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Phonon transport in disordered alloys: A Multiple-scattering approach
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I present a formalism to calculate the configuration-averaged lattice thermal conductivity for substitutional
random alloys. The method is based on multiple-scattering approach which can capture the effect of disorder-
induced configuration fluctuations on single-particle and two-particle phonon Green functions in random alloys.
The randomness of the system is dealt within the augmented space theorem. This is combined with a generalized
Feynman diagrammatic technique to extract various useful results in the form of mathematical expressions.
I show the structure of all possible scattering diagrams up to the fourth order and subsequently illustrate
how to obtain Dyson’s equation from a resummation of the diagrammatic series. I also study how disorder
scattering affects two-particle Green functions associated with thermal response. It was shown explicitly how the
disorder scattering renormalizes both the phonon propagators as well as the heat currents. I derive the relation
between these renormalized heat currents and the self-energy of the propagators. I have also studied a different
class of scattering diagrams which are not related to the self-energy but rather to the vertex corrections. The
configuration-averaging scheme is straightforward to apply to other relevant quantities such as joint density of
states, thermal diffusivity, etc., for random alloys. The developed formalism is applied to a realistic Au1−xFex

binary alloy. The effect of disorder-induced corrections (as compared to the simple virtual crystal approximation)
turns out to be appreciable in this alloy. The configuration-averaged lattice thermal conductivity for Au50Fe50

shows a quadratic behavior in low-temperature regime (T � 30 K), which increases smoothly to a T -independent
saturated value at high T . Simulated thermal diffusivity D(ν ) helps to numerically estimate the mobility edge (νc )
which in turn evaluates the fraction of localized states. D(ν ) is found to decrease smoothly (almost linearly) in
the high-ν range, which when fitted to (νc − ν )α gives the critical exponent (α) to be 1.018 for Au50Fe50 alloy.
This agrees fairly well with the scaling and other theories of Andersen localization.

DOI: 10.1103/PhysRevB.104.104202

I. INTRODUCTION

Lattice thermal transport yields valuable information about
the interactions of thermal excitations with composition fluc-
tuations on the crystal lattice. Although the theory of lattice
thermal conductivity for perfect crystals has been developed
in some detail, the same is not true for substitutionally random
alloys. In the problem of phonons, the presence of disorder
not only arises from the impurity concentration, but also from
the relative masses and size difference between the constituent
atoms. It also depends on even more complex properties,
namely, the difference in dynamical matrices of the con-
stituent elements. For large mass and/or dynamical matrix
differences, the effect of disorder can be quite unusual. A
classic example is the random NiPt alloy, where both mass and
dynamical matrix disorder dominates. The consequence of
such a combination of disorder leads to the onset of split-band
behavior in its phonon dispersion [1]. Note that, in NiPt alloy,
the mass (mPt ∼ 3mNi), size (12%), and the force constants
(φPt-Pt is 55% larger than φNi-Ni) of the constituent elements
differ significantly, which gives rise to resonant modes [2].
Such split-band behavior is also observed experimentally [2].
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Historically, the first proposal for the calculation of lattice
thermal conductivity of disordered alloys was given by Leath
[3] and Flicker and Leath [4] using the Kubo formula within
the single-site coherent potential approximation (CPA). Simi-
lar technique is also used to calculate the electronic transport
within CPA [3]. These are developed using multiple-scattering
diagrams within the second-quantization Hamiltonian. It is
well known that CPA is a single-site approximation and hence
only capable of dealing with diagonal disorder (involving
mass). It does not work for problems involving off-diagonal
disorder such as those arising out of the force constants
in the phonon problem [5]. This was shown explicitly for
NiPt alloy where CPA gives a completely wrong phonon
dispersion and lifetime [2]. The problem of phonon becomes
even more complex due to the inherent presence of an en-
vironmental disorder arising out of the force constant sum
rule, i.e., �RR = −∑

