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Haitian Hao * and Fabio Semperlotti†

School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA

(Received 4 February 2021; revised 21 May 2021; accepted 25 August 2021; published 8 September 2021)

We investigate the dispersion characteristics and the effective properties of acoustic waves propagating in a
one-dimensional duct equipped with periodic thermoacoustic coupling elements. Each coupling element consists
of a classical thermoacoustic regenerator subject to a static spatial temperature gradient. When acoustic waves
pass through the regenerator, thermal-to-acoustic energy conversion takes place and can either amplify or
attenuate the wave, depending on the direction of propagation of the wave. The presence of the spatial gradient
naturally induces a loss of reciprocity. This paper provides a comprehensive theoretical model as well as an
in-depth numerical analysis of the band structure and of the propagation properties of this thermoacoustically
coupled, tunable, one-dimensional metamaterial. Among the most significant findings, it is shown that the
acoustic metamaterial is capable of supporting nonreciprocal thermoacoustic Bloch waves that are associated
with a particular form of unidirectional energy transport. The nonreciprocal nature of the waveguide in the long
wavelength limit is well understood by seeing the waveguide as an acoustic Willis material. The homogenized
material properties following the Willis approach help both the analysis and the interpretation of the waveguide
dynamic behavior in selected frequency ranges. Remarkably, the thermoacoustic coupling also allows achieving
a zero refractive index that ultimately leads to phase-invariant propagating sound waves. This zero-index property
is shown to have very interesting implications to attain acoustic cloaking.
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I. INTRODUCTION

In recent years, the study of acoustic metamaterials has
focused on the possibility of breaking reciprocity and on the
resulting effects on the dispersion and propagation of sound
[1–6]. In conventional acoustic waveguides (e.g., a hollow
duct), sound waves are reciprocally transmitted between two
points of the domain. Exciting the domain at a source A
and measuring its response at a point B would yield the
exact same response than if the source and the observation
point were switched. However, this reciprocal wave trans-
mission mechanism might not always be a desired feature.
There are certain applications such as medical imaging [7]
or telecommunications devices [8] whose performance can
be significantly improved in the presence of unidirectional
sound transmission. For completeness, it is worth mention-
ing that unidirectional propagation has been observed and
studied either in nonreciprocal or topological systems. While,
under certain conditions, the effect of the two systems on the
wave propagation characteristics might be conflated, the two
systems lead to unidirectional propagation by means of very
different mechanisms. Indeed, many topologically nontrivial
systems are still reciprocal in nature [9–12]. Focusing on
nonreciprocity, nonreciprocal waves have been achieved in
a variety of systems that leveraged, as an example, rotating
fluids [1], active materials with spatiotemporal modulation
[2,3], near-zero refractive index materials [13], and materials
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with strong nonlinearities [4–6]. Nonreciprocal propagation
was also observed in thermoacoustically coupled systems con-
sisting of torus-shaped thermoacoustic (TA) engines [14–17].
It was this class of systems that later inspired the design of
TA diodes [18] and TA amplifiers [19]. Despite the long and
distinguished history of the TA science and the more recent
analysis of diodes and amplifiers, the systematic analysis
and in-depth understanding of the dispersion and propagation
properties in periodic TA waveguides have never been under-
taken.

The current paper specifically addresses this latter point
by presenting a comprehensive theoretical and numerical
analysis of the dispersion and propagation properties of
thermoacoustically coupled waves in one-dimensional ducts
embedded with a periodic distribution of regenerators (REGs).
In the following, we will refer to the acoustic waves supported
by this type of waveguide as TA Bloch waves. This specific
type of 1D waveguide can be seen as a form of semiactive
acoustic metamaterial where TA energy conversion occurs
periodically when the fluid passes through the evenlyspaced
regenerators. The semiactive nature of the system is due to
the fact that energy is either provided or extracted from the
acoustic wave as a consequence of the imposed static ther-
mal gradient on the REGs. The REG (also known, in more
traditional TA studies, as the stack) consists of a porous
material specifically designed to facilitate TA energy con-
version. Indeed, from TA principles, it is well-known that
the energy conversion is particularly significant when in the
presence of a spatial temperature gradient imposed on the
REG; a common setup for TA engine applications [20–23].
In the following, we will show that, other than powering
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TA engines, the TA coupling can also be leveraged to ma-
nipulate the propagation of TA Bloch waves and to shape
its dispersion.

One of the most immediate consequences of the peri-
odic exchange of TA energy and of the isothermal condition
imposed on the REGs is the nonconservative nature of the
periodic TA waveguide, which ultimately can lead to either
an effective lossy or amplifying medium. The occurrence of
a specific behavior depends on the direction of propagation
of the wave with respect to the thermal gradient. While ev-
ery natural material includes, to some level, nonconservative
effects (the most immediate in solids being the mechanical
energy dissipation associated with structural damping), these
effects were often deemed negligible, so the early literature
on periodic media and metamaterials had predominantly fo-
cused on the analysis of lossless conservative media. In this
context, the classical dispersion analysis led to a real-valued
band structure (RBS) for all propagating modes. In recent
years, however, the intentional use of nonconservative effects
has started drawing considerable attention and has established
itself as a possible way to further manipulate the wave prop-
agation characteristics of the host medium. Typical examples
consist of metamaterial systems exploiting viscoelastic inserts
[24–26] or dissipative periodic acoustic waveguides [27,28].
For this class of lossy materials, the RBS approach was not
applicable, hence requiring a complex-valued band structure
(CBS) approach [24]. In CBSs, the real part of the solution
characterizes the propagating waves, while the imaginary part
captures either the dissipation or the spatial attenuation of the
waves.

As previously mentioned, in TA systems a significant en-
ergy exchange occurs between the mechanical component
(carried by the acoustic wave) and the thermal component
(produced by the heat source), hence giving rise to non-
conservative behavior. It follows that, as for the example of
viscoelastic metamaterials [24], the analysis of the band struc-
ture in TA periodic systems will also require a CBS approach.
In addition, and differently from viscoleastic metamaterials,
TA periodic systems are also intrinsically nonreciprocal (due
to the presence of the spatial thermal gradient on the REG).
We will show that the CBS is still well equipped to capture
the response of TA periodic systems and that its application al-
lows uncovering the existence of an anomalous unidirectional
energy transport phenomenon. The dispersion calculation will
be followed by an analysis, in the long-wavelength limit, of
the effective properties of the TA unit cell. For this anal-
ysis, we consider the waveguide (in the long-wave limit)
as an acoustic Willis material. The effective density, com-
pressibility, and Willis coupling parameters are calculated,
which justifies the nonreciprocal behavior of the proposed
TA waveguide. The CBS approach also allows calculating the
direction-dependent refractive index, which reveals the ability
of the TA metamaterial to act as a zero refractive index (in
one direction) material. Interestingly, the refractive index and
the bandwidth of the effective zero refractive index can be
tuned by controlling the strength of the thermal gradient. This
result suggests that TA waveguides could open a route to the
development of tunable single (and, possibly, double) zero
acoustic media to achieve, among others, energy squeezing
and cloaking effects.

FIG. 1. (a) Schematic of the unit cell of the periodic thermoa-
coustic waveguide (top), and the section of the waveguide being
modeled (bottom). (b) The mean temperature distribution along the
unit cell. A spatial temperature gradient is imposed on the REG. An
ambient heat exchanger is located at x/L = x3.

Finally, but not less significant, the model approach and
analysis proposed in this paper furthers the understanding of
the amplification and attenuation characteristics of TA waves
in the small-channel limit, which may have significant impli-
cations for the optimal design of TA amplifiers [19] and diodes
[18] and, more in general, for TA engines in traveling wave
configurations.

II. PROBLEM STATEMENT

The system under investigation consists of a one-
dimensional infinite periodic waveguide whose fundamental
unit cell is made of a straight duct and a REG [see Fig. 1(a)].
The REG can be thought of as a stack of short parallel plates
separated by thin pores so, at low frequency, viscous and
thermal conduction losses cannot be neglected. A temperature
spatial gradient is imposed on the REG [Fig. 1(b)] to elevate
the temperature from ambient temperature Tc at one end to the
hot temperature Th at the other end. The hot end of the REG
is followed by a thermal buffer tube (TBT), terminated by an
ambient heat exchanger that allows recovering the reference
ambient temperature Tc = Tref. The resulting temperature dis-
tribution in the unit cell is plotted in Fig. 1(b). Note that the
TBT enables a continuity of temperature at the cell ends, while
also acting as a local scatterer due to the temperature variation
from Tref.

