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Conformal invariance and quantum nonlocality in critical hybrid circuits
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We establish the emergence of a conformal field theory (CFT) in a (1+1)-dimensional hybrid quantum
circuit right at the measurement-driven entanglement transition by revealing space-time conformal covariance
of entanglement entropies and mutual information for various subregions at different circuit depths. While
the evolution takes place in real time, the spacetime manifold of the circuit appears to host a Euclidean
field theory with imaginary time. Throughout the paper we investigate Clifford circuits with several different
boundary conditions by injecting physical qubits at the spatial and/or temporal boundaries, all giving consistent
characterizations of the underlying “Clifford CFT.” We emphasize (super)universal results that are consequences
solely of the conformal invariance and do not depend crucially on the precise nature of the CFT. Among these
are the infinite entangling speed as a consequence of measurement-induced quantum nonlocality and the critical
purification dynamics of a mixed initial state.
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I. INTRODUCTION

Entanglement is a central concept in quantum physics. It
violates classical laws of physics in dramatic ways and makes
quantum communication and quantum computation funda-
mentally more powerful than their classical counterparts [1].
In recent years, the entropy of entanglement has proven useful
in condensed matter physics, providing new insights and tools
for understanding quantum states of matter, either in or out of
equilibrium, at zero or finite temperature [2–10].

One of the most bizarre aspects of entanglement, namely
quantum nonlocality, has always involved wave functions sub-
ject to measurements. The measurements, albeit local, have
nonlocal influences on the states and their entanglement struc-
ture. In the famous EPR thought experiment [11,12], one
destroys entanglement between a pair of distant qubits by
making local measurements in exchange for perfectly corre-
lated measurement outcomes. Conversely, one can entangle
a pair of distant qubits with local measurements via a mecha-
nism similar to quantum teleportation [13,14], without the two
ever needing to talk to one another—a phenomenon known
as “entanglement swapping” that has found wide applications
in quantum information science [13,15–17] [see Fig. 1(a)
for an illustration]. These are examples of “measurement-
induced quantum nonlocality” in systems of a few qubits,
and the experiments usually require carefully following spe-
cific protocols (that is, making the right unitary gates and
right measurements at the right place and right time). One
is therefore led to the following question: Can quantum non-
locality show up in many-body quantum dynamics under
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measurements without fine tuning? Notice that this is never
possible in unitary systems, since information as well as
quantum entanglement must evolve in a strictly local fashion,
as required by the Lieb-Robinson bound [18,19]. Recently
there has been some interest in a novel phase transition
in the dynamics of entanglement, driven by repetitive local
measurements in the time evolution of an otherwise unitary
quantum system [20–34]. Such systems can be conveniently
modelled as a “random hybrid quantum circuit” [35], com-
posed of both random unitary gates that increase entanglement
and (on their own) “thermalize” the system [36–38], and
local measurements made at random positions of the circuit
that act against this tendency; the only tuning parameter of
this model is thus the measurement strength/frequency. The
phase transition is a consequence of this competition and
separates a “volume-law entangled phase” and an “area-law
entangled phase” at low/high strengths of measurements,
respectively. Various aspects of the transition have been ex-
plored, including numerical characterizations of the critical
entanglement dynamics (and “statics” of the steady state)
[22–24,27,31,32]; analytic mappings to effective statistical
mechanical models [22,28,29], interpreting the entanglement
transition as a conventional Landau ordering transition; two
different mappings to properties of 2D critical percolation for
the transition in hybrid circuits with Haar random unitary
gates [i.e., random matrices sampled from the Haar measure
on the unitary group U (4) on two qubits], one for the 0th
Rényi (Hartley) entropy [22] and another for the nth Rényi
entropies with n � 1 in the limit of infinite onsite Hilbert
space dimension [29]; the “genericity” of the transition, e.g.,
discussions of conditions for the presence/absence of the
transition [20,21,25] and evidences for the transition in more
realistic contexts [26,30]; connections to quantum channel
capacity and quantum error correction [25,27,28,31] and im-
plications for classical simulability of unitary circuits in (2+1)
dimensions [39].
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FIG. 1. Illustration of the entanglement swapping protocol.
(a) An example with four parties. The initial state consists of two
Bell pairs, (Alice, Bob) and (Charlie, Eve), with Alice and Bob
far apart, as well as Charlie and Eve. Suppose Bob and Charlie
are spatially proximate and they make a collective 2-qubit mea-
surement in the Bell basis ({ 1√

2
(|00〉 ± |11〉), 1√

2
(|01〉 ± |10〉)}) [1].

The measurement “swaps” the entangled pairs, and now we have
entangled pairs (Alice, Eve) and (Bob, Charlie). Notice that Alice
and Eve never directly talked to one another, but nevertheless become
entangled due to the measurement: For each one of the four possible
measurement outcomes, Alice and Eve share a different state in the
Bell basis. Since the distance between Alice and Eve is arbitrary, the
speed of entanglement is arbitrarily large. However, no information
is transmitted: in order for Alice and Eve to know what their wave
function is, classical information about the measurement outcome
must be obtained from Bob and Charlie via classical communication.
(b) A many-qubit example of entanglement swapping. In this circuit
with nearest neighbor gates, only a finite circuit depth is required to
generate a long-range entangled Bell pair, given that the initial state
is properly set up and each two-qubit Bell measurement is perfect.
This fine-tuned example merely serves the purpose of illustrating the
possibility of infinite entangling speed in many-body systems. Notice
the similarity with the actual circuit in Fig. 2.

Curiosities of the transition aside, the numerical accessi-
bility of the model alone makes it a convenient theoretical
platform for investigating nonunitary quantum dynamics. For
example, one can ask if the aforementioned measurement-
induced quantum nonlocality shows up in such circuits. In
Ref. [24], it was suggested that the disentangling capabilities
of local measurements are indeed nonlocal, as evidenced by
the power law distribution of the “disentanglement length”
throughout the volume-law phase and at the critical point.
However, this was an indirect probe lacking an explicit
information-theoretic meaning.

On a seemingly separate note, it was found that the
steady state wave function right at the critical point exhibits
long-range correlations and conformal invariance [22,24,29].
While in random unitary circuits the time evolution is well
understood [36–38], exactly how the long-time critical en-
tanglement structures of the hybrid quantum circuits emerge
under the real-time evolution, has not been explicitly de-
scribed (see relevant discussions in Refs. [22,29]).

In the present work, we establish the emergence of con-
formal symmetry in the spacetime circuit right at the critical
point—by illustrating its role in describing the critical en-
tanglement dynamics—and discuss the physical mechanism
underpinning its emergence, namely the aforementioned non-
locality induced by quantum measurements. Our starting point
is a simple postulate that at the critical point, the spacetime
manifold of the hybrid circuit hosts a Euclidean field theory,
with the real-time direction of the circuit playing the role
of imaginary/Euclidean time of the field theory (this natu-
rally accounts for the absence of a Lieb-Robinson bound,
as we briefly explain below). This idea was already implicit
in the mappings to effective spin models [28,29] relating
quantum entanglement entropy to the boundary free energy
of a classical statistical mechanics model [40]. Once time is
interpreted as another spatial dimension, and entanglement
entropies as boundary free energies, it is immediate that the
conformal invariance—therefore also “criticality” and long-
range correlations—makes already detailed predictions for
entanglement dynamics at the very early times. Long-range
correlations at arbitrarily early times imply an infinite en-
tangling speed [as detailed in Eqs. (75) and (76)], giving a
positive answer to the question raised above—that there is
indeed a many-body version of entanglement swapping in-
duced by measurements in the circuit, despite the fact that the
circuit is composed of completely random unitaries and mea-
surements (as opposed to carefully designed protocols as in
Fig. 1).1 This suggests that “measurement-induced quantum
nonlocality” is a consequence of broken unitarity rather than
of specific protocols/algorithms.

1There are important subtleties in this statement, which we clarify
immediately below.

(i) Entanglement itself does not contain information, and the absence
of light cone in entanglement dynamics does not imply the ability
to send information faster than light. As emphasized in the caption
of Fig. 1, to verify the entanglement that has been generated by en-
tanglement swapping, classical communication of the measurement
outcomes is necessary (for specifying the pure state wave function
after the measurement, much like in a quantum teleportation exper-
iment). This type of communication between “people” that perform
and monitor the experiment is of course not included in the simple
circuit model.

(ii) The entanglement dynamics is only accessible in the pure state
quantum trajectories and is not accessible in the mixed state density
matrix. In fact, in the density matrix everything remains local, since
we are only applying local operations. To experimentally access the
nonlocal entanglement one needs to prepare several copies of the
same wave function, which requires heavy post selection on the
measurement outcomes. The need of introducing an “experimenter”
doing all the work of recording measurement outcomes and post
selecting them, is in some sense similar to the aforementioned need
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We establish the main results by studying the random
Clifford circuit model for a 1d chain of qubits, introduced in
Ref. [24], taking a trivial product initial state and open spatial
boundary conditions, tuned to the transition. The space-time
region of the circuit is thus a rectangle. The Gottesman-Knill
theorem [41–43] enables efficient simulation of Clifford cir-
cuits of up to thousands of qubits on a laptop, allowing us to
perform detailed scaling analyses. We numerically compute
the entanglement entropies and mutual information for vari-
ous subregions at all time steps of the evolution and verify
that their dynamics are completely characterized by boundary
three- and four-point correlation functions, respectively, of a
CFT in the finite rectangular geometry. From the data we also
extract several critical exponents characterizing the underly-
ing Clifford CFT.

We further explore several different sets of boundary con-
ditions of the Clifford circuit, by “inserting” physical qubits
initialized in a trivial product state at the spatial and/or tempo-
ral boundaries of the finite circuit. Remarkably, the boundary
qubits become critically entangled through the bulk as an
intermediary, despite the fact that they never talked directly
to each other—another manifestation of entanglement swap-
ping. Numerical computations of entanglement entropies and
mutual information further confirm the presence of confor-
mal symmetry and give consistent estimates of corresponding
boundary operator scaling dimensions appearing in various
different observables.

Among various different setups, of particular interest is the
one in which the initial state consists of L Bell pairs (i.e., of
L maximally entangled pairs of qubits). By taking one qubit
from each pair, we form a length-L qubit chain which is sub-
sequently subject to the hybrid circuit dynamics (the “system
qubits”); the remaining qubit chain (the “environment qubits”)
is left unevolved. The two qubit chains appear to be on the
same footing and have identical entanglement structures at all
times. In particular, while the system qubits experience the en-
tanglement transition, the environment qubits also know about
the transition. After tracing out the environment qubits, this
setup is equivalent to the one in Ref. [27], where a mixed-state
density matrix was time evolved. The entanglement entropy
between the system qubits and the environment qubits is cor-
respondingly interpreted as the “purity of the system,” and
the entanglement transition is now a “purification transition,”
between a “mixed phase” and a “pure phase” characterized
by, among other things, slow and fast purification dynamics,
respectively. In our CFT language, this setup maps to the same
bulk theory but with a different boundary condition, so the
purification transition is indeed the same bulk transition as the
transition in entanglement entropy with a pure initial state. We
show that the (T/L)−1 decay (T is the circuit depth) of the
entanglement entropy between “system” and “environment”
at early times, observed in the numerics of Ref. [27], follows
directly from conformal symmetry, which in turn identifies
the amplitude of that decay as a universal (boundary) scaling
dimension of the CFT (up to a factor of π ). We also show

of classical communication between “parties” in order to verify en-
tanglement swapping.

that the universal exponential decay of the same quantity
at late times is a consequence of crossover to a quasi-one-
dimensional system, the rate of decay being given by yet
another universal (boundary) scaling dimension of the CFT,
which we identify here. These results are consequences solely
of the conformal invariance; they hold in all CFTs, and thus
hold, in particular equally in other critical hybrid quantum
circuits described by CFTs, presumably including those with
Haar unitaries.

We apply the same reasoning to the analysis of the problem
of the 0th Rényi (Hartley) entropy in random Haar circuits,
which is believed [22] to be described by two-dimensional
critical first-passage percolation. Comparison between the
critical properties of the von Neumann entropy in Clifford
CFT and those of the so-obtained zeroth Rényi (Hartley)
entropy in the Haar circuits is made, and their relationship is
discussed.

The rest of this paper is organized as follows. In Sec. II,
we introduce the random hybrid circuit model in rectangular
geometry with several sets of boundary conditions. We then
give a statement of the conjecture regarding the presence of
conformal symmetry, as well as a concrete prescription for
computing the entanglement entropy of an arbitrary segment
at an arbitrary time step. In Sec. III, we present the main re-
sults of this paper, namely the numerical data on entanglement
entropy and mutual information dynamics in the rectangular
circuit and compare them with CFT calculations. In Sec. IV,
we present results for circuits with periodic boundary condi-
tion that are used for fixing tuning parameters of our fitting
scheme. In Sec. V, we discuss the universality of our results,
relations to other works, and possible future directions. In
Appendix A, we provide, for reference, a list of elemen-
tary facts from conformal field theory used in this paper.
In Appendix B, we discuss purification dynamics of “refer-
ence qubits” recently introduced in Ref. [31], which reveals a
boundary operator scaling dimension taking different values
in the Clifford CFT and in critical percolation. This result is
further confirmed by a separate calculation in Appendix C.
In Appendix D, we present parallel numerics and analysis of
two-dimensional critical first-passage percolation.

II. THE HYBRID CIRCUIT MODEL AND THE
CONJECTURE

A. The hybrid circuit models with different boundary conditions

Amongst various versions of the hybrid quantum circuit
model [22–25,27–29], we take the one with random Clifford
unitaries on pairs of qubits (with local Hilbert space dimen-
sion q = 2) and projective measurements of single-site Pauli
operators made in a Poissonian fashion with probability p,
which was introduced in Ref. [24] and referred to as “the
random Clifford circuit.” We focus on the critical point of
the entanglement transition, taking p = pc ≈ 0.1600 in this
particular model [24,27] (see Sec. IV for the location of the
transition).

