strengths along
x and y directions, which may be realized by applying a
magnetic field gradient or subjecting the superlattice along the
gravity with an angle. Because the tilted strengths are very
weak compared to the coupling strengths, H3 can be treated as
a perturbation [42], which means that H3 does not destroy the
topological properties of the system.

The time evolution of state |ψ (t )〉 can be obtained
by solving the Schrödinger equation ih̄ ∂

∂t |ψ (t )〉 = H |ψ (t )〉.
Hereafter we set h̄ = 1 for simplicity. By making a unitary
transformation |ψ̃ (t )〉 = exp(iH3t )|ψ (t )〉, we can equiva-
lently deal with the problem in a rotational framework, and
|ψ̃ (t )〉 is governed by

i
∂

∂t
|ψ̃ (t )〉 = Hrot(t )|ψ̃ (t )〉, (3)

with the time-dependent Hamiltonian Hrot(t ) = eiH3t (H1 +
H2)e−iH3t , which is explicitly given by

Hrot(t ) = − δ

2

∑
m,n

[(−1)m + (−1)n]c†
m,ncm,n

−
∑
m,n

τxeiFxt c†
m+1,ncm,n + τyeiFyt ei2πβmc†

m,n+1cm,n

+ H.c. (4)

If β = p/q, where p and q are co-prime numbers,
the Hamiltonian has magnetic translational symmetry. In
the whole paper we consider β = 1/4 without loss of
generality. Under the periodic boundary condition, one
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can obtain the Hamiltonian in quasimomentum space
Hrot(t ) = ∑

kx,ky
	

†
kx,ky

h(kx, ky, t )	kx,ky with

h = 2

⎛
⎜⎜⎝

− δ
2 −τy cos κy −τx cos κx 0

−τy cos κy 0 0 τx sin κx

−τx cos κx 0 0 iτy sin κy

0 τx sin κx −iτy sin κy
δ
2

⎞
⎟⎟⎠.

(5)

Here 	k = (ck,A, ck,B, ck,C, ck,D)T , where ck,α destroys a
plane wave with quasimomentum k ≡ (kx, ky ) at α sub-
lattice, κx(y) = kx(y) − Fx(y)t , and kx(y) ∈ [−π/2, π/2] (see
Appendix A for details). We can numerically obtain the
eigenvalues El (kx, ky, t ) and eigenstates |μl (kx, ky, t )〉 by
diagonalizing the Hamiltonian h(kx, ky, t )|μl (kx, ky, t )〉 =
El (kx, ky, t )|μl (kx, ky, t )〉, where l is the band index.

III. REDUCED CHERN NUMBER

Consider that the initial state is prepared as a Bloch state
with quasimomentum (kx, ky) in the lth band. If the tilted
strengths are so weak, then the particle adiabatically follows
the trajectory [κx(t ), κy(t )] in the lth band. According to the
theorem of adiabatic transport [43,44], the group velocity of
the particle along the x(y) direction comes from the energy
dispersion and the Berry curvature,

vl,x(y)(kx, ky, t ) = ∂El (kx, ky, t )

∂kx(y)
+ Fl,x(y)(kx, ky, t ), (6)

with the Berry curvature given by

Fl,x(y) = −2 Im
∑
l ′ �=l

〈ul |∂kx(y) h|ul ′ 〉〈ul ′ |∂t h|ul〉
(El − El ′ )2 . (7)

Because the energy is a (quasi-)periodic function of time,
if the band topology is completely trivial, the first term of
group velocity will periodically oscillate and hence induce
the conventional Bloch oscillations in both directions. In the
following subsection we will show how the nontrivial Berry
curvature induces quantized drift in the Bloch oscillations.

A. Rational case

We first consider the case that the tilts in two directions
are nonzero and commensurate Fx/Fy = ηx/ηy, where ηx and
ηy are co-prime integers. If Fx = Fy, the period of Bloch
oscillations in x direction Tx = 2π/Fx is the same as that
in y direction Ty = 2π/Fy. However, if Fx �= Fy, Tx and Ty

may be not the period in their own directions. The coexis-
tence of the tilts in two directions leads to an overall period
To = ηxTx = ηyTy.