To analyze the system, and without losing generality, we
adopt a plane-wave assumption for the wave propagating in
the 1D duct outside the REG. This same assumption is not
valid for the waves inside the small pores of the REG due to
the thermoviscous effects. Therefore, inside the REG chan-
nels, the solution is developed according to Rott’s TA linear
theory [20,29]:

d p

dx
= − ρ0

1 − fv
(iω)u, (1)

du

dx
= −1 + (γ − 1) fk

γ P0
(iω)p + gu, (2)

where

g = fk − fv
(1 − fv )(1 − Pr)

1

T0

dT0

dx
. (3)

104303-2



BAND STRUCTURE AND EFFECTIVE PROPERTIES OF … PHYSICAL REVIEW B 104, 104303 (2021)

u and p are first-order cross-sectionally averaged parti-
cle velocity and pressure, respectively. ρ0, P0, and T0 are
zeroth-order (mean-state) density, pressure, and temperature,
respectively. γ and Pr are specific heat ratio and Prandtl num-
ber, respectively. fk and fv are complex functions expressed
as

f� = tanh[(1 + i)(h/2)/δ�]

[(1 + i)(h/2)/δ�]
, (4)

where � can take either the subscript of v or k. h is the width
of the straight section. The viscous and thermal penetration
depths are expressed as

δv =
√

2ν/ω, δk =
√

2κ/ω, (5)

where ν and κ are the dynamic viscosity and the thermal
diffusivity, respectively. Note that the thermoviscous coupling
is particularly strong when the characteristic ratio h/2δ� is
small. This latter condition can occur either when in presence
of thin channels (i.e., small h) or of low frequency waves [i.e.,
large δ�, Eq. (5)]. When the thermoviscous effects are neg-
ligible, that is, when fv = fk = 0, the Helmholtz equation is
recovered from Eqs. (1) and (2). Considering the plane-wave
assumption for the wide sections (outside the REG), as well as
the fact that the pores in the REG are identical to each other,
we simplify the modeling by only calculating the acoustic
field in a minimal unit (including a single pore) [16], outlined
by the dashed lines in Fig. 1. The Floquet boundary conditions
are applied to the cell (minimal unit) ends:

u(L) = exp(−ikL)u(0), (6)

p(L) = exp(−ikL)p(0). (7)

Recall that the wave number k is complex-valued for the CBS
analysis.

Mathematically, the CBS could be formulated in three dif-
ferent ways: (1) complex ω (frequency) versus real k (wave
number), (2) real ω versus complex k, and (3) complex ω ver-
sus complex k. However, only the former two representations
are physically significant. The first representation, appropriate
for free wave propagation, considers a complex frequency
ω = Re[ω] + iIm[ω] under a given real wave number k,
where the imaginary part Im[ω] denotes the temporal growth
(Im[ω] < 0) or decay (Im[ω] > 0) of the transient wave. The
complex frequency is especially relevant to TA engines to
describe the transient exponentially growing motion due to
TA instability [30–34]. The imaginary part of ω is also widely
used to represent the decay rate of the free vibration of a
lossy material. The second representation is better suited for
a time-harmonic wave propagation. The imaginary part of the
complex wave number k = Re[k] + iIm[k] allows capturing
either the spatial attenuation or amplification of the time-
harmonic wave at the steady state. In this paper, we adopt this
latter (time-harmonic) description of a CBS in which a forcing
frequency ω is taken as the real independent variable for
the solution of a complex wave number k = Re[k] + iIm[k]
[24,35] to describe either the spatial amplification or attenua-
tion of TA Bloch waves.

The discretization of Eqs. (1) and (2) (for the REG and for
the duct, respectively) combined with the Floquet boundary

TABLE I. Geometrical and material parameters of the TA unit cell.

L[m] hs[mm] hs/h x1 x2 x3

0.5 0.25 0.75 0.1 0.12 0.45

P0[Pa] Tc = Tref [K] ρref [kg/m3] Pr γ

101325 300 1.2 0.72 1.4

μ(T0 )[Pa · s] = 1.98 × 10−5(T0/Tref )0.76

conditions [Eqs. (6) and (7)] yields a generalized eigenvalue
problem,

[A − exp(−ikL)B]

[
p
u

]
= 0, (8)

where A and B are coefficient matrices in which certain
elements are frequency related. The eigenfunction [p, u]T

consists of the discrete distribution of pressure and velocity.
Given the frequency ω, the eigenvalue exp(−ikL) can be
obtained by applying any available eigenvalue solver. The
complex wave number k can then be easily extracted. Re-
peating the process for different values of the frequency ω

spanning a given range leads to the CBS of the system.
Recall that the TA coupling results from the combined

effect of the thermoviscous behavior ( fv �= 0 and fk �= 0) and
of the temperature gradient along the REG (Th �= Tc). For a
better understanding of the TA Bloch waves, we perform a
CBS analysis of the waveguide under three configurations
employing different assumptions: (1) pure acoustics (PA) or,
equivalently, lossless acoustics ( fv = fk = 0, Th = Tc), (2)
thermoviscous acoustics (TVA) ( fv �= 0, fk �= 0, Th = Tc),
and (3) thermoacoustics ( fv �= 0, fk �= 0, Th = 1.5Tc). In all
three cases, both the geometrical and the material properties
are maintained the same, as listed in Table I. Cases (1) and
(2) will serve as a reference to better understand the behav-
ior observed in case (3) that represents the actual TA Bloch
waves. Note that cases (1) and (2) are expected to be recip-
rocal due to the lack of the thermal gradient. In addition, in
case (1) the imaginary part shall be nonzero only in the band
gaps (it will be zero outside a band gap due to the lossless
assumption).

III. RESULTS AND DISCUSSION

Figures 2(a) and 2(b) show the CBS of the periodic sys-
tem under PA and TVA assumptions. Band gaps appear in
Fig. 2(a.1) at the band crossings. Note that the pure acoustic
case [Fig. 2(a)] still assumes slip wall conditions or, equiv-
alently, no thermoviscous losses at the boundaries, but does
not imply a uniform cross-section waveguide. These band
gaps are the result of Bragg scattering occurring at the abrupt
cross-sectional area changes at the REG ends [see Fig. 1(a)
and note hs �= h]. The scattering is particularly strong when
the length of the unit cell is approximately a multiple of
the half wavelength [36]. Im[k] is nonzero in the band gaps,
indicating the presence of evanescent waves. The symmetry
of the CBS also suggests that reciprocity is preserved. This
behavior is clearly not surprising and consistent with the well-
known response of classical nonresonant periodic media with
periodic mechanical impedance mismatch. In the CBS plots,
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FIG. 2. Complex band structure of the unit cell under (a) pure acoustics ( fk = 0, fv = 0 Th = Tc) assumption, and (b) thermoviscous
acoustics ( fk �= 0, fv �= 0 Th = Tc) assumption. Reciprocity is preserved under both assumptions. The vertical axis is the reduced frequency,
where a0 is the ambient sound speed at room temperature Tc, i.e., a0 = √

γ P0/ρref = 343[m/s]. The curves are color coded based on the
direction of the intensity, i.e., sgn(I ), where yellow and blue colors denote sgn(I ) = 1 and sgn(I ) = −1, respectively.

modes are colored by the sign of the cycle-averaged acoustic
intensity. The intensity is expressed as I = 0.5Re[pu], where
the overbar denotes complex conjugate quantities. Remember
that the sign of the acoustic intensity indicates the direction
of the acoustic energy transport. The colors yellow and blue
represent positive and negative intensity, while the green color
denotes a zero intensity (which only appears for evanescent
modes). The band gaps in Fig. 2(a.1) disappear in Fig. 2(b.1)
due to the significant thermoviscous losses in the REG pores.
The symmetrical distribution of k is still preserved in these
configurations [Figs. 2(b.1) and 2(b.2)] because the temper-
ature gradient is not activated. It is worth mentioning that
the viscous and heat-conduction losses break time-reversal
symmetry but do not affect reciprocity. It is also notable that
in Fig. 2(b.2) all nonzero Im[k] correspond to spatial atten-
uation. Considering the exp(−ikL) notation for the Floquet
boundary conditions, a forward-propagating wave (with pos-
itive intensity, yellow) attenuates along x if Im[k] < 0, while
a backward-propagating wave (with negative intensity, blue)
attenuates along −x if Im[k] > 0.