The circuit model is always defined together with its
boundary conditions (b.c.), which we take, for the most part
of this paper, to be open spatial boundary conditions. In
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FIG. 2. Random hybrid Clifford circuit model with different boundary conditions. The rectangles in cyan represent random Clifford unitary
gates, arranged in a brickwork fashion. Between the unitary layers are projective measurements of single-site Pauli operators made at random
sites at probability p = pc, represented by hollowed circles. The blue solid circles at the upper boundary represent physical qubits after
evolution of circuit depth T . Notice that time runs “upwards.” In (a), we illustrate the simplest b.c. of all, with a trivial product state and open
spatial b.c. These two are assumed to correspond to the same “free b.c.,” denoted f and represented with black color. The blue edge represents
a “physical qubit b.c.,” denoted a. The two boundary conditions are separated by boundary condition changing (bcc) operators at the corners,
denoted z1 and z4. In (b), we “insert” initially unentangled physical qubits at the left and right edges of the circuit at every time period, so
that we have the a b.c. on three edges of the rectangle, with the other one still in f . In (c), we take the initial state of L Bell pairs and take
one qubit from each pair to form a qubit chain (the system) which undergoes the circuit dynamics, leaving the other qubit chain untouched
(the environment). We put the environment and the system on the t = 0 and t = T boundaries, respectively, and both in the a b.c. In (d) we
combine the initial state in (c) and the “temporal insertion” setup, to obtain a circuit with a on all four sides. We shall refer to the four sets of
boundary conditions as (a) fffa, (b) afaa, (c) fafa, and (d) aaaa, respectively.

Fig. 2, we illustrate the circuit model with the corresponding
space-time geometry of a finite rectangle, with length L (mea-
sured in terms of the number of qubits) and depth T (measured
in terms of the number of unitary layers), where we define
four sets of different b.c. on its edges. In order to introduce
the circuit models, we have to make several postulates in
assigning the boundary conditions; in this section we neither
explain the physical meanings of these boundary conditions
nor provide justifications of our assumptions. We postpone
these issues to later sections: Sec. II B, Sec. III, and Appendix
D. We proceed by listing the four sets of boundary conditions
that we consider:

(1) The simplest of all is the one with a product initial
state and open spatial b.c. at the right and left boundaries
of the rectangle [Fig. 2(a)—time goes “upwards”]. We posit
that these two map to the same b.c. (in the sense described
in Sec. II B), which we refer to as the “free b.c.,” denoted
f . We further posit that the physical qubits at the boundary
representing the quantum state at final time t = T map to a
different b.c., which we refer to as the “physical qubit” b.c.,
denoted a.

Since the b.c. change from f to a at the corners denoted
by z1 and z4 in Fig. 2(a), we say that there are (analogous to
Refs. [29,40]) boundary condition changing (bcc) operators

φf |a(z1) and φa|f (z4) located at these corners. The meaning of
the bcc operators will be specified in Sec. II B.

As a result, we have a circuit with boundaries labeled by
the sequence of boundary conditions fffa in counterclockwise
order (starting from the left boundary of the rectangle).

(2) In the second case, we introduce physical qubits at the
left and right edges of the rectangle in the following manner
[see Fig. 2(b)]. We retain L − 2 qubits sitting at positions x =
2, . . . , L − 1 of the chain, and at each time step, we introduce
two “fresh” qubits, each initially in a disentangled 1-qubit
pure state (the specific state is unimportant) and “inject” them
into the system as the first and the Lth qubit of the circuit.
The L-qubit chain is then evolved under the circuit dynamics
for one time period (notice that one time step corresponds to
two consecutive unitary layers). After that period, we take out
the first and the Lth qubit, keep them somewhere else without
further actions on them, and fill their positions in the chain
with two new fresh qubits in the next time period. For a circuit
of depth T (with T even), by the end of its evolution, the
left and right edges will each have T/2 qubits, namely those
“fresh” qubits that have been “injected” on the right and left
edges, in addition to the L − 2 qubits at the final time t = T
(the upper edge of the rectangle), taking the same position
as qubits in the previous setup (a). We posit that they map
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to the same b.c. a as that discussed in the previous setup
(a). As compared with Fig. 2(a), we now have eliminated
the bcc operators at the corners denoted by z1 and z4, at the
cost of introducing new bcc operators φf |a(z2) and φa|f (z3) at
the corners denoted by z2 and z3. By the same convention as
above, we refer to this b.c. as afaa.

(3) In the third case, we take an initial state composed of
L pairs of maximally entangled qubits (i.e., Bell pairs), where
different pairs are unentangled with each other (as required
by monogamy of entanglement). Taking one qubit from each
pair, we form an L-qubit chain (which we call the “system”),
and the rest form another L-qubit chain (which we call the
“environment”). We let the “system chain” undergo the circuit
dynamics of depth T , while the “environment chain” is left
unevolved. By the end of the evolution, we naturally have the
“system” at the upper edge of the rectangle, and we assume
that the “environment” “lives” on the lower edge (in a sense
to be specified in Sec. II B). We further posit that the upper and
lower edges are described again by the same b.c. a, discussed
in the previous two setups (a) and (b), as shown in Fig. 2(c).

In this setup, there are bcc operators at all four corners to
start with: φf |a(z1), φa|f (z2), φf |a(z3), φa|f (z4). We refer to this
b.c. as fafa.

(4) In the fourth case, we combine the b.c. in (b) and (c)
so that we have physical qubits on all four edges. Specifically,
we take the initial state as described in (c), and while evolving
the “system,” we inject physical qubits at each time step as
in (b). The physical qubits on all four edges are assumed to
correspond to the same b.c., a, as shown in Fig. 2(d).

In this setup, we do not have any bcc operators at any of
the corners (since the b.c. do not change). We refer to this b.c.
as aaaa.

As clarified above, at this point issues like the “labelling”
of the boundary conditions (with f or a) and “where the
physical qubits sit on the rectangle” are meaningless until
certain observables are assigned to them. As we will see next
in Sec. II B, the boundary conditions are important in defining
boundary free energies within the putative conformal field
theory.

B. Statement of the conjecture and example calculations
of entanglement entropy

Previous works on the measurement-induced entanglement
transition are quite suggestive of the presence of full confor-
mal invariance in spacetime, though the models considered
differ from one another in details. Among these are Ref. [22],
where the critical percolation description of the 0th (Hartley)
Rényi entropy in circuits with random Haar gates was already
manifestly conformally invariant; Refs. [23,27], where a dy-
namic exponent of z = 1 was found, and Ref. [24], where
the presence of conformal invariance in the steady state was
numerically confirmed, all for Clifford circuits. More recently
in Refs. [28,29], concrete critical spin models which admit
conformal field theory (CFT) descriptions at their critical
points were proposed to describe the nth Rényi entropies with
n � 1 in hybrid quantum circuits with Haar random unitaries
in the limit of infinite local Hilbert space dimension.

Motivated by these considerations, we propose the follow-
ing conjecture(s) at entanglement transitions in generic hybrid
quantum circuits:

(1) There is an emergent CFT living on the two-
dimensional finite spacetime manifold of the circuit (with
certain spatial and temporal b.c.), where the real-time direc-
tion of the circuit becomes the “imaginary time” of the CFT.

(2) Physical qubits live on boundaries of the finite circuit,
and the von Neumann entanglement entropy2 of a contiguous
segment A of qubits is given by the change in (boundary) free
energy of the CFT in the finite geometry due to change of
the b.c. inside A (recall that free energies of a CFT depend
crucially on the specific b.c.3)

Specifically, for a contiguous segment A of the boundary
of the rectangle with endpoints located at z1 and z2, which we
denote by A = [z1, z2], we posit that

S([z1, z2]) ≡ − ln
Zcircuit[φ(z1)φ(z2)]

Zcircuit
, (1)

where Zcircuit is a suitably defined background “circuit par-
tition function” of the rectangle specified by boundary
conditions of the circuit, and Zcircuit[φ(z1)φ(z2)] is the parti-
tion function with the same boundary conditions as Zcircuit ,
except that in the boundary segment A = [z1, z2] the boundary
condition has changed as compared to Zcircuit , which in a CFT
can be accounted for by the insertion of boundary condition
changing (bcc) operators φ at the endpoints z1 and z2 of A.
An expression similar to Eq. (1) first appeared in the extreme
volume-law phase of random tensor networks aimed at de-
scribing gravitational Ryu-Takayanagi behavior [46], then in
random tensor network models for entanglement transitions
[40] which are [29] very close cousins of the entanglement
transitions in hybrid circuits discussed here, and shortly after
in the present context of measurement-driven entanglement
transitions [24,28,29].

We remark on an apparent conceptual leap on which we
briefly elaborate at the end of this paragraph: While previously
in Fig. 2 the bcc operators φf |a are merely place holders
to signify the change of boundary condition, in a CFT they
become scaling fields that define the partition function; we
further assume that these fields are what is called primary
[44]. These boundary scaling fields are the central objects of
this paper and govern the entanglement structure of the circuit
through Eq. (1).

The expression Eq. (1) can be obtained directly by re-
peating the steps presented in Ref. [29], but now for the
reduced density matrix for the random Clifford circuit with
measurements, upon making the only assumption that an ef-
fective statistical mechanical model emerges after averaging,
which exhibits a conformally invariant transition in the bulk
of the circuit.4 We provide in this paper extensive evidence

2Throughout the paper we consider Clifford circuits, for which all
Renyi entropies are equal to the von Neumann entropy.

3See, e.g., Ref. [45] for a review.
4Hybrid circuits with periodic, nonrandom (Floquet) unitaries

and/or (quasi)periodically located measurements in space and time
also appear to exhibit an entanglement transition in numerics [24].
Provided these are also conformal transitions, with which the numer-
ical evidences appear to be consistent, general assumptions of this
paper also apply, although a statistical mechanical model cannot be
readily obtained along the lines outlined in Ref. [29].
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TABLE I. A summary of boundary conditions (b.c.), boundary condition changing (bcc) operators, and their operator product expansions
(OPE) that will appear later in this paper. There are three types of b.c., namely (1) f , corresponding to product initial state and open spatial
b.c. of the circuit, (2) a, corresponding to physical qubits, and (3) b, corresponding to qubits for which the entanglement entropy is computed.
Exchange symmetry between a and b is assumed. The fundamental bcc operator is the one separating f and a, which we denote as φf |a
(or its symmetric counterpart φf |b). The OPE between φa|f and φf |b gives rise to a bcc operator separating a and b, and we define φa|b to
be the leading term with smallest scaling dimension. These two operators φf |a and φa|b are assumed to transform as primary fields under
conformal transformations [44]. We further define φ

(1)
f |a , φ

(1)
f |f , and φ

(1)
a|a as the subleading operators in the corresponding OPE channels. In these

OPEs we have suppressed prefactors and only kept the operator content; the full form will be provided when they are encountered (see also
Appendix A). We summarize scaling dimensions extracted for these operators and their appearance in this paper, which we refer to for more
detailed explanations. Notice that we are unable to extract the scaling dimension for φf |a since it does not explicitly appear in the entanglement
entropy calculation. xp.b.c. appearing at the bottom is not associated to scaling dimensions of bcc operators; rather, it is a universal scaling
exponent of the bulk CFT (see Sec. IV).

for the validity of this assumption for Clifford circuits. All
the remaining assumptions made in this paper about the ap-
pearance of boundary condition changing operators follow
from general properties of CFT. In particular, any microscopic
boundary condition (satisfying certain locality conditions) on
a CFT will at long distance scales in general always turn into
a “conformal boundary condition” described by a (bound-
ary) fixed point of the renormalization group. Moreover, at
a point on the boundary where two different such “conformal
boundary conditions” meet, a boundary condition changing
conformal boundary operator will appear. For the convenience
of subsequent discussions in this paper, we summarize in
Table I all relevant boundary conditions, bcc operators, and
their operator product expansion (OPE), that will appear in
later sections.

We illustrate the prescription in Eq. (1) with the fffa circuit
in Fig. 2(a), which we choose, in the present case, to represent
the “background” configuration of boundaries. Because of
the two bcc operators at the corners φf |a(z1) and φa|f (z4) (as
defined in Table I), the circuit partition function is given as
[see Fig. 3(a)]

Zcircuit = 〈φf |a(z1)φa|f (z4)〉Z0, (2)

where 〈· · · 〉 denotes the “expectation value” taken in an under-
lying (2 + 0)-dimensional CFT in the bulk of the rectangle,
which can be thought of as some suitable classical statistical
mechanics system representing the CFT, and Z0 is the partition
function of this CFT living in a rectangle with free boundary
condition f on all four sides.

Next, let us consider the entanglement entropy of a
contiguous segment A of physical qubits within [z1, z4]. Ac-
cording to the conjecture, S(A) is the change in free energy

due to change of b.c. in A from a to yet another one, denoted
by b, which is assumed to be of the same type as a but
different (we will be more specific below).

Such effects are accounted for by inserting bcc operators at
the endpoints of A, separating boundary conditions a (outside
A) and b (inside A). We denote such an operator φa|b (see
Table I for its definition).

FIG. 3. Pictorial representations of the partition functions with
bcc operators inserted at the corner and on the edge, for computa-
tions of bipartite entanglement entropies in the fffa circuit shown
in Fig. 2(a). (a) The “background” partition function, given by cor-
relation function of bcc operators at z1 and z4 separating f and a.
(b) The partition function corresponding to computation of entan-
glement entropy of the whole qubit chain. Since the entire system
is in a pure state, the entanglement entropy should be 0, as real-
ized by the exchange symmetry between a and b [see Eq. (5)].
(c),(d) The partition functions corresponding to the calculation of
S(A = [z1, z5]) = S(A = [z5, z4]) [see Eq. (4)].
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In the simple case when A = [z1, z5] as depicted in
Fig. 3(c), i.e., having one of its endpoint at the corner z1 (there-
fore specifying a single bipartition of the top boundary of the
rectangle at z5), the boundaries of the rectangle are labeled
by three distinct boundary conditions: a in A = [z5, z4], b in
A = [z1, z5], and f elsewhere, in counterclockwise order. The
corresponding partition function should therefore be given by
the correlation function of three bcc operators located at z1, z5,
and z4. Explicitly, following Eq. (1), the bipartite entangle-
ment entropy S(A) can be written as5

S(A = [z1, z5])

= − ln
Zcircuit[φa|b(z1)φb|a(z5)]

Zcircuit

= − ln
〈φf |b(z1)φb|a(z5)φa|f (z4)〉

〈φf |a(z1)φa|f (z4)〉 . (3)

For a pure wave function, the entanglement entropies sat-
isfy S(A) = S(A), where A is the complement of the segment
A on the upper boundary of the rectangle. This requires that
the partition function is invariant under exchanging a and b;
indeed, using Eq. (3), we have [see Figs. 3(c) and 3(d)]

S(A = [z1, z5])

= − ln
〈φf |b(z1)φb|a(z5)φa|f (z4)〉

〈φf |a(z1)φa|f (z4)〉

= − ln
〈φf |a(z1)φa|b(z5)φb|f (z4)〉

〈φf |a(z1)φa|f (z4)〉
= S(A = [z5, z4]). (4)

In the limit when A includes all the physical qubits [i.e.,
when z5 = z4, see Fig. 3(b)],

S([z1, z4]) = − ln
〈φf |b(z1)φb|f (z4)〉
〈φf |a(z1)φa|f (z4)〉 = 0, (5)

5In fact, literally following Eq. (1), this entropy is related to the
correlation function involving the inserted two bcc operators at z1

and z5, in addition to the existing ones at the corners z1 and z4. Thus
we have a four-point correlation function:

S(A = [z1, z5])

= − ln
Zcircuit[φa|b (z1)φb|a (z5)]

Zcircuit

= − ln
〈φf |a (z1)φa|b (z1)φb|a (z5)φa|f (z4)〉

〈φf |a (z1)φa|f (z4)〉 .