R′ �=R �RR′ . There are several proposals
in the literature towards the generalization of CPA-type ap-
proach such as geometrically and linearly scaled off-diagonal
disorder approximation [6], cluster coherent potential approx-
imation (CCPA) [7], traveling cluster approximation (TCPA)
[8], nonlocal CPA (NLCPA) [9], dynamical cluster approx-
imation (DCA) [10], itinerant CPA (ICPA) [11], etc. A few
of these later methods turn out to be reasonably successful
in capturing the disorder-induced multiple-scattering effects.
For example, ICPA is a self-consistent mean-field approach

2469-9950/2021/104(10)/104202(16) 104202-1 ©2021 American Physical Society

https://orcid.org/0000-0001-8458-1006
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.104202&domain=pdf&date_stamp=2021-09-15
https://doi.org/10.1103/PhysRevB.104.104202


AFTAB ALAM PHYSICAL REVIEW B 104, 104202 (2021)

for the self-energy which relates the configuration-averaged
Green function to the virtual crystal one. It is an approxi-
mation which maintains both the translational symmetry of
the configuration average and its Herglotz analytic properties.
In ICPA, contributions of configurations involving correlated
fluctuations in more than one site to the self-energy are ig-
nored. Another promising approach is typical medium DCA
(a generalized version of DCA) [12] which systematically
captures the effect of nonlocal spatial correlation and hence
suitable for systems with off-diagonal disorder. Apart from
these, there are also numerically exact approaches such as
exact diagonalization [13], transfer matrix [14], and Kernel
polynomial methods [15], which are often used to deal with
systems acquiring off-diagonal disorder and strong localiza-
tion effect. These methods are, however, mostly applicable to
model systems of finite size. Although some of the above ap-
proximate methods were able to adequately capture the effects
of both diagonal and off-diagonal disorders, their formalism
was mostly restricted to the simulation of phonon dispersion,
density of states, and phonon linewidths. A generalization of
these approaches to the linear response level to simulate the
thermal transport properties of random alloys is lacking. This
is possibly due to a complex formulation.

In this communication, I present a detailed formalism to
evaluate the effect of disorder scattering on the lattice ther-
mal transport of random alloys. The method is based on
a Kubo-Greenwood–type formula which relates the thermal
conductivity to the heat (current-current) correlation function.
To capture the randomness in the alloy, configuration averag-
ing over several random atomic arrangements has been carried
out using augmented space formalism (ASF), introduced by
our group [16]. The ASF is a powerful technique which
goes beyond the conventional mean-field approach and accu-
rately capture the configuration fluctuations over a large local
environment (including off-diagonal and other correlated dis-
orders) [17–19]. Here, I shall combine a scattering diagram
technique with the ASF for phonons [1] to get an effective heat
current. This effective current captures the effect of various
disorder scattering corrections, in addition to the standard av-
eraged heat current. This disorder-induced correction will be
shown to be directly related to either the disorder-scattering-
induced self-energy matrix of the propagator or to the vertex
correction. Similar scattering diagram approach has been used
earlier by Leath [3], but within the framework of CPA. In this
paper, I shall go beyond the single-site CPA and derive the
contribution of these corrections for the most general case of
phonon problem including diagonal (mass), off-diagonal, and
environmental (dynamical matrix) disorder. The developed
formalism is then applied on a real Au1−xFex alloy within an
ab initio framework. The application of the present method
on a realistic material within a first-principles framework is a
major advancement over other existing approaches.

II. FORMALISM

A. Effect of disorder on the single-particle Green function:
The Dyson equation

The augmented space formalism (ASF) for carrying out
configuration averaging of physical properties of disordered

systems has been described in detail in several earlier papers
[16,20,21]. I shall, for the sake of completeness, describe only
those features which will be necessary for the implementation
of our ideas in this communication.

Let f (nR) be a function of a binary random variable nR,
whose binary probability density is given by

Pr(nR) = xA δ(nR) + xB δ(nR − 1).

Such random variables are useful for describing substitu-
tional binary alloys. These are the kind of disordered systems
which I am interested in this communication. The ASF now
prescribes that we write this probability density, which is a
positive-definite integrable function, as the resolvent of an
operator whose spectrum consists of the random values taken
by it (in this case 0 and 1):

Pr(nR) = − 1

π
Imm〈↑R |(nRI − NR)−1| ↑R〉. (1)

The configuration space of nR is of rank two and spanned by
the states |0〉 and |1〉. The operator NR acts on this space.
| ↑R〉 = √

xA|0〉 + √
xB|1〉 is called the reference state. Its

orthogonal counterpart is | ↓R〉 = √
xB|0〉 − √

xA|1〉. The rep-
resentation of NR in this new basis is

NR =
(

xA
√

xAxB√
xAxB xB

)
.