A. Nonreciprocity and Willis coupling

Following the initial assessment of the dispersion behavior
enabled by the CBS approach, Figures 3(a) and 3(b) show
the real and imaginary parts of the CBS (indicated, in the
following, as Re[CBS] and Im[CBS]) of the TA Bloch waves
under TA coupling ( fv �= 0, fk �= 0, Th = 1.5Tc). Focusing
on the Re[CBS], we observe that the band crossing that in
the (reciprocal) thermoviscous case [Fig. 2(b.1)] occurred at
Re[kL] = ±π is now shifted to Re[kL] = −3.07; as a conse-
quence, an opening appears around π in the symmetric half
of the first Brillouin zone (BZ) [see Fig. 3(a.2)]. The shift
of the band crossing is a direct result of non-reciprocal wave
propagation.

Recall that, under the thermoviscous assumptions, either
a forward- or backward-propagating wave [marked in yellow
or blue in Fig. 2(b), respectively] is always associated with
either a negative or positive Im[k], which indicates spatial
attenuation along the direction of propagation of the wave.
Unlike the thermoviscous case, in the TA case the forward-
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FIG. 3. Complex band structure of the unit cell under thermoacoustic ( fk �= 0, fv �= 0 Th = 1.5Tc) assumption. Reciprocity is broken,
indicated by the asymmetric CBS. The star and the square in (a.1) denote two modes at the same frequency with opposite direction of group
velocity, yet the same direction of intensity (same color). The acoustic impedance of these two modes will be plotted in Fig. 7. The inset (a.1.1)
shows that the intensity evolution with frequency is continuous while the abrupt color change is due to the adoption of the sign function. a.u.:
arbitrary unit.

propagating waves can be spatially amplified if Th �= Tc. This
latter condition is indicated by yellow dots with positive Im[k]
in Fig. 3(b). At the same time, the backward-propagating wave
still attenuates along −x, according to the positive Im[k].
Such asymmetric nonconservative behavior (characterized by
either attenuation or amplification) is a distinctive feature of
the nonreciprocal response of TA Bloch waves. The nonre-
ciprocal nature of thermoacoustically coupled devices (not
necessarily periodic) is well documented in the literature. In
finite systems, such as loop-shaped traveling wave engines,
the two counterpropagating modes interfere asymmetrically
(due to the TA coupling occurring in the REG) and cannot
give rise to a standing wave. The resulting wave obtained by
the superposition of the two counterpropagating waves moves
in the direction of the rising temperature profile imposed on
REG [14,15,37]. When applied to periodic structures, the non-
reciprocal nature of the TA coupling has been shown in both
TA diodes [18] and amplifiers [19]. In this paper, our focus
was to formalize the description and behavior of propagat-
ing waves in periodic thermoacoustically coupled waveguides
and to identify potential ranges of anomalous behavior. Our
approach captured the (expected) nonreciprocity by perform-
ing a CBS analysis which highlighted the asymmetry of the
dispersion relations.

A more analytical explanation of the nonreciprocal behav-
ior of the TA waveguide can be established by realizing that
the TA waveguide effectively behaves as a nonreciprocal 1D
Willis material. Considering a general 1D acoustic wave with
Willis coupling, the governing equations are written as [38,39]

d p

dx′ = −iωρeffu − iωηeff p, (9)

du

dx′ = −iωβeff p − iωγeffu, (10)

where ρeff and βeff are effective density and compressibility,
ηeff and γeff are Willis coupling coefficients. These four ef-
fective parameters define the macroscopic characteristics of
a Willis material, whose practical realization often involves
repeating and heterogeneous micro-structures. x′ denotes the
coordinate of the homogenized 1D Willis material. A Willis
material is nonreciprocal if and only if ηeff + γeff �= 0 [38,39].
By considering the infinite TA waveguide as an effective
Willis material, the four parameters can be calculated by [see
Eqs. (9) and (10)]

⎡
⎢⎣

ρeff

βeff

ηeff

γeff

⎤
⎥⎦ = i

ωL

⎡
⎢⎣

〈u1〉 0 〈p1〉 0
0 〈p1〉 0 〈u1〉

〈u2〉 0 〈p2〉 0
0 〈p2〉 0 〈u2〉

⎤
⎥⎦

−1

×

⎡
⎢⎣

p1(L) − p1(0)
u1(L) − u1(0)]
p2(L) − p2(0)
u2(L) − u2(0)]

⎤
⎥⎦, (11)

where subscripts 1 and 2 denote the two eigenmodes extracted
from the solution to the eigenvalue problem, Eq. (8). Also see
the Appendix for more details. 〈〉 denote the spatial average
of the field variables p and u. The spatial derivatives in the
homogeneous Willis material (d♦/dx′) [Eqs. (9) and (10)]
is approximated as the finite difference of the field variables
evaluated at the two ends of the TA unit cell, i.e., d♦/dx′ =
♦(L) − ♦(0)/L, where ♦ takes the role of a field variable,
either p or u.

Figures 4(a)–4(d) present the real (blue, solid) and
imaginary (orange, dashed) parts of ρeff, βeff, ηeff, and γeff,
respectively. The interpretation of the effective properties can
be more easily performed by comparing Eqs. (9) and (10),
which govern the effective Willis material, and Eqs. (1) and
(2), which govern the REGs in the TA waveguide. Clearly,
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FIG. 4. Real (blue, solid) and imaginary (orange, dashed) parts of (a) effective density ρeff, (b) effective compressibility βeff, and (c),
(d) effective Willis coupling coefficients γeff and ηeff of the TA waveguide, in the long-wavelength limit. The thin blue dashed lines in (a) and
(b), shown as references, denote the static density and compressibility of ambient air at room temperature. (e), (f) The real and imaginary parts
of the dispersion relation calculated by the Willis effective model via Eq. (12) (circle), and by the CBS approach (diamond). Note that the
curves calculated by the CBS approach (diamonds) is the same shown in Fig. 3 in the range of (ωL)/(2πa0) ∈ [0, 0.1].

the deviation of the effective properties from their reference
values, which are the corresponding properties of ambient
air at room temperature, is mainly attributed to the TA cou-
pling in the REG. Such coupling is accomplished through the
parameters fv, fk , and g in Eqs. (1) and (2). The difference
between Re[ρeff] and ρref = 1.2[kg/m3] is the result of two
main factors: (1) the temperature dependence of the mean
density ρ0 and (2) the diffusion-induced effect, specifically the
viscous effect, fv . Note that f� is a complex-valued quantity.
The slight difference between Re[βeff] and βref = 1/γ P0 =
7.049 × 10−6[1/Pa] arises only due to the complex valued fk

because we assume γ P0 as temperature-independent quanti-
ties in our model. The complex-valued f� also gives rise to
the imaginary parts of ρeff and βeff. The significant value of
Im[ρeff] suggests that the viscous effect (induced by fv) is par-
ticularly strong in the low frequency. Turning to the analyses
of the Willis coupling parameters ηeff and γeff (remember these
two parameters have the same units), it is easily observable
from Figs. 4(c) and 4(d) that Im[γeff] is significantly larger
than Re[γeff], Re[ηeff], and Im[ηeff], so the latter three quanti-
ties are effectively negligible. From Eqs. (1) and (2), we reach
the following observations: (1) no explicit coupling between
(d p/dx) and iωp appears in the REG, leading to a negligible
ηeff; (2) the coupling term gu contributes to the significant
Im[γeff] because (g/iω) is dominated by its imaginary part in
the long-wavelength limit [when ω is small. See Eqs. (3) and
(4)].

To validate the adopted homogenization method [Eq. (11)],
we calculate the dispersion relation of the effective medium
[40],

keff = ω

2
[ηeff + γeff ±

√
(ηeff − γeff )2 + 4ρeffβeff], (12)

using the effective properties calculated via Eq. (11). The
dispersion relation of the effective Willis material calculated
via Eq. (12) is plotted in Figs. 4(e)–4(f) and compared with
the dispersion of the TA waveguide calculated by the CBS
approach introduced earlier. The agreement between the two
solutions is excellent, hence justifying the assumption that
the TA waveguide can be effectively modeled, in the long-
wavelength limit, as an acoustic Willis material.