In going from this to Eq. (3), we have implicitly invoked the follow-
ing OPE (to leading order; see Table I),

φf |a (z1)φa|b (z1 + ε) ∼ ε−h
a|bφf |b (z1) + . . .

to account for the coincidence of the left endpoint of A with the
corner of the rectangle, therefore effectively reducing the four-point
function to a three-point function, as expected. Despite its appar-
ent complexity, the physical picture is intuitive: After φf |a (z1) and
φa|b (z1 + ε) have fused into φf |b (z1), there are only three “colored
segments” on the boundary, and therefore the partition function is
given by a simple three point function.

as expected for a pure state. Again, we have used the exchange
symmetry between a and b. These considerations illustrate
more specifically the sense in which “the boundary condition
b is of the same type as a but different,” as mentioned above.
Although for simplicity we have only considered the fffa
circuit and have only taken segment A to start from either z1

or z4 in this calculation, straightforward generalizations can
be made to other cases, as we will see in Sec. III.

Our approach here is “experimental,” though reasonably
motivated by general principles. For example, we notice that
the exchange symmetry between a and b comes about nat-
urally from the general requirement of purity of the wave
function. In Sec. III, we will provide numerical evidences
for CFT calculations like Eq. (4), supporting our conjectures,
together with the prescription for computing entanglement
entropies and the assignments of boundary conditions.

C. Finite rectangular geometry and the
Schwarz-Christoffel mapping

In most of this paper we will focus on systems as in
Fig. 2, where the circuit manifold has the geometry of a
finite rectangle (open boundary conditions); the case of cylin-
drical geometry (periodic boundary conditions) is treated in
Sec. IV. The former case is convenient because the rect-
angle is simply connected and can thus be mapped to the
lower half plane (LHP) via a conformal mapping (due to
Schwarz-Christoffel),6 allowing simple calculations of cor-
relation functions in the rectangle (such as those in Fig. 3),
due to their conformal covariance in the putative CFT (see
Appendix A). Since all rectangles are conformally equivalent
to the LHP, one can relate dynamics at different time scales
via the conformal mapping, using the LHP as an intermediary.
Similar ideas have been applied to crossing probabilities in
two-dimensional critical percolation [48].

We first address an important subtlety in mapping the cir-
cuit to a CFT in a finite rectangle. In the circuit model, the
physical qubits undergo real-time evolution, and there is no
obvious space-time rotational symmetry; therefore, space and
time are on separate footing, and in particular, a circuit with
L = T does not necessarily correspond to a square system
when viewed as a CFT. We must therefore introduce a suitable
“lattice spacing” for both the space and time directions, λx

and λt , with λx measured in the number of qubits and λt in the
number of layers. The “correct” aspect ratio of the rectangular
circuit when viewed as a CFT is therefore given by

τ := T/λt

L/λx
≡ Y

L
, (6)

where Y = ( λx
λt

)T is the “rescaled (imaginary) time” or
“depth.” For the random Clifford circuit, we fix the ratio
Y/T ≈ 0.61; the determination of this ratio is detailed in
Sec. IV. We emphasize that Y/T is a bulk property and is inde-
pendent of the boundary conditions. The value Y/T ≈ 0.61 is
thus fixed for all boundary conditions of the random Clifford
circuit considered in this paper. However, Y/T is nonuniversal
and can vary from circuit to circuit; in particular, for the

6See, e.g., Ref. [47] for an introduction.
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FIG. 4. The conformal mapping, from the finite rectangle to the LHP. The parameter m is chosen such that the aspect ratios match. The
boundary of the rectangle, highlighted, is mapped to the real axis of the LHP, where the four vertices of the rectangle map to w1 = −1, w2 =
−m−1/2, w3 = +m−1/2, and w4 = +1, respectively.

percolation problem that describes the zeroth Rényi entropy
in Haar random circuits, there is explicit rotational symmetry
therefore Y/T = 1 (see Appendix D).

In the rest of this subsection, we detail the particular con-
formal mapping we use to relate the finite rectangle and the
LHP, as summarized in Fig. 4. Points in the original rectangle
are labeled by a complex coordinate,

z = x + iy, (7)

where we take the convention x ∈ [−L/2, L/2] for the po-
sition of the qubit, and y = Y

T t ∈ [0,Y ] the rescaled time
coordinate. As a first step, we perform a translation by −iY ,
followed by an overall scaling, to transform the L × Y rectan-
gle (living in the complex z plane) to the 2K (m) × K (1 − m)
“canonical” rectangle (living in the complex ζ plane), where
the overall scaling factor is

λ(m) := 2K (m)/L
!= K (1 − m)/Y. (8)

Here K (m) is the complete elliptic integral of the first kind
with parameter m ∈ [0, 1], and m is chosen such that aspect
ratios match,

τ (m) := K (1 − m)/2K (m)
!= Y/L. (9)

It is only through this parameter m that the aspect ratio (hence
time) comes into the correlation functions. We will take the
convention that the four corners of the rectangle sit at [47]

ζ1 = −K (m), (10)

ζ2 = −K (m) − iK (1 − m), (11)

ζ3 = +K (m) − iK (1 − m), (12)

ζ4 = +K (m). (13)

In the second step, we map the canonical rectangle to the LHP
via a Jacobi sn function [47],

w(ζ ) = sn(ζ |m), (14)

and we have

w1 = w(ζ1) = −1, (15)

w2 = w(ζ2) = −m−1/2, (16)

w3 = w(ζ3) = +m−1/2, (17)

w4 = w(ζ4) = +1. (18)

Thus, the composition of these two maps, z → ζ → w, reads

w(z|τ (m) = Y/L) = sn(λ(m)(z − iY )|m). (19)

It is useful to recall [47] the asymptotic forms of τ (m),

τ (m) ∼
{

π
2

(
ln 16

1−m

)−1
, as m → 1 (τ → 0),

1
2π

ln 16
m , as m → 0 (τ → ∞),

(20)

and also the asymptotic forms of the cross ratio,

η = w12w34

w13w24
∼

{
16 exp(−π/τ ), τ → 0
1 − 16 exp(−πτ ), τ → ∞

where wi j := wi − w j (i, j = 1, . . . , 4).

III. RESULTS ON RECTANGULAR CIRCUITS

In this section we present results of numerical simulation
of the Clifford circuits defined in Sec. II. Unless otherwise
noted, we will take the circuit with length L = 512 (measured
in the number of qubits) and vary the depth up to T = 1024
(measured in the number of unitary layers). The simulation
uses the stabilizer formalism [42] and follows the standard
algorithm in Ref. [43]. The computation of entanglement en-
tropies [49–53] is done in the “clipped gauge,” which is a
particular choice of stabilizers where entanglement entropies
can be efficiently computed [24,36]. It is always implicit that
the entanglement entropies and mutual information are com-
puted for various subregions at each time step, individually
for each pure-state quantum trajectory, and then averaged over
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ensembles of trajectories. Only a subset of data points for
selected time windows are presented to avoid crowding; we
have verified that other data points also collapse well onto the
same curves. The included time windows range from early
times τ � 1 to late times τ � 1. Due to limited numerical
precision of floating point numbers on a standard computer,
we exclude from the plots data at extremely early time τ (m) �
0.03, where |1 − m(τ )| � 10−16. We do not think this is an
important issue but merely a technical nuisance we have yet
to fully resolve.

We will always take pc = 0.1600 and Y/T = 0.61 for all
b.c., where Y is the rescaled time (see Sec. II C). The determi-
nation of these values is discussed in Sec. IV.

Some of the analytic calculations make use of standard
results of simple correlation functions and operator product
Expansions (OPEs) in CFT, which are listed in Appendix A.

Throughout the paper we compute the entanglement en-
tropy by taking the natural logarithm on the reduced density
matrix, following a convention adopted in Refs. [4,28,29],

S(A) := −TrρA ln ρA. (21)

We notice that this convention differs from that in
Refs. [22–25,27,31], where the base-2 logarithm is used.

A. Circuit with boundary conditions fffa—Fig. 2(a)

1. Bipartite entanglement entropies as three-point functions

Bipartite entanglement entropies within the fffa circuit
[with a product initial state and open spatial b.c.; see
Fig. 2(a)]were already discussed as an example in Sec. II.
This setup, as shown in Fig. 3(c), has three bcc operators. The
simplicity of three-point functions in CFT allows us to carry
out the computation in Eq. (4) explicitly7

exp [−S([z1, z5])]

= 〈φf |b(z1)φb|a(z5)φa|f (z4)〉
〈φf |a(z1)φa|f (z4)〉

=
(

∂w

∂z

)ha|b

z5

〈φf |b(w1)φb|a(w5)φa|f (w4)〉
〈φf |a(w1)φa|f (w4)〉

∝
((

∂w
∂z

)
z5
w14

w15w54

)ha|b

. (22)

7A boundary operator φf |b (z), if initially located at a position z on
a straight edge (say, top or side edge) away from the corner, is known
to acquire, as it approaches the corner z1, a power law singularity in
the distance (z1 − z), because the scaling dimension of the operator
is twice as large when placed at the 90-degree corner, as compared to
at a straight edge. This singularity is a consequence of the conformal
mapping. The same power law singularity occurs in the denominator
of the ratio appearing in the equation below and cancels out. The
same type of cancellation occurs in all other ratios of correlation
functions involving boundary operators located directly at a corner
that we consider in this paper.

FIG. 5. (a) Entanglement entropies for the fffa circuit, where the
data collapse follows Eq. (23). The apparent deviation of the data
from the predicted form at larger values of ξ is due to nonuniversal
corrections when z1 and z5 are close on the lattice. (b) Mutual in-
formation for two subregions sitting next to the corners, where the
data collapse follows Eq. (32). The limiting behaviors for η → 0 and
η → 1 follow Eqs. (35) and (40), respectively, and are shown in the
insets.

Thus,

S([z1, z5]) = −ha|b ln

((
∂w
∂z

)
z5
w14

w15w54

)
+ const. (23)

The data collapse for S([z1, z5]) where z5 = x5 + iY with
varying x5 and Y (that is, bipartite entanglement entropies for
varying positions of the bipartition at different circuit depths)

against ξ = ( ∂w
∂z )z5 w14

w15w54
is shown in Fig. 5(a). Consistency with

Eq. (23) is found, and we fit for ha|b ≈ 0.53.8

2. Entanglement dynamics

The quality of the data collapse in Fig. 5(a) [together with
Fig. 5(b); see below] lends strong support to our conjecture
regarding the conformal invariance of the circuit, together
with our assumptions about the boundary conditions and
the algorithm for computing the entanglement entropy. As-
suming these are indeed correct assumptions, the three-point
functions, in turn, provide a complete description of the entan-
glement entropy dynamics and mutual information dynamics,
as we show in this subsection and the next. For example, as

8We note that ha|b ≈ 0.76 ln 2, where the value 0.76 is consistent
with Refs. [24,27].
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we will now show, Eq. (23) leads to the logarithmic temporal
growth of entanglement entropies at early times [22,23], as
well as the logarithmic scaling with spatial size in the steady
state [22–24]. To see this explicitly, we focus on the two sim-
plifying regimes when τ = Y/L � 1 and when τ = Y/L  1,
where we recall that Y ∝ T is the rescaled imaginary time
(proportional to the circuit depth).

(1) τ � 1. In this limit, the conformal mapping for z =
x + iY reduces to

lim
τ→0

w(z) = lim
m→1

sn(λ(m)x|m) = tanh
[ π

2Y
x
]
, (24)

so that Eq. (23) takes the following simple form

S([z1, z5]) = −ha|b ln
π

Y
+ const.

= ha|b ln Y + const. (25)

This is independent of z5 since when L  Y the corners of the
rectangle are infinitely far away.

(2) τ  1. In this limit, the conformal mapping for z =
x + iY reduces to

lim
τ→∞ w(z) = lim

m→0
sn(λ(m)x|m) = sin

[π

L
x
]
, (26)

and Eq. (23) becomes

S([z1, z5]) = ha|b ln
( L

π
sin

[πx15

L

])
+ const., (27)

where x15 = x1 − x5, reminiscent of the Cardy-Calabrese
formula [4], and when x15 � L reduces to S([z1, z5]) =
ha|b ln x15.

3. Mutual information as four-point functions

We take a segment away from the corners, A = [z5, z6],
where z j = x j + iY and −L/2 = x1 < x5 < x6 < x4 = L/2,
and compute S([z5, z6]). (According to our prescription, this is
the entanglement entropy of the segment A = [z5, z6] at time
y = Y .) Since the segment A is away from the corners, this
geometry involves four boundary changing operators at posi-
tions z1, z5, z6, z4 along the upper boundary of the rectangle;
see the inset of Fig. 5(b). Following Eq. (1), this is given by

exp [−S([z5, z6])]

= 〈φf |a(z1)φa|b(z5)φb|a(z6)φa|f (z4)〉
〈φf |a(z1)φa|f (z4)〉

= 〈φf |b(z1)φb|a(z5)φa|b(z6)φb|f (z4)〉
〈φf |b(z1)φb|f (z4)〉

=
(

∂w

∂z

)ha|b

z5

(
∂w

∂z

)ha|b

z6

× 〈φf |b(w1)φb|a(w5)φa|b(w6)φb|f (w4)〉
〈φf |b(w1)φb|f (w4)〉

∝
[(

∂w
∂z

)
z5

(
∂w
∂z

)
z6

(w56)2

]ha|b

Ffbab(η), (28)

where

η = w15w64

w16w54
(29)

is the cross ratio, and we have defined Ffbab(η) with the fol-
lowing convention,

Ffbab(η) = 〈φf |b(w1)φb|a(w5)φa|b(w6)φb|f (w4)〉
〈φf |b(w1)φb|f (w4)〉〈φb|a(w5)φa|b(w6)〉 . (30)

Given S([z5, z6]), we are now ready to compute another
quantity of physical interest, namely the mutual informa-
tion between two subregions sitting next to the corners, A =
[z1, z5] and B = [z6, z4] [illustrated in the inset of Fig. 5(b)].
We have

I ([z1, z5], [z6, z4])

= S([z1, z5]) + S([z6, z4]) − S([z1, z5] ∪ [z6, z4])

= S([z1, z5]) + S([z6, z4]) − S([z5, z6]) (31)

for a pure state, so that

exp [−I ([z1, z5], [z6, z4])]

∝ 1

Ffbab(η)

(
η

1 − η

1

1 − η

)−ha|b
, (32)

where we have used Eqs. (23), (28), and the exchange sym-
metry between a and b. Thus, the mutual information is a
function only of the cross ratio η, and this is supported by
the data collapse shown in Fig. 5(b), where the numerical
data is again obtained at different times with various values
of z5 and z6. We note in passing that the scaling form of the
entropy S[z5, z6] [illustrated in the inset of Fig. 5(b)] is fully
determined by that of the mutual information in Eq. (32), as
well as those of S([z1, z5]) and S([z6, z4]), as already discussed
in Sec. III A 1.