For a Bloch state with quasimomentum (kx, ky), the mean
displacement in x and y directions (
X,
Y ) at time t can be
given by the semiclassical expressions


X (kx, ky, t ) =
∫ t

0
vl,x(kx, ky, t ′)dt ′,


Y (kx, ky, t ) =
∫ t

0
vl,y(kx, ky, t ′)dt ′. (8)

FIG. 2. Reduced Chern number of the first band as a func-
tion of (kx, ky ). (a) C1,x (kx, ky ) and (b) C1,y(kx, ky ) for tilts in both
x and y directions (Fx/Fy = ηx/ηy = 10, Fx = 0.04, Fy = 0.004).
(c) C1,x (kx, ky ) and (d) C1,y(kx, ky ) for tilts in only x direction (Fx =
0.0402, Fy = 0). The other parameters are chosen as τx = τy = 0.2
and δ = 0.

In the commensurate case, because the energy bands are pe-
riodic functions of time, the integral of dispersion velocity
is exactly zero in the overall period. Due to the nontrivial
Berry curvature, the anomalous group velocity thus plays a
determinant role in the mean displacement. We define the time
integral of Berry curvature over the overall period as

Cl,x(y)(kx, ky) = 1

q

∫ To

0
Fl,x(y)(kx, ky, t )dt . (9)

When ηx/ηy approaches 0 or ∞, Cl,x (kx, ky) and Cl,y(kx, ky),
respectively, tend to be integer numbers C0

l,x and C0
l,y, inde-

pendent of the initial momentum value of a Bloch state (see
Appendix C for details). Interestingly, the integer numbers
C0

l,x and C0
l,y are related to the conventional Chern number of

the lth band (see Appendix B for details),

Cl = C0
l,x/ηy = −C0

l,y/ηx. (10)

For this reason we name the line integral of Berry curvature
Cl,x(y) as reduced Chern number. Then the displacement in an
overall period tends to be quantized values


X (kx, ky, To) = qCl,x (kx, ky),


Y (kx, ky, To) = qCl,y(kx, ky ). (11)

Combining Eqs. (10) and (11), we find that the mean displace-
ment in x and y directions will satisfy

lim
ηx (ηy )→∞

[
X (To)ηx + 
Y (To)ηy] → 0. (12)

To verify the above analytical results, we respectively show
C1,x and C1,y as functions of (kx, ky) in Figs. 2(a) and 2(b), with
the parameters Fx/Fy = ηx/ηy = 10, Fx = 0.04, Fy = 0.004,
τx = τy = 0.2, and δ = 0. When the tilts in both x and y
directions are present and their ratio is small or large enough,
both C1,x and C1,y are extremely flat for all momenta and
close to quantized values C0

1,x = 1 and C0
1,y = −10, respec-

tively. Considering that the Chern number C1 = 1, it is easy
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to find that the formula (10) is satisfied. The fact that C1,x/ηy

and C1,y/ηx are almost independent of the initial momentum
means that one can use a single momentum state to detect
Chern number. This is strikingly different from the case that a
tilt is present in only x direction, see Figs. 2(c) and 2(d), where
Fx = 0.0402, Fy = 0 and the overall period becomes To = Tx.

Fx and Fy have the same norm
√

F 2
x + F 2

y as that in Figs. 2(a)
and 2(b). C1,x is exactly zero, while C1,y maintains the same
along kx direction for a fixed ky but periodically varies along
the ky direction. This is because the Berry curvature F1,x = 0
at any time and F1,y is a periodic function of ky.

Obviously, in the case of tilt in a single direction, we
cannot use an arbitrary single momentum state to detect Chern
number. However, the average of C1,x(kx, ky) over ky is still
quantized, i.e., 1

π

∫ π/2
−π/2 C1,y(kx, ky)dky = 1, which is consis-

tent with the first band Chern number C1 = 1. This means
that if the initial state is an equal superposition of momentum
states involving all ky, the Chern number of the band can also
be detected by mean displacement for the system with the tilt
in a single direction. It is worth noting that the experimental
scheme of detecting Chern numbers of Hofstadter bands for
the tilt in a single direction has been realized [34], where it
requires that the topological bands are very flat. The essential
reason is that the flat band makes it easier to uniformly fill the
band.

