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The Anderson transition driven by non-Hermitian (NH) disorder has been extensively studied in recent years.
In this paper, we present in-depth transfer matrix analyses of the Anderson transition in three NH systems, NH
Anderson, U(1), and Peierls models in three-dimensional systems. The first model belongs to NH class AI†,
whereas the second and the third ones to NH class A. We first argue a general validity of the transfer matrix
analysis in NH systems, and clarify the symmetry properties of the Lyapunov exponents, scattering (S) matrix
and two-terminal conductance in these NH models. The unitarity of the S matrix is violated in NH systems,
where the two-terminal conductance can take arbitrarily large values. Nonetheless, we show that the transposition
symmetry of a Hamiltonian leads to the symmetric nature of the S matrix as well as the reciprocal symmetries of
the Lyapunov exponents and conductance in certain ways in these NH models. Using the transfer matrix method,
we construct a phase diagram of the NH Anderson model for various complex single-particle energy E . At E = 0,
the phase diagram as well as critical properties become completely symmetric with respect to an exchange of real
and imaginary parts of on-site NH random potentials. We show that the symmetric nature at E = 0 is a general
feature for any NH bipartite-lattice models with the on-site NH random potentials. Finite size scaling data are
fitted by polynomial functions, from which we determine the critical exponent ν at different single-particle
energies and system parameters of the NH models. We conclude that the critical exponents of the NH class AI†

and the NH class A are ν = 1.19 ± 0.01 and ν = 1.00 ± 0.04, respectively. In the NH models, a distribution of
the two-terminal conductance is not Gaussian. Instead, it contains small fractions of huge conductance values,
which come from rare-event states with huge transmissions amplified by on-site NH disorders. Nonetheless, a
geometric mean of the conductance enables the finite-size scaling analysis. We show that the critical exponents
obtained from the conductance analysis are consistent with those from the localization length in these three
NH models.

DOI: 10.1103/PhysRevB.104.104203

I. INTRODUCTION

During the last several years, physics community wit-
nessed tremendous revivals of research interests on non-
Hermitian (NH) quantum physics. Nontrivial topological band
theories have been introduced in NH systems, including the
breakdown of the bulk-boundary correspondence and the
emergence of new topological invariants [1–13], enriched
topological classifications according to symmetries [14,15],
and NH skin effects [16–19]. NH quantum phenomena occur
not only in condensed matter systems, but also in pho-
tonic systems [20–32] and ultracold atoms [33–35]. Many
of NH quantum systems have quenched disorders by their
own generic nature. Canonical examples of this is random
lasers in a region of random dissipation and amplifica-
tion [36–38], nonequilibrium open systems with gain and/or
loss[39–43], and correlated quantum many-particle systems of
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quasiparticles with finite lifetime [44,45]. Nonetheless, the
Anderson transition [46] in the NH quantum systems has been
poorly studied in higher spatial dimension [47–52], in spite
of the quarter century history since the Hatano-Nelson’s pi-
oneering work of the one-dimensional (1D) Anderson model
[53,54]. Hatano and Nelson introduced the non-Hermiticity
through asymmetric hopping terms in the 1D Anderson
model. Recent works focused on the effect of on-site complex-
valued random potentials in Anderson and U(1) models in
the two and three dimensions [48–52]. A positive imaginary
part of the on-site potential gives a gain of a wave function
amplitude in time, while a negative value of the imaginary part
of the potential gives a loss of the wave function amplitude.
Such complex-valued random potentials can be experimen-
tally implemented by random dissipation and amplification of
light waves in random lasers [36–38].

There are three major shortcomings in the previous studies
of the Anderson transition in the NH quantum systems. First
of all, all the studies so far [50,52] are based on eigenenergy
level statistics [55–57], which suffers from an ambiguity of
how to set a window for the single-particle energy. The level
statistics analysis sets a finite width of the energy window
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over which a dimensionless quantity associated with the level
statistics is averaged. Thus, when using a finite-size scal-
ing analysis in favor for the universal critical exponent, the
analysis with a nonlinear polynomial fitting assumes that any
fitting parameters in a universal function for the dimension-
less quantity have no variations within the energy window.
Nonetheless, the parameters in the universal function include
not only the universal critical exponent but also nonuniversal
critical quantities such as critical disorder strength. These
nonuniversal quantities are continuous functions of the en-
ergy. Thus, the energy window must be sufficiently narrow,
such that all the single-particle states within the window could
share the same values of these nonuniversal quantities. To take
sufficient amount of the level statistics with such a narrow
window, one needs to diagonalize single-particle Hamiltonian
with many different disorder realizations. This often meets
an upper limit from computational resources. Large statistical
errors due to limited number of samples together with the
systematic errors due to finite energy window make it hard
for the precise investigation of the Anderson transition in NH
quantum systems.

Eigenvalues of the NH systems are distributed in the com-
plex Euler plane, except for a system with a special symmetry,
such as PT symmetry [58]. Thereby, the complex plane
can possibly host a novel phase diagram structure, which
has no counterpart in the Hermitian physics. To uncover
such unique NH quantum physics, one needs to clarify how
critical nature of single-particle states varies as a function
of their complex-valued eigenenergy. It is also unclear how
the known universality classes of the Anderson transition in
the Hermitian case cross over to new universality classes in the
non-Hermitian case [59]. To clarify this, one needs to study
precisely how the critical properties change as a function of
the system parameters.

The two-terminal conductance is one of the best physical
quantities that characterize the Anderson transition in the
experimental NH systems mentioned above. Nonetheless, it
is unknown how the conductance as well as the localization
length behaves in localized, delocalized phases and at the
critical point in the NH disordered systems. To know them,
one needs a transfer matrix analyses of the conductance in
the NH systems. In the NH systems, however, a symplectic
structure of the transfer matrix is absent and so is the unitarity
of a scattering matrix. Besides, the presence of the reciprocal
symmetries of the conductance and Lyapunov exponents is
not clear in the NH quantum systems. In fact, the reciprocal
symmetry is completely absent in some NH systems such as
in the 1D Hatano-Nelson model, while it exists in other NH
systems in some ways.

In order to solve these shortcomings in theory of NH
quantum systems, we carry out comprehensive transfer matrix
analyses of localization length and conductance in the three-
dimensional (3D) NH Anderson, U(1), and Peierls models.
Here we list the major findings in this paper as follows:

(i) The critical exponents of the NH Anderson, U(1),
and Peierls models are accurately determined. The results
unambiguously conclude that the critical exponent of the
NH class-AI† (Anderson) is ν = 1.19 ± 0.01 and the critical

exponent of the NH class A [U(1) and Peierls] is ν = 1.00 ±
0.04. These high precision estimates enable us to distinguish
the NH class A and NH class AI†, which was impossible for
the previous level statistics study [52]. This supports a strong
relation between the universality classes of the Anderson
transition and symmetry classification in the NH disordered
systems. More importantly, they are distinctly different from
the critical exponents in the corresponding universality classes
in the Hermitian limit; ν = 1.572 ± 0.003 in the orthogonal
class [60] (Hermitian class AI) and ν = 1.443 ± 0.003 in
unitary class (Hermitian class A) [61,62].

(ii) Critical properties at different single-particle energy
E and system parameters are clarified in the NH Ander-
son model. This gives phase diagrams in a two-dimensional
plane subtended by the disorder strength of the real part
of the on-site random potential (Wr) and that of the imagi-
nary part (Wi). Especially at the zero single-particle energy
(E = 0), the phase diagram as well as the critical properties
across the phase boundary becomes completely symmetric
with respect to an exchange of Wr and Wi; Fig. 1(a). The
symmetric structure at E = 0 is a generic feature in any NH
bipartite-lattice models with the on-site NH random poten-
tials. Based on the results, we propose a renormalization group
(RG) flow diagram in the two-dimensional plane at E = 0;
Fig. 1(b). At E �= 0, the symmetry of the phase diagram and
the critical properties is absent; see the RG flow diagram
in Fig. 1(c).

(iii) The validity of the transfer matrix analyses in these
3D NH models as well as the 1D Hatano-Nelson model is clar-
ified and demonstrated numerically. The presence or absence
of the reciprocal symmetries in Lyapunov exponents and con-
ductance are clarified in the three NH models. Based on a
physically reasonable definition of the two-terminal conduc-
tance, we show numerically that a conductance distribution is
not Gaussian, but it contains small numbers of extremely large
conductance values due to rare events of strong amplifications
by the NH disorders. We also demonstrate that the geometric
mean of the conductance enables a feasible finite-size scaling
(FSS) analysis and the results from the FSS analysis give the
critical exponents consistent with those values by the localiza-
tion length.

The organization of this paper is as follows. In Sec. II,
we introduce the three NH models and argue the validity
of the transfer matrix analyses. We show the presence or
absence of the reciprocal symmetries in the Lyapunov expo-
nents and two-terminal conductance. In Sec. III, we clarify
the critical properties of the Anderson transition at different
single-particle energies and system parameters in the NH
Anderson models together with an accurate estimate of the
critical exponent of the NH class AI†. In Sec. IV, we clarify
the critical properties of the Anderson transition in two NH
class A models, i.e., U(1) and Peierls models, together with
an estimate of the critical exponent of the NH class A. In
Sec. V, we compare the transfer matrix analyses with the level
statistics analyses [50,52] and describe a possible reason for
a discrepancy of the critical exponent of the NH class AI†

between the two analyses. Section VI is devoted to summary
and concluding remarks.
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FIG. 1. (a) E = 0 phase diagram of the NH Anderson model determined by the localization length, (b) E = 0 and (c) E �= 0 renormaliza-
tion group (RG) flow diagram for the NH Anderson model, where Wr and Wi are the disorder strength for the real and imaginary parts of the
complex-valued on-site random potentials, respectively. In (b) and (c), the red curves with arrows stand for the RG flow, the green dots for
fixed points (FP) of the RG flow, and the blue line is a phase boundary between delocalized and localized phases. Note that the phase boundary
and the RG flow is completely symmetric about a Wr = Wi line in (a) and (b). We also note that E �= 0 in (c) means that E is real.