4. Limits of the four-point function from operator product
expansion (OPE)

Let us examine the limit in which z5 → z1, or z6 → z4, so
that the cross ratio η → 0. In this limit, φf |b(z1) and φb|a(z5),
as well as φa|b(z6) and φb|f (z4), are close to one another, and
it is the following OPE that is needed in Eq. (30) (see Table I),

φf |b(w1)φb|a(w5)

∼ w
−ha|b
15

(
φf |a(w1) + C(1)

f |b|aw
h(1)

f |a−hf |a
15 φ

(1)
f |a(w1) + . . .

)
, (33)

where we have denoted by φ
(1)
f |a(w1) the subleading bcc op-

erator in the f |a channel with a larger scaling dimension
h(1)

f |a > hf |a = hf |b. With this, Ffbab(η) in Eq. (30) reads

Ffbab(η) ∝
(

η

1 − η

)−ha|b(
1 + #η

h(1)
f |a−hf |a

)
, η → 0. (34)

Inserting this equation into Eq. (32), we obtain the mutual
information as a power law function of η,9

I ([z1, z5], [z6, z4])= I (η)≈#η
h(1)

f |a−hf |a + ha|b × η, η → 0.

(35)

9Here (and in all following equations), we use the symbol # to
denote an order one, nonuniversal number.

104305-10



CONFORMAL INVARIANCE AND QUANTUM NONLOCALITY … PHYSICAL REVIEW B 104, 104305 (2021)

When h(1)
f |a − hf |a < 1, the first term is more dominant than

the analytic term of order O(η). From the fit in Fig. 5(b) (see
inset), we find the power law exponent h(1)

f |a − hf |a ≈ 0.9.
Referring again to Fig. 5(b), another limit of interest is

z5 → z6, where η → 1. The following OPE appearing in
Eq. (30) is now relevant (see Table I),

φb|a(w5)φa|b(w6)

∼ w
−2ha|b
56

(
1b|b + C(1)

b|a|bw
h(1)

b|b
56 φ

(1)
b|b(w6) + . . .

)
. (36)

After the two operators on the left hand side fuse, the b.c. is b
on both sides of the new operator, therefore the leading behav-
ior is captured by the identity operator, in addition to which
we also include the subleading operator φ

(1)
b|b, which denotes

the most relevant operator with positive scaling dimension in
the spectrum10 of all possible boundary operators at boundary
condition b, with the scaling dimension being h(1)

b|b = h(1)
a|a. At

the same time, the following OPE channel of the remaining
two operators in the four-point function appearing in Eq. (30)
is relevant in the limit η → 1 [compare Fig. 5(b)],

φb|f (w4)φf |b(w1)

∼ w
−2hf |b
41

(
1b|b + C(1)

b|f |bw
h(1)

b|b
41 φ

(1)
b|b(w1) + . . .

)
. (37)

From these two OPEs, and that h(1)
b|b = h(1)

a|a, we obtain the
following behavior of the four-point function [defined in
Eq. (30)]

Ffbab(η) ∝ 1 + #(1 − η)h(1)
a|a , η → 1. (38)

Using this result and Eq. (32) to compute the mutual informa-
tion, we find

exp [−I ([z1, z5], [z6, z4])]

∝ 1

1 + #(1 − η)h(1)
a|a

(
η

1 − η

1

1 − η

)−ha|b

≈ (1 − η)2ha|b

1 + #(1 − η)h(1)
a|a

, (39)

so that

I ([z1, z5], [z6, z4])

= −2ha|b ln(1 − η) + #(1 − η)h(1)
a|a , η → 1. (40)

The leading term fits well to the data in Fig. 5(b); however,
we cannot reliably extract h(1)

a|a from these data since here
the leading term diverges in this limit while the subleading
term goes to zero. Here we mention that a different way to
determine the same exponent for different b.c.’s of the back-
ground circuit will yield in Eqs. (68) and (69) of Sec. III D 2
the estimate11

10This spectrum of operators is of course not analytically known to
us in the present theory.

11For the reader interested in details, we remark here on a subtlety:
Our CFT could be what is called a “logarithmic CFT” (log-CFT) in
which, roughly speaking, certain power laws are not the pure power
laws which we display in the equations of this paper, but some of the

Note that in the limit where z5 → z6, and thus η → 1, the
regions (intervals) A = [z1, z5] and B = [z6, z4] sit close to
each other, so that S(A ∪ B) → 0, and the mutual information
becomes twice the entanglement entropy of A (or B, which
has equal entanglement entropy). Therefore, Eq. (40) must
recover the result in Eq. (23). Indeed,

lim
z6→z5

I ([z1, z5], [z6, z4])

≈ −2ha|b lim
z6→z5

ln(1 − η)

= −2ha|b lim
z6→z5

ln
w56w14

w16w54

≈ −2ha|b ln

(
∂w
∂z

)
z5
w14

w15w54

≈ −2ha|b ln ξ

= 2S(A). (41)

B. Circuit with boundary conditions afaa—Fig. 2(b)

We briefly discuss the afaa circuit defined in Fig. 2(b).
In this setup, we still evolve from the product state but with
physical qubits injected at the left and right sides of the circuit.
The situation here is entirely similar to the circuit with bound-
ary conditions fffa, discussed in the previous subsection III A,
except that we have moved the corner bcc operators from z1

and z4 “down” to z2 and z3 (compare the insets of Fig. 6 with
those of the previous Fig. 5). Accordingly, we compute the
entanglement entropies and mutual information for regions
that begin at the lower corners of the rectangle at z2 and/or
z3. This amounts to modifying Eq. (23) to

S([z2, z5]) = −ha|b ln

((
∂w
∂z

)
z5
w23

w25w53

)
+ const., (42)

and to a different choice for the cross ratio,

η = w25w63

w26w53
, (43)

where the forms of the mutual information in Eq. (32), as
well as its limits in Eqs. (35) and (40), remain unchanged,
since they are given by the same four-point correlation
functions.

The numerical results are given in Fig. 6, which has similar
interpretations as Fig. 5; in particular, it gives consistent esti-
mations of the scaling dimensions. The data for afaa provide
further evidence for the presence of conformal invariance and
justifies our assumption about the b.c. corresponding to phys-
ical qubits at the left and right sides of the rectangle. We also

same power laws would be in fact multiplied by a logarithm of the
argument of the power law. However, the presence or absence of such
multiplicative logarithms is unlikely to be convincingly identifiable
in numerics. For this reason we will not elaborate in this paper on
the presence of possible logarithms, such as, e.g., those described
in Ref. [54]. In particular, the appearance of the scaling dimension
h(1)

a|a = 2.0 may be related to the situation discussed in this reference.

We plan on coming back to these questions in future work. h(1)
a|a =

2.0.
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FIG. 6. Numerical results for the afaa circuit. (a) Entanglement
entropies, where z5 takes different locations on either the left ([z2, z1])
or the right ([z4, z3]) side of the rectangle. The data collapse follows
Eq. (23). (b) Mutual information for two subregions sitting next to
the corners, with z5 ∈ [z2, z1] and z6 ∈ [z4, z3]. The data collapse
confirms Eq. (32). The limiting behaviors for η → 0 and η → 1
follow Eqs. (35) and (40), respectively.

studied yet another similar circuit with b.c. ffaa with physical
qubits only on the left side, which is again consistent with fffa
and afaa (data not displayed).

C. Circuit with boundary conditions fafa—Fig. 2(c)

We consider the fafa circuit [see Sec. II and Fig. 2(c)],
where the initial state consists of L Bell pairs, so that we have,
as discussed above, two maximally entangled chains of qubits
of length L each, and only one chain is evolved under the cir-
cuit dynamics with open boundary condition (the “system”);
the other chain is left unevolved (the “environment”). We are
interested in the entanglement entropy between the “system”
(living on the upper boundary of the rectangle) and the “en-
vironment” (living on the lower boundary of the rectangle).
We have S([z1, z4]) = S([z2, z3]) which arises physically from
the maximal entanglement of the original Bell pairs [compare
Eqs. (45) and (46) below]. We illustrate the boundary condi-
tions for these computations in Fig. 7, following our general
prescription in Sec. II.

The partition function for the fafa circuit reads [see
Fig. 7(a)]

Zcircuit = 〈φf |a(z1)φa|f (z4)φf |a(z3)φa|f (z2)〉, (44)

FIG. 7. Pictorial representations of the partition functions for
the fafa circuit, with the L-Bell pair initial state. (a) represents the
background circuit, while (b) and (c) represent the partition functions
relevant to computations of the entanglement entropy of [z1, z4] and
[z2, z3], respectively. (d) corresponds to the partition function for the
computation of the entanglement entropy of [z1, z4] ∪ [z2, z3], i.e., all
the physical qubits. We notice the similarity between this figure and
an illustration in Ref. [28].

having the form of a four-point correlation function of bcc
operators at all four corners. For Figs. 7(b) and 7(c), we have

exp[−S([z1, z4])]

= 〈φf |b(z1)φb|f (z4)φf |a(z3)φa|f (z2)〉
〈φf |a(z1)φa|f (z4)φf |a(z3)φa|f (z2)〉

= 〈φf |a(z1)φa|f (z4)φf |b(z3)φb|f (z2)〉
〈φf |a(z1)φa|f (z4)φf |a(z3)φa|f (z2)〉

= exp [−S([z2, z3])], (45)

where we used the exchange symmetry between a and b, as
expected for a pure state, while for Fig. 7(d),

exp [−S([z1, z4] ∪ [z2, z3])]

= 〈φf |b(z1)φb|f (z4)φf |b(z3)φb|f (z2)〉
〈φf |a(z1)φa|f (z4)φf |a(z3)φa|f (z2)〉

= 〈φf |a(z1)φa|f (z4)φf |a(z3)φa|f (z2)〉
〈φf |a(z1)φa|f (z4)φf |a(z3)φa|f (z2)〉

= 1, (46)

again consistent with a pure state.
The computation in Eq. (45) involves a four-point function

whose explicit form we do not know. We can nevertheless
examine the two limits of small and large (relative) circuit
depth, τ → 0 and τ → ∞, as we discuss in the next two
sections. [τ is the aspect ratio of the rectangle defined in
Eq. (6).]

Before diving into the calculations, we notice an important
point, namely the symmetry between the “system,” the upper
edge [z1, z4], and the “environment,” the lower edge [z2, z3] of
the rectangle. Viewed geometrically, the symmetry is merely
a reflection. Viewed as collections of qubits, the two edges
are drastically different: The “system” qubits actually experi-
ence the circuit dynamics, while the “environment” qubits are
merely sitting there. The symmetry between the two edges im-
plies that they have identical average entanglement structures.
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This means that if we take an arbitrary subset of qubits A of
the upper edge [z1, z4] and its counterpart B, i.e., the subset of
the lower edge [z2, z3] which contains precisely the qubits that
are initially Bell entangled with those in A, their entanglement
entropies will have the same expectation value at all times,
despite that they might be described by multipoint functions
in the CFT which we do not know how to compute explicitly.
In particular, this implies that at long times, when the upper
and the lower edges have disentangled with each other, they
will both appear “critical.” This is possible since the qubits in
lower edge [z2, z3], initially unentangled with one another, can
nevertheless have nontrivial entanglement structure due to the
“entanglement swapping” mechanism induced by local mea-
surements performed in upper edge [z1, z4].12 This symmetry
has been checked numerically (data not displayed) and can be
justified in the case of the Hartley entropy in random Haar
circuits with measurements, using heuristic arguments based
on its description by a “minimal cut” optimization problem
in percolation [22] (see also Appendix D for detailed discus-
sions).

1. Bell-pair entanglement entropy at early times

The regime of a shallow depth circuit, τ → 0, is illustrated
in Fig. 8(a). We observe that the τ → 0 limit corresponds to
the m → 1 limit, where m is the parameter for the conformal
mapping [see Eq. (20) of Sec. II C]. The bcc operator at corner
z1 is now very close to that at corner z2 (and the same is the
case for the bcc operators at corners z3 and z4), so that they can
be described by the OPE of these operators, describing their
“fusion,” as illustrated in Fig. 8(a). After mapping to the lower
half complex plane (LHP), the distance between these points
is precisely w12 = w34 = m−1/2 − 1 and vanishes in the limit
m → 1.

We assume the following forms of the OPE to leading order
(see Table I),

φa|f (w2)φf |b(w1) ∼ w
−2hf |a+ha|b
12 φa|b(w1) + . . . (47)

φa|f (w1)φf |a(w2)

∼ w
−2hf |a
12

(
1a|a + w

h(1)
a|a

12 C(1)
a|f |aφ

(1)
a|a(w2) + . . .

)
. (48)

Using these, we obtain Eq. (45) in the limit z1 → z2, z3 → z4

[compare Fig. 8(a)]

exp [−S([z1, z4])]

= 〈φa|f (z2)φf |b(z1)φb|f (z4)φf |a(z3)〉
〈φa|f (z2)φf |a(z1)φa|f (z4)φf |a(z3)〉

∝ w
−2hf |a+ha|b
12 w

−2hf |a+ha|b
34 〈φa|b(w1)φb|a(w4)〉
w

−2hf |a
12 w

−2hf |a
34

∝ w
ha|b
12 w

ha|b
34 〈φa|b(w1)φb|a(w4)〉

∝ (w12w34)ha|b

∝ (m−1/2 − 1)2ha|b , (49)

12For example, a possible such event “swaps” two interchain pairs
for two intrachain pairs (see Fig. 1).