In contrast to previous schemes with tilt in a single di-
rection, according to the definition of RCN, our proposed
scheme with tilts in two directions has greater advantages for
experimental detection of Chern number. First, this scheme
does not require a flat topological band. Second, this scheme
also does not require the initial states being equal superpo-
sition of all momentum states, Therefore, RCN may provide
an experimentally friendly way for detecting the topological
phase transition. To this end, we first show the topological
phase diagram in the parameter plane (τy, δ) by using con-
ventional Chern number, see Fig. 3(a). The Chern numbers of
the first band are C1 = 1 and 0 in the blue and white regions,
where the green dashed-dot line corresponds to the case of
hopping constant τx = τy and the phase transition point is
δ/τx = 2. Along the green dashed-dot line, we give the RCN
C0

1,x/ηy as a function of δ for different ratios of tilts ηx/ηy

in Fig. 3(b). The RCNs are consistent with the first band
Chern number C1 away from the phase transition point. As
the ratio of tilts increases, the change of RCN around δ/τx = 2
becomes sharper, marking the position of the transition point.
Therefore, the RCN can apply to detecting the topological
phase transition by choosing ηx/ηy → ∞, or equivalently
ηx/ηy → 0.

B. Irrational case

When the tilts in two directions are incommensurate, both
the energy spectrum and Berry curvature are quasiperiodic
function of time, and hence there is no such an overall
period as the rational case. However, we can use a sequence
of rational ratios {ηn

x/η
n
y } to approach the irrational ratio

Fx/Fy, and treat the irrational case in a similar way as the
rational case. When ηn

y tends to infinite integer, we can reach
the RCN and the relation in Eq. (11) still holds. Taking

FIG. 3. (a) Topological phase diagram. (b) RCN as a function
of δ for different commensurate ratios ηx/ηy (fixed

√
F 2

x + F 2
y =

0.0402 and kx = ky = 0), the other parameters are chosen as τx =
τy = 0.2, corresponding to the green dashed line in (a).

Fx/Fy = (
√

5 + 1)/2 as an example, we can use a continued
fraction representation for the golden ratio, which is given
by {ηn

x/η
n
y } = (1/1, 2/1, 3/2, 5/3, 8/5, . . . , Fj+1/Fj, . . . )

with the Fibonacci sequence Fj . We show how the derivation
between RCN and the conventional Chern number changes
with the increase of ηn

y in Fig. 4. As expected, the derivation
quickly decays as ηn

y increases, indicating that the irrational
case can be practically treated as the rational case with
large ηn

y .

FIG. 4. Derivation between C1,x/η
n
y and C1 as ηn

y increases for the

irrational Fx/Fy = (
√

5 + 1)/2. The other parameters are chosen as
Fy = 0.004, τx = τy = 0.2, δ = 0, and kx = ky = 0.
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IV. TWO-DIMENSIONAL QUANTIZED-DRIFT
BLOCH OSCILLATIONS

In the previous section we have shown how the Chern
number of a given band is related to the quantized drift in the
Bloch oscillations based on semiclassical analysis. To verify
such relation, in this section we study the quantum dynamics
of a Gaussian wave packet centered in (m0, n0) with arbitrary
mean quasimomentum (kx0 , ky0 ) in the lth band. The initial
wave function at the site (m, n) hence is given by

ψm,n(0) = ζe− (m−m0 )2+(n−n0 )2

4D2 μ̃l
m,n(kx0 , ky0 )ei(kx0 m+ky0 n),

where ζ is a normalization factor, D is the initial wave
packet width, and μ̃l

m,n(kx0 , ky0 ) is the amplitude of the real-
space representation of the Bloch state |μl (kx0 , ky0 , 0)〉. Such
type of wave packet can be prepared by applying an ad-
ditional harmonic trap [45]. In the following calculations,
the time evolution of the wave packet is given by |ψ (t )〉 =
exp(−iHt )|ψ (0)〉 according to the Hamiltonian Eq. (1). One
may alternatively calculate the wave packet dynamics in
the rotating framework with a time-dependent Hamiltonian,
which gives the same density distribution but increases the
calculation resources due to the update of the Hamiltonian
at each time step. We then examine the density distribution
profile |ψm,n(t )|2 of the time-evolving wave packet ψm,n(t ),
and the two components of mean displacement in x and y
directions:


X (t ) = X (t ) − X (0), 
Y (t ) = Y (t ) − Y (0), (13)

where X (t ) = ∑
m,n m|ψm,n(t )|2 and Y (t ) =∑

m,n n|ψm,n(t )|2. The dynamical results are shown in
Sec. IV A for the energy-separable band and in Sec. IV B for
the energy-inseparable band.