II. NUMERICAL METHOD

We study the following tight-binding models defined on a
3D cubic lattice,

H =
∑

i

εic
†
i ci +

∑
〈i, j〉

e2π iθi, j c†
i c j ≡

∑
i, j

c†
i (H)i, jc j, (1)

where c†
i (ci) is the creation (annihilation) operator. i and

j specify the cubic lattice site; i = (ix, iy, iz ) and iμ =
1, 2, . . . , Lμ (μ = x, y, z). The models have Hermitian hop-
pings between nearest-neighbor sites in the cubic lattice;
〈i, j〉 means that i and j are the nearest-neighbor sites with
θi, j = −θ j,i. The model is the Anderson model for θi, j = 0
and the U(1) model with a random number θi, j in a range of
[0, 1) [61,63]. When θi, j = � ix for j = i + ez, the model is
the Peierls model [64,65], where 2π� is a magnetic gauge
flux that penetrates through every square plaquette in the
z-x plane of the cubic lattice. In this paper, we study the
Anderson transition driven by random complex on-site po-
tentials, εi = wr

i + i wi
i with the imaginary unit i, where wr

i
and wi

i are independent random numbers with the uniform
distribution in a range of [−Wr/2,Wr/2] and [−Wi/2,Wi/2],
respectively. Hence H† �= H, where the nonzero wr

i and wi
i

bring about the non-Hermiticity in the system. According to
the symmetry classification, the Anderson model (θi, j = 0)
belongs to 3D NH class AI† and the U(1) and Peierls models
(θi, j �= 0) belong to 3D NH class A. The time-reversal sym-
metry (TRS) is broken (H∗ �= H) in both classes, whereas the
transposition symmetry (HT = H), namely TRS†, holds true
in the class AI†[15,66]. We note that not only a parameter
region of Wi = 0 but also a parameter region of Wr = 0 and
E = 0 belong to the Hermitian universality class in these three
NH models (Sec. III).

Transfer matrix method are widely used both in the
Hermitian [67–70] and non-Hermitian [71–83] systems. In
order to study the Anderson transition of eigenstates of H with
a complex-valued eigenenergy E , the quasi-1D localization
length (Lyapunov exponent) and two-terminal conductance in
cubic systems are evaluated by the transfer matrix method at

the energy E for different system sizes. The quantities are
further analyzed by the finite size scaling, which determines
the critical properties of the Anderson transition in the NH
systems. Although the transfer matrix method has been widely
used in the non-Hermitian optical systems during last several
decades, the transfer matrix analysis on the Anderson tran-
sitions in non-Hermitian systems has not been carried out
prior to this work. Thus, we first clarify the nature of the
Lyapunov exponent and the two-terminal conductance in the
NH systems studied in this paper as well as pseudo-Hermitian
systems.

A. Transfer matrix method

In the transfer matrix method, the 3D Lx × Ly × Lz(= N )
cubic lattice is regarded as a multiple-layer structure of its
two-dimensional (2D) slices, where the 2D slice is in the
x-y plane of the cubic lattice and the slices are stacked along z.
An eigenvalue problem of the N × N disordered NH Hamil-
tonian reduces to a set of linear equations relating the wave
function on the adjacent slices. The equation takes a form of
a matrix multiplication of a transfer matrix that connects the
wave functions on the adjacent slices [67–70,84,85],

(
ψiz+1

Viz+1,izψiz

)
= Miz

(
ψiz

Viz,iz−1ψiz−1

)
, (2)

where ψiz is the wave function on the slice at position iz. Miz
is the transfer matrix defined by

Miz =
(

V −1
iz,iz+1(E − Hiz ) −V −1

iz,iz+1

Viz+1,iz 0

)
, (3)

Viz+1,iz is a hopping term matrix between the slice at iz + 1
and that at iz. In Eq. (1), Viz+1,iz is a LxLy by LxLy diagonal
matrix whose diagonal elements have the unit modulus. Note
that for NH U(1) model, we use local gauge transformation
to eliminate the phase of the hopping along z direction. Hiz
consists of a hopping term and diagonal term within the
slice at iz. In Eq. (1), the diagonal elements of Hiz are the
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complex-valued on-site potentials, and off-diagonal elements
are the nearest-neighbor hoppings within the slice. The local-
ization length and two-terminal conductance are calculated
along z with either periodic boundary conditions (PBC) or
open boundary conditions (OBC) in the transverse direction,
x and y.

1. Localization length

We consider transmission of particles of a complex-valued
energy E through long disordered wire (Lx, Ly � Lz) with
a square cross section Lx = Ly = L. For the long wire, the
amplitude of the transmission decays exponentially with
an associated decay length called the quasi-1D localization
length λ. To calculate λ, we consider a product of the transfer
matrix over the layer from iz = 1 to iz = Lz. The product
relates the wave functions at iz = 0, 1 and those at iz =
Lz, Lz + 1,

M =
Lz∏

iz=1

Miz . (4)

For the product of random matrices such as Miz , some eigen-
values of the product decay exponentially in Lz, while the
others grow exponentially in Lz. The simultaneous appearance
of the eigenvalues with the exponential decay and growth
represents a reciprocal symmetry nature of the 3D NH sys-
tems [86]. The reciprocal symmetry in the NH Anderson
model is protected by the transposition symmetry HT = H
in each disorder realization, while it is not the case in the
NH U(1) and Peierls models. Nonetheless, the reciprocal
symmetry in the latter two models appears asymptotically in
the thermodynamic limit Lz → ∞, where the transposition
symmetry (Hermitian symmetry) is effectively restored after
an average over iz from iz = 0 to iz = Lz; the transposition
symmetry (Hermitian symmetry) exists statistically in the NH
U(1) (Peierls) models.

The amplitude part of the complex-valued eigenvalue of
M with the slowest exponentially decay (growth) defines the
quasi-1D localization length of the system with the long-wire
geometry. To extract this length, it is convenient to con-
sider a positive-semi-definite Hermitian matrix MM†, and its
logarithm,

	 = ln MM†. (5)

When H is Hermitian, 	 satisfies the Oseledec’s theorem
[87,88]. The theorem dictates that in the limit of large Lz,
eigenvalues of 	/Lz obtained from the product of random
matrices Miz (iz = 1, . . . , Lz) converges to nonrandom num-
bers. Any matrix product of n × n complex-valued matrices
is equivalent to 2n × 2n real-valued matrices, because a prod-
uct of two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2

can be regarded as a matrix product of two real-valued 2
by 2 matrices x1τ0 + iy1τy and x2τ0 + iy2τy. Thereby, 	/Lz

obtained from the non-Hermitian random H also satisfies the
Oseledec’s theorem [89]. According to the theorem, eigen-
values of 	 decrease (increase) linearly in the large Lz.
The Lyapunov exponents γi are defined by the eigenvalues

of 	, νi,

γi ≡ νi

2Lz
(6)

for i = 1, 2, . . . , 2LxLy.
In the NH Anderson model, the positive Lyapunov expo-

nents and negative Lyapunov exponents appear in pairs,

{. . . , γ3, γ2, γ1,−γ1,−γ2,−γ3, . . .},
with . . . > γ2 > γ1 > 0 > −γ1 > . . . because of the transpo-
sition symmetry of the transfer matrix;

σyMT
iz σy = M−1

iz
, (7)

for any iz. The symmetry relates a pair of the two eigenvalues
{νi,−νi} in any finite Lz through σy(MM†)Tσy = (MM†)−1.
In the NH U(1) model, the transpositional symmetry holds
between Miz from H and Miz from HT;

σyMT
iz (H)σy = M−1

iz
(HT). (8)

Thus, the positive (negative) Lyapunov exponents from H
and the negative (positive) Lyapunov exponents from HT are
related to each other;

{. . . , γ3, γ2, γ1,−γ ′
1,−γ ′

2,−γ ′
3, . . .}

from H with . . . > γ2 > γ1 > 0 > −γ ′
1 > . . . and

{. . . , γ ′
3, γ

′
2, γ

′
1,−γ1,−γ2,−γ3, . . .}

from HT with . . . > γ ′
2 > γ ′

1 > 0 > −γ1 > . . . . Since H and
HT appear with an equal probability in the NH U(1) model,
γi = γ ′

i holds true in the thermodynamic limit (Lz → ∞). The
same holds true in the NH Peierls model, in which H and
H† appear with an equal probability. Finally, the reciprocal of
the smallest positive Lyapunov exponent γ1 is nothing but the
quasi-1D localization length

λ = 1/γ1 = 2Lz/ν1. (9)

To check the stability of the estimate of the Lyapunov
exponents in the NH systems by the transfer matrix method,
we estimate the Lyapunov exponents with finite Lz in repeated
simulations with the same parameters with an independent
stream of random numbers. In practice, the Lyapunov ex-
ponents are calculated by QR decomposition [70] instead
of by diagonalizing the matrix 	. Figure 2 shows distri-
butions of the Lyapunov exponents in the NH Anderson
and U(1) models as well as 1D Hatano-Nelson model [53].
The distributions are always Gaussian, indicating the sta-
bility of the evaluations of the Lyapunov exponents from
the transfer matrix method. Moreover, the standard devia-
tion of the Gaussian distribution becomes smaller with larger
Lz [Fig. 2(a)], which indicates that Lyapunov exponent will
converge to a constant in the large Lz limit. The Lyapunov
exponents in the NH Anderson model come in pair pro-
tected by symmetry. In the NH U(1) and Peierls models,
the smallest positive Lyapunov exponent and the largest neg-
ative Lyapunov exponent are consistent with each other in
sufficiently large Lz [Fig. 2(d)]. On the one hand, they are
distinct from each other even in the large Lz in the 1D Hatano-
Nelson model [Fig. 2(e)], where both Hermitian symmetry
and transposition symmetry are broken even statistically. In
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FIG. 2. Histograms of the Lyapunov exponent γ̃ estimated from finite Lz. For [(a)–(c)], γ̃ stands for the the smallest positive Lyapunov
exponent. For [(d),(e)], 〈γ̃ 〉+ is the smallest positive Lyapunov exponent and 〈γ̃ 〉− is the largest negative Lyapunov exponent. (a) NH Anderson
model with Wr = Wi = 6.2, [(b),(d)] NH U(1) model with Wr = Wi = 7. The data of [(a),(b),(d)] come from 6400 realizations of disordered
systems with independent random number with Lx = Ly = L = 10 and Lz = 105 [also Lz = 104 in (a)] at E = 0. [(c),(e)] 1D Hatano-Nelson
model with g = 0.1 and W = 4, 64 000 realizations of disordered systems with Lz = 105 at E = 0. The red curves in [(a)–(c)] are the Gaussian
fittings.

the 1D Hatano-Nelson model, rightward-decaying eigenfunc-
tions and leftward-decaying eigenfunctions have different
longest decay lengths due to asymmetric hopping terms: eg for
rightward hopping term and e−g for leftward hopping term.

2. Conductance

The two-terminal conductance can be also formulated for
the NH systems in the same framework as the scattering
theory in Hermitian systems [90,91]. Thereby, the 3D Lx ×
Ly × Lz cubic lattice is regarded as a scattering object and
the two-terminal conductance is defined as a total number of
particles that transmit through the scattering object within a
unit time and within a unit energy window. To calculate the
conductance, we consider that the disordered system with a
cross section of LxLy and a length of Lz is attached to two
leads. Each lead comprises of 2LxLy decoupled 1D wires, half
of which have right-moving current flux along +z direction
and the other half have left-moving current flux along −z. For
simplicity, we regard the two leads as the Hermitian system
and identify all the LxLy 1D wires with the left(right)-moving
flux as eigenstates of the following 1D tight-binding model:

Hlead =
∑

iz

c†
(ix,iy,iz+1)c(ix,iy,iz ) + H.c. (10)

The left (right)-moving current flux states are regarded as
eigenstates at right (left) “Fermi” points of the 1D tight-
binding model, respectively. Such states are given by e−ikziz

and eikziz with their (real-valued) eigenenergy E = 2 cos kz and
kz ∈ [−π, π ).