FIG. 8. (a) Pictorial representations of the partition functions
with bcc operators inserted at the corners, with the Bell-pair initial
state, in the limit τ → 0. The relevant OPEs are Eqs. (48) and (47).
(b) Numerical data for S([z1, z4]) = S([z2, z3]), in the limits τ → 0
(main) and τ → ∞ (inset). The data agrees well with calculations in
Eqs. (50) and (63). We see from the data that S([z1, z4]) is smaller
than the predicted value when τ � 10−2. We attribute this deviation
to finite size effects. The entanglement entropy of the system [z1, z4]
is always bounded from above by L ln 2. Thus, the formula must
break down when ha|bπτ−1 > L, or τ < τ0(L) := ha|bπL−1. This
temporal cutoff τ0(L) vanishes in the thermodynamic limit; this trend
is confirmed in Fig. 8(b).

where we used the fact that w14 → 2 (a constant) in that limit.
Using the asymptotic form of τ in Eq. (20), we obtain the
asymptotic behavior m ∼ 1 − 16 exp(− π

2τ
) where the second

term is small as τ → 0. Using this in the previous equation
yields the following asymptotic behavior of the entropy in the
limit τ → 0 of a shallow-depth circuit

exp [−S([z1, z4])]

∝ (m−1/2 − 1)2ha|b

∝ exp
[
− π

2τ

]2ha|b

∝ exp

[
−ha|bπ

τ

]
, (50)

implying

S([z1, z4]) = S([z2, z3]) = ha|bπτ−1, (τ → 0), (51)

a form first obtained numerically in Ref. [27]. The fit in
Fig. 8(b) gives ha|b ≈ 0.53, consistent with estimation of ha|b
in the previous section.
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Alternatively, the asymptotic τ−1 behavior of the entropy
as τ → 0 can be understood in terms of the transfer matrix
formalism. Here we take the spatial direction to be the “di-
rection of propagation” of the transfer matrix and denote the
generator of translations in this direction by Hab. Specifically,
Hab denotes the Hamiltonian of the CFT in question, defined
on an interval of length Y [compare Eq. (6)], with boundary
conditions a and b at the two ends of the interval. The (finite
size) spectrum of energies Eab of the Hamiltonian Hab is
known [55] in any CFT to take on the form

Eab = E0 +
π

(
h( j)

a|b + n
)

Y
. (52)

Here n � 0 is an integer, and h( j)
a|b, where j = 0, 1, 2, . . .,

denotes the spectrum13 of scaling dimensions (in increasing
order) of all possible primary bcc operators that occur when
the boundary condition changes from a to b. The smallest
such scaling dimension corresponding the j = 0, we denoted
previously by ha|b, i.e., ha|b = h( j=0)

a|b . (The quantity E0 can-
cels out in the observables of interest to us and is not needed
in the sequel.)

A special case of the above situation is the case where the
two boundary conditions are the same, a = b. In this case the
(finite size) spectrum takes the form

Ea|a = E0 + π
(
h( j)

a|a + n
)

Y
. (53)

As before, n � 0 is an integer, and h( j)
a|a, with j = 0, 1, 2, . . .

denotes the spectrum of scaling dimensions of all possible
primary bcc operators that occur at a given boundary condi-
tion a. The smallest such scaling dimension corresponding to
j = 0 is the identity operator, i.e., φ

( j=0)
a|a = 1 corresponding

to h( j=0)
a|a = 0.

The partition function of the rectangle is written in the
usual manner in terms of the transfer matrix exp(−Hab × L)
and a state |f 〉 representing the vertical boundary of the rect-
angle [compare Fig. 8(a)] with free boundary condition f , as
the amplitude

Zab = 〈f | exp(−Hab × L)|f 〉. (54)

Upon inserting a complete set of eigenstates, one sees that
in the limit L  Y , both Zab and Zaa are dominated by their
respective lowest energy eigenvalues h( j=0)

a|b = ha|b and n = 0,

as well as h( j=0)
a|a = 0 and n = 0, yielding the following asymp-

totic form of the ratio

Zab

Zaa
∼ exp (−ha|bπL/Y ). (55)

The resulting entanglement entropy thus behaves asymptoti-
cally as [recall from Eq. (6) that τ = Y/L]

S([z1, z4]) = − ln
Zab

Zaa
∼ ha|bπτ−1, (τ → 0). (56)

13Here we choose for simplicity a notation suitable for a discrete
spectrum.

2. Bell-pair entanglement entropy at late times

For a very deep circuit where τ → ∞, corresponding to
w14 → 0 and w23 → 0, we now have the cross ratio

η = w12w34

w24w13
→ 1. (57)

In this limit, to compute four-point correlation functions de-
fined in Eq. (45), we need the vacuum channel OPE in
Eq. (48), where we now include a subleading term,

φf |a(w1)φa|f (w4)

∼ w
−2hf |a
14

(
1f |f + C(1)

f |a|f w
h(1)

f |f
14 φ

(1)
f |f (w1) + . . .

)
(58)

φf |b(w1)φb|f (w4)

∼ w
−2hf |a
14

(
1f |f + C(1)

f |b|f w
h(1)

f |f
14 φ

(1)
f |f (w1) + . . .

)
(59)

where φ
(1)
f |f (w1) denotes the most relevant subleading operator

that does not change this boundary condition (i.e., “which ap-
pears in the f |f channel”). Here, C(1)

f |a|f and C(1)
f |b|f denote OPE

coefficients of the corresponding BCC operators, where14 in

14To phrase this in a more general language, consider the case
where labels A, B, ... take values in a set specifying M differ-
ent boundary conditions of type a, b,..., i.e., A, B ∈ {a, b, ...}.
Permutation symmetry of these M boundary conditions im-
plies, under the condition listed below, the following generalized
form of the OPE considered in Eq. (58): ψf |A(w1)ψA|f (w4) ∼
w

−2hf |A
14 1f |f +C (1)

f |f w
−2hf |A+h(1)

f |f
14 ψ

(1);A
f |f (w4). Under permutations of the M

boundary conditions, the left hand side forms a representation of
the permutation group SM of M objects which is known to decom-
pose into a sum of the totally symmetric one-dimensional and the
(M − 1)-dimensional irreducible representation. This decomposition
is reflected on the right hand side: The set of operators on the right
hand side satisfies

∑M
A=1 ψ

(1);A
f |f = 0 and transforms in the (M − 1)-

dimensional representation. In writing this OPE we have assumed
that the first subleading operator beyond the identity operator is the
operator ψ

(1);A
f |f transforming in the (M − 1) irreducible representa-

tion as opposed to another (singlet) operator, besides the identity
operator, which transforms in the one-dimensional (totally symmet-
ric) representation. We note that the linear dependency condition
immediately implies the following condition for the two point func-
tion 〈ψ (1);a

f |f ψ
(1);a
f |f 〉 + (M − 1)〈ψ (1);a

f |f ψ
(1);b
f |f 〉 = 0 where permutation

symmetry was used. This implies that the generalizations of Eq. (60)
and Eq. (61) below M permutation symmetric boundary conditions
are not equal, which is a necessary condition for obtaining a non-
trivial result in the subsequent equation Eq. (63), which is confirmed
by our numerics. At the same time, had the first subleading operator
in the above OPE been the totally symmetric one-dimensional repre-
sentation, the first subleading terms in Eq. (60) and Eq. (61) would
be equal, in contrast to our numerical results. (Our assumption is
thus confirmed by the numerics.) We can now immediately recover
the formulation presented in Eq. (58) upon specializing to the case
of M = 2 boundary conditions of this type, i.e., A, B ∈ {a, b}: In
this case the linear dependency condition reads ψ

(1);a
f |f + ψ

(1);b
f |f = 0.

Upon making the identifications C (1)
f |f ψ

(1);a
f |f ≡ C (1)

f |a|f φ
(1)
f |f as well as

C (1)
f |f ψ

(1);b
f |f = (−1)C (1)

f |f ψ
(1);a
f |f ≡ C (1)

f |b|f φ
(1)
f |f , we recover Eq. (58) with

C (1)
f |b|f = (−1)C (1)

f |a|f .
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general C(1)
f |a|f �= C(1)

f |b|f . The same OPE in Eq. (58) holds for
φf |a(z3)φa|f (z2) that also appears in Eq. (45).

By using these OPEs, one can express the leading behavior
of the four-point function in Eq. (45) in the limit η → 1, in
terms of the limiting behavior of the following two functions

Ffafb (η) = 〈φf |a(w3)φa|f (w2)φf |b(w1)φb|f (w4)〉
〈φa|f (w2)φf |a(w3)〉〈φf |b(w1)φb|f (w4)〉

= 1 + Cfafb(1 − η)h(1)
f |f , η → 1, (60)

where Cfafb = C(1)
f |a|f C

(1)
f |b|f , and

Ffafa(η) = 〈φf |a(w3)φa|f (w2)φf |a(w1)φa|f (w4)〉
〈φa|f (w2)φf |a(w3)〉〈φf |a(w1)φa|f (w4)〉

= 1 + Cfafa(1 − η)h(1)
f |f , η → 1, (61)

where Cfafa = C(1)
f |a|f C

(1)
f |a|f . Inserting the above results into

Eq. (45), we obtain

exp[−S([z1, z4])] = Ffafb(η)

Ffafa(η)

≈ 1 − (Cfafa − Cfafb )(1 − η)h(1)
f |f ,

× 1 − η → 0. (62)

Since η = 1 − 16 exp(−πτ ) in the limit τ → ∞ [Eq. (20)],
we can show that

S([z1, z4]) ∝ (1 − η)h(1)
f |f ∝ exp

(−h(1)
f |f πτ

)
. (63)

From our fit in Fig. 8(b)(inset), we have the conformal di-
mension h(1)

f |f ≈ 0.41. We note that the exponential decay in
Eq. (63) is understood as a consequence of crossover to a
quasi-one-dimensional system as Y  L, where every cor-
relation function falls off exponentially, with the correlation
length set by L.

D. Circuit with boundary conditions aaaa—Fig. 2(d)

1. Entanglement entropies as two-point functions

As mentioned in Sec. II, the aaaa circuit has physical
qubits on all four edges of the rectangle, therefore the back-
ground partition function of the circuit is defined without
any boundary condition changing operators; see Fig. 2(d).
This is convenient since now the entanglement entropy of a
contiguous subregion is given by a two-point function, which
has a simple form. [Recall that in contrast, for boundary con-
ditions of the rectangle of type fffa and fafa, the entanglement
entropies map to (more complicated) three- or higher-point
functions.] In terms of the conformal mapping, the entan-
glement entropy of an interval [z5, z6] reads for the present
boundary conditions

exp [−S([z5, z6])]

=
(

∂w

∂z

)ha|b

z5

(
∂w

∂z

)ha|b

z6

〈φa|b(w5)φb|a(w6)〉

∝
[(

∂w
∂z

)
z5

(
∂w
∂z

)
z6

(w56)2

]ha|b

, (64)

FIG. 9. Numerical results for the aaaa circuit. (a) Entanglement
entropy fitted to two-point functions according to Eq. (65). Here we
take z5, z6 ∈ [z1, z4] for simplicity. (b) Mutual information fitted to
four-point functions according to Eq. (66). The two intervals are
either both on the same side [z1, z4] or on opposite sides [z1, z4] and
[z2, z3]. The limiting behaviors are given in Eqs. (69) and (71).

hence

S([z5, z6]) = −ha|b ln

[(
∂w
∂y

)
z5

(
∂w
∂y

)
z6

(w12)2

]
+ const. (65)

The computed entanglement entropy and fit to the two-point
function is shown in Fig. 9, where we took ha|b = 0.53.

2. Mutual information as four-point functions

We compute the mutual information of two subregions to
further confirm the conformal symmetry. We take the two
subregions to be the intervals A = [z5, z6] and B = [z7, z8]
which sit at various positions, either both on the upper edge, or
with one on the upper edge and the other on the lower edge of
the rectangle, as shown in the insets of Fig. 9(b). The mutual
information is expressed in terms of the four-point correlation
function of the same bcc operators as

exp [−I ([z5, z6], [z7, z8])]

= 〈φa|b(z5)φb|a(z6)〉〈φa|b(z7)φb|a(z8)〉
〈φa|b(z5)φb|a(z6)φa|b(z7)φb|a(z8)〉

= 〈φa|b(w5)φb|a(w6)〉〈φa|b(w7)φb|a(w8)〉
〈φa|b(w5)φb|a(w6)φa|b(w7)φb|a(w8)〉

≡ 1

Fabab(η)
(66)
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where we used the cross ratio

η ≡ w56w78

w57w68
. (67)

The numerical results are shown in Fig. 9(b), where we find
I ([z5, z6], [z7, z8]) collapses well to a function only of η.

The limiting behaviors in η → 0 and η → 1 can be sim-
ilarly obtained by considering the appropriate OPE, namely
Eq. (36), in a fashion parallel to Sec. III A 4.

(i) Limit z5 → z6, z7 → z8, in which η → 0. Using twice
the OPE in Eq. (36) (once for z5 → z6 and once for z7 → z8),
leads to the following form

Fabab(η → 0) = 1 + #ηh(1)
a|a , (68)

and therefore we obtain, upon making use of Eq. (66),

I ([z5, z6], [z7, z8]) ∝ ηh(1)
a|a , η → 0, (69)

where we extract15h(1)
a|a ≈ 2.0 from the plot in Fig. 9(b), con-

sistent with Ref. [24].16

(ii) Limit z6 → z7, z5 → z8, in which η → 1. Using again
the relevant OPE Eq. (36), we obtain

exp [−I ([z5, z6], [z7, z8])] ∝
( 1−η

η

)2ha|b

1 + #
( 1−η

η

)h(1)
a|a

, (70)

thus

I ([z5, z6], [z7, z8]) ≈ −2ha|b ln (1 − η) + #(1 − η)h(1)
a|a , η → 1

(71)

which has the same form as that in Eq. (40) and the leading
behavior ln(1 − η) dependence is verified in Fig. 9(b).

3. Entanglement dynamics and the absence of entanglement
light cone

As in Sec. III A 2, based on the consistency between the
numerics and CFT calculations, we try to obtain an analytic
understanding of the entanglement dynamics for aaaa us-
ing the conformal mapping. The simplicity of this boundary
condition allows us to compute the entanglement entropy in
an infinitely large system by first taking L → ∞, where the
corners are now unimportant. (Note that, in contrast, for rect-
angles with boundary conditions fffa the corners are always
important because of the bcc operators present.)

In Fig. 10 we show an infinite-length system (L = ∞) with
finite Y ∝ T , i.e., an infinite strip. The conformal mapping
from the infinite strip to the LHP takes the form

w(z) = − exp
[π

Y
z
]
, (72)

15Comments regarding features of logarithmic CFTs (log-CFT),
analogous to those made in footnote 11 of Sec. III A 4, could be made
here. Again, because of the inability to determine the presence of
absence of corresponding logarithms multiplying power laws we do
not elaborate here on these possible features.

16The same numerical value for this exponent was found in the
mutual information for the Hartley entropy for circuits with Haar
unitaries obtained in Ref. [22]. The same comments concerning
logarithms multiplying power laws, as in the previous footnote, can
be made here.