A. Direct measurement of separable-band topology

When a particle in a separable band is driven by tilted
potentials, the adiabatic condition can be easily satisfied if
the tilted potentials are weak enough. The displacement can
be predicted by the semiclassical formula based on the the-
orem of adiabatic transport. We first consider the quantum
dynamics of a Gaussian wave packet in the first band which is
topologically nontrivial. The parameters are set as τx = τy =
0.2, D = 6, and δ = 0, which correspond to the first band
with Chern number C1 = 1. Fx = 0.04, Fy = 0.004 are chosen
according to the method proposed above, so that the large
ratio ηx/ηy = 10 supports well quantization of displacement
and meanwhile the small Fx and Fy can ensure well adiabatic
dynamics. Figure 5 shows the density distributions of initial
state (t = 0) and final state (t = To) in real space, the time
evolution of wave function and the drift of the wave packet
center as a function of time along x and y directions.

First, the wave packet always maintains well spatial lo-
calization in an overall period, see Fig. 5(a). By tracing its
dynamical evolution along x and y directions, the wave packet
is shifted rightward in x direction and leftward in y direction,
see Figs. 5(b) and 5(c). For clarity, the drifts 
X and 
Y
versus time t are given in Fig. 5(d). We can see that the results
obtained by the semiclassical expressions of Eq. (8) agree well
with the ones directly obtained by wave packet dynamical

FIG. 5. Wave packet dynamics in topologically nontrivial phase.
(a) Density distribution of initial states (t = 0) and final states (t =
To) in real space. (b) and (c) The density evolution project to x and
y directions, respectively. (d) Drift 
X and 
Y versus time t . The
green and red solid lines are obtained from quantum dynamics, and
the black dashed line is obtained via Eq. (8). The other parameters are
chosen as τx = τy = 0.2, D = 6, ηx/ηy = 10, Fx = 0.04, Fy = 0.004,
δ = 0, and kx0 = ky0 = 0.

calculation. Especially, at t = To, we can obtain 
X (To) = 4
and 
Y (To) = −40, and the RCNs C0

1,x/ηy = −C0
1,y/ηx = 1

by combining Eqs. (10) and (11), which are consistent with
the first band Chern number C1 = 1. By contrast, for the
topologically trivial phase, the wave packets of the initial state
at (t = 0) and the final state at (t = To) in real space also
maintain spatial localization, and the density distributions of
the initial and final states are overlapped in space. It means
that the final state comes back to the position of the initial
state, see Fig. 6(a). The Bloch oscillations of the wave packet
in x and y directions have different periods and amplitudes,
as shown in Figs. 6(b) and 6(c). Indeed, at t = To, one can
obtain 
X (To) = 0 and 
Y (To) = 0, and the RCNs C0

1,x/ηy =
−C0

1,y/ηx = 0 are consistent with the first band Chern number
C1 = 0, see Fig. 6(d). To verify the mean quasimomentum of
an initial Gaussian wave packet can be arbitrarily chosen, we
also give the drift 
X and 
Y versus time t for different
(kx0 , ky0 ) in Appendix D, and the results are consistent with
the theoretical prediction. Therefore, we can directly measure
band topology via the quantized drift of Bloch oscillations.

B. Direct measurement of superband topology

In this subsection we will show the possibility of measur-
ing band topology for a composite superband which consists
of two bands touching at several degenerate points. Since
the initial state is mostly localized at momentum (kx0 , ky0 )
of the lth band, we can better understand the dynamics in
the momentum space. According to Eq. (5), in the four-
band systems the momentum (κx, κy) = (kx0 − Fxt, ky0 − Fyt )
is linearly driven by a constant force (κ̇x, κ̇y) = −(Fx, Fy )
[46]. If the constant force is large enough, Landau-Zener tran-
sitions will always happen especially near anticrossing points
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FIG. 6. Wave packet dynamics in topologically trivial phase.
(a) Density distribution of initial states (t = 0) and final states (t =
To) in real space. (b) and (c) The density evolution projected to x and
y directions, respectively. (d) Drift 
X and 
Y versus time t . The
green and red solid lines are obtained from quantum dynamics, and
the black dashed line is obtained via Eq. (8). The other parameters are
chosen as τx = τy = 0.2, D = 6, ηx/ηy = 10, Fx = 0.04, Fy = 0.004,
δ = 4τx , and kx0 = ky0 = 0.

of energy bands. We characterize the Landau-Zener transition
by the transition probability from lth to l ′th bands,