The scattering object is characterized by a scattering matrix
S among right-moving current fluxes and left-moving fluxes in
the two leads [92];(

2

4

)
=

(
r t ′

t r′

)(
1

3

)
≡ S

(
1

3

)
. (11)

Here 1 (2) and 4 (3) represent LxLy vectors for the left (right)-
moving fluxes in the right lead and in the left lead, respectively
(Fig. 3). Four LxLy × LxLy matrices in S, t , t ′, r, and r′, are the
transmission matrix from right to left, the transmission matrix

from left to right, the reflection matrix in the right lead, and
the reflection matrix in the left lead, respectively. Due to the
reciprocal symmetry, the scattering matrix is symmetric (ST =
S) in the NH Anderson model, while they are not in the NH
U(1) and NH Peierls models.

In the NH U(1) and Peierls models, the transposition of the
Hamiltonian changes the sign of the external magnetic fluxes
{�}, where {�} indicates the position dependent magnetic
fluxes in the U(1) model whereas it is constant in the Peierls
model. Thereby, the leftward conductance and rightward con-
ductance defined below do not coincide with each other in
general for a nonzero {�}:

gL ≡ Tr[tt†],

gR ≡ Tr[t ′t ′†].

Nonetheless, ST(H{�}) = S(HT
{�}) = S(H{−�}) indicates that

leftward (rightward) conductance with the magnetic fluxes
{�} is the same as the rightward (leftward) conductance with
the flux {−�} in the NH U(1)/Peierls models:

gR/L({�}) = gL/R(−{�}). (12)

Sca ering object

1

2

4

3

+110

FIG. 3. Two-terminal conductance geometry. 1 and 3 repre-
sent the incoming current flux; 2 and 4 represent the outgoing
current flux.
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To calculate the transmission matrix t by the transfer ma-
trix method, we rewrite the scattering matrix into a matrix T .
T connects the left lead to the right lead:(

1

2

)
=

(
t−1 −t−1r′

rt−1 −rt−1r′ + t ′

)(
4

3

)
≡ T

(
4

3

)
, (13)

The product of the transfer matrix, M, relates wave function
amplitudes of H in the left and the right leads. Thereby, by the
use of M, the eigenstates of Hlead (the left lead) with the two
opposite current flux can be generalized into the eigenstates of
H + Hlead. The two eigenstates thus obtained take the follow-
ing forms at the beginning of the right lead (iz = Lz + 1, Lz);(

ψLz+1

ψLz

)
= M 1√

2

(
eikz

1

)
⊗ ei,

(
ψLz+1

ψLz

)
= M 1√

2

(
1

eikz

)
⊗ ei,

with kz > 0 and i = 1, 2, . . . , n, n being LxLy. Here we note
that Viz+1,iz in Eq. (2) is an n-dimensional unit matrix for the
NH Anderson and U(1) models and ei is an n-dimensional unit
vector associated with x and y coordinates. In the following,
we will omit the x-y coordinate degree of freedom unless
dictated explicitly.

The matrix T is given by an inner product between the two
eigenstates of H + Hlead and the two eigenstates of the right-
lead Hamiltonian;

T ≡ 1

2

(
1 e−ikz

e−ikz 1

)
M

(
1 eikz

eikz 1

)
. (14)

The inner products are taken at iz = Lz + 1, Lz with a matrix
. When all the Hiz in M are set to zero, the scattering object
becomes identical to the two leads. Thereby, the T matrix
at E = 2 cos kz must be proportional to a diagonal matrix
with diagonal elements of the unit modulus. This requirement
defines the inner product with a proper normalization [90,93]:

T ≡ 1

2 sin kz

(
1 e−ikz

e−ikz 1

)
σyM

(
1 eikz

eikz 1

)
. (15)

For the Hermitian system, the symplectic nature of the
transfer matrix guarantees the unitarity of the scattering ma-
trix [92]. Namely, σyM†σy = M−1 leads to σzT †σz = T −1

and S† = S−1.
In the NH Anderson model, the transfer matrix only has

a pseudo-symplectic nature, Eq. (7). The pseudo-symplecticy
of the transfer matrix imposes the pseudo-symplecticy on T
and the symmetric nature on the S matrix, respectively:

σyT Tσy = T −1, ST = S. (16)

The symmetric S matrix leads to the reciprocal symmetry in
the conductance; gR = gL. In the NH U(1) model, the pseudo-
symplecticy holds true only between H and HT. So does the
symmetric nature of the S matrix;

ST(H) = S(HT). (17)

Since H and HT appear with equal probability in the NH
U(1) model, Eq. (17) leads to the reciprocal symmetry in the
averaged conductance in the NH U(1) model; 〈gR〉 = 〈gL〉.

Thereby, for the NH Anderson and U(1) models, we have
only to define the two-terminal conductance by one of the two
transmission matrices;

g ≡ 〈Tr[tt†]〉. (18)

In the NH Peierls model where the magnetic field is uniform,
gR and gL are different.

Note that in the three NH models, the non-Hermiticity is
introduced only by the on-site NH disorder potential, wr

i and
wi

i , which range in [−Wr/2,Wr/2] and [−Wi/2,Wi/2], re-
spectively. Thereby, the Hermiticity is recovered statistically;
H† and H realize with equal probability in an ensemble of
many disorder realizations. Nonetheless, S†(H) = S−1(H†)
does not guarantee the unitarity of the scattering matrix in any
way, e.g., even after the disorder average,

〈r†r〉 + 〈t†t〉 �= 1LxLy×LxLy . (19)

On the contrary, S†(H) = S−1(H†) gives

r†(H)r(H†) + t†(H)t (H†) = 1LxLy×LxLy . (20)

This suggests that the conductance g in the NH systems is not
bounded by the total number of the transmission channels,
i.e., n = LxLy. This is in some sense physically reasonable
because the transmission amplitude in the NH systems can
be amplified by the on-site NH disorder potentials, when
particles going through the scattering object.

3. Lyapunov exponent and scattering matrix in non-Hermitian
systems with pseudo-Hermiticity

Transfer matrix method has been extensively used in PT -
symmetric non-Hermitian optical systems [39,71–79,81,94–
98] as well as pseudo-Hermitian magnon systems [47]. The
PT -symmetric systems can be regarded as non-Hermitian
system with pseudo-Hermiticity [99,100]. In this section, we
summarize reciprocal symmetry of the Lyapunov exponents
and symmetry properties of the scattering matrix in non-
Hermitian disordered systems with pseudo-Hermiticity. The
symmetry properties of the scattering matrix have been previ-
ously discussed in the PT symmetric optical systems in the
context of perfect coherent absorber [73,74,94–98], and 1D
NH class AI (Hatano-Nelson model) [101].

Hamiltonian H with the pseudo-Hermiticity

ηHη−1 = H† (21)

is introduced in an eigenvalue problem on a 3D cubic lattice

H� = E�. (22)

The argument can be easily generalized into other lattices.
Here η is Hermitian and unitary matrix; η†η = ηη† = 1 and
η† = η. We allow H to have internal degrees of freedom,
such as spin, sublattice, and particle-hole degrees of free-
dom. For example, generalized eigenvalue problems for free
quasi-particle boson systems are equivalent to diagonaliz-
ing pseudo-Hermitian Hamiltonian [15,102–104]. Thereby,
the internal degree of freedom is particle-hole degree of
freedom of the boson, � is a Nambu vector subtended
by both boson creation and annihilation operators and η

is given by a diagonal matrix that takes +1/−1 for the
creation/annihilation operators [102,103]. As above, 3D
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Lx × Ly × Lz cubic lattice is regarded as the multiple layer
structure of the two-dimensional (2D) slices. Without loss of
generality, we can assume that H has hoppings only between
the nearest-neighboring 2D slices,

H =

⎛
⎜⎜⎜⎜⎜⎝

. . . Viz−1,iz 0

Viz,iz−1 Hiz Viz,iz+1 0

0 Viz+1,iz Hiz+1 Viz+1,iz+2

0 Viz+2,iz+1
. . .

⎞
⎟⎟⎟⎟⎟⎠

. (23)

Hiz includes on-site disorder potentials and hopping integrals
within the 2D slice at iz. Vi, j are hopping integrals between
2D slice at i and 2D slice at j, which we assume to be any
invertible LxLy × LxLy matrix. In the presence of the on-site
disorder in Hiz , a Hermitian matrix η that satisfies Eq. (21)
must be diagonal with respect to the site index i = (ix, iy, iz ).
Accordingly, the transfer matrix in Eq. (3) has the following
symmetry:

ησyM†
iz

(E )σyη
−1 = Miz (E

∗)−1
, (24)

with complex-valued eigenenergy E . This results in the
reciprocal symmetry between the Lyapunov exponents
at E and E∗:

{. . . , γ2(E ), γ1(E ),−γ ′
1(E ),−γ ′

2(E ), . . .},
with γi(E∗) = γ ′

i (E ), . . . > γ2 > γ1 > 0 > −γ ′
1 > −γ ′

2 >

. . .. For real-valued E , γ ′
i (E ) = γi(E ). Based on this recip-

rocal relation, Ref. [47] previously studied quantum magnon
Hall plateau transition, clarifying that the universality class
of the plateau transition in the pseudo-Hermitian systems be-
longs to the same universality class as the Hermitian quantum
Hall plateau transition. Equation (24) also dictates that the
scattering matrix defined in Eqs. (11), (13), and (15) has
unitarity-like relation between E and E∗; S†(E )ηS(E∗) = η.

The pseudo-Hermiticity allows time-independent inner
product between two wave functions in the Schrodinger pic-
ture; ∂t (〈�(t )|η|�(t )〉) = 0 with H|�(t )〉 = i∂t |�(t )〉. Such
an inner product represents conserved (local) physical quan-
tities of underlying physical systems. In the example of the
generalized eigenvalue problems for quasi-particle boson sys-
tems, the inner product corresponds to an energy density
carried by the bosons [47,104–106]. Thus, the transfer matrix
method in such pseudo-Hermitian systems should be reformu-
lated in such a way that the conservation rule becomes explicit
in the transport properties. To this end, it is more natural to
introduce the transfer matrix as [47]

M̃iz =
(

Ṽ −1
iz,iz+1(Eη − H̃iz ) −Ṽ −1

iz,iz+1

Ṽiz+1,iz 0

)
, (25)

with

H̃ ≡ ηH ≡

⎛
⎜⎜⎜⎜⎜⎝

. . . Ṽiz−1,iz

Ṽiz,iz−1 H̃iz Ṽiz,iz+1

Ṽiz+1,iz H̃iz+1 Ṽiz+1,iz+2

Ṽiz+2,iz+1
. . .