The ASF now proceeds as follows:

〈〈 f (nR)〉〉 =
∫ ∞

−∞
f (nR)Pr(nR)dnR

= − 1

π
Im

∫ ∞

−∞
f (nR)〈↑R |(nRI − NR)−1| ↑R〉dnR

= − 1

π
Im

∑
λ=0,1

∑
λ′=0,1

∫ ∞

−∞
f (nR)

×〈↑R |λ〉〈λ|(nRI − NR)−1|λ′〉〈λ′| ↑R〉dnR

=
∑
λ=0,1

〈↑R |λ〉 f (λ)〈λ| ↑R〉

= 〈↑R |f̃| ↑R〉. (2)

Here f̃ is an operator built out of f (nR) by simply re-
placing the variable nR by the associated operator NR. The
above expression shows that the average is obtained by taking
the matrix element of this operator between the reference
state| ↑R〉. The full augmented space theorem is a general-
ization of this for functions of many independent random
variables {nR}.

The theory of phonons consists of solving a secular equa-
tion of the form

(Mw2 − D) u(R,w) = 0,

where uα (R,w) is the Fourier transform of uα (R, t ), the dis-
placement of an atom from its equilibrium position R on the
lattice, in the direction α at time t . M is the mass operator,
diagonal in real space, and D is the dynamical matrix operator
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whose tight-binding representations are

M =
∑

R

mR δαβ PR,

D =
∑

R

{
−

∑
R′ �=R

�
αβ

RR′

}
PR +

∑
R

∑
R′ �=R

�
αβ

RR′ TRR′ , (3)

where the sum rule has been incorporated in the first term of
the equation involving D. Here PR is the projection operator
(PR = |R〉〈R|) and TRR′ is the transfer operator (TRR′ = |R〉〈R′|)
in the real space H spanned by the tight-binding basis {|R〉}.
R, R′ specify the lattice sites and α, β the Cartesian directions.
mR is the mass of an atom occupying the position R and �

αβ

RR′
is the force constant tensor.

I shall be interested in calculating the displacement-
displacement Green matrix G(R, R′,w2):

G(R, R′,w2) = 〈R|(Mw2 − D
)−1|R′〉.

Let us now consider a binary alloy AxBy consisting of
two kinds of atoms A and B of masses mA and mB ran-
domly occupying each lattice site. I wish to calculate the
configuration-averaged Green matrix 〈〈G(R, R′,w2)〉〉. I shall
use the augmented space formalism to do so indicating the
main operational results here. For further details, I refer the
reader to the above monograph, i.e., Ref. [21]. The first oper-
ation is to represent the random parts of the secular equation
in terms of a random set of local variables {nR} which are 1
if the site R is occupied by an A atom and 0 if it is occupied
by B.

In terms of these, the mass operator can be written as

M =
∑

R

[mB + nR (δm)]δαβ PR; δm = mA − mB. (4)

According to the augmented space theorem, in order to
obtain the configuration average I simply replace the random
variables nR by the corresponding operators NR associated
with its probability density given by Eq. (1), and take the
matrix element of the resulting operator between the reference
states. For a full mathematical proof, the reader is referred to
Ref. [21]:

nR −→ NR = x Ĩ + (y − x) p↓
R + √

xy T ↑↓
R .