Pl,l ′ (t ) = |〈ψ (t )|μl ′ (kx, ky, t )〉|2, (14)

where l, l ′ = 1, 2, 3, 4 and |μl ′ (kx, ky, t )〉 is the l ′th eigen-
state of h(kx, ky, t ). To suppress Landau-Zener transition,
the system needs to take a shorter time to travel across
the anticrossing point than the Zener tunneling time Tlz =√

ξ max(1,
√

ξ )/
, where ξ = 
2/(4
√

F 2
x + F 2

y ) is the adi-
abaticity parameter and 
 is the minimal energy gap [47,48].
Therefore, for an isolated band, due to a finite energy gap

 �= 0, one can always find proper weak force (Fx, Fy) that
makes the system evolve adiabatically. For the composite su-
perband, it seems impossible to satisfy the adiabatic condition
for individual bands because there exist gap closing points.
Indeed, it is true for the conventional scheme with a tilted field
in only one direction such as x direction, in which the initial
state needs to uniformly occupy the band involving all ky.
Consequently, Landau-Zener transition is unavoidable when
sweeping the gap closing points under the tilted force in x
direction. However, based on our scheme with tilts in both
x and y directions, there is no requirement of uniform band
occupation. The trajectory of (κx, κy) may avoid the degener-
ated points in two-dimensional Brillouin zone by selecting the
appropriate initial momentum (kx0 , ky0 ), and hence it is possi-
ble to measure the Chern number for an energy-inseparable
superband via the RCN.

To be clear, we consider such a system with superband by
choosing the parameters as τx = τy = 0.2 and δ = 0, whose
energy bands are shown in Fig. 7(a). We find that the second
and third bands form a composite superband with energy
degeneracies at some momenta. Such superband is well sep-
arated from the first and fourth energy bands. The Chern

FIG. 7. (a) Energy spectrum for the Harper-Hofstadter Hamil-
tonian. (b) Eigenvalues change with the trajectory (κx (t ), κy(t )).
(c) Transition probability for Landau-Zener tunneling as a function
of evolution time t . (d) Drift 
X and 
Y versus time t . The other pa-
rameters are chosen as τx = τy = 0.2, ηx/ηy = 4, Fx = 0.002, Fy =
0.0005, δ = 0, and kx0 = ky0 = π/4.

numbers of individual bands in the superband are not well
defined due to the difficulty in separating the two bands at the
degenerated points. A common Chern number has been used
to describe the overall topology of the composite superband
[49],

Cs = 1

2π i

∫
BZ

dkydkxTr[F (kx, ky)]. (15)

Here [F (kx, ky)] = ∂kx Aky − ∂ky Akx + i[Akx , Aky ] is the non-
Abelian Berry curvature with Berry connection elements
[Aμ]m,n = 〈ψm|∇μ|ψn〉, where m, n are the band indices in the
superband. When the superband only includes a single band,
because the commutator vanishes, the non-Abelian general-
ization of Chern number is reduced to the conventional one
[Eq. (B3)]. Even when the superband contains more gapless
bands with finite degenerated points, if we carefully exclude
the Berry curvature of the degenerated points, the Chern
number receives contribution only from the Abelian part of
Berry curvatures [50]. Alternatively, the Chern number of the
superband is taken as if the sum of effective “Chern numbers”
(excluding the Berry curvature of degenerated points) of the
second and third bands. Equation (B3) gives the same value of
C = −1 for the second and third bands excluding the degen-
erated points. The Chern numbers C1,Cs,C4 corresponding
to the first band, superband, and the fourth band take the
values {1,−2, 1}, respectively. We should further emphasize
that the Chern number of the superband Cs cannot be directly
measured by conventional Thouless pumping [10] or using
the tilt in only one direction [34], where all momenta are
equally involved. This is because these methods will lead to
nonadiabatic transitions near the degenerated points, and then
hinder the measurement of topological invariants.