FIG. 10. The conformal mapping from the infinite strip with
finite width Y to the LHP, allowing calculation of entanglement
entropies and mutual information for finite segments. The infinite
strip is obtained by taking the thermodynamic limit (L → ∞) of the
aaaa circuit.

where the upper and lower edge of the strip map to the pos-
itive and negative real axis, respectively. Using this map, the
entanglement entropy of a finite interval A = [z1, z2] now can
be easily computed,

S([z1, z2]) = −ha|b ln

[ (
π
Y

)2

cosh
(

π
Y z12

) − 1

]
+ const.

≈
{

2ha|b ln Y + ha|bπ

Y z12, Y ∝ T � z12

2ha|b ln z12, Y ∝ T  z12.

(73)

Interestingly, at early times we see a ln Y growth in addition to
the volume law of the entropy (due to the maximal entangle-
ment in the initial state) which “purifies” as z12

Y in a similar
fashion as Eq. (50), while at late times the entanglement
entropy crosses over to the familiar logarithmic form. Notice
that 2ha|b has the meaning of the “coefficient of the log,”
found to be approximately 2ha|b ≈ 1.6 ln 2 in Refs. [24,27].
It is immediate from the computation that for two intervals
[z1, z2] and [z3, z4] which sit next to each, i.e., where z2 = z3,
their mutual information dynamics becomes

I ([z1, z2], [z2, z3]) ≈
{

2ha|b ln Y, Y ∝ T � z12, z23

2ha|b ln
( z12z23

z13

)
, Y ∝ T  z12, z23

(74)

where the early time dynamics is reminiscent of the ln Y
growth of bipartite mutual information in Ref. [27].

The dynamics of mutual information of two distant regions
is more interesting in that the two regions can share nonzero
mutual information with infinite speed. Consider again the
setup in Fig. 10, where we take two finite intervals (both
of size 2 in this case), separated by a distance r = 2x, in
an infinite system after a circuit evolution of finitely many
layers, where the qubits are at the y = Y boundary. The mutual
information between these two intervals follows Eq. (69) in
the limit η → 0, that is

I (η) ∼ ηh(1)
a|a , where η = w12w34

w13w24
= sinh2

(
π
Y

)
sinh2

[
π
Y (1 + x)

] . (75)
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It is obvious that I (η) is nonzero for arbitrarily small but
finite values of Y/x, indicating an infinite entangling speed, in
contrast to a finite light speed in a local unitary circuit model,
i.e., one in which random projective measurements are absent.
More generally, it can be shown that there do not exist finite
constants B,C, v such that [18]

I (η) � B exp [−C(x − vT )], for all x and T . (76)

In particular, this inequality is violated by Eq. (75) in the
regime x  vT  1.

The infinite entanglement speed is a direct consequence of
conformal invariance, where time is identified as the vertical
spatial dimension. Intuitively, the long-range correlations at
the critical point are present for an arbitrarily narrow strip
Y � L, or equivalently, for an arbitrarily shallow circuit.
Physically, this is possible since we have introduced local,
unitarity-breaking measurements, leading to an “entangle-
ment swapping” mechanism (see Fig. 1) that survives in a
random many-body system.17

IV. PERIODIC BOUNDARY CONDITION

A. Numerical results

In this section we consider circuits with periodic spatial
b.c., which therefore have cylindrical geometry. This is not
quite as simple as a rectangle, since a finite cylinder is topo-
logically distinct from the LHP, and a conformal mapping to
the latter is not available. Therefore, the dynamics of entan-
glement and mutual information is in general more difficult
to discuss as compared to a circuit of rectangular geometry.
However, several simplifications occur in suitable limits to be
discussed below.

One simplification occurs in the “late time limit,” where the
depth of the circuit is much larger than the number of qubits,
Y ∝ T  L, which is when the qubit chain is already in its
steady state. This limit can be described by a semi-infinite
cylindrical circuit, which in turn can then be mapped to the
LHP via the following conformal map,

z �→ w(z) = tan(πz/L). (77)

This leads to the following form of the entanglement entropy
in the steady state,

S([z1, z2])

= −ha|b ln

[(
∂w
∂z

)
z1

(
∂w
∂z

)
z2

(w12)2

]
+ const., (78)

17We note in passing that in Clifford circuits, the growth of the
stabilizers is necessarily nonlocal and there must be no light cone at
the critical point, in any gauge, as required by the long-range mutual
information; therefore, a hydrodynamic description with local rules
of stabilizer growth cannot be accurate. Natural extension can be
made away from the critical point: With a finite correlation length ξ ,
there will be a maximal velocity as ξ/λt , where λt is the temporal
lattice spacing; this velocity diverges as we approach the critical
point (compare discussion in Sec. V D 2).

FIG. 11. (a) Starting from a product initial state with periodic
spatial b.c., the entanglement entropy in the steady state τ → ∞ is
mapped to a two-point function. (b) Starting from a Bell-pair initial
state with periodic spatial b.c., the entanglement entropy of either
the upper or lower edge is predicted to also have the form SBell =
ha|bπτ−1 in the τ → 0 limit, as in Eq. (81). In the limit τ → ∞, we
fit to SBell = exp(−xp.b.c.(2π )τ ) with xp.b.c. ≈ 0.125, as in Eq. (84).

and the collapse of S([z1, z2]) against ξ = ( ∂w
∂z )z1 ( ∂w

∂z )z2

(w12 )2 is shown
in Fig. 11(a), where we again find ha|b = 0.53.

In the steady state it is also possible to compute the mutual
information of two nonoverlapping intervals, where the OPE
in Eq. (36) is now relevant, and the limiting behavior of I (η)
ends up being the same as that in Eqs. (69) and (71). We again
find the same values of the critical exponents h(1)

a|a = 2.0 and
ha|b = 0.53 (data not shown) that were found in Sec. III D.
The value for both exponents is consistent with that found in
Ref. [24].

Another simplification occurs in the limits Y � L and
Y  L for the Bell entanglement entropy for the L Bell pair
initial state. This is analogous to the corresponding limit of
the rectangular circuit with fafa b.c.’s, discussed in Sec. III C
above, except that the qubit chains now have periodic b.c.’s:

(1) We first consider Y � L, in parallel to Sec. III C.
Using the transfer matrix formalism by treating the spatial
direction as the “direction of propagation” of the transfer
matrix, the partition function for this setup is given by

Zab = Tr exp (−Hab × L), (79)

where the trace accounts for the periodic b.c., and Hab is
the same Hamiltonian as that in Eq. (52) [compare the two
insets of Fig. 11(b)]. As L  Y , Zab is again given by the
ground state energy of Hab. A similar reasoning applies to
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Zaa. Combining these results, we obtain

exp[−SBell] = Zab

Zaa
∼ exp(−ha|bπL/Y ), (80)

thus [recall from Eq. (6) that τ = Y/L]

SBell ∼ ha|bπτ−1, (81)

which is the same result as that in Eq. (50).
(2) As Y  L, we take the temporal direction as the “di-

rection of propagation” of the transfer matrix, with initial and
final states now denoted by |a〉 and |b〉. We have

Zab = 〈a| exp(−Hp.b.c. × Y )|b〉
= e−ε0Y [〈a|0〉〈0|b〉 + 〈a|1〉〈1|b〉e−(ε1−ε0 )Y + . . .] (82)

and similarly

Zaa = 〈a| exp(−Hp.b.c. × Y )|a〉
= e−ε0Y [〈a|0〉〈0|a〉 + 〈a|1〉〈1|a〉e−(ε1−ε0 )Y + . . .] (83)

where Hp.b.c. is the Hamiltonian of the underlying CFT with
periodic b.c.’s., whose excitations energies are known to be
related to scaling dimensions of the bulk CFT. Specifically, we
have denoted by ε0 and ε1 the energies of the lowest and first
excited states |0〉 and |1〉 of Hp.b.c. which have nonvanishing
overlap with both the final and initial states. Due to conformal
symmetry, the so-defined excitation energy has the form ε1 −
ε0 ≡ 2πxp.b.c./L, where xp.b.c. is a critical exponent of the bulk
CFT.18 Therefore we have

SBell = exp (−xp.b.c.(2π )τ ), (84)

where xp.b.c. is a scaling dimension in the bulk Clifford CFT
(i.e. a universal quantity), and which in general will not coin-
cide with boundary scaling dimension h(1)

f |f [discussed, e.g., in
Fig. 8(b)].

The results of the numerical computation of SBell are shown
in Fig. 11(b), where we find ha|b ≈ 0.53 and xp.b.c. ≈ 0.125.

B. Determination of pc and Y/T

Due to the simplicity of the periodic b.c. at late times,
namely the absence of corner operators and therefore the
simple form of Eq. (78), we use this setup for determining pc.
Specifically, we choose pc such that the plot in Fig. 11(a) fits
best to a straight line; this gives us pc = 0.1600 ± 0.0003, as
well as ha|b ≈ 0.53. We further define Y/T [where τ = Y/L =
(Y/T )(T/L)] such that Fig. 11(b) fits best to SBell ≈ ha|bπτ−1

at small τ . This gives us Y/T ≈ 0.61.
pc and Y/T are the only tuning parameters in our fitting

scheme. Once they are obtained from Fig. 11, they are fixed
for all random Clifford circuits in this paper, for which we
have found good data collapse. This confirms our anticipation
that Y/T and pc are b.c.-independent properties of the bulk.

18Here xp.b.c. = h + h̄ = 2h where h = h̄ due to translational in-
variance of the initial and final states. h is the scaling dimension
(conformal weight) of a primary field in the bulk CFT.

V. DISCUSSION AND OUTLOOK

A. Summary

In this paper we presented extensive numerical evi-
dence supporting the presence of conformal symmetry at
the measurement-driven entanglement transition in the ran-
dom Clifford quantum circuit, via identifying entanglement
entropies of the circuit with boundary free energies of the
conformal field theory in the bulk of the circuit in response
to changes of boundary condition. With this identification,
the critical dynamics of entanglement and mutual information
can be understood from analytic computations of correlations
of boundary condition changing (bcc) operators whose func-
tional form is highly constrained by conformal symmetry,
and we verify explicitly the specific constraint forms of these
correlations in our numerics. Moreover, by fitting numerical
results for such correlation function to their functional form
predicted by conformal symmetry, we are able to extract
numerical values for scaling dimensions of several bcc op-
erators for the circuit with several sets of different boundary
conditions and find a remarkable agreement. These results
constitute a consistent characterization of the Clifford CFT
underlying the circuit at criticality.

Crucial to our analysis is the interpretation of the temporal
direction of the circuit as the vertical spatial dimension of the
CFT, which then allows a conformal mapping among circuits
of different aspect ratios of the (space-time) rectangle, relating
dynamics at different time scales. This interpretation of “time”
was implicit or has been anticipated in previous works on the
entanglement transition [22–24,27–29].

Conformal symmetry combined with the standard
Schwarz-Christoffel conformal map gives analytical
control over various finite-size scaling behaviors in the
rectangular geometry of the critical circuit. The circuit depth
T corresponds to the size of the “Euclidean time” coordinate
and thus T or the spatial size L sets the correlation length in
the quasi-one-dimensional geometry of a narrow strip when
τ � 1, or τ  1, respectively, with τ ∝ T/L. This naturally
explains the logarithmic growth of the entanglement entropy
from an initial product state, as well as the purification
dynamics of mixed state [27] (ha|bπτ−1 at small τ , and

e−h(1)
f |f πτ at large τ ). Other interesting scaling behaviors

discussed in this paper can be understood in a similar fashion:
They follow directly from conformal invariance.

An immediate consequence of the “imaginary time” and
criticality is the absence of a light cone in the dynamics
of the entanglement structure of the circuit, as highlighted
by the infinite speed at which two distant finite regions
develop nonzero mutual information (whereas the entire
system is in the thermodynamic limit). This is only pos-
sible in the presence of measurements that break unitarity
of the time evolution, via a mechanism similar to entan-
glement swapping. It is interesting to notice that while
measurements reduce entanglement entropy on average, they
sometimes “trade” short-range entanglement for long-range
entanglement, which then helps stabilizing the volume-law
phase. This provides a view of the volume-law phase com-
plementary to the quantum error correction argument in
Ref. [25].
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Although we have established our results exclusively for
the Clifford circuit, our approach builds upon general princi-
ples such as conformal invariance and reasonable assumptions
about the boundary conditions, without assuming detailed
knowledge of the universality class. Therefore, most of these
conclusions will thus clearly immediately generalize to en-
tanglement dynamics in other hybrid unitary-measurement
circuits for all the Rényi entropies, including the n � 1
Rényi entropies of Haar circuits [29], as well the n = 0
(Hartley) Rényi entropy in the same circuits [22] (see also
Appendix D).

B. Restatement of the central assumptions

In this subsection we restate the central assumptions un-
derlying our work and the underlying logic, which are as
follows:

(1) We assume there is an emergent CFT describing the
two-dimensional space time in the bulk of the circuit at the
entanglement transition. We provide extensive numerical ver-
ification of this assumption in this paper.

(2) Furthermore, we assume that various boundary condi-
tions on the circuit described at microscopic scales in terms
of specific configurations of qubits at the boundary, are de-
scribed at the transition by conformally invariant boundary
conditions (as long as the former does not possess nonlocal
entanglement). This is a general feature of CFT and emerges
ultimately from thinking of such boundary conditions in a
renormalization group picture.

(3) Subsequently, we assume that entanglement properties
(such as Rényi entropies) of the critical circuit are described
by imposition of different boundary conditions which, by item
(ii) above, can be viewed as conformal boundary conditions.
Note that the connection between entanglement entropies
and imposition of different boundary conditions (for bipartite
entanglement properties, different in boundary region A, as
opposed to at its complement) originates from Ref. [40] and
its sequel [29] and does not really require an assumption.
Indeed, by repeating the steps presented in Ref. [29], but now
for the reduced density matrix for the Clifford circuit, one
directly obtains the central relation Eq. (2) between entan-
glement entropies and the ratio of two partition functions of
the circuit, one where different (numerator) and one where
the same (denominator) boundary conditions are imposed on
the circuit in region A and its complement. Physically, as
first stressed in this context in Ref. [40], the (negative) log-
arithm of such a ratio of partition functions corresponds to a
difference of boundary free energies. In other words, entan-
glement entropies of the circuit are described by (differences
of) boundary free energies.

(4) Then, at each point on the boundary where differ-
ent conformal boundary conditions meet (for the bipartite
situation the endpoints of region A), a conformal bound-
ary condition changing (bcc) operator appears. The leading
(lowest scaling dimension) operator appearing at a bound-
ary change is primary in standard CFT, and we make the
(probably weak) assumption that this is also the case in the
(complicated) CFT describing the circuit. (This assumption is
verified numerically in the work presented here.)