⎞
⎟⎟⎟⎟⎟⎠

,

(26)

and calculate T matrix and scattering matrix according
to Eqs. (11), (13), and (15) with M replaced by M̃ ≡∏

iz
M̃iz . Such scattering matrix respects the unitarity rela-

tion, S†(E )S(E∗) = 1, and therefore the conductance for the
real-valued E is compatible with the conservation principle.
In the example of the free quasi-particle boson systems, the
conductance thus calculated is thermal (energy) conductance
carried by the quasi-particle bosons [47]. Note also that M̃
gives the same sets of the Lyapunov exponents as M, since M̃
and M are related to each other by a unitary transformation.

Before concluding this subsection, we would like to em-
phasize that the models of the NH class A and NH class AI†

studied in this paper do not have PT symmetry, but they still
have symmetry relations such as Eqs. (7), (8), (12), (16), (17),
and (20): see a summary in Table II.

B. Polynomial fitting

Numerical simulations in the next section show that in
the NH systems, the normalized localization length � ≡ λ/L
and g, and the level spacing ratio (calculated previously in
Refs. [50,52]) exhibit scale-invariant behaviors at the same
critical disorder strength. The scale invariant point is noth-
ing but the Anderson transition point in these NH systems.
Quantum criticality of the Anderson transition is universally
characterized by critical exponents that depend only on the
spatial dimension and the symmetry of the disordered sys-
tems. Here, the NH Anderson model belongs to the symmetry
class AI†, while the NH U(1) and NH Peierls models belong
to the symmetry class A. In this subsection, we first review
a finite size scaling (FSS) analysis used in this paper. In the
next two sections, we present results of the FSS analyses
of � together with new evaluations of the critical exponents
in the NH Anderson, U(1), and Peierls models. The critical
exponent of the NH U(1) model and that of the Peierls model
coincide with each other very well, being consistent with
the symmetry of these two models. The critical exponent in
the NH Anderson model turns out to be clearly distinct from
the critical exponent in these two class A models.

Criticality of any second-order phase transition is deter-
mined by a scaling property around a saddle point fixed point
for a certain low-energy effective theory. The saddle-point
fixed point has only one relevant scaling variable φ1 with
positive scaling dimension 1/ν. All the other scaling variables
φ2, φ3, . . . are irrelevant with negative scaling dimensions −y,
−y′, . . .. A standard scaling argument dictates that around the
transition point, any dimensionless physical quantity � must
be given by a universal function of the scaling variables:

�(W, L) = F (φ1, φ2, φ3, . . .). (27)

The quantity in the left-hand side depends on the system size L
and a system parameter W . Each scaling variable in the right-
hand side depends on L in power of its scaling dimension:

φ1 ≡ u1(w)L1/ν,

φ2 ≡ u2(w)L−y,

φ3 ≡ u3(w)L−y′
,

· · · .
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TABLE I. Polynomial fitting results for normalized localization length �z around the Anderson transition point in the presence of the NH
disorder with disorder strength Wr and Wi. The goodness of fit (GOF), critical disorder Wc, critical exponent ν, the scaling dimension of the
least irrelevant scaling variable −y, and the critical normalized localization length �c are shown for various system sizes and for different
orders of the Taylor expansion: (m1, n1, m2, n2). The square bracket is the 95% confidence interval.

Disorder L m1 n1 m2 n2 GOF Wc ν y �c

Anderson model at E = 0
Wr = Wi 6–24 3 3 0 1 0.10 6.3868[6.3861, 6.3874] 1.190[1.187, 1.193] 2.33[2.22, 2.48] 0.8359[0.8350, 0.8369]

8–24 3 3 0 1 0.16 6.3858[6.3851, 6.3864] 1.193[1.189, 1.197] 2.57[2.43, 2.72] 0.8375[0.8365, 0.8384]
10–24 3 3 0 1 0.13 6.3862[6.3852, 6.3872] 1.192[1.185, 1.198] 2.67[2.44, 2.91] 0.8369[0.8353, 0.8385]

Wi = 5 6–16 3 3 0 1 0.12 7.839[7.837, 7.842] 1.194[1.189, 1.199] 2.38[2.25, 2.52] 0.8368[0.8356, 0.8380]
Wr = 5 6–16 3 3 0 1 0.19 7.841[7.838, 7.843] 1.190[1.185, 1.196] 2.37[2.24, 2.57] 0.8361[0.8348, 0.8376]

Wi = 0.1 10–20 3 3 1 1 0.18 14.435[14.414, 14.462] 0.914[0.843, 1.026] 0.99[0.84, 1.25] 0.8442[0.8246, 0.8600]

Wr = 0 4–20 2 3 0 1 0.90 16.543[16.536, 16.550] 1.574[1.567, 1.581] 2.67[2.42, 2.92] 0.5753[0.5742, 0.5763]
4–20 3 3 0 1 0.90 16.543[16.535, 16.550] 1.569[1.558, 1.578] 2.70[2.46, 2.97] 0.5754[0.5743, 0.5764]

Anderson model at E = i
Wr = Wi 6–16 3 3 0 1 0.12 6.018[6.015, 6.022] 1.183[1.172, 1.192] 2.46[1.96, 3.13] 0.8311[0.8278, 0.8341]

Anderson model at E = 2
Wr = 0 8–20 2 3 0 1 0.15 11.107[11.099, 11.112] 1.202[1.193, 1.209] 3.39[2.14, 5.02] 0.836[0.833, 0.842]

8–20 3 3 0 1 0.12 11.108[11.104, 11.111] 1.208[1.199, 1.215] 3.44[2.62, 4.51] 0.836[0.834, 0.838]
10–20 3 3 0 1 0.12 11.110[11.106, 11.114] 1.205[1.191, 1.216] 2.90[2.38, 4.03] 0.834[0.832, 0.837]

U(1) model at E = 0
Wr = Wi 8–24 1 4 0 1 0.13 7.322[7.313, 7.330] 1.050[1.010, 1.093] 0.28[0.16, 0.46] 0.434[0.313, 0.514]

10–24 1 4 0 1 0.11 7.321[7.309, 7.331] 1.041[0.943, 1.096] 0.32[0.15, 0.67] 0.455[0.305, 0.552]
12–24 3 3 0 1 0.12 7.299[7.297, 7.301] 1.003[0.985, 1.018] 1.59[1.36, 1.89] 0.598[0.593, 0.605]

Peierls model with � = 1/4 at E = 0
Wr = Wi 8–20 1 4 0 1 0.11 7.077[7.066, 7.087] 1.013[0.932, 1.058] 0.33[0.19, 0.51] 0.475[0.359, 0.545]

10–20 2 4 0 1 0.25 7.047[7.043, 7.050] 1.019[1.011, 1.027] 1.58[1.28, 1.98] 0.628[0.619, 0.637]
10–20 3 4 0 1 0.23 7.048[7.042, 7.055] 1.020[1.011, 1.033] 1.53[1.01, 2.10] 0.627[0.604, 0.640]

Here 1/ν (> 0) is the scaling dimension of the relevant scaling
variable and −y is the scaling dimension of the least irrelevant
scaling variable; . . . < −y′ < −y (< 0). In this paper, we use
the disorder strength as the system parameter W , and w is a
(normalized) distance of W from a critical disorder strength
Wc; w ≡ (W − Wc)/Wc. ui(w) (i = 1, 2, . . .) is a function
of W with u1(w = 0) = 0 and ui(w = 0) �= 0 (i = 2, 3, . . .).
When W is sufficiently close to Wc, ui(w) can be expanded in
power of small w [70,107]:

ui(w) ≡
mi∑
j=0

bi, jw
j, (28)

with i = 1, 2, . . . , b1,0 = 0, and bi,0 �= 0 (i = 2, 3, . . .). When
w is tiny and the system size L is large enough, all the scaling
variables are small. For the quantity of such small w and
large L, the universal function in the right hand side can be
expanded in powers of its small arguments [108]. Empirically,
we keep only the relevant scaling variable φ1 and the least
irrelevant scaling variable φ2, while assuming the other irrel-
evant scaling variables to be zero, φ3 = · · · = 0;

F =
n1∑

j1=0

n2∑
j2=0

a j1, j2φ
j1
1 φ

j2
2 . (29)

The assumption is a posteriori justified with non-small |y|
obtained from the fitting (see below). Given (m1, n1, m2, n2)

in Eqs. (28) and (29), F is a finite-order of polynomial of
w ≡ (W − Wc)/Wc. Numerical data of � for different L and
W are fitted by the polynomial with fitting parameters Wc,
ν, y, ai, j , and bi, j . We minimize χ2 in terms of the fitting
parameters:

χ2 ≡
ND∑

k=1

(�k − Fk )2

σ 2
�k

. (30)

Here k counts the data points (k = 1, . . . , ND), and each data
point is specified by L and W ; k = (L,W ). �k and σ�k are
a mean value of � and its standard deviation at k = (L,W ),
respectively, while Fk is fitting value from the polynomial F
at k = (L,W ). Fk depends on the fitting parameters and χ2

is minimized in terms of them. The minimization is carried
out for several different choices of (m1, n1, m2, n2). Table I
shows fitting results with the goodness of fit greater than
0.1. The 95% confidence intervals for the fitting results are
determined by 1000 sets of ND synthetic data points, which
are statistically generated from the fitting value Fk with the
same standard deviation of �k at each point k.

III. NON-HERMITIAN ANDERSON MODEL

A phase diagram of the NH Anderson model at E = 0
is determined in a two-dimensional plane subtended by Wr

and Wi; Fig. 1(a). The phase boundary between localized
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and delocalized phases is determined by the scale-invariant
point of the normalized localization length �z ≡ λ/L with
Lx = Ly = L. �z increases with the size L in the delocalized
phase, while decreases in the localized phase. The phase tran-
sition is nothing but the Anderson transition in the Hermitian
limit (Wi = 0), where the critical disorder is consistent with a
literature value, Wr,c ≈ 16.5 [60]. The phase diagram at E = 0
is symmetric with respect to an exchange of Wr and Wi.

There are two significant features in the phase diagram.
Firstly, the phase boundary of {W 2

r + W 2
i }1/2 bends in toward

the smaller disorder value than the critical disorder strength
in the Hermitian case. This means that states are more easily
localized by the NH on-site disorder than by the Hermitian
on-site disorder with the same modulus. This tendency in 3D
Anderson model is consistent with the 2D Anderson model,
which shows no localization-delocalization transition with the
on-site NH disorder [50]. The second significant feature is that
the phase boundary is symmetric along the line of Wr = Wi,
indicating that the role of Wr and that of Wi are identical in
the Anderson localization at E = 0. In fact, the critical point
along an axis of Wr = 0 as well as along an axis of Wi = 0
belongs to the 3D Hermitian orthogonal class; the critical
exponent evaluated at Wi,c ≈ 16.5 along the axis of Wr = 0
is consistent with the critical exponent in the orthogonal class
in the Hermitian case, ν ≈ 1.57 (Table I).