However, the RCN only depends on the trajectory of
(κx(t ), κy(t )) in two-dimensional Brillouin zone. By choosing
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appropriate initial momentum (kx0 , ky0 ) and tilted fields, one
can ensure that energy gaps of the four energy bands remain
open along the trajectory (κx(t ), κy(t )), where the superband
can be decomposed to two separable energy bands (i.e., the
second and third bands), as shown in Fig. 7(b). Without
loss of generality, we show how to measure RCN of the
second band by preparing initial state in the second band,
|ψ (t0)〉 = |μ2(kx0 , ky0 , 0)〉, with initial momentum (kx0 , ky0 ) =
(π/4, π/4). To ensure that the system is adiabatically evolv-
ing, we choose weak tilted fields as Fx = 0.002 and Fy =
0.0005. Figure 7(c) shows the transition probability from
the second band to the lth band, P2,l , along the trajectory
(κx(t ), κy(t )). It is clear that the transition probability P2,2 is
always equal to one, which means that the system is adia-
batically following the eigenstates in the second band. Then,
the drifts 
X and 
Y versus time t are given in Fig. 7(d).
At t = To we can obtain 
X (To) = −4,
Y (To) = 16, and
the RCN C0

2,x/ηy = −C0
2,y/ηx = −1 by using Eq. (11). Sim-

ilarly, by choosing the initial state |ψ (t0)〉 = |μ3(kx0 , ky0 , 0)〉,
we also can obtain the RCN C0

3,x/ηy = −C0
3,y/ηx = −1, as a

direct measurement of the effect Chern number excluding the
degenerated points. Then the Chern number of the superband
(Cs = −2) is consistent with the summation of reduced Chern
numbers of the second and third bands, (C0

2,x + C0
3,x )/ηy =

−2. Therefore, we provide a direct method to measure the
Chern number of the superband via the quantized drift in
two-dimensional Bloch oscillations.

V. CONCLUSION AND DISCUSSION

In summary, we reveal an almost perfectly quantized drift
of two-dimensional Bloch oscillations in a topological Chern
insulator. The quantized drift is related to a reduced Chern
number defined by line integral of Berry curvature in each
direction, as an effective measurement of the conventional
Chern number. Our scheme can apply to extracting Chern
number of both energy-separable and energy-inseparable
bands. Compared with schemes of Thouless pumping or in-
teger quantum Hall effect, our scheme does not require equal
superposition of states involving all momenta, but any par-
ticular momentum state in a band can be chosen as the initial
state. Meanwhile, the introduction of tilts also well suppresses
the diffusion of Gaussian wave packets and improves the
measurement accuracy of the Chern number near the phase
transition point.

In this work we show how to use Bloch oscillations to
extract Chern number of a superband even when there exist
several degenerate points. This is because the Bloch oscilla-
tions in the momentum space avoid the degenerate points and
the non-Abelian part of the Berry curvature takes no effect. If
the superband contains completely degenerated bands, there
is no way to avoid the degeneracy and non-Abelian Berry
curvature must play an important role in the wave packet
dynamics. It is unclear how to apply our method to measure
topological invariants such as second Chern number of a
completely degenerated superband [50,51]. Inversely, it is also
very interesting to explore how to tail the Bloch oscillations
with such nontrivial topological superband.

Recently we became aware of two new works studying the
center-of-mass drift in a fractional Chern insulator subjected

to a tilted field in only one direction [40,41]. However, the
drifts are not quite well quantized, which may come from
the fluctuation of Berry curvature in different center-of-mass
momenta. If the tilted fields are introduced along both di-
rections, the center-of-mass momentum may be sampled in a
more uniform way and the fluctuation may be wiped away. We
believe our method can be extended to interacting topological
systems [52] and could potentially provide more accuracy
measurement of fractional topological states.
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APPENDIX A: THE HAMILTONIAN
IN MOMENTUM SPACE

According to the Hamiltonian (4), the eigenvalue equation
can be written as

−E |m, n〉 = τxeiFxt |m + 1, n〉 + τyeiFyt ei2πβm|m, n + 1〉
+ τxe−iFxt |m − 1, n〉 + τye−iFyt e−i2πβm|m, n − 1〉

+ δ

2
[(−1)m + (−1)n]|m, n〉. (A1)

Here we consider β = 1/4 which describes hopping on the
square lattice in the presence of a magnetic flux 2πβ = π/2
per plaquette. To solve this equation, we make the following
ansatz for the wave function:

|m, n〉 = eikxmeikyn

⎧⎪⎪⎨
⎪⎪⎩

ψA, for m, n odd,
ψBeimπ/2 for m even, n odd,
ψC for m odd, n even,
ψDeimπ/2 for m, n even.