From Figs. 4(c) and 4(d), it immediately follows that ηeff +
γeff �= 0 for all frequencies in the displayed range, which sup-
ports the observation from the numerical dispersion analysis
(the CBS approach) that the proposed TA waveguide is non-
reciprocal. This result is indeed in line with previous studies
[38] that have used external actions, such as a fluid flow [1]
or a magnetic field [41], to break reciprocity. In our proposed
waveguide, the external action is provided by the static tem-
perature gradient which affects the acoustic wave by means of
the TA coupling. We merely note that, although the simplified
homogenization approach [Eq. (11)] is sufficient to calcu-
late the effective properties of the effective Willis material,
there exist other more advanced homogenization approaches
specifically developed for elastic and acoustic materials in the
literature. See, for example, Refs. [42–45].

We highlight that the nonreciprocal propagation can be
effectively exploited to achieve an effective one-way sound
transmission in the 1D TA waveguide. Figure 5 shows the
simulated results of a pressure pulse applied at the center of
a finite length waveguides consisting of 30 unit cells. The
propagation of the pulse is studied for the three configura-
tions discussed above, that is, PA, TVA, and TA described in
Sec. II. Clearly, in the PA and TVA cases, the pulse splits in
two equal parts that propagate in opposite directions, hence
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FIG. 5. A pressure pulse is applied in the center of a 30-unit TA periodic waveguide. The pulse splits into two fronts propagating in
opposite directions. The propagation characteristics are studied for the three different cases previously defined, that is pure acoustic (PA),
thermoviscous-acoustic (TVA), and thermoacoustic (TA) assumptions, respectively. In the PA and TVA cases, the two fronts propagate in
opposite directions and the response remains symmetric. The TVA response shows amplitude attenuation due to the thermoviscous losses.
In the TA case, the forward-propagating front is amplified while the backward-propagating one is attenuated due to the TA coupling. The
combined effect results in an effective nonreciprocal, unidirectional sound propagation. The small fluctuations near p = 0 are due to the
intercell reflections. τ indicates time and τ1 = 0.004[s].

maintaining a symmetric and reciprocal behavior. The same
situation occurs for the TVA configuration, however, the two
pulses experience a spatial attenuation due to thermoviscous
losses. The small fluctuations near p = 0 are due to the
intercell reflections. In the TA case, after the initial pulse
separates into two fronts, the forward-propagating front is
spatially amplified while the backward-moving one is atten-
uated. The spatial amplification of acoustic waves relies on
the heat provided to the system at the hot side of REG.
The amplitude of the amplified pulse will eventually reach a
steady state value, balanced by nonlinear saturation [16,46].
It follows that, in the far field, only the forward-propagating
pulse survives while the backward one disappears. This one-
directional, nondecaying propagation may find interesting
applications in long-range acoustic communication [47]. The
spatial amplification of time-harmonic waves in a waveguide
formed by a cascade of several unit cells had been exper-
imentally demonstrated in Refs. [18,19], although without
providing the underlying theoretical framework. We merely
note that the ability of the TA propagating Bloch wave to reach
a consistent value of the wave amplitude in the far field, could
effectively result in an equivalent cloaking behavior. Indeed,
any reduction in the wave amplitude due to back scattering
effects would be recovered, upon propagation, due to the TA
coupling; hence not leaving any detectable trace of scattering
in the far field.

B. Unidirectional energy transport

An inspection of the acoustic intensity associated with
the TA coupled modes in the reduced frequency range
(ωL)/(2πa0) ∈ [0.51, 0.53] reveals that the intensity I of both
modes has the same sign [Fig. 3(a.1)]. Recall that a0 is the
ambient sound speed in air, i.e., a0 = √

γ P0/ρref = 343[m/s].
In other words, the mode labeled with a star marker has
positive group velocity yet negative intensity. This observation
is certainly counterintuitive because in classical wave theory
the group velocity is also understood as the direction of energy
transport. The results suggest that, while a wave packet with
the carrier frequency around (ωL)/(2πa0) = 0.52 propagates
forward as a whole, the energy of the carrier frequency time-
harmonic TA Bloch wave is transmitted along the direction
of the intensity, that is, the −x direction. Similar phenomena
are also observed around the reduced frequency 1.55 and
2.07 [Figs. 3(a.3) and 3(a.4)], where both modes have pos-
itive intensity. The blue and yellow colors in Figs. 2 and 3
indicate the sign of the intensity. Specifically, modes with
sgn(I ) = 1 are colored yellow, while those with sgn(I ) = −1
are colored blue. Therefore, the abrupt color change in the
insets of Fig. 3 is simply an artifact of the sign function
that switches suddenly as the function crosses zero. However,
this does not imply that the evolution of the intensity is not
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FIG. 6. (a) Schematic of a periodic TA waveguide including the REG and the ambient heat exchanger. The color gradient in the REG
indicates the cold (blue) and hot (red) temperature side. The vertical dashed lines represent the separation between consecutive unit cells. The
behavior of the waveguide is explored under either (c) pulse excitation or (d) time-harmonic excitation. (c) A pulse is generated at x/L = 0 and
splits into two fronts. The two fronts, as well as the energy they carry, travel in opposite directions. The front traveling in the direction of the
temperature rise (x/L > 0 region) is amplified, while the front moving in the opposite direction is attenuated, as shown in Fig. 5. (d) A time
harmonic excitation is generated at x/L = 0 and propagates in both directions. However, at selected frequencies [e.g., the one represented by
the star and square markers in Fig. 3(a.1)] both steady-state modes can transport energy unidirectionally toward −x. (b) The cycle-averaged
acoustic intensity I associated with the time-harmonic wave is plotted at different locations along the periodic waveguide [highlighted by
dashed boxes in (a)]. The direction and length of the arrows indicate the direction and log-scale amplitude of the acoustic intensity.

continuous. In fact, near the transition point, the intensity still
continuously varies from a positive value to a negative value,
or vice versa. To build the CBS, we swept the frequency ω

in discrete increments, hence not capturing the exact points
where the intensity crosses zero. To further clarify this point,
we also plot in Fig. 3(a.1.1) the intensity I evaluated at x = 0
in a unit cell near a transition point.

The inconsistency between the group velocity vg, also
dubbed macroscopic energy transport velocity [48], and the
microscopic energy transport velocity vE associated with the
acoustic intensity I in acoustic Bloch waves was examined by
Bradley [48]. Note that vE is proportional to I . For inviscid
acoustic Bloch waves, the signs of vE and vg can differ due to
the portion of energy stored in scattering elements eventually
present on the wave path. In other terms, while the majority
of the energy is transported by the wave in the same direction
of propagation, a small portion of energy is stored in the wave
scatterers. This part of the energy, termed stagnant energy,
is not accounted for in the calculation of the microscopic
energy transport velocity vE . Indeed, the calculation of vE

only considers the portion of energy that is effectively in
transport following the time-harmonic wave. On the other

side, the stagnant energy is considered in the calculation of
vg, which is a measure of the propagating speed of pulses or
wave packets, as well as the energy carried by them. When the
TA effect is taken into account, the discrepancy between vg

and vE is affected by the thermoviscous effect as well as the
TA energy production. Although it is the latter effect which
mainly contributes to the occurrence of opposite signs for vg

and vE (or, equivalently, I).
To further illustrate the characteristics of the energy trans-

ported by time-harmonic waves (at velocity vE ) and by a wave
packet (at velocity vg), we consider a periodic TA waveg-
uide as shown in Fig. 6(a). A pulse initiated at x/L = 0
(and intrinsically composed of many harmonics) will split
into two fronts and travel in both directions, with one front
being amplified and the other being attenuated, as shown in
Fig. 5. The energy carried by each front travels at a speed
vg [the slope of the curves in Fig. 3(a)] associated with these
two fronts as schematically shown in Fig. 6(b). If a time-
harmonic excitation is instead generated at x/L = 0 and at
a selected frequency [represented by either the star or the
square markers shown in Fig. 3(a.1)], the steady-state energy
transfer shows different properties. Although the amplitude
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of the time-harmonic wave increases in the direction of the
rising temperature gradient or, equivalently, decreases in the
opposite direction, the acoustic intensity always has a negative
sign. In other terms, the energy always flows in the negative x
direction. To provide further validation and insights in this un-
expected result, we perform both 2D numerical finite-element
analyses as well as theoretical investigations.