The symmetric nature of the phase diagram in Wr − Wi-
plane at E = 0 is due to the bipartite lattice structure and the
choice of the on-site potential the real and imaginary parts
of which obey the same distribution. A diagonalization of
these disordered Hamiltonians at E = 0 is clearly inclusive of
solving transfer matrices in favor for the Lyapunov exponents
at E = 0 for these models;

[H]� = E� = 0. (31)

[H] is the LxLyLz × LxLyLz matrix that has complex-valued
random numbers in its diagonal elements and Hermitian hop-
pings with the unit modulus in its off-diagonal elements. The
cubic lattice is decomposed into A sublattice and B sublattice,
where the off-diagonal elements appear only between these
two sublattices. Let the LxLyLz-component eigenvector � be
transformed by a diagonal matrix [B] that has −i for B sublat-
tice and +1 for A sublattice,

� = [B]�. (32)

Since E = 0, let another diagonal matrix [A] apply from the
left of Eq. (31). [A] has +i for A sublattice and +1 for B
sublattice:

[AHB]� = 0. (33)

Now that the hopping terms appear only between A and B
sublattices, the off-diagonal terms in H′ ≡ AHB are identical
to those in H. Meanwhile the real and imaginary parts of
the diagonal elements in H′ are exchanged with each other,
compared to those in H:

H′
(i,i) = iH(i,i) i ∈ A,

H′
(i,i) = −iH(i,i) i ∈ B.

(34)

wr
i and wi

i in H are uniformly distributed in a range of
[−Wr/2,Wr/2] and [−Wi/2,Wi/2], respectively. Besides, on-

site disorder potentials have no correlation between different
lattice sites. Thus, an ensemble of different disorder realiza-
tion for H with (Wr,Wi ) = (x, y) is the same as an ensemble of
different disorder realization for AHB with (Wr,Wi ) = (y, x).
Now that the zero-energy eigenfunction of H and that of AHB
are related to each other by Eq. (32) and the transformation B
does not change localization lengths of these two eigenfunc-
tions, the phase diagram at E = 0 must be symmetric with
respect to an exchange between Wi and Wr .

One could also repeat the same argument in the framework
of the transfer matrix method. Thereby, one can introduce a
product of another transfer matrix

M ′
iz ≡ Aiz MizBiz ≡

(
aiz 0

0 aiz−1

)
Miz

(
biz 0

0 biz−1

)
,

M ′ ≡
Lz∏

iz=1

M ′
iz = ALz MB1. (35)

Here aiz (biz ) is a LxLy × LxLy diagonal matrix whose (ix, iy)
diagonal element takes +i (−i) for (ix, iy, iz ) ∈ A (B) sublat-
tice and takes +1 for (ix, iy, iz ) ∈ B (A) sublattice. Here we
used BizAiz−1 = 1. Equation (35) dictates that the Lyapunov
exponents of M are identical to those of M ′. Note the hoppings
terms in M ′

iz are the same as those in Miz , and the real and
imaginary parts of the on-site NH disorder potentials in M ′

iz
are exchanged with each other, compared to those in Miz ;
Eq. (34). We therefore obtain the same results at E = 0 for
Wr = 0 and for Wi = 0.

When E �= 0, the phase diagram of the three NH models
becomes asymmetric with respect to the exchange of Wr and
Wi. Besides, the critical point along an axis of Wr = 0 at E �= 0
belongs not to the 3D Hermitian orthogonal/unitary class, but
to the new universality classes AI†/A of the NH systems. In
the following three subsections, we first clarify critical behav-
iors of the Anderson transition in the NH Anderson model.

A. Critical behaviors of the Anderson transition in the complex
energy plane (NH Anderson model)

In this subsection, we first compare critical properties of
the Anderson transition at different energies in the complex
plane. Eigenvalues of the NH systems are generally complex
numbers and the eigenvalues of the NH Anderson model are
distributed around E = 0 in the Euler plane. In the Hermi-
tian Anderson model, the Anderson transition for different
energies appears at different critical disorder strength with
the same critical exponent. A natural question arises in the
NH Anderson model, asking whether the critical behaviors of
the Anderson transition at different E in the complex plane
are the same or not. To answer this question, we calculate the
localization length at E = 0 and E = i, while changing the
disorder strength W along the symmetric line in the Wr-Wi

plane; Wr = Wi = W .
The localization length is calculated at E = 0 with Lz =

107 for L = 6, 8, 10, 12, 16, Lz = 6 × 106 for L = 20, 24;
Fig. 4(a), and at E = i with Lz = 107 for L = 6, 8, 10, 12,
Lz = 2 × 106 for L = 16; Fig. 4(b). Since there are no
eigenstates at E = i at W = 0, the system at E = i first under-
goes a localization-delocalization transition at smaller critical
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FIG. 4. Polynomial fitting of �z at (a) E = 0 and (b) E = i with Wr = Wi = W for Anderson model. The black points with error bar are
the raw data of �z and lines with different colors are the polynomial fitting results with expansion order (m1, n1, m2, n2) = (3, 3, 0, 1).

disorder strength and then undergoes another delocalization-
localization transition at larger critical disorder strength (Wc ≈
6.02). The two-steps transition at E = i is similar to a reen-
trant phenomenon observed in Hermitian Anderson model
near band edges [84,109]. The density of states at E = i is
always finite around these two transition points. It is also
finite at the Anderson transition at E = 0 (Wc ≈ 6.39). Let
us compare the critical behaviors of E = 0 at Wc ≈ 6.39 with
those of E = i at Wc ≈ 6.02.

The polynomial fitting method is used for the purpose of
extracting critical quantities; Table I. The critical disorder
strength at E = 0 is larger than those at E = i; delocalized
states at the center of the complex plane is more robust than
the states otherwise. The critical exponent ν ≈ 1.19, critical
normalized localization length �c ≈ 0.83, and the least ir-
relevant scaling variable y ≈ 2.5 are all consistent with each
other between these two transition points. The coincidence
suggests that the Anderson transition at different energies in
the complex energy plane shares the same critical behaviors.
ν and �c at these two points are distinct from those values of
the 3D orthogonal class in the Hermitian case; ν ≈ 1.57 and
�c ≈ 0.58 [70].

In order to determine a universal scaling function form of
� at the NH Anderson transition point, we subtract � by the
finite-size correction due to the irrelevant scaling variable,

�corrected ≡ � − [F (φ1, φ2) − F (φ1, 0)]. (36)

According to Sec. II B, the corrected � must be given
by a universal single-parameter scaling function near the
transition point,

�corrected = f±

(
L

ξ

)
, (37)

where ξ ≡ ξ±|u1(ω)|−ν . Here ξ± depends on nonuniversal
quantities in the polynomial fitting analysis, such as a1,1,
and they generally take different values at different single-
particle energies and system parameters. However, ξ+/ξ−

would take a universal value [110]. Figure 5 shows that with
a proper choice of ξ±, all the data points for E = 0 and
those for E = i near the respective transition points fall into
a single curve, demonstrating the validity of the universal
single-parameter scaling function form for the corrected �.
The single-parameter scaling function around the NH Ander-
son transition point is clearly distinct from that around the
Hermitian Anderson transition point (Fig. 5). This unambigu-
ously shows that the Anderson transition in the NH system
belongs to a new universality class [52].

10-2 10-1 100

0.4

0.8

1.2

1.6

FIG. 5. The data in Fig. 4 after subtraction of correction [see
Eq. (36)] collapse into one curve according to scaling function
Eq. (37). Here we set ξ± = 1 for E = 0 and ξ± = 1.58 for E = i.
The data of the Hermitian case at E = 0 are also shown for the
comparison.
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FIG. 6. Polynomial fitting for �z at E = 0 with fixed Wr or Wi for the NH Anderson model. The black points with error bar are the
raw data of �z and lines with different colors are the polynomial fitting results with expansion order (m1, n1, m2, n2). The expansion order
(m1, n1, m2, n2) are shown in the brackets for each figure.

B. Critical behaviors of the Anderson transition in the phase
diagram at E = 0 (NH Anderson model)

In this subsection, we compare critical properties of the
Anderson transition at different system parameters of the
same energy E = 0.

The localization length is calculated as a function of Wr

for fixed Wi = 5; Fig. 6(a) or as a function of Wi for fixed
Wr = 5; Fig. 6(b), where Lz = 107 for L = 6, 8, 10, 12 and
Lz = 3 × 106 for L = 16. The polynomial fitting results are
summarized in the Table I. In the table, the critical exponent
ν ≈ 1.19, the critical length �c ≈ 0.83, the least irrelevant
scaling dimension and the critical disorder are consistent with
each other for the fixed Wi = 5 case and for the fixed Wr = 5
case. Besides, the critical exponent and the critical length for
these two transition points are consistent with those transition
points at E = 0 and E = i along Wr = Wi = W . These com-
prehensive analyses conclude that the critical exponent for the

Anderson transition in the NH Anderson model is

ν = 1.192[1.185, 1.198]. (38)

The localization length at E = 0 is also calculated as a
function of Wi for the fixed Wr = 0 with Lz = 107 for L =
4, 6, 10, 12, 16, and Lz = 5 × 106 for L = 20; Fig. 6(d). Poly-
nomial fitting results are shown in Table I. As expected from
the symmetry argument above, the critical exponent ν ≈ 1.57,
the critical length �c ≈ 0.58 and and the critical disorder
Wc ≈ 16.5 coincide with those values in the Hermitian limit
(Wi = 0).

C. Critical behaviors of the Anderson transition at Wr = 0
and E �= 0 (NH Anderson model)

The symmetric nature of the phase diagram and critical
properties with respect to the exchange of Wr and Wi is
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FIG. 7. Polynomial fitting of �z at E = 2 and Wr = 0 for the NH
Anderson model. The black points with error bar are the raw data of
�z and lines with different colors are the polynomial fitting results
with expansion order (m1, n1, m2, n2) = (2, 3, 0, 1).

absent at E �= 0. Thereby, the critical point along the axis
of Wr = 0 must belong to the same universality class as
the NH Anderson model. To confirm this, we calculate the
localization length at Wr = 0 and E = 2 with Lz = 107 for
L = 8, 10, 12, 16 and with Lz = 6 × 106 for L = 20; Fig. 7.
Polynomial fitting results are summarized in the Table I. The
critical disorder strength (Wc ≈ 11.1) is clearly different from
the value in the Hermitian limit (Wc ≈ 16.5), demonstrating
the asymmetry of the phase diagram at E = 2. Both the criti-
cal exponent ν ≈ 1.20 and the critical length �c ≈ 0.83 are
consistent with those values from E = 0 and E = i along
Wr = Wi = W and from E = 0 along Wr(i) = 5. The result
reinforces the conclusion of Eq. (38).