Similarly, the random off-diagonal force constants �
αβ

RR′
between the sites R and R′ can be written as

�
αβ

RR′ = �
αβ
AAnRnR′ + �

αβ
BB(1 − nR)(1 − nR′ )

+ �
αβ
AB[ nR(1 − nR′ ) + nR′ (1 − nR) ]

= �
αβ
BB + (

�
αβ
AA + �

αβ
BB − 2�

αβ
AB

)
nRnR′

+ (
�

αβ
AB − �

αβ
BB

)
(nR + nR′ ). (5)

The augmented space theorem [16] yields the configuration-
averaged Green function [20] as

〈〈G(R, R′,w2)〉〉 = 〈{∅} ⊗ R|(g−1 − D̃1
)−1|{∅} ⊗ R′〉, (6)

where the virtual crystal approximated (VCA) Green matrix g
is given by

g = (〈〈M̃〉〉ω2 − 〈〈D̃〉〉)−1,

where the mass operator M̃ and the dynamical matrix operator
D̃, in the augmented space, has the following form:

M̃ = A(m) Ĩ ⊗ I + B(m)
∑

R

p↓
R ⊗ PR

+F(m)
∑

R

T ↑↓
R ⊗ PR

= 〈〈M̃〉〉 + M̃′, (7)

where

A(X) = 〈〈X〉〉 = (xXA + yXB),
B(X) = (y − x) (XA − XB),
F(X) = √

xy (XA − XB),

x, y being the concentration of the constituents A and B of
the alloy AxBy. p↓

R and T ↑↓
R are the projection and transfer

operators in the configuration space describing the statistical
behavior of the system

〈〈D̃〉〉 = −
∑

R

∑
R′ �=R

〈〈�RR′ 〉〉Ĩ ⊗ PR

+
∑

R

∑
R′ �=R

〈〈�RR′ 〉〉Ĩ ⊗ TRR′ , (8)

where

〈〈�RR′ 〉〉 = x2 �AA + y2 �BB + 2xy �AB.

�’s in the right-hand side are the force constant tensor be-
tween different combinations of atoms. Also,

D̃1 =
∑

R

{
−ϒR −

∑
R′ �=R

�RR′

}
⊗ PR

+
∑

R

∑
R′ �=R

�RR′ ⊗ TRR′

with

ϒR = B(m) ω2 p↓
R + F(m) ω2 T ↑↓

R ,

�RR′ = D(1)
RR′ (p↓

R + p↓
R′ ) + D(2)

RR′ (T ↑↓
R + T ↑↓

R′ )

+ D(3)
RR′ p↓

R p↓
R′ + D(4)

RR′ (p↓
R T ↑↓

R′ T ↑↓
R p↓

R′ )

+ D(5)
RR′ T ↑↓

R T ↑↓
R′ , (9)

where

D(1) = (y − x) �(1); D(2) = √
xy �(1),

D(3) = (y − x)2 �(2); D(4) = √
xy (y − x) �(2),

D(5) = xy �(2)

and

�(1) = x �AA − y �BB + (y − x)�AB,

�(2) = �AA + �BB − 2�AB.

Physical interpretation of the vertices is transparent if I
consider the | ↑R〉 state to be the ground state or a state with
no configuration fluctuations and | ↓R〉 to be the state with one
configuration fluctuation at the site R. The operator p↓

R then
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g

       D
(4)

 D                                                           D                                   
(2)

(3)

(1) 

       D

 B                                                              F

              D
            (5)

FIG. 1. The scattering vertices for the averaged Green function.
These vertices correspond to various terms in Eqs. (7) and (8). The
horizontal arrow line in the last row corresponds to the VCA green
operator (g).

measures the number of fluctuations (0 or 1) and T ↑↓
R either

creates or destroys a fluctuation at the site R.
Various terms of Eqs. (7) and (8) can then be represented

by different vertices. These are shown in Fig. 1 corresponding
to the scattering vertices B, F and D(1)-D(5). The vertex F is
diagonal in real space and causes a configuration fluctuation
at a site due to disorder in the mass. Similarly, the vertex B,
also diagonal in real space, counts the number of fluctuations
at a given site. The remaining vertices labeled D are all off
diagonal in real space. The vertex D(1) counts the number of
fluctuations at one or the other of the sites associated with the
vertex. D(2) causes a configuration fluctuation, again at one of
the sites associated with the vertex. D(3) counts the number of
fluctuations at both the sites associated with the vertex. D(4)

counts the number of fluctuations at one site and causes a
fluctuation at the other. Finally, D(5) causes a fluctuation at