Starting with the numerical analyses, we developed a finite
element model (FEM) (using the commercial software COM-
SOL MULTIPHYSICS) of a TA coupled periodic duct consisting
of ten unit cells. An impedance type boundary condition
was applied at both ends of the periodic assembly to reduce
unwanted reflections. The impedance values were calculated
using our theoretical model [Eq. (8)] for the specific modes se-
lected [indicated by the star and square markers in Fig. 3(a.1)].
A unit amplitude time-harmonic velocity excitation was ap-
plied at x/L = 0. Figure 6(b) shows the acoustic intensity
extracted from the data produced by the finite element model.
The arrow direction and size (plotted in log scale) indicate
the direction and magnitude of the intensity, respectively, at
different locations along the periodic waveguide. It follows
that the wave field on the right- and left-hand sides of the
excitation correspond to the two modes indicated by the star
and square markers in Fig. 3, respectively. Figure 6(d) shows
that, on both sides of the time-harmonic excitation, the cycle-
averaged intensities are negative. On the positive half region
of the x axis (x/L > 0), the energy flows toward the mechan-
ical source placed at x/L = 0 or, equivalently, the mechanical
excitation behaves as an effective energy sink. This counter-
intuitive behavior is a result of the rectifying effect produced
by the periodic distribution of REGs in the waveguide. We
note that the proposed waveguide can be seen as an active
material in the sense that the REGs provide energy to the
acoustic waves. In other terms, the static temperature gradi-
ents applied to the REGs serve as energy sources (mediated by
the TA coupling), hence continuously providing energy to the
waveguide. At certain frequencies [for example, those shown
in Fig. 3(a.1)], the energy provided by the heat source flows
toward the negative x direction. Note also that the direction
(sign) of intensity depends on the phase difference between p
and u, or the PU phase. The expression of intensity can be fur-
ther manipulated to yield I = 0.5Re[pu] = 0.5|p||u|cos(φp −
φu), where |p| and |u|, and φp and φu are the magnitudes
and phases of p and u, respectively. Therefore, a negative
intensity implies the PU phase (φp − φu) ∈ (π/2, 3π/2). The
mechanism by which the REGs affect the PU phase is rather
complex, but well explored in the TA literature (see for ex-
ample, [49,50]). When the TA energy exchange is sufficiently
strong, the direction of the acoustic energy flow (intensity)
induced by solely the mechanical excitation is altered. As a
result, the net intensity is negative, so the mechanical excita-
tion appears as an energy sink. Recall that the arrow length in
Fig. 6 is plotted in log scale. The analysis of the steady-state
time-harmonic TA Bloch wave in the x/L > 0 range leads
to the following conclusion: an oscillation amplitude at a
point in the far field (x/L > 0) larger than the mechanical
excitation amplitude (x/L = 0) does not necessarily indicate
that the TA Bloch wave is spatially amplified. Indeed, in the
x/L > 0 range, the time-harmonic wave is attenuated when
traveling from the far field toward the mechanical excitation.

The mechanical excitation, for the time-harmonic wave in the
x/L > 0 range, behaves as an energy sink.

The above considerations made on the ground of numerical
results were also corroborated by a rigorous derivation of the
relation between vg and I . The derivation is provided here
below.

Evaluating d[p′u + pu′]/dx yields

d

dx
[p′u + pu′] = Eta

= iρ0

1 − fv
(1 + ω

f ′
v

1 − fv
)uu

+ i

γ P0
[1 + (γ − 1) fk + ω(γ − 1) fk

′
]pp

+ 2ωρ0

|1 − fv|2 Im[ fv]u′u + 2ω

γ Pm
(γ − 1)

× Im[ fk]p′ p + gup′ + gu′ p + g′up, (13)

where Eta is the mechanical energy distribution under TA
coupling, the overbar denotes complex conjugate quantities
and the prime denotes ∂/∂ω. Integrating Eq. (13) over the
unit cell and incorporating the Floquet boundary conditions
[Eqs. (6) and (7)] yield

4iL
∂k

∂ω

{
1
4 [p(0)u(0) + u(0)p(0)]

}
exp(2Im[k]L)

= −[p′(0)u(0) + u′(0)p(0)]exp(2Im[k]L−1)+
∫ L

0
Etadx.

(14)

Recall that

vg = ∂ω

∂Re[k]
= 1/Re

[
∂k

∂ω

]
, (15)

I = Re
{

1
4 [p(0)u(0) + u(0)p(0)]

}
. (16)

For propagating pure acoustic waves (Im[k] = 0, fv = fk =
0, and Th = Tc), Eq. (14) becomes

I/vg = 〈E〉 = 1

4L

∫ L

0
(ρ0|u|2 + 1

γ Pm
|p|2)dx, (17)

where 〈E〉 denotes the spatially averaged mechanical energy
along the unit cell. Equation (17) is consistent with the ob-
servation that the intensity of a propagating time-harmonic
acoustic plane wave is always in the same direction as
its group velocity. However, the existence of thermoviscous
losses (nonzero fv and fk) as well as of the temperature
gradient (nonzero g) gives rise to the discrepancy between the
sign of vg and I [Eq. (14)].

To further substantiate the previous finding, we plot the
acoustic impedance distribution z = p/u (which is scale-
independent) along the unit cell for the two modes at
(ωL)/(2πa0) = 0.52 in Fig. 7. The results are compared
with a fully numerical FE solution obtained via COMSOL.
The numerical model represents a single pore, as outlined in
Fig. 1(a), with parameters given in Table I. Similar to the other
numerical FE simulations presented in the earlier part of the
section, the right end of the duct was subject to an impedance
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FIG. 7. Real and imaginary parts of the impedance z = p/u of
the two modes at reduced frequency (ωL)/(2πa0) = 0.52, denoted
by the star and the square in Fig. 3(a.1). Both modes show negative
Re[z], denoting negative intensity I .

boundary condition. The complex-valued impedance was ex-
tracted from our theoretical results. The duct was excited
by applying a unit-amplitude pressure at the left end. The
model was used to calculate the steady-state response and to
extract the impedance distribution along the waveguide. The
results reported in Fig. 7 show very good agreement between
the finite element solution and our theoretical calculations.
Recalling that Re[z] = I/|u|2, the negative Re[z] confirms
the occurrence of negative intensity for both modes, hence
unidirectional energy transport within the frequency range of
(ωL)/(2πa0) ∈ [0.51, 0.53].

C. Unidirectional zero refractive index

In this section, we further explore the wave propagation
characteristics of the TA waveguide by analyzing the refrac-
tive index of the TA Bloch wave. It was discussed above
as the CBS approach allows calculating the complex dis-
persion relation associated with an input frequency ω. The
refractive index is easily obtained by its definition n = k/ω,
where k = Re[k] + iIm[k] is the complex wave number ex-
tracted from the CBS analysis. Due to the nonreciprocity
of the TA waveguide, as shown in Sec. III A, the CBS is
asymmetric, i.e., k1 + k2 �= 0, leading to n1 + n2 �= 0. We will
show that, in selected frequency ranges, the TA waveguide
is capable of zero refractive index in one direction. In zero
index media, acoustic waves can propagate without phase
variation, which in turn can lead to acoustic devices exhibiting
intriguing properties [51,52] such as acoustic cloaking and
energy squeezing [53] and acoustic superlenses [54]. Double
zero properties (i.e., simultaneous zero effective density and
effective compressibility) are typically required for an effi-
cient preservation of both phase and amplitude profiles of
the acoustic wave front when interacting with scatterers or
geometric inhomogeneities. However, also single zero media
(i.e., zero compressibility) have shown to be able to preserve
the phase profile [51,52].

FIG. 8. Real part of the refractive index Re[n] = Re[k]/ω of
the TA waveguide. The design parameters for the TA unit cell are
given by: x1 = 0.485, x2 = 0.515, x3 = 0.545, hs = 0.96[mm] =
5.714h, and Th/Tc = 3.

To clearly illustrate the occurrence of the zero refractive
index, we modify the design parameters for the TA unit
cell to the following values: x1 = 0.485, x2 = 0.515, x3 =
0.545, hs = 0.96[mm] = 5.714h, and Th/Tc = 3. Figure 8
shows the real refractive index in the long-wave limit. It
clearly shows that the lower mode (the Re[n] < 0 branch) has
near-zero index behavior when ω is small, which is indicative
of invariant phase. Note that, in this discussion, we focus on
the propagating characteristics of the TA Bloch wave, which is
reflected by Re[n]. Nevertheless, due to diffusion mechanisms
associated with the TA coupling, the nonconservative behav-
ior may lead to a nonzero Im[n], as an indicator of the spatial
attenuation or amplification of the TA Bloch wave, which will
be further discussed in Sec. III D.