D. RG flows at E = 0 and at E �= 0 and NH-H crossover
phenomena (NH Anderson model)

In this subsection, we postulate an RG flow diagram in
the Wr-Wi plane at E = 0 and at E �= 0, based on the critical
properties summarized in Secs. III B and III C; Figs. 1(b)
and 1(c). The RG flow diagram at E = 0 has a saddle-point
fixed point (FP3) with only one relevant scaling variable and
two unstable fixed points (FP1 and FP2) with two relevant
scaling variables. The FP3 determines the critical properties
of delocalization–localization transition in the NH systems.
When a simulated lattice model goes across the phase transi-
tion line, any dimensionless physical quantity is given by the
universal function of the relevant scaling variable around FP3
and other irrelevant scaling variables. One of the irrelevant
scaling variables is shown explicitly in the RG flow diagram
in the Wr-Wi plane.

The FP1 (FP2) controls the criticality in the Hermitian
limit. When the lattice model crosses the transition line with
either Wr = 0 or Wi = 0 at E = 0, one of the two relevant
scaling variables around FP1 (FP2) can be always set to zero.
This is because the renormalization must respect the symme-
try of the system and therefore it does not change a Hermitian

system into a NH system. As a result, the quantity can be given
by the universal function of only the other of the two relevant
variables around FP1 (FP2); the Hermitian criticality. In the
RG flow diagram at E �= 0, FP1 disappears in the Wr-Wi plane
and all the critical properties except for those along the axis
of Wi = 0 are controlled by FP3; Fig. 1(c).

When the model undergoes the transition near FP2, the
critical properties might exhibit a crossover phenomenon from
the Hermitian case to the NH case. To study this crossover
phenomenon, we calculate the localization length at E = 0
for fixed Wi = 0.1 with Lz = 107 for L = 10, 12, 14, 16 and
Lz = 6 × 106 for L = 20; Fig. 6(c). The fitting results are
summarized in Table I. According to the fitting results, the
scaling dimension of the least irrelevant scaling variable is
quite small, indicating the importance of the irrelevant scaling
variables. In fact, the large correction by the irrelevant scaling
variables results in a bad intersection of �z in the data. The
critical exponent in the fitting results is consistent neither
with that for the Hermitian case nor with that for the NH
case. To capture the correct critical properties in this crossover
regime, we believe it necessary either to include the nonlinear
φ2-dependence of F (n2 > 1) together with the nonlinear w

dependence of u2(w) (m2 > 1) or to fit only the larger system
size data.

E. Conductance (NH Anderson model)

As in the Hermitian case [91,111], the conductance is a
convenient physical quantity that can characterize the critical
property of the Anderson transition in the NH systems. As
shown in the previous section, the conductance in the NH sys-
tems is not bounded by the total number of the transmission
channels in the two-terminal geometry. The transmission am-
plitude can be arbitrarily amplified by the on-site NH disorder
potentials in the NH systems.

Figure 8 shows distributions of the conductance in the
NH Anderson models, where the conductance is calculated
in terms of Eqs. (18), (13), and (15) with the cubic geom-
etry Lx = Ly = Lz = L for 106 samples of different disorder
realizations. We have changed the frequency of the QR
decomposition in the transfer matrix calculation, and checked
the results in Fig. 8 are robust against the change. The three
figures in Fig. 8 show that the distribution of the conduc-
tance is not Gaussian irrespective of whether the system is
in the delocalized phase or in the localized phase or at the
critical point. The conductance distribution always contains
small fractions of huge conductance values. The very large
conductance values come from “rare-event” states, in which
the transmission is strongly amplified by the NH disorders. To
carry out the FSS analysis for such conductance data, we take
a geometric mean of the conductance; 〈ln g〉. The plot of the
geometric average of the conductance and its fit to polynomial
functions are shown in the Appendix.

IV. NON-HERMITIAN CLASS A MODELS

In this section, we give an accurate characterization of
the critical properties of the Anderson transition in the two
NH class A models; NH U(1) and Peierls models. From
the symmetry argument above, the E = 0 phase diagrams of
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FIG. 8. Conductance distribution P(g) of the Anderson model with non-Hermitian disorder. 106 samples are calculated for L = 12 at E = 0
and Wr = Wi = W . (a) W = 1: metallic phase, (b) W = 6.386: critical point, and (c) W = 14: localized phase. The distribution has a long tail
in a region of very large conductance value. The horizontal axis is an arbitrary unit. Only 93%, 83%, 68% of the whole data points are shown
in (a), (b), and (c), respectively.

these two models must also be symmetric with respect to the
exchange of Wr and Wi. At E = 0, both the axis of Wr = 0
and the axis of Wi = 0 belong to the Hermitian class A. We
expect that an effect of the irrelevant scaling variable can be
minimized along the symmetry line of Wr = Wi. Based on this
anticipation, we focus our study on the Anderson transition in
the two NH class A models along the axis of Wr = Wi = W ,
setting E = 0.

A. NH U(1) model at E = 0

In this subsection, we first clarify the critical property of
the Anderson transition in the NH U(1) model. The local-
ization length has been calculated with Lz = 107 for L =
8, 10, 12, 16, and with Lz = 6 × 106 for L = 20, 24. For the
purpose of the transfer matrix calculations, it is convenient to
perform a gauge transformation of the original Hamiltonian so
as to eliminate all the random U(1) phase factors appearing in
hopping elements in the z direction. Obviously, the transfor-
mation does not affect the values of the Lyapunov exponents
[62]. The normalized localization length near its scale invari-
ant point is shown in Fig. 9. The polynomial fitting result is
summarized in Table I. The critical exponent is evaluated from
the fitting as

ν = 1.003[0.985, 1.018], (39)

together with �c ≈ 0.598. These two universal quantities are
clearly distinct from ν ≈ 1.44 and �c ≈ 0.55 for the Her-
mitian U(1) model [62]. They are also different from the
ν ≈ 1.19 and �c ≈ 0.83 for the NH Anderson model (NH
class AI†). As was pointed out in Ref. [52], Wc ≈ 7.3 for the
NH U(1) model is significantly larger than Wc for the NH An-
derson model (Wc ≈ 6.4), in spite of the fact that the NH U(1)
model has more random variables in its off-diagonal matrix
elements than the NH Anderson model. This means that the
delocalization-localization transition in the NH system is also
of the quantum interference origin.

The two-terminal conductance g is also calculated in the
NH U(1) model along the axis of Wr = Wi = W at E = 0.
A plot of the geometric average of the conductance and the
details of the polynomial fitting are given in the Appendix.

B. NH Peierls model at E = 0

In this subsection, we clarify the critical property of
the Anderson transition in the NH Peierls model with the
magnetic flux 2π� = π/2.

The localization length is calculated with Lz = 107 for
L = 8, 10, 12, 16, 20. The normalized localization length near
its scaling invariant point is shown in Fig. 10. The polynomial
fitting results are summarized in Table I. For our choice of
the data range, we need to take n1 = 4 to obtain a sufficiently

7 7.2 7.4 7.6
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-0.5

0

0.5

FIG. 9. Polynomial fitting of ln(�z ) at E = 0 with Wr = Wi =
W for the NH U(1) model. The black points with error bar are the
raw data of ln(�z ) and lines with different colors are the polynomial
fitting results with expansion order (m1, n1, m2, n2) = (3, 3, 0, 1).
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FIG. 10. Polynomial fitting of ln(�z ) at E = 0 and Wr = Wi =
W for the NH Peierls model with the magnetic flux � = 1/4. The
black points with error bar are the raw data of ln(�z ) and lines
with different colors are the polynomial fitting results with expansion
order (m1, n1, m2, n2) = (3, 4, 0, 1).

large goodness of fit in the polynomial fitting. The large n1

represents a nonlinear φ1-dependence of F around the critical
point (φ1 = 0). The fittings with the system size L = 10 ∼ 20
and the expansion order (m1, n1, m2, n2) = (2, 4, 0, 1) or
(3, 4, 0, 1) give stable fitting results with the critical expo-
nent ν = 1.02 ± 0.01. This value is quite close to the critical
exponent in the NH U(1) model, supporting Eq. (39) as the
critical exponent in the 3D NH class A systems. Note that the
uniform magnetic flux � introduces a geometric anisotropy in
the Peierls model. As a result, the critical normalized length
�c in the NH Peierls model is different from that in the NH
U(1) model (Table I), although the nearest-neighbor hopping
amplitudes in these two cubic-lattice models are all the same
in the three directions.

V. REVISITING THE LEVEL STATISTICS ANALYSIS

In this section, we compare the critical exponents evalu-
ated by the localization length with the previous evaluation
by the level statistics in the NH Anderson and U(1)
models [52]. The level statistics analysis [55–57] intro-
duces a finite energy window over which the dimensionless
quantity � is averaged. When applying a linear fitting
with respect to w ≡ (W − Wc)/Wc, �(W, L) = �c + awL1/ν

with (m1, n1, m2, n2) = (1, 1, 0, 0) in Eq. (27), the finite width
of the energy window does not cause any influence on the
estimate of the critical exponent ν; a and Wc are averaged over
the energy window, while �c and ν take the same universal
values for any states within the window. When applying a
nonlinear fitting of � with respect to w, the analysis needs
to assume that all the fitting parameters in the universal
function F in Eq. (27) have no variations within the energy
window. As explained in Sec. II B, however, these fitting
parameters include not only the universal critical exponent
but also nonuniversal critical quantities, such as critical dis-
order strength Wc, and the scaling dimensions of the irrelevant

scaling variables y. Generally, two cases with different ener-
gies do not share the same nonuniversal critical quantities.
They are continuous functions of the energy. Thus, the en-
ergy window for the level statistics must be narrow enough
so that all the states inside the window share almost the
same values of these fitting parameters. Otherwise, the vari-
ations of the nonuniversal fitting parameters cause additional
systematic errors in the estimate of the universal critical
exponent.

With the above consideration in mind, we first discuss the
critical exponent of the 3D class A models. The value obtained
in this paper is consistent with the critical exponent of the NH
U(1) model obtained by the level statistics analysis [52]; ν ≈
1.09 by the level statistics for 10% eigenvalues around E =
0, and ν ≈ 1.01 for 5% eigenvalues around E = 0. Namely,
the critical exponent of the 3D class A models in this paper
is closer to the value for the 5% energy window than to the
value for the 10% energy window. This tendency suggests that
the level statistics analysis for the narrower energy window
are relatively free from the effects of finite variations of the
nonuniversal critical quantities.