(5) Finally, we make important assumptions central to our
work about the nature of boundary conditions which we de-
note by f , a, b, and which are defined (in Sec. II A) at the
microscopic (lattice) scale in terms of specific properties of
qubits and their physical properties. The central objects of
our work are then bcc operators changing between different
such qubit-based boundary conditions, such as, e.g., φf |a or
φa|b, and the entanglement properties described by correlation
functions of several such bcc operators, as detailed in the
main text for many different situations of physical interest.
Assumptions about the nature of these microscopically de-
fined boundary conditions, whose validity we confirm through
numerics, are necessary for the Clifford circuits since, in con-
trast to random Haar circuits, there is no explicit statistical
mechanics model available for the former in terms of which an
explicit microscopic formulation of these boundary conditions
can be formulated.

C. Universality class of the transition and relationship with
critical 2D percolation

The universality class of the transition is an interesting
question. For the measurement-induced transition in Haar ran-
dom circuits with (finite) onsite Hilbert space dimension q,
all nth Rényi entropies with n � 1 are described by a known
statistical mechanics model [28,29] in the bulk of the circuit
(the Rényi entropies with different n � 1 being described
by different boundary observables on the same bulk which
therefore become critical at the same value of the tuning
parameter, the space-time density of measurements p). On the
other hand, the 0th Rényi (Hartley) entropy is described by a
different statistical mechanics model which becomes critical
at a different (higher) value of the density of measurements.

This statistical mechanics model describing all nth Rényi
entropies with n � 1 turns out [28,29] to be exactly solv-
able in the limit of infinite onsite Hilbert space dimension
q → ∞, possessing a critical point in the universality class
of two-dimensional percolation. This limit provides a starting
point for a systematic access to the so-far not analytically
understood generic transition at finite q, which is the infrared
limit of a renormalization group flow out of percolation by a
single relevant perturbation which emerges because [29,40] a
finite onsite Hilbert space dimension q turns out to (explicitly)
break a symmetry that is present when q = ∞. On the other
hand, the 0th Rényi (Hartley) entropy for any onsite Hilbert
space dimension q is described [22] by “minimal cut paths” in
two-dimensional percolation (argued to be described by “first
passage percolation”).

Clifford circuits have only been accessible numerically
but can be studied for very large system sizes. Recently in
Ref. [31], several operator dimensions in Clifford CFT were
found to have numerical values close to their counterparts in
percolation, while recognizing some do not. In a particular
setup, one scaling dimension was extracted by looking at
the early-time purification dynamics of a single “reference
qubit” and further identified with the lowest scaling dimension
of the boundary spin operator at a free boundary in critical
percolation, η‖

2 = 1
3 . We revisit this setup in Appendix B,

where we denote this scaling dimension by h(1)
f |f (defined in

Table I and in Sec. III C) whose value appears to be distinct
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TABLE II. A comparison of operator scaling dimensions between the Clifford CFT and critical percolation. Results of (A) was already
summarized in Table I and reproduced here for comparison. (B) refers to the first-passage percolation description of Hartley entropy (S0) in
random Haar circuits [22] (where the numerical results are obtained in Appendix D), and (C) refers to the percolation description of Sn�1

derived in the limit of infinite onsite Hilbert space dimension (q) in random Haar circuits [29].

Operator scaling dimension (A) Clifford CFT (B) S0 in Haar (percolation) (C) Sn�1 in Haar as q → ∞ (percolation)

ha|ba 0.76 ln(2) ≈ 0.53
√

3
2π

ln(2) ≈ 0.191 [22,56] 1
6 ≈ 0.167 [29]

h(1)
f |a − hf |a 0.9 0.8

h(1)
f |f

b 0.41 1
3 ≈ 0.333 1

3 ≈ 0.333
h(1)

a|a 2.0c 2c [22]
xp.b.c.

d 0.125 5
48 ≈ 0.104 [57] 5

48 ≈ 0.104

aWe adopt the same convention for all three cases, namely always taking the natural logarithm (ln) in defining the entropy, as specified in
Eq. (21). The ln(2) factors for (A) and (B) come from the fact that “qubits” (with local Hilbert space dimension q = 2) are used for constructing
the circuits, both in this paper and in Ref. [22].
bIn general, this quantity is the lowest dimension boundary operator at the f boundary condition [see Eq. (53) in Sec. III C 1)] also denoted
by η‖/2 in Ref. [31]. In 2D percolation the f boundary condition is the free boundary condition of the spins of the Q-state Potts model whose
Q → 1 limit describes percolation. Here, the lowest dimension boundary operator at that free boundary condition is the boundary spin operator,
known to have scaling dimension 1

3 .
cThe appearance of the scaling dimension 2 here might possibly be related to logarithmic features of the underlying CFT [54].
dThe scaling dimension xp.b.c. of the bulk operator was defined in Eq. (83) of Sec. IV A. In 2D critical percolation, it corresponds to the known
scaling dimension 5

48 of the bulk spin operator.

from η‖
2 = 1

3 . A more thorough comparison between Clifford
CFT and critical percolation is summarized in Table II, which
further highlights their differences. It might perhaps be con-
ceivable that the appearance of scaling dimensions observed
in Refs. [31,32] with values close to percolation, could be
due to a possible proximity of a percolation fixed point in a
generalized phase diagram.

D. Outlook

1. Extensions within the current framework

Besides going to even larger systems as mentioned above,
it would be interesting to also extend the current fitting al-
gorithm off the critical point and to extract critical exponents
such as ν and β [31,32]. It is satisfying that the trivial product
state and the L-Bell pair state map to conformal boundary
conditions in the CFT formalism. Exploring other quantum
states (such as a maximally entangled Page state [58], which
has nonlocal entanglement) and attempting to fit them into the
current framework would be an interesting direction.

2. Implications of nonunitary dynamics

The emergence of conformal symmetry in hybrid circuits
is perhaps in itself not surprising given previous numerical
work on Clifford circuits [23,24] as well as analytical results
on Haar circuits [22,28,29]. What is surprising is the way the
time dimension fits in the CFT picture, and the consequences
that emerge from the fact that the real time coordinate ends
up acting as imaginary time. Therefore, this type of hybrid
dynamics is in a class distinct from ordinary unitary dynamics.

Although we have established the imaginary time using
conformal invariance that is only present at the critical point,
one can generate a finite (bulk) correlation length by de-
tuning from the critical point (by letting p �= pc). Certainly,
as long as one remains within the scaling limit where the
correlation length is much larger than the microscopic lattice
scale, the physics is expected to be the standard deformation

to a theory with exponentially decaying correlations. There-
fore, one also expects that real time to still act as imaginary
time. This can be seen explicitly in the 2D statistical me-
chanics lattice model describing Haar unitary circuits with
measurements [29].19 However, since all correlations fall off
exponentially away from the critical point [22,24], it is only
on length scales short compared the correlation length that the
measurement-induced quantum nonlocality and violations of
the Lieb-Robinson bound will be manifest.

Going beyond the current model, it is possible that imagi-
nary time is a general consequence of nonunitarity and might
not be restricted to this family of unitary-measurement cir-
cuits (see, e.g., Ref. [59]). It will be interesting if concrete
examples of criticality in unitarity-breaking dynamics can be
found to confirm this expectation, possibly identifying other
universality classes.

3. Experimental relevance

As addressed in Refs. [24,28,31], the experimental cost of
directly accessing the entanglement transition grows exponen-
tially in the product of system size and circuit depth, since one
has to post select on all the measurement outcomes (which are
intrinsically probabilistic, following Born’s rule) to produce
multiple copies of any wave function in order to measure the
entanglement entropy (see also footnote 1) or to estimate vari-
ances of correlation functions [24]. Our findings in this paper
suggest that the critical behavior is already present at early
stages of the circuit evolution, and one does not have to evolve
the circuit all the way to saturation to measure the entangle-
ment entropy; an early time measurement would suffice. In

19Detuning from criticality only affects the local Boltzmann
weights and thus does not change the fact that physical (real) time
acts as one of two spatial coordinates of the lattice on which the 2D
statistical mechanics model is defined.
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principle, it can slightly alleviate the experimental challenge.
Yet we have not been able to identify a general experimental
protocol that allows efficient access to the transition.

In the special case of Clifford circuits, the quantum state is
a “stabilizer error-correcting code” at all times [42], for which
the two possible post-measurement states resulting from a
Pauli measurement are related to one another via a single
Pauli string operator, that can be efficiently computed given
the knowledge of the stabilizer representation of the state
[43]. Thus, one can fix a choice of all the unitary gates U
and measurement placements X in the circuit, as well as
all the measurement outcomes M, and replicate the stabi-
lizer code state resulting from the hybrid circuit evolution
(U ,X ,M), by simulating the (U ,X ) circuit while “correct-
ing” the “errors”—measurement outcomes that differ from
their counterparts in M—with the application of one “error
correcting” Pauli string operator (mentioned above) imme-
diately after each error occurs. This replication algorithm
runs in polynomial time; therefore, entanglement entropies
can be efficiently measured, at the cost of keeping track of
the time evolution of all the stabilizers (a polynomial-time
and polynomial-space overhead). On the other hand, purity of
“reference qubits” [31], as well as the quantum Fisher infor-
mation [25], might enable indirect access to the transition in
polynomial time on near-term quantum computing platforms
[60–62].
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APPENDIX A: REVIEW OF SOME ELEMENTARY
RESULTS IN CFT

In this Appendix we summarize very briefly a number of
very basic properties pertaining to correlation functions and
the operator product expansion (OPE) of primary fields in
CFT [63]. Notice that in a boundary CFT, only the (say)
holomorphic part of an operator appears, and all correlation
functions below are holomorphic.

(i) Two-point function:

〈φ1(w1)φ2(w2)〉 =
{

c12w
−2h
12 , if h1 = h2 = h.

0, if h1 �= h2.
(A1)

(ii) Three-point function:

〈φ1(w1)φ2(w2)φ3(w3)〉
= c123w

−(h1+h2−h3 )
12 w

−(h2+h3−h1 )
23 w

−(h3+h1−h2 )
13 . (A2)

(iii) Four-point function:

〈φ1(w1)φ2(w2)φ3(w3)φ4(w4)〉 = F (η)
∏
i< j

w
h/3−hi−h j

i j ,

(A3)

where h = ∑
i hi, and η = w12w34

w13w24
is the cross ratio. In the case

when h1 = h4, h2 = h3, it simplifies to

〈φ1(w1)φ2(w2)φ3(w3)φ4(w4)〉 = F̃ (η)w−2h1
14 w

−2h2
23 . (A4)

(iv) Correlation functions are covariant under conformal
mappings [in this case w(z)],

〈φ1(z1) . . . φn(zn)〉

=
[

n∏
j=1

(
∂w

∂z

)
z j

]h j

〈φ1(w1) . . . φn(wn)〉. (A5)

(v) The operator product expansion accounts for the short-
distance behavior of two operators. It usually takes the
following form,

lim
w2→w1

φi(w1)φ j (w2)

∝ (w12)−hi−h j
∑

k

(w12)hkCi jk φk (w1), (A6)

where both sides have the same dimension under global scale
transformations (dilations). The numbers Ci jk are “boundary
OPE coefficients.” The operators φk are usually organized
in increasing order of their scaling dimensions hk . Through-
out the paper we have being using the following shorthand
notation

φi(w1)φ j (w2) ∼ (w12)−hi−h j
∑

k

(w12)hk φk (w1). (A7)

APPENDIX B: PURIFICATION DYNAMICS OF
REFERENCE QUBITS IN THE CLIFFORD CIRCUIT

In this Appendix we consider yet another boundary condi-
tion on the Clifford circuit discussed in the main part of this
paper, which is similar to the circuit introduced in Ref. [31].
The setup is as follows.

(i) One starts with a chain of L qubits in a product state.
(ii) One picks a contiguous segment A containing a num-

ber of |A| qubits from this chain, and entangles each of them
with an extra, additional “reference qubit” with which it forms
a maximally entangled Bell pair. There are therefore |A| Bell
pairs, each containing one “reference qubit” and one “system
qubit,” in addition to the remaining L − |A| “system qubit” of
the original chain of L qubits. In Ref. [31], |A| is always taken
to be unity, |A| = 1.
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FIG. 12. (a) The circuit considered in Appendix B, where the
description is given in the text. This is a generalization of one setup
introduced in Ref. [31]. (b) Collapsing S([z5, z6]) to the cross ratio,
following Eqs. (B1) and (B3). The data is obtained for various z56

and various circuit depths.

(iii) One then evolves the “system,” by which we mean the
original chain of L qubits (i.e., the |A| “system qubits” as well
as the remaining L − |A| qubits of the original chain, but not
the “reference qubits”) with the critical hybrid circuit.20

(iv) The quantity of interest is the entanglement entropy
between “the reference qubits” and “the system,” a quantity
denoted by SQ in Ref. [31].

This circuit is illustrated in Fig. 12(a). Following our con-
ventions in Fig. 2(c), we postulate that there are now |A|
physical qubits living on the lower edge of the rectangle (on
A = [z5, z6] ⊂ [z2, z3]), indicated by solid blue dots, and L
qubits living on the top (on [z1, z4]), also indicated by solid
blue dots, implying the b.c. shown in the same figure. Note
that this is again the b.c. of type fafa [as in Fig. 2(c)], whereas
the entanglement between “the system” and “the reference
qubits” is again given by the difference in free energy between
boundary conditions of types fafb and fafa, completely anal-
ogous to the discussion in Sec. III C. In fact, when |A| = L,

20Note that the case where |A| = L, i.e., where the “system qubits”
are all the L qubits of the original chain, was the fafa circuit previ-
ously discussed in Fig. 2(c) and Sec. III C. In that previous discussion
the “system qubits” were referred to as “the system,” whereas the
“reference qubits” were referred to as “the environment.” The current
situation is thus a generalization of this previously considered setup,
and everything said in this Appendix is a natural extension of the
discussion of that previous discussion in the main text.

this is exactly the circuit discussed in Sec. III C (as already
mentioned in the previous footnote).

Explicitly, S(A = [z5, z6]) is given by

exp[−S(A = [z5, z6])]

= 〈φf |a(z1)φa|f (z4)φf |b(z6)φb|f (z5)〉
〈φf |a(z1)φa|f (z4)φf |a(z6)φa|f (z5)〉

= Ffafb(η)

Ffafa(η)
, (B1)

where the F functions are those defined in Eq. (62), and

η = w15w64

w16w54
(B2)

is the relevant cross ratio. The data collapse of S(A = [z5, z6])
against η, computed by varying z56 and the circuit depth, is
shown in Fig. 12(b). The quality of the collapse supports our
assumption about the b.c., and the behavior of the collapsed
function in the two limits (η → 0 and η → 1) are consistent
with Eqs. (50, 63), namely,

S([z5, z6]) =
{−ha|b ln η, η → 0,

(1 − η)h(1)
f |f , η → 1.