Here kx, ky are defined within the first magnetic Brillouin
zone. Inserting this ansatz into the Schrödinger equation we
obtain the following 4 × 4 eigenvalue equation:

h(kx, ky, t )

⎛
⎜⎝

ψA

ψB

ψC

ψD

⎞
⎟⎠ = E (kx, ky, t )

⎛
⎜⎝

ψA

ψB

ψC

ψD

⎞
⎟⎠, (A2)

with

h = 2

⎛
⎜⎜⎝

− δ
2 −τy cos κy −τx cos κx 0

−τy cos κy 0 0 τx sin κx

−τx cos κx 0 0 iτy sin κy

0 τx sin κx −iτy sin κy
δ
2

⎞
⎟⎟⎠,

(A3)
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where κx = kx − Fxt , κy = ky − Fyt , kx ∈ [−π/2, π/2], and
ky ∈ [−π/2, π/2].

APPENDIX B: RELATION BETWEEN REDUCED CHERN
NUMBER AND CHERN NUMBER

When the tilt is absent, the model (1) is reduced
to the Harper-Hofstadter-like topological model H̃ = H1 +
H2, whose Hamiltonian in momentum space is given by
h̃(kx, ky) = h(kx, ky, 0). Compared to the case with tilts, the
corresponding bands and eigenstates can be obtained by re-
placing κx by kx and κy by ky. The conventional Chern number
can be defined by the integral of Berry curvature in the two-
dimensional Brillouin zone as

Cl = 1

2π

∫ π/2

−π/2
dkx

∫ π/2

−π/2
dkyFl (kx, ky), (B1)

where

Fl (kx, ky) = −2 Im
∑
l ′ �=l

〈ul |∂kx h̃|ul ′ 〉〈ul ′ |∂ky h̃|ul〉
(El − El ′ )2

. (B2)

The Chern number can be further written as

Cl = 1

2π

∫ π/2

−π/2
dkx

∫ π/2

−π/2
dκyFl (kx, κy)

= 1

4π

∫ π/2

−π/2
dkx

∫ Ty

0
Fl,x(kx, ky, t )dt

= 1

ηyπ

∫ π/2

−π/2
dkxCl,x(kx, ky). (B3)

When ηx/ηy approaches 0 or ∞, Cl,x(kx, ky) tends to be
an integer C0

l,x, almost independent of both kx and ky (see
Appendix C for details). Hence we can get rid of the average
over kx in the above equation and yield Cl = C0

l,x/ηy. In the
similar way, the Chern number can be also written as

Cl = − 1

ηxπ

∫ π/2

−π/2
dkyCl,y(kx, ky) = −C0

l,y/ηx. (B4)

As a consequence, the Chern number is related to C0
l,x and C0

l,y
via

Cl = C0
l,x/ηy = −C0

l,y/ηx. (B5)

Indeed, Cl,x and Cl,y defined by a one-dimensional integral can
be effectively regarded as a reduced expression for the Chern
number Cl , which we call reduced Chern number (RCN) [37].

APPENDIX C: CONVERGENCE OF REDUCED CHERN
NUMBER WHEN Fx/Fy = ηx/ηy APPROACHES 0 OR ∞
When Fx/Fy = ηx/ηy approaches 0 or ∞, Cl,x(kx, ky) and

Cl,y(kx, ky), respectively, tend to be integer numbers C0
l,x and

C0
l,y, independent of the initial momentum value of a Bloch

state. It is mainly because the Bloch oscillations sample the
Berry curvature in an uniform way, and the sampling becomes
more uniform when ηx/ηy tends to be 0 or ∞. Without loss of
generality, we will explain why Cl,x(kx, ky) are convergent to
a constant RCN in the limit of ηx/ηy → ∞.

We start from the property of Berry curvatures, that is,
Fl (kx, ky, t ) is a periodic function of quasimomentum and

time. Thus, the integral of Berry curvature over an overall
period of time is independent of the initial time,

Cl,x(kx, ky) = 1

q

∫ To

0
Fl,x(kx, ky, t )dt

= 1

q

∫ To

0
Fl,x(y)(kx, ky, t − 
kx/Fx )dt . (C1)

We know that the quasimomentum (κx, κy) change with time
as κx(y) = kx(y) − Fx(y)t . When we shift the time to t − 
kx/Fx,
it is equivalent to shift kx to kx + 
kx and ky to ky + 
ky while
maintain the time as t . Equation (C1) can be further written as

1

q

∫ To

0
Fl,x(y)(kx, ky, t − 
kx/Fx )dt

= 1

q

∫ To

0
Fl,x(y)(kx + 
kx, ky + Fy/Fx
kx, t )dt . (C2)

It means that

Cl,x(kx, ky) = Cl,x(kx + 
kx, ky + Fy/Fx
kx ). (C3)