On the one hand, the critical exponent of the 3D NH
Anderson model (NH class AI†) obtained in this paper is at
variance with the critical exponent obtained by the level statis-
tics analysis in Ref. [52]; ν ≈ 0.99 by the level statistics for
10% eigenvalues around E = 0, and ν ≈ 0.95 for 5% eigen-
values around E = 0. We regard that the discrepancy comes
from an interplay between the finite-energy window issue and
a strong asymmetry in a universal function for a level spac-
ing ratio [50,112,113] around the Anderson transition point.
The level spacing ratio r exhibits limiting values [52,113]
as a function of the disorder strength in the NH Anderson
model; 〈r〉loc = 2/3 in the localized phase and 〈r〉deloc ≈ 0.72
in the delocalized phase. It turns out that an intersection of
curves of 〈r〉 for different system sizes, 〈r〉critical = 0.716, is
very close to one of the two limiting values, 〈r〉deloc ≈ 0.72.
This indicates that the universal function for the level spacing
ratio happens to be quite asymmetric around the transition
point in the NH Anderson model. When fitting such an
asymmetric function by the polynomial in w, the polynomial
function must have a strong nonlinear w dependence. Thus,
the finite-energy window issue together with this intrinsic
strong nonlinearity in the universal function for the level spac-
ing ratio causes large systematic errors in the NH Anderson
model. In other words, a valid data range of polynomial fitting
analysis with the smaller n1 and m1 becomes very small in
the side of the delocalized phase and the choice of the data
points in the previous study is not narrow enough in the NH
Anderson model.

In summary, the argument so far concludes the critical
exponent ν = 1.19 ± 0.01 in the Anderson transition in the
NH symmetry class AI†, and ν = 1.00 ± 0.04 in the Ander-
son transition in the NH symmetry class A. In spite of the
correction of the critical exponent in the NH class AI†, our
previous conclusion in the level statistics analysis remains
unchanged. Namely, 3D NH Anderson transition in classes
AI† and in class A show critical behaviors different from
their Hermitian counterparts, hence belong to new universality
classes.
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TABLE II. Summary of symmetry relations of Lyapunov exponents (“Lyapunov”), the S matrix (S) and two-terminal conductances (g)
in Sec. II. The columns of H and M specify the symmetries of Hamiltonian and transfer matrix in the Hermitian Anderson model (H AM),
non-Hermitian Anderson model (NH AM), Hermitian U(1)/Peierls model (H U), and non-Hermitian U(1)/Peierls model (NH U). “γi = γ ′

i ” in
the column of “Lyapunov” stands for a ± symmetry of the Lyapunov exponents: the Lyapunov exponents are ordered such that γn > . . . γ2 >

γ1 > 0 > −γ ′
1 > −γ ′

2 . . . > −γ ′
n, 2n = 2LxLy being the dimensions of the transfer matrix. In the non-Hermitian case, a Hermitian conjugate

of an S matrix for H is an inverse of an S matrix of H†; S†(H ) = S−1(H †). For the NH U(1)/Peierls models, the leftward conductance with a
position dependent magnetic flux {φ} is identical to the rightward conductance with −{φ}; gL ({φ}) = gR(−{φ}). For the Hermitian U(1)/Peierls
models, the unitarity of the scattering matrix gives an equivalence between the leftward conductance and rightward conductance; gL ({φ}) =
gR({φ}) = gL (−{φ}) = gR(−{φ}). “p-H” indicates non-Hermitian systems with the pseudo-Hermiticity in Sec. IIA3. η is a Hermitian and
unitary matrix.

Model Class H M Lyapunov S Unitarity g

H AM AI H = HT = H∗ σyMTσy = M−1 γi = γ ′
i S = ST S†S = I gL = gR

H U A H = H† σyM†σy = M−1 γi = γ ′
i S†S = I gL (±{φ}) = gR(±{φ})

NH AM NH AI† H = HT σyMTσy = M−1 γi = γ ′
i S = ST S†(H )S(H †) = I gL = gR

NH U NH A 〈γi〉 = 〈γ ′
i 〉 S†(H )S(H †) = I gL ({φ}) = gR(−{φ})

p-H ηHη−1 = H † ησyM†(E )σyη
−1 = M−1(E∗) γi(E ) = γ ′

i (E∗) S†(E )ηS(E∗) = η gL = gR

VI. SUMMARY

In this paper, we presented transfer matrix analyses of the
Anderson transition in the three NH systems with on-site
complex-valued random potentials that belong to the class-
AI† (NH Anderson model) and class-A (NH U(1) and NH
Peierls models), respectively. We first provided an argument
with solid numerical evidence that supports the validity of
the transfer matrix analyses of the localization length and
two-terminal conductance in NH systems. We then clarified
the presence or absence of the reciprocal symmetries of the
Lyapunov exponent and the conductance in the three NH
models. The relations are summarized in Table II. We note
that other relations in nonreciprocal non-Hermitian systems
are found in [114].

On the basis of the above knowledge, we evaluated the
critical exponents at different single-particle energies and
different system parameters of the NH Anderson model as
well as of the NH U(1) and NH Peierls models. The results
conclude that the critical exponent of the NH class-AI† is
ν = 1.19 ± 0.01 and the critical exponent of the NH class-
A is ν = 1.00 ± 0.04, indicating a strong linkage between
the universality class of the Anderson transition and sym-
metry classification in the NH systems. From the critical
properties at different system parameters of the NH Ander-
son model, we draw a phase diagram in a two-dimensional
plane subtended by the disorder strength of the real part of
the on-site random potential (Wr) and that of the imaginary
part (Wi). We showed that at the zero single-particle energy
(E = 0), the phase diagram as well as the critical properties
become completely symmetric with respect to an exchange
between Wr and Wi. We further proved that the symmetric
structure at the zero single-particle energy is a generic fea-
ture in any NH bipartite-lattice models with the on-site NH
random potentials. We also demonstrated numerically that a
distribution of the two-terminal conductance is not Gaussian
and the distribution contains small numbers of huge conduc-
tance, which come from rare events of strong amplifications
of the transmission by the NH disorders. By analyzing the
geometric mean of the conductance, we show that the critical
properties of the conductance in the NH Anderson and NH

U(1) models also give critical exponents, which are consis-
tent with those critical exponents obtained by the localization
length. We note that Wegner’s relation [115], which relates the
conductivity critical exponent s and the localization critical
exponent ν as s = (d − 2)ν = ν remains to be checked in
NH systems.

In conclusion, an experimental verification of the new
universality classes in the NH systems may be possible in
disordered optical systems [116–120] and acoustic systems
[121–123], which usually fall into the 3D NH class AI†. The
energy loss and gain in the optical systems make it difficult to
verify the Anderson transition in the Hermitian systems. On
the other hand, disordered media with gain and loss are ideal
platforms for an experimental verification of the Anderson
transition in NH systems [48,124]. An experimental realiza-
tion of the NH class A model in the disordered optical systems
seems to be nontrivial, and we leave it for an important future
problem.
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APPENDIX: TWO-TERMINAL CONDUCTANCE AND ITS
FINITE-SIZE SCALING ANALYSIS

In this Appendix, we describe behaviours of the two-
terminal conductance as a function of disorder strength and
the FSS analyses of the conductance for the NH Anderson
and U(1) models.

Figure 11 shows the logarithm of the conductance g as
a function of W in the NH Anderson model at Wr = Wi =
W and E = 0. Thereby, the conductance g is calculated in
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FIG. 11. Polynomial fitting for 〈ln g〉 at E = 0 with Wr = Wi =
W for the NH Anderson model with periodic boundary condition in
the x and y directions. The black points with error bar are the raw
data of 〈ln g〉 and lines with different colors are the polynomial fit-
ting results with the expansion order (m1, n1, m2, n2) = (2, 3, 0, 1).
〈ln g〉 are averaged over 104 samples. Note also that the recip-
rocal relation of the conductance is verified numerically in each
sample.

terms of Eqs. (18), (13), and (15) with the cubic geometry
Lx = Ly = Lz = L and periodic boundary condition (PBC)
along the x and y direction. The logarithm of g is averaged
over 104 samples of different disorder realizations. 〈ln g〉 for
different system size L show an intersection near the critical
disorder strength determined by the Lyapunov exponent anal-
ysis. Nonetheless, the intersection point of 〈ln g〉 for different
system sizes is not as obvious as in the Lyapunov exponent,

even for larger system size (L = 16, 20, 24, 28); 〈ln g〉 among
larger system sizes tends to intersect at a smaller disorder
strength.

The critical exponent is obtained from the polynomial fit-
ting analysis (Table III). The critical exponent evaluated from
〈ln g〉 is slightly larger than the critical exponent determined
by the Lyapunov exponent, while they are consistent with
each other within the 95% confidence intervals. Note that the
scaling dimension of the least irrelevant scaling variable is
quite small in the polynomial fitting analysis of 〈ln g〉, which
results in a large error bar for ν. The poor estimation of the
critical property comes from the poor intersection of 〈ln g〉.
Two reasons could be responsible for the poor intersection;
(i) a nonoptimal choice of the contact between the Hermitian
leads and the NH system and (ii) intrinsically large values of
the conductance due to the non-Hermiticity.

Figure 12 shows plots of the logarithm of the conductance
as a function of W in the NH U(1) model at Wr = Wi = W
and E = 0 with the same conditions as above, except for the
boundary condition along the x and y direction. The plot with
the PBC is in Fig. 12(a) and the plot with the open boundary
condition (OBC) is in Fig. 12(b). The polynomial fitting result
is summarized in Table III. As in the NH Anderson model,
the critical disorder strength from the fitting is slightly larger
than the critical disorder strength determined by the Lyapunov
exponent and the intersection point shifts to a smaller value for
larger system sizes. Nonetheless, the critical exponent is con-
sistent with the critical exponent determined by the Lyapunov
exponent within the 95% confidence interval. Note that the
smaller value of y from the fitting analysis indicates a strong
finite-size correction, which leads to a large error bar of the
critical exponent and the poor intersection. Note also that the
intersection of the conductance with the OBC is better than
that with the PBC.

TABLE III. Polynomial fitting results for the logarithm of the conductance 〈ln g〉 around the Anderson transition points in the NH Anderson
and U(1) models at Wr = Wi = W and E = 0. The goodness of fit (GOF), critical disorder Wc, critical exponent ν, the scaling dimension of the
least irrelevant scaling variable −y are shown for various system sizes and for different expansion orders of the polynomial: (m1, n1, m2, n2).
The square bracket stands for the 95% confidence interval.

L m1 n1 m2 n2 GOF Wc ν y

NH Anderson model, with the PBC
12–28 2 3 0 1 0.20 6.415[6.387, 6.523] 1.276[0.998, 1.454] 0.06[0.03, 0.32]
12–28 3 3 0 1 0.23 6.415[6.385, 6.513] 1.288[1.006, 1.524] 0.06[0.03, 0.30]
16–28 2 3 0 1 0.20 6.415[6.387, 6.520] 1.276[1.002, 1.457] 0.06[0.03, 0.31]
16–28 3 3 0 1 0.23 6.415[6.385, 6.522] 1.288[1.006, 1.520] 0.06[0.03, 0.31]

NH U(1) model, with the PBC
12–28 3 3 0 1 0.10 7.338[7.323, 7.435] 1.142[0.861, 1.349] 0.044[0.024, 0.639]
16–28 3 3 0 1 0.10 7.329[7.295, 7.362] 1.150[0.859, 1.479] 0.046[0.039, 0.091]

NH U(1) model, with the OBC
10–28 3 3 0 1 0.24 7.391[7.379, 7.444] 1.069[0.961, 1.130] 0.12[0.07, 0.55]
12–28 3 3 0 1 0.12 7.397[7.381, 7.454] 1.075[0.950, 1.162] 0.15[0.08, 0.70]
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FIG. 12. Polynomial fitting for 〈ln g〉 at E = 0 with Wr = Wi = W for the NH U(1) model with the (a) periodic boundary condition (PBC)
and (b) open boundary condition (OBC). The black points with error bar are the raw data of 〈ln g〉 and lines with different colors are the
polynomial fitting results with expansion order (m1, n1, m2, n2). The expansion order (m1, n1, m2, n2) are shown in the brackets for each figure.
〈ln g〉 are averaged over 104 samples.
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R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M.
Vanwolleghem, C. R. Doerr, and H. Renner, What is — and
what is not — an optical isolator, Nat. Photonics 7, 579 (2013).