Figure 8 also shows that, as ω → 0, the intensity associated
with both modes become negative (denoted by blue curves
in Fig. 8), which is a sign of unidirectional energy transport.
This aspect has been discussed in detail in Sec. III B. When
occurring in the long-wavelength limit (ω → 0), such unidi-
rectional behavior can also be justified by considering the TA
waveguide as a homogeneous Willis material. From Eqs. (9)
and (10), the phase difference (φp − φu) is expressed as

φp − φu = arg
[ ωρeff

keff − ωηeff

]
= arg

[keff − ωγeff

ωβeff

]
. (18)

Note that the relation d/dx′ → (−ikeff ) is used when de-
riving Eq. (18) from Eqs. (9) and (10). It has been shown
in Sec. III B that a negative intensity implies PU phase
(φp − φu) ∈ (π/2, 3π/2). Using Eq. (18), the PU phase
corresponding to the two modes plotted in Fig. 8 at the re-
duced frequency (ωL)/(2πa0) = 0.003 is evaluated as (φp −
φu) = −1.714[rad/s] (top mode in Fig. 8) and (φp − φu) =
−1.590[rad/s] (bottom mode), respectively, both within the
range of (φp − φu) ∈ (π/2, 3π/2), which is indicative of the
unidirectional energy transport (in the negative x direction).
The consistent observations of the unidirectional energy (in-
tensity) transport developed from both the effective Willis
medium approach and the CBS approach (Fig. 8) again show
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FIG. 9. Phase of pressure along the center line of the designed
waveguide with TA section (solid) and a hollow duct filled with
ambient air as a reference (dashed). The input phase θ is (a) 0,
(b) π/6, and (c) π/3. The shaded region represents the TA section.

the validity of the homogenization approach of the TA waveg-
uide as an effective Willis medium.

Getting back to substantiating the observation of the
occurrence of the zero refractive index, we performed a nu-
merical simulation of the steady-state harmonic response of
the waveguide via finite element modeling. The waveguide
consists of 40 TA unit cells (x/L ∈ [0, 40]) followed by a
homogeneous hollow duct (x/L ∈ [40, 100]) filled with am-
bient air. The hollow duct is 60L long and it is terminated
at x/L = 100 with an impedance boundary condition that
matches the impedance of air (415 [Rayls]) to eliminate re-
flections. The waveguide is excited at x/L = 0 with a pressure
p = exp(iθ ) at frequency f = 17.15[Hz]. Note that this ex-
citation at x/L = 0 is selected to only excite the mode that
exhibits the phase-invariant transition [Fig. 11(b)]. The solid
lines in Fig. 9 show the phase of the pressure field φp(x) =
arg(p(x)) along the center line of the waveguide following
different input phases θ = 0, π/6, and π/3. The shaded area
denotes the section of the waveguide taken by the 40 TA unit
cells. The dashed lines show a baseline phase profile that
would be obtained if the TA section were substituted by a
hollow duct filled with ambient air (that is, the entire 100L
long waveguide would consist of a hollow duct filled with
air). Results clearly show that, under near zero refractive index
conditions, the phase remains invariant within the TA section,
regardless of the input phase.

An important feature of zero-index materials is that pos-
sible defects inside the waveguide do not alter significantly
the phase profile [51,53]. The concept of acoustic cloaking
strongly relies on this feature. To further corroborate the phase

FIG. 10. (a) Schematic of a (top) regular unit cell without defect,
and (bottom) a defected unit cell with a rectangular sound hard
scatterer. (b), (c) Pressure phase distribution along the centerline
[dashed line in (a)] of the 40-cell waveguide under (b) pure acous-
tic, and (c) thermoacoustic assumptions. The blue and red phase is
associated with the regular and the defected waveguide, respectively.
The dashed sections in the red curves denote the location of the ten
defected cells.

invariant characteristic of the proposed TA waveguide and its
insensitivity to internal defects or scatterers, we performed
numerical simulations on an acoustic waveguide composed of
40 unit cells, ten of which included defects. More specifically,
we considered a baseline configuration made of 40 unit cells
without defects (essentially equivalent to the TA waveguide
discussed above), and a second configuration in which ten unit
cells in the middle included a defect. The defect consisted
of a rectangular sound hard scatterer (0.39L long and 0.5h
wide), as shown in Fig. 10(a). The structure was excited at
x/L = 0 with a zero-phase, unit-amplitude pressure that is
p = exp(i0). Impedance matching condition was applied to
the other end of the structure (x/L = 40). The remaining
geometrical parameters and the applied temperature gradi-
ent were unchanged with respect to the results presented
in Fig. 9.

Results are presented in Fig. 10 in terms of phase pro-
file of the pressure field along the centerline [dashed line in
Fig. 10(a)] of the 40-cell structure. Figure 10(b) shows the
pure acoustic case (i.e., without TA coupling) which provides
a reference baseline. The blue and red curves denote the phase
along the regular and the defected waveguide, respectively.
Based on these results, it is seen that, in the region down-
stream of the defects, a 0.26 rad (≈15◦) phase difference �φp

is induced due to the presence of the defects. Contrarily, when
the TA coupling is activated, the shift in phase �φp is reduced
to 0.02 rad (≈1◦), as shown in Fig. 10(c). This drastic reduc-
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tion leads to an overall phase shift that is negligible in practical
applications. We conclude that, as expected based on the pre-
viously discussed effective properties, the TA waveguide is
capable of maintaining an effective invariant phase transition,
a necessary condition for acoustic cloaking. We merely note
that the TA waveguide is incapable of impedance matching,
a key feature of double-zero materials for high transmission
and cloaking [51,53]. An interesting phenomenon can take
place in this class of waveguides thanks to the multiphysics
coupling and to the energy provided to the system by the
thermal sources (at the REG locations). Indeed, it was pre-
viously shown that the wave traveling in the direction of
the rising temperature gradient can be effectively amplified.
We also know that, in TA systems, sound amplification (due
to the underlying TA instability) is balanced by nonlinear
losses, ultimately allowing reaching a steady-state response
[16,20]. It is possible to envision that, under these conditions,
the amplitude decrease in the transmitted wave (due to the
scattering element) can be recovered due to the TA coupling.
This means that, in the far field (downstream of the scattering
section), the response of the two waveguides (i.e., the base-
line and the TA configurations) would be exactly identical
(both in terms of amplitude and phase profile), hence result-
ing in a perfect cloaking of the upstream scatterers. In other
terms, the lack of impedance matching due to the presence of
double-zero effective properties is balanced by the TA growth
mechanism. Note that we did not show a numerical valida-
tion of these results because our model does not integrate
nonlinear losses.

Interestingly, the same phase invariant behavior can be
explored by homogenizing the TA waveguide so it behaves
as an acoustic Willis material. The homogenization approach
follows the discussion in Sec. III A. Dividing ω on both sides,
Eq. (12) yields the expression of the effective refractive index:

neff = 1
2 [ηeff + γeff ±

√
(ηeff − γeff )2 + 4ρeffβeff]. (19)

As a validation, we calculated the spatial phase distribution
φp(x) = arg(p(x)) along a finite-length TA waveguide con-
sisting of 40 unit cells in Fig. 11. In Figs. 11(a) and 11(b),
the waveguide is excited at either the right or the left end
(to excite either a forward- or backward-moving wave) with
a zero phase (θ = 0) at frequency f = 17.15 [Hz]. In each
simulation, the end without excitation was terminated with
an impedance matching boundary condition to eliminate un-
wanted reflections. See the Appendix for more details about
numerical modeling. The specific frequency value was se-
lected in a range that exhibits the phase-invariant transition
phenomenon associated with the mode being excited. The
calculations were conducted via two different approaches:
(1) 2D numerical finite element simulations using COM-
SOL MULTIPHYSICS (blue solid curve) and (2) the effective
model (red dashed curve), described in Eq. (19). The fi-
nite element solution was obtained to serve as a reference
to validate the effective formulation. The effective formu-
lation allowed calculating the spatial phase as φp(x) = θ +
arg[exp(−ineffω(x − x0))], where ω = 2π f is the angular
frequency, x0 is the point of application of the mechani-
cal excitation [i.e., x0 = 40L for Fig. 11(a) and x0 = 0 for
Fig. 11(b)] and neff is the effective refractive index calcu-

lated based on the aforementioned homogenization approach
[Eq. (19)]. We highlight that neff was calculated separately
for the two counterpropagating modes [note the ± sign in
Eq. (19)]. The comparison between Figs. 11(a) and 11(b)
clearly captures the nonreciprocal behavior of the TA waveg-
uide, which is shown by the asymmetric phase distribution
under the two excitations. More importantly, the results from
the two methods are in excellent agreement, hence confirming
the validity of the homogenization approach based on a Willis
material argument. We further note that the classical range of
validity of homogenization, which states L/λ � 1 where λ is
wavelength, is still applicable to the homogenization approach
we adopted.