(B3)

In particular, the numerical estimates for the exponents ha|b
and h(1)

f |f , extracted from this analysis, are fully consistent with
those obtained previously for the same exponents in the main
text.

We can now use this result to obtain an analytic under-
standing of the behavior of S(A = [z5, z6]). We focus on the
regime, |A| = z56 � Y � L. In order to simplify the calcula-
tion of η, we adopt a different convention for the conformal
mapping, where

w1 = w(z1) = −m−1/2, (B4)

w2 = w(z2) = −1, (B5)

w3 = w(z3) = +1, (B6)

w4 = w(z4) = +m−1/2. (B7)

This is related to the previous convention defined in Fig. 4 by
a global (“fractional linear”) conformal transformation, under
which η is invariant. We further focus on the case when z5 sits
at the center of the system, where

w5 = w(z5) = 0,

w6 = w(z6) ≈
(

∂w

∂z

)
z5

z56 = K (1 − m)

Y
z56. (B8)

Given z56 � Y � L, the cross ratio can be shown to be [using
Eq. (20)]

1 − η ∝ πz15

Y
,

z56

L
� τ � 1. (B9)

Therefore, at early times,

S([z5, z6]) ∝ (1 − η)h(1)
f |f ∝ Y −h(1)

f |f ∝ T −h(1)
f |f . (B10)

This behavior is directly observed in Fig. 13, where |A| = z56

takes values in {4, 6, 8, 16}, where we find h(1)
f |f = 0.41. In this

particular case, it is preferable to keep z56 small, while going
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FIG. 13. Early time data of S(A = [z5, z6]), with |A| = z56 in {4, 6, 8, 16}. The data matches well with Eq. (B10) at intermediate times
z56 � T � L, which we fit for h(1)

f |f = 0.41. As |A| increases, the allowed time window for fitting to the power law shrinks.

to rather large system sizes, because of the constraint z56 �
Y � L. When Y is comparable to L, the decay is exponential,
as the circuit starts to crossover to a quasi-one-dimensional
system (similar to Sec. III C).21

Extending Eq. (B10) into the volume law phase p < pc in
the late time limit when T  ξ (the correlation length), the
time T should be replaced by ξ . Therefore, Eq. (B10) gives a
steady state value of S([z5, z6]),

lim
T →∞

S([z5, z6]) ∝ ξ
−h(1)

f |f ∝ |p − pc|ν×h(1)
f |f . (B11)

This means that the reference qubit can only purify to a finite
nonzero value when measurements are below the critical rate,
i.e., p < pc. In Ref. [31], h(1)

f |f is identified with η‖
2 , therefore

ν × h(1)
f |f can be identified with β‖, following a standard hy-

perscaling relation β‖ = 1
2 (d − 2 + η‖)ν in d = 2. Therefore,

S([z5, z6]) acquires the meaning of an order parameter.
In Ref. [31], a different value of h(1)

f |f ≈ 0.33 is extracted
from S([z5, z6]) with z56 = 1, for a slightly different location

21Notice that the powerlaw form T −h(1)
f |f in Eq. (B10) does not

depend on Y/T , and therefore should be regarded as an estimation of
h(1)

f |f independent of that in Fig. 12. Off the critical point, there should
still be a time window z56 � T � ξ for which Eq. (B10) applies,
and therefore this estimation of h(1)

f |f is also expected to be insensitive
to the choice of pc. This expectation is numerically confirmed but the
results are not displayed here.

of the transition (pc ≈ 0.1590) and with periodic spatial b.c..
Within our setup, we also find h(1)

f |f ≈ 0.33 to be a reasonable
fit for z56 = 1, but not so for z56 > 1. This is possibly due to
the following subtleties with the one-qubit-purification data:

(i) Statistical error. In a Clifford circuit, all the entangle-
ment entropies (when measured in units of ln 2) are integers,
and when z56 = 1, the entropy S([z5, z6]) jumps discretely
between 1 and 0 in a single realization of disorder of the
circuit. Therefore, one must sample a large number of dis-
order realizations in order to arrive at a good resolution for
the expectation value of the entropy. The smallness of this
quantity at small values of z56 also makes it more susceptible
to satistical fluctuations.

(ii) Effects arising from finite subsystem size. S([z5, z6])
always starts for small circuit depth with the value ln 2, as
given by the number of reference qubits. Numerically, this ini-
tial value is below the predicted form in Eq. (B10), therefore
one must wait for a while (T ∗) before S([z5, z6]) matches on
to Eq. (B10). Before T ∗, the purification will be slower than
predicted, thereby giving a smaller estimation of h(1)

f |f . T ∗ pre-
sumably depends on the details of the model, as well as on z56.

Due to these subtleties, we are hesitant to extract h(1)
f |f from

S([z5, z6]) with z56 = 1, and are instead more comfortable
using values when z56 � 4. These issues, however, should
be resolved with a larger disorder ensemble and even larger
system sizes, but this is beyond the scope of the current
work. Despite these issues, S([z5, z6]) (or SQ) should still be
viewed as an order parameter, which will represent a possible
experimental probe of the transition.
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FIG. 14. The mutual information between A = [z1, z2] and B =
[z3, z4], after all qubits outside A ∪ B are projected out in the final
state of the circuit. For both (a) periodic and (b) open boundary

conditions, we find I ([z1, z2], [z3, z4]) ∝ η
h(1)

f |f as η → 0, where the
value of h(1)

f |f ≈ 0.41 is in excellent agreement with previous results
(see Figs. (8, 12, 13)) and is markedly different from percolation (see
Table II).

Reference [31] also presents results of growth of mutual
information between two disjoint reference qubits. In the
current framework, these would correspond to six- or higher-
point functions, for which the calculations require detailed
knowledge of the CFT (although in certain limits they reduce
to simpler, four-point functions). We have not attempted to
analyze these.

APPENDIX C: THE SCALING DIMENSION h(1)
f |f FROM

LOCALIZABLE ENTANGLEMENT

In this Appendix, we present another method for extracting
the scaling dimension h(1)

f |f , using a quantity called “localizable
entanglement” [64]. In this set up, the circuit initial state
is taken to be a product state, corresponding to the bound-
ary condition f [see e.g. Fig. 2(a)]. In the final state of the
circuit, we choose two disjoint subregions A = [z1, z2] and
B = [z3, z4], and perform a projective measurement on every
qubit outside A ∪ B. The projective measurements create a
product state in A ∪ B, thus also correspond to the boundary

FIG. 15. Minimal cuts for two sets of different boundary con-
ditions. (a) should be compared with the fffa circuit in Fig. 3, and
(b) with the fafa circuit in Fig. 7. The finite time behavior follows
from data collapse in Fig. 16 and calculations in the main text.

condition f , as we posit.22 The boundary conditions are shown
in the insets of Figs. 14(a)and 14(b).

For the circuit with periodic boundary condition, we focus
on the steady state (τ = Y/L  1) and collapse the mutual
information I (A = [z1, z2], B = [z3, z4]) against the cross ra-
tio η, following the conformal mapping in Eq. (77) from the
semi-infinite cylinder to the LHP. The results are shown in
Fig. 14(a). In particular, in the limit of small η, the OPE
channel of two φf |a fields is relevant [see Eq. (58)], and we
expect

I ([z1, z2], [z3, z4]) ∝ η
h(1)

f |f , η → 0. (C1)

From Fig. 14(a), we fit for h(1)
f |f ≈ 0.41, in excellent agreement

with Figs. (8, 12, 13). Recall that in Figs. (8, 12) the estimate
of h(1)

f |f relies on the fitting parameter Y/T , and in Fig. 13
the estimate is restricted to an intermediate time scale. The
method here avoids both issues, and gives us an independent,
consistent estimate of h(1)

f |f , lending strong support that the
Clifford CFT is distinct from percolation (see Table II).

For the circuit with open boundary condition, the mutual
information I (A = [z1, z2], B = [z3, z4]) is again given by the
difference in free energy between boundary conditions of
types fafb and fafa, completely analogous to the discussion
in Sec. III C. In particular, we find, using the OPE in Eq. (58),
that

I ([z1, z2], [z3, z4]) ∝ η
h(1)

f |f , η → 0. (C2)

Fitting for h(1)
f |f in Fig. 14(b), we again find h(1)

f |f ≈ 0.41, con-
sistent with all previous results.

APPENDIX D: PARALLEL RESULTS FOR THE HARTLEY
ENTROPY IN HAAR CIRCUITS FROM MINIMAL CUTS

IN CRITICAL FIRST-PASSAGE PERCOLATION

In this Appendix we apply the same CFT formalism in-
troduced in the main text to the analysis of the Hartley (0th
Rényi) entropy in Haar random unitary circuits with mea-
surements, following Ref. [22]. The goal of this Appendix
is to further justify our conjectures presented in the main
part of this paper for the Clifford hybrid quantum circuits,
by analyzing corresponding setups for the Hartley entropy in

22In the random Haar circuit, it can be shown that projective mea-
surements do indeed create the free boundary condition, following
the mapping in Refs. [28,29].

104305-24



CONFORMAL INVARIANCE AND QUANTUM NONLOCALITY … PHYSICAL REVIEW B 104, 104305 (2021)

FIG. 16. (a), (b) Numerical results of minimal cuts as in the setup
of Fig. 15(a), and should be compared with Fig. 5. (c) Numerical
results as in the setup of Fig. 15(b), and should be compared with
Fig. 8. The extracted scaling dimensions are summarized in Table II.

Haar random hybrid quantum circuits. While the ability to
describe the latter in terms of “minimal cuts” in the theory
of critical percolation has been established [22], here we aim
at showing that various boundary condition setups discussed
in the main text for Clifford circuits can be analyzed in a
completely analogous way for the Hartley entropy in the Haar
circuits, and we obtain corresponding critical exponents for
this case.

We consider two different possibilities for performing the
required “minimal cuts” on the underlying “brickwall” lattice
as illustrated in Fig. 15. In both cases, the lattice geome-
try is that of a rectangular hybrid circuit as in Fig. 2: The
horizontal links are arranged in an even-odd fashion and rep-
resent two-qubit unitary gates, and the vertical links represent
qubit propagation in time, which are interrupted by hollow
circles that break the link, representing the single-qubit mea-

FIG. 17. Numerical results for the Hartley (0-th Rényi) entropy
in Haar random circuits with measurements, in a geometry of the
type of Fig. 15(b), but with periodic spatial b.c. This figure should be
compared with Fig. 11 in the main text.

surements. To make connections with the bond percolation
problem on a square lattice, one can view the lattices in Fig. 15
as obtained from a perfect square lattice, by breaking the
vertical bonds at random (with probability p) and by erasing
every other horizontal bond (i.e., in an alternating but reg-
ular fashion), which could be thought of as eliminating (or
“breaking”) with probability = 1/2 exactly a fraction 1/2 of
all the horizontal bond (a regular version of the process that
is implemented on the vertical bonds in a random fashion at
criticality with the same probability p = 1/2.)23 The “min-
imal cut” is defined to be the path that begins at the point
on the boundary where the two differently colored (red and
blue) boundary segments join (possibly at infinity), and which
crosses a minimal number of unbroken links in the bulk. In
other words, the “minimal cut” path is one which minimizes
the “cost” defined to be number of unbroken links crosses by
the path. The “cost” of the “minimal cut” path is proportional
to the Hartley (0th Rényi) entropy [22]. It is evident from this
setup that the coloring pattern is a crucial input in defining the
minimal cut.

23Notice that the microscopic details of this construction differs
slightly from that in Ref. [22], but can be exactly mapped to the latter
by “shrinking” the two endpoints of each horizontal link (represent-
ing the unitary gate) to a single lattice site, thereby obtaining a square
lattice rotated by 45◦. Details of this construction should not affect
the universal critical properties, as we have verified numerically, but
chose not to display here.
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(i) In the first case [Fig. 15(a)], we label a segment (left) of
the upper edge with red color, and the rest (right) of the upper
edge blue, while the other three edges are uncolored (denoting
“free” b.c.s ‘f ’). In the figure, the minimal cut starts from the
interface between red and blue segments, and can terminate
anywhere on the three uncolored “free” edges. When the
lattice has zero depth, the minimal cut has zero “cost”, and
its “cost” grows as the lattice grows in depth.

(ii) In the second case [Fig. 15(b)], we label the lower edge
blue and the upper edge red, where a cut separating them must
start from the left edge and terminate at the right edge, which
are both “free”. Initially, the minimal cut must go through
all vertical links, so is infinite in the thermodynamic limit;
however, as the circuit grows deeper, the minimal cut path can
make use of broken links in the bulk (of which there will be
more as the depth increases) to lower its “cost.” Therefore the
“cost” of the minimal cut path will decrease monotonically as
the depth increases, and so will the Hartley entropy which this
“cost” respresents.

Recall that the “cost” of the minimal cut path in Fig. 15(a)
exactly describes the Hartley (zeroth Renyi) entropy in a
random Haar circuit (Ref. [22]), where the initial state is
a trivial product state (the situation is exactly like fffa in
Fig. 3(c)); while for Fig. 15(b), the minimal cut is exactly
SBell for the fafa boundary condition (see Fig. 7(b)). The
boundary conditions are also entirely similar: we follow the

same coloring scheme, identifying “blue” with a, “red” with
b, and “uncolored” with f .

From Fig. 15(b), the symmetry between the upper and the
lower edge is evident. As emphasized in Sec. III C, the sym-
metry is only possible due to unitarity-breaking measurements
that induce entanglement swapping (see a similar discussion
in Ref. [65]).

Recognizing that minimal cuts have the meaning of
(Hartley) entanglement entropy, we numerically compute “en-
tanglement entropies” and “mutual information” at the critical
point pc = 0.5 as in Ref. [22], making use of well-known
algorithms for minimal cuts in graph theory [66,67]. The
results are shown in Fig. 16. We also consider similar setups
with periodic boundary condition, where the results are shown
in Fig. 17. In fitting the data, we have taken Y = T for both
open and periodic b.c. (see Sec. II for definitions), due to the
rotational symmetry of the percolation problem.

The extracted scaling dimensions are summarized in Ta-
ble II, and they match well with those from the existing
literature, where available. This further supports our strategy
of extracting scaling dimensions from the Clifford CFT. Com-
paring Clifford and percolation, we notice that the difference
between the corresponding scaling dimensions are small but
discernible under the present framework. We also observe that
the scaling dimensions in the Clifford CFT are consistently
larger than or equal to their percolation counterparts.
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