[87] H. Furstenberg and H. Kesten, Products of random matrices,
Ann. Math. Stat. 31, 457 (1960).

[88] V. I. Oseledec, A multiplicative ergodic theorem. Characteris-
tic Ljapunov, exponents of dynamical systems, Trans. Moscow
Math. Soc. 19, 197 (1968), http://mi.mathnet.ru/eng/mmo214.

[89] D. Ruelle, Ergodic theory of differentiable dynamical systems,
Publications Mathématiques de l’IHÉS 50, 27 (1979).

[90] J. B. Pendry, A. MacKinnon, and P. J. Roberts, Universality
classes and fluctuations in disordered systems, Proc. R. Soc.
London, Ser. A 437, 67 (1992).

[91] K. Slevin, P. Markoš, and T. Ohtsuki, Reconciling Conduc-
tance Fluctuations and the Scaling Theory of Localization,
Phys. Rev. Lett. 86, 3594 (2001).

[92] S. Datta, Electronic Transport in Mesoscopic Systems
(Cambridge University Press, Cambridge, 1997).

[93] T. Ando, Quantum point contacts in magnetic fields, Phys.
Rev. B 44, 8017 (1991).

[94] H. Schomerus, Quantum Noise and Self-Sustained Radiation
of PT -Symmetric Systems, Phys. Rev. Lett. 104, 233601
(2010).

[95] Y. D. Chong, L. Ge, and A. D. Stone, PT -Symmetry Break-
ing and Laser-Absorber Modes in Optical Scattering Systems,
Phys. Rev. Lett. 106, 093902 (2011).

[96] H. Schomerus, Universal routes to spontaneous PT -symmetry
breaking in non-Hermitian quantum systems, Phys. Rev. A 83,
030101(R) (2011).

[97] G. Yoo, H.-S. Sim, and H. Schomerus, Quantum noise and
mode nonorthogonality in non-Hermitian PT -symmetric op-
tical resonators, Phys. Rev. A 84, 063833 (2011).

[98] H. Schomerus, From scattering theory to complex wave dy-
namics in non-Hermitian PT -symmetric resonators, Philos.
Trans. R. Soc. A 371, 20120194 (2013).

[99] A. Mostafazadeh, Pseudo-Hermiticity versus pt symmetry:
The necessary condition for the reality of the spectrum of a
non-Hermitian Hamiltonian, J. Math. Phys. 43, 205 (2002).

[100] A. Mostafazadeh, Pseudo-Hermiticity versus pt-symmetry. II.
A complete characterization of non-Hermitian Hamiltonians
with a real spectrum, J. Math. Phys. 43, 2814 (2002).

[101] S. Longhi, D. Gatti, and G. Della Valle, Non-Hermitian trans-
parency and one-way transport in low-dimensional lattices by
an imaginary gauge field, Phys. Rev. B 92, 094204 (2015).

[102] R. Shindou, R. Matsumoto, S. Murakami, and J.-i. Ohe, Topo-
logical chiral magnonic edge mode in a magnonic crystal,
Phys. Rev. B 87, 174427 (2013).

104203-19

https://doi.org/10.1103/PhysRevB.57.11842
https://doi.org/10.7566/JPSJ.85.104712
https://doi.org/10.1143/JPSJ.63.685
https://doi.org/10.1007/BF01342591
https://doi.org/10.1103/PhysRev.84.814
https://doi.org/10.1103/PhysRevResearch.2.023286
https://doi.org/10.1103/PhysRevLett.47.1546
https://doi.org/10.1088/0022-3719/14/6/003
https://doi.org/10.1007/BF01578242
https://doi.org/10.1088/1367-2630/16/1/015012
https://doi.org/10.1103/PhysRevE.72.046604
https://doi.org/10.1103/PhysRevLett.102.220402
https://doi.org/10.1103/PhysRevA.82.031801
https://doi.org/10.1103/PhysRevA.85.023802
https://doi.org/10.1364/OL.38.005252
https://doi.org/10.1103/PhysRevLett.113.263905
https://doi.org/10.1103/PhysRevA.91.063843
https://doi.org/10.1103/PhysRevA.93.042707
https://doi.org/10.1126/sciadv.aat6539
https://doi.org/10.1103/PhysRevA.99.013823
https://doi.org/10.1103/PhysRevA.99.052110
https://doi.org/10.1364/JOSAA.26.000870
https://doi.org/10.1364/PRJ.6.000A43
https://doi.org/10.1088/0034-4885/56/12/001
https://doi.org/10.1088/0953-8984/6/13/012
https://doi.org/10.1038/nphoton.2013.185
https://doi.org/10.1214/aoms/1177705909
http://mi.mathnet.ru/eng/mmo214
https://doi.org/10.1007/BF02684768
https://doi.org/10.1098/rspa.1992.0047
https://doi.org/10.1103/PhysRevLett.86.3594
https://doi.org/10.1103/PhysRevB.44.8017
https://doi.org/10.1103/PhysRevLett.104.233601
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1103/PhysRevA.83.030101
https://doi.org/10.1103/PhysRevA.84.063833
https://doi.org/10.1098/rsta.2012.0194
https://doi.org/10.1063/1.1418246
https://doi.org/10.1063/1.1461427
https://doi.org/10.1103/PhysRevB.92.094204
https://doi.org/10.1103/PhysRevB.87.174427


LUO, OHTSUKI, AND SHINDOU PHYSICAL REVIEW B 104, 104203 (2021)

[103] R. Shindou, J.-i. Ohe, R. Matsumoto, S. Murakami, and E.
Saitoh, Chiral spin-wave edge modes in dipolar magnetic thin
films, Phys. Rev. B 87, 174402 (2013).

[104] A. Okamoto, R. Shindou, and S. Murakami, Berry curvature
for coupled waves of magnons and electromagnetic waves,
Phys. Rev. B 102, 064419 (2020).

[105] F. D. M. Haldane and S. Raghu, Possible Realization of Direc-
tional Optical Waveguides in Photonic Crystals with Broken
Time-Reversal Symmetry, Phys. Rev. Lett. 100, 013904
(2008).

[106] S. Raghu and F. D. M. Haldane, Analogs of quantum-Hall-
effect edge states in photonic crystalFs, Phys. Rev. A 78,
033834 (2008).

[107] K. Slevin and T. Ohtsuki, Corrections to Scaling at the Ander-
son Transition, Phys. Rev. Lett. 82, 382 (1999).

[108] K. Binder, Critical Properties from Monte Carlo Coarse Grain-
ing and Renormalization, Phys. Rev. Lett. 47, 693 (1981).

[109] B. Bulka, M. Schreiber, and B. Kramer, Localization, quantum
interference, and the metal-insulator transition, Z. Phys. B 66,
21 (1987).

[110] V. Privman, P. Hohenberg, and A. Aharony, Universal
Critical-Point Amplitude Relations, Phase transition and criti-
cal phenomena Vol. 14 (Academic Press, New York, 1997).

[111] K. Slevin, P. Markoš, and T. Ohtsuki, Scaling of the conduc-
tance distribution near the Anderson transition, Phys. Rev. B
67, 155106 (2003).

[112] V. Oganesyan and D. A. Huse, Localization of interacting
fermions at high temperature, Phys. Rev. B 75, 155111 (2007).

[113] L. Sá, P. Ribeiro, and T. Prosen, Complex Spacing Ratios: A
Signature of Dissipative Quantum Chaos, Phys. Rev. X 10,
021019 (2020).

[114] H. Ghaemi-Dizicheh and H. Schomerus, Compatibility of
transport effects in non-Hermitian nonreciprocal systems,
Phys. Rev. A 104, 023515 (2021).

[115] F. J. Wegner, Electrons in disordered systems. scaling near the
mobility edge, Z. Phys. B 25, 327 (1976).

[116] S. John, Strong Localization of Photons in Certain Dis-
ordered Dielectric Superlattices, Phys. Rev. Lett. 58, 2486
(1987).

[117] D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini,
Localization of light in a disordered medium, Nature (London)
390, 671 (1997).

[118] T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Transport
and Anderson localization in disordered two-dimensional pho-
tonic lattices, Nature (London) 446, 52 (2007).

[119] S. E. Skipetrov and I. M. Sokolov, Magnetic-Field-Driven
Localization of Light in a Cold-Atom Gas, Phys. Rev. Lett.
114, 053902 (2015).

[120] S. E. Skipetrov, Localization Transition for Light Scattering
by Cold Atoms in an External Magnetic Field, Phys. Rev. Lett.
121, 093601 (2018).

[121] T. R. Kirkpatrick, Localization of acoustic waves, Phys. Rev.
B 31, 5746 (1985).

[122] R. L. Weaver, Anderson localization of ultrasound, Wave
Motion 12, 129 (1990).

[123] H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov,
and B. A. van Tiggelen, Localization of ultrasound in
a three-dimensional elastic network, Nat. Phys. 4, 945
(2008).

[124] A. F. Tzortzakakis, K. G. Makris, A. Szameit, and E. N.
Economou, Transport and spectral features in non-Hermitian
open systems, Phys. Rev. Research 3, 013208 (2021).

104203-20

https://doi.org/10.1103/PhysRevB.87.174402
https://doi.org/10.1103/PhysRevB.102.064419
https://doi.org/10.1103/PhysRevLett.100.013904
https://doi.org/10.1103/PhysRevA.78.033834
https://doi.org/10.1103/PhysRevLett.82.382
https://doi.org/10.1103/PhysRevLett.47.693
https://doi.org/10.1007/BF01312758
https://doi.org/10.1103/PhysRevB.67.155106
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevX.10.021019
https://doi.org/10.1103/PhysRevA.104.023515
https://doi.org/10.1007/BF01315248
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1038/37757
https://doi.org/10.1038/nature05623
https://doi.org/10.1103/PhysRevLett.114.053902
https://doi.org/10.1103/PhysRevLett.121.093601
https://doi.org/10.1103/PhysRevB.31.5746
https://doi.org/10.1016/0165-2125(90)90034-2
https://doi.org/10.1038/nphys1101
https://doi.org/10.1103/PhysRevResearch.3.013208