An additional interesting aspect of this class of 1D acoustic
metamaterials consists of the ability to tune the refractive
index by adjusting the intensity of the temperature gradient.
Figure 8(e) shows that only the lower mode is capable of zero
refractive index in the low-frequency range. Therefore, the
tuning effect of the temperature gradient Th/Tc is illustrated
for this specific mode. Using the regular TA waveguide illus-
trated above, we performed a parametric study by varying the
temperature ratio Th/Tc. The numerical results presented in
Fig. 12 show that as the temperature ratio increases, which
is indicative of a more intense TA coupling, the refractive
index Re[n] decreases. More remarkably, the effective zero
range, that is, the range where Re[n] ≈ 0, is expanded as
Th/Tc increases. When Th/Tc = 3, the refractive index is effec-
tively zero in the reduced frequency range of approximately
[0 ∼ 0.02] where Re[n] is less than 1.5% of nref (Fig. 12
inset). nref is the refractive index of ambient air at Tc, that is,
nref = −1/a0 = −2.915 × 10−3[s/m]. Note that the negative
sign corresponds to the negative intensity of the modes (blue)
shown in Fig. 12. The range of [0 ∼ 0.02] spans ±100% of
the center (reduced) frequency, (ωcL)/(2πa0) = 0.01, which
is also indicative of the significant potential of TA waveguides
to achieve broadband control. This latter characteristic also
stems from the nonresonant nature of the present design. In
Fig. 12, we included the effective refractive index calculated
by Eq. (19) (diamonds) for the Th/Tc = 3 case, which was
extensively studied in Figs. 9–11. Again, excellent agreement
is observed. For clarity, we do not show neff calculated from
Eq. (19) for other Th/Tc values.

Note that Re[n]/nref does not vanish at zero frequency. It is
easily seen from the inset of Fig. 12 that Re[n]/nref crosses
zero at a small but finite ω = ω0 whose value depends on
Th/Tc, if Th/Tc �= 1. The frequency ω0, which is not labeled
explicitly in Fig. 12, indicates the intersection of the red
horizontal axis (Re[n]/nref = 0) with each curve. If ω < ω0,
the effective medium is a negative index medium. Note that
nref = −1/a0 < 0, so Re[n]/nref < 0 denotes Re[n] > 0. Also
note that the intensity has a negative sign (blue), that is,
IRe[n] < 0, which is indicative of a negative index medium
[55]. Nevertheless, ω0 is typically very small but not quite
zero. For practical considerations, we may consider the neigh-
borhood of ω0, including zero frequency, as the frequency
range where the material is capable of zero refractive in-
dex or, equivalently, invariant phase transition. In the case
of Th/Tc = 1, the material does not exhibit a zero refractive
index. Remember that n ≈ 0 is induced by the significant TA
coupling, which is represented by the term gu in Eq. (2). The
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FIG. 11. The spatial phase distribution φp(x) along a finite-length TA waveguide consisting of 40 unit cells. The waveguide is excited either
at the (a) right or (b) left end of the waveguide ito excite either a forward- or backward-moving wave. The phase plots are clearly different
due to the already established nonreciprocal behavior of the waveguide. The asymmetric phase distribution (dashed line) is very well captured
by the proposed effective Willis medium approach as shown by the excellent agreement with the 2D finite element simulation performed via
COMSOL MULTIPHYSICS (solid line).

thermoacoustic coupling (gu) is especially significant in the
low-frequency range [as explained earlier; see also Im[γeff]
in Fig. 4(d)]. However, the gu term vanishes when Th/Tc = 1
[Eq. (3)]. As a result, the deviation of n from nref can still
be seen when Th/Tc = 1 (due to nonzero f�), but no zero
refractive index region exists (see Fig. 12). In the same figure,
we show that the effect of the gu term on n appears even
with a very mild temperature gradient, Th/Tc = 1.1, but the
effect is limited to a very small frequency range where neff

is near zero (see inset). By increasing the frequency, neff

quickly ramps up and reaches a constant value, neff/nref ≈
1.05.

D. Wave amplification and attenuation in small channels

It is widely accepted in thermoacoustics that, when a
temperature gradient is established along a small channel
(small-channel limit, such as those in a REG), the volumetric
velocity is proportionally amplified (attenuated) if the direc-
tion of propagation occurs along (against) the positive (i.e.,
rising) temperature gradient direction [20,56]. This fact can be
expressed by the relation Uh/Uc = Th/Tc, where U and T are
volumetric velocity and temperature, while the subscripts de-
note the hot and cold ends of the small channel. We anticipate
that, thanks to the modeling approach presented in the previ-
ous sections, we will be able to make an important discovery
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FIG. 12. Re[n] normalized by nref, as a function of the reduced
frequency under different temperature gradients, Th/Tc. nref = −1/a0

is the refractive index of ambient air at Tc = Tref = 300[K]. Results
show that the refractive index of the TA waveguide and the band-
width of the zero refractive index can be tuned by controlling the
temperature ratio Th/Tc. The effective refractive index calculated by
the Willis medium dispersion relation [Eq. (12)] is also shown for the
Th/Tc = 3 case.

concerning the ideal limit behavior of the TA response. Indeed
we will show that, unlike the conventional understanding of
the small-channel limit behavior in classical thermoacoustics,
the proportional relation (Uh/Uc = Th/Tc) only holds for the
spatially attenuating TA Bloch wave that propagates against
the temperature rise. The proportional amplification along the
temperature rise does not take place. This very important ob-
servation may have great implications for the optimal design
of TA amplifiers [19].

Figure 3(b) shows that, as ω → 0, one branch of Im[k]L
converges to a finite value, while the other branch converges
to zero. This indicates that one mode propagates with an
amplitude variation (Im[k]L �= 0), while the other mode prop-
agates with an unchanged amplitude (Im[k]L = 0). Whether
the mode subject to amplitude variation undergoes spatial am-
plification or attenuation depends on the propagation direction
of the mode. In the following, we theoretically prove that this
limit behavior is always true and that the branch of Im[k]L
converging to a finite value, proved to be Im[k]L = ln(Th/Tc),
is always associated with a negative intensity, indicative of a
spatial attenuation.

As ω → 0, h/2δ� → 0, fv → [1 − (2/3)(h/2)2(ω/2ν)]
under second-order approximation, hence, neglecting the
higher order terms, Eqs. (1) and (2) can be recast into

d p

dx
= − 3ρ0ν

(h/2)2
u, (20)

du

dx
= − iω

Pm
p + dTm

Tmdx
u. (21)

Considering that the effect of the temperature gradient
overpowers the viscous effect, Eq. (21) becomes

uh = (Th/Tc)uc, (22)

where uh and uc are the cross-sectionally averaged particle
velocities at the REG ends.

Two solutions are possible: (1) uh = uc = 0 and (2)
uh/uc = Th/Tc. Solution (1) is trivial and leads to a constant
pressure p distribution according to Eq. (20) or, equivalently,
Im[k]L = 0. Solution (2), under the long-wavelength assump-
tion (small Re[k]L), leads to u(L)/u(0) = uh/uc = Th/Tc =
exp(Im[k]L). Therefore, Im[k]L = ln(Th/Tc). This conclusion
is also consistent with the classical understanding of TA waves
in the small-channel limit (h/2δ� → 0) [56], which in Swift’s
words is stated as “The volume flow rate is amplified in propor-
tion to the temperature rise (or attenuated in proportion to a
temperature drop).” It is understood, based on the previous
analysis, that as ω → 0 there can be only one wave type
(either the forward- or backward-propagating wave) satisfying
uh/uc = Th/Tc.

In the following, we show that in the small-channel limit
(ω → 0 or, equivalently, h/2δ� → 0) only the ideal propor-
tional attenuation along the temperature drop (associated with
a negative intensity or, equivalently, backward-propagating
wave) is possible.