When Fx/Fy = ηx/ηy → ∞, for arbitrary 
kx, we can make
an approximation,

Cl,x(kx, ky) = Cl,x(kx + 
kx, ky + Fy/Fx
kx )

≈ Cl,x(kx + 
kx, ky). (C4)

Making 
kx = Fx/Fy
ky, one can have

Cl,x(kx, ky) ≈ Cl,x(kx + Fx/Fy
ky, ky). (C5)

Similarly, Eq. (C1) also can be written as

1

q

∫ To

0
Fl,x(y)(kx, ky, t − 
ky/Fy)dt

= 1

q

∫ To

0
Fl,x(y)(kx + Fx/Fy
ky, ky + 
ky, t )dt . (C6)

It means that

Cl,x(kx, ky) = C(kx + Fx/Fy
ky, ky + 
ky). (C7)

Combining Eqs. (C5) and (C7), one can immediately obtain

Cl,x(k′
x, ky) ≈ Cl,x(k′

x, ky + 
ky). (C8)

for any arbitrary 
ky. From Eqs. (C4) and (C7) it is found that
Cl,x(kx, ky) are almost the same and denoted as C0

l,x, indepen-
dent of both kx and ky in the limit of ηx/ηy → ∞. The Chern
number is related to the RCN as

Cl = 1

ηyπ

∫ π/2

−π/2
dkxCl,x(kx, ky) = C0

l,x

ηy
. (C9)

By swapping kx and ky, we can also prove the relation Eq. (B5)
in the limit of ηx/ηy approaches 0 or ∞.

As an example, we give the distribution of Berry curva-
ture F1(kx, ky) in the two-dimensional Brillouin zone; see
Fig. 8(a). Figures 8(b)–8(d) correspond to sampling trajecto-
ries of F1,x/Fy in the momentum space for ηx/ηy = 6, 10, and
40, respectively. We clearly see that the sampling density in-
creases with the increase of ηx/ηy. When the sampling density
is large enough, the two-dimensional integral about the con-
ventional Chern number can be replaced by the linear integral
of sampling trajectory. Because the initial momentum value
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FIG. 8. (a) The distribution of Berry curvature F1(kx, ky ) in two-
dimensional Brillouin zone. (b)–(d) Sampling trajectories of F1,x/Fy

respectively correspond to Fx/Fy = ηx/ηy = 6, 10, and 40 with fixed

norm
√

F 2
x + F 2

y = 0.0402. The other parameters are chosen as τx =
τy = 0.2, δ = 0.

only determines the initial position of the sampling trajectory,
without affecting sampling density, we have C1,x(kx, ky)/ηy =
C0

l,x/ηy. We have to emphasize that the almost quantized RCN
is quite general and it does not require the uniform distribution
of Berry curvature.

APPENDIX D: THE INFLUENCE OF INITIAL
QUASIMOMENTUM ON QUANTIZED DRIFT

To verify that the mean quasimomentum of an initial Gaus-
sian wave packet can be arbitrarily chosen, we give the drift

FIG. 9. Drift 
X and 
Y versus time t for different (kx0 , ky0 ).
(a) Topologically nontrivial phase (C1 = 1, δ = 0). (b)Topologically
trivial phase (C1 = 0, δ = 4τx). The other parameters are chosen as
τx = τy = 0.2, ηx/ηy = 10, Fx = 0.04, and Fy = 0.004.


X and 
Y versus time t for different initial quasimomentum
(kx0 , ky0 ) in Fig. 9. Although the drift trajectories of 
X and

Y have a significant difference for different mean quasimo-
mentum, these trace lines will converge at one point when
t = To. Fig. 9(a) corresponds to the topologically nontrivial
phase. Regardless of the initial mean quasimomentum, we
always obtain 
X (To) = 4,
Y (To) = −40, and the RCNs
C0

1,x/ηy = −C0
1,y/ηx = 1 by combining the Eqs. (10) and (11),

which are consistent with the first-band Chern number C1 = 1.
Similarly, one can also obtain 
X (To) = 0,
Y (To) = 0 in
Fig. 9(b), and the RCNs C0

1,x/ηy = −C0
1,y/ηx = 0 are consis-

tent with the first-band Chern number C1 = 0. These results
prove again that our method is rather insensitive and robust to
the choice of initial quasimomentum.
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