For the mode satisfying uh/uc = Th/Tc, the velocity distri-
bution in the REG is proportional to T0(x), i.e.,

u(ξ ) = C[aξ + Tc], (23)

where ξ = x − xc, a = (Th − Tc)/(xh − xc), and C is an ar-
bitrary proportional constant. According to Eq. (20), the
pressure p in the REG is expressed as

p(ξ ) = − 3ρ0ν

(h/2)2
C

[
1

2
aξ 2 + Tcξ + (Th + Tc)T c

2a

]
. (24)

Therefore, the intensity at the cold end of the REG (ξ = 0) is

I = 1

2
Re[pu] = −1

2

3ρ0ν

(h/2)2
|C|2 (Th + Tc)T 2

c

2a
< 0. (25)

Note that, in the case of TA amplifiers, it is always de-
sirable to achieve the maximum amplification factor, which
according to classical thermoacoustics is uout/uin = uh/uc =
Th/Tc for a single TA unit [20,56]. Based on the conven-
tional understanding [20,56], this theoretical extreme can be
achieved in the small-channel limit. However, the previous TA
Bloch wave analysis shows that such ideal change of u propor-
tional to the temperature gradient is always accompanied by
a negative intensity I (indicating a spatial attenuation of the
wave along −x). Nevertheless, by careful design, one can still
get close to (although never reach) the ideal amplification of
u along the temperature rise. Figure 13 shows the imaginary
part of the CBS of a TA Bloch wave in the low-frequency
range obtained with another set of parameters: x1 = 0.1, x2 =
0.13, x3 = 0.16, hs = 0.96[mm] = 5.714h. Note that the ra-
tio hs/h = 5.714 > 1 represents a locally enlarged REG. The
parameters were modified with respect to the analysis in
Fig. 3 because, according to Ceperley [56] and Senga and
Hasegawa [19], the higher impedance induced by an enlarged
REG improves the TA energy conversion efficiency, which
is beneficial to the wave amplification in the low-frequency
range. It can be seen that, although the right branch emanating
from Im[k]L=ln(1.5)=0.405 has negative intensity (blue) as
ω → 0, the intensity soon becomes positive (yellow) with
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FIG. 13. Imaginary part of the CBS for the waveguide in TA
configuration under a prescribed set of parameters (see the text).
Results show that the ideal amplification of u along the direction
of the temperature rise (yellow-colored solution with the value of
Im[k]L = ln[Th/Tc] = 0.405 as ω → 0) can be closely approached
but never reached.

increasing ω. In other terms, a forward-moving Bloch wave,
denoted by a positive intensity, is spatially amplified with a
rate that reaches the maximum theoretical amplification rate
Im[k]L ≈ ln(Th/Tc). However, as ω → 0, the intensity asso-
ciated with both modes become negative (denoted by blue
curves in Fig. 13), which is a sign of unidirectional energy
transport. This aspect has been discussed in detail in Sec. III B.

This underlying behavior in the small-channel limit was
not observed before and it might have substantial implications
to guide the optimal design of TA diodes and amplifiers.

IV. CONCLUSIONS

This paper presented an in-depth theoretical and numerical
investigation of the dispersion and propagation characteristics
of Bloch waves occurring in an acoustic periodic waveguide in
the presence of TA coupling. This class of waves was dubbed
TA Bloch waves. The work highlighted several noteworthy
findings concerning the basic physical behavior of this wave
type as well as their potential impact on future applications.
While the static temperature gradient imposed on each REG
led, as expected, to breaking the intrinsic reciprocity of the
waveguide, we provided an in-depth interpretation of the
TA nonreciprocity by showing that the TA waveguide can
be seen as an acoustic Willis medium. The TA Bloch wave
also highlighted several other very intriguing and unexpected
propagation phenomena. Indeed, by leveraging a complex
band-structure approach, we uncovered an anomalous unidi-
rectional energy transport unique to this type of waveguide.
The energy transport was also found to be significantly dif-
ferent depending on the nature of the acoustic wave, that
is, a wave packet or a harmonic wave, potentially resulting
in contrasting directions for the transfer of macroscopic and
microscopic energy.

Also remarkable was the ability of the TA waveguide to
act as a broadband, tunable, effective zero refractive index
material. In selected frequency ranges, the waveguide was
shown to achieve zero effective refractive index. In addition,
the refractive index could be tuned by simply controlling the
intensity of the temperature gradient. The zero-index nature
of the TA waveguide was shown to enable phase invariance
of the pressure field within the TA waveguide, hence showing
potential for application of efficient energy transmission and
acoustic cloaking devices. Also very remarkable was the im-
proved understanding of the TA amplification and attenuation

effects in the small-channel limit. Specifically, the finding that
the amplifying mode can never achieve the theoretical limit
could have a significant impact on the optimal design of TA
diodes or amplifiers.

APPENDIX: ADDITIONAL REMARKS
ON NUMERICAL SIMULATIONS

In this paper, we adopted two main models: (1) a quasi-1D
analytical model used to formulate an eigenvalue problem
[Eq. (8)] solved via finite difference method and (2) a fi-
nite element model implemented via the commercial software
COMSOL Multiphyscis.

The first model was presented in Sec. II, including the key
steps that eventually led to a generalized eigenvalue problem,
Eq. (8). The formulation of Eq. (8) was established based
on the discretization of the governing equations, including
Eqs. (1) and (2) that govern the TA waves in the REG chan-
nels, and the Helmholtz equation that governs the plane waves
outside of the REG. The unit cell was discretized so p and
u were arranged on a staggered grid to apply central finite
differences; a commonly used numerical treatment in ther-
moacoustics (see, for example, Fig. 3 in Ref. [31]). Note that
the frequency ω is absorbed in the two coefficient matrices
A and B. Clearly, when ω is entered as a known parameter,
the eigenvalue problem has the eigenvalue exp(−ikL) and
the eigenfunction [p, u]T. Knowing both A and B, Eq. (8)
can be solved with any commercially available eigenvalue
package, such as that in MATLAB. With any input ω, the
solution includes two eigenvalues or, equivalently two k’s,
and two eigenfunctions [p, u]T. This approach allowed us to
calculate the CBS (Figs. 2 and 3), as well as the effective
Willis properties (Fig. 11) using the eigenfunctions.

In the finite element models, the geometry of a TA waveg-
uide was created first. The geometry of a unit cell is depicted
in Fig. 1(a) (bottom). In each unit cell, the fluid channel within
REG is surrounded by walls on which nonslip, isothermal
boundary conditions are assigned to capture the diffusion pro-
cess (of temperature and velocity) in the transverse direction.
Other walls are assigned slip, adiabatic boundary conditions
to impose the lossless plane-wave assumption. At the two
ends of a finite waveguide, different boundary conditions are
applied. For example, in the time-dependent transient analysis
shown in Fig. 5, the boundary conditions at both ends of the
waveguide are irrelevant since we halted the simulation before
the waves were reflected by the boundaries. However, in the
frequency-dependent steady-state analyses (Figs. 9–11), we
applied a harmonic pressure excitation on either side of the
finite-length waveguide, depending on the target mode we
intended to excite. On the nonexcitation side, an impedance
matching boundary conditions was applied. The impedance
matching boundary condition was set up by assigning a value
as the normal impedance of the boundary to the termination
of the computational domain. This value can be either ex-
tracted from our theoretical modeling using z = p/u, where
both p and u are available from Eq. (8), or from the iterative
evaluation of the impedance at the interface of two in-domain
unit cells. Note that for an infinite periodic waveguide, the
impedance at any interface of two connecting cells should be
identical. Therefore, to effectively truncate the computational
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domain for a finite periodic waveguide, this impedance value
was also assigned to the boundary. The static temperature
profile [Fig. 1(b)] was assigned as a base (zeroth order) tem-
perature in COMSOL, which (1) defines the distribution of
the temperature-dependent material properties (sound speed
and viscosity) along the waveguide and (2) activates the
convective derivative u · ∇T0 in the heat equation, where u

is the particle velocity vector and ∇ denotes gradient. This
convective term, which eventually leads to the gu term upon
1D simplification [29], is the key contributor to almost all
anomalous phenomena connected to the TA coupling. Finally,
but not less important, the mesh in the REG channels was
refined so the transverse diffusion, which is crucial to TA
coupling, was effectively resolved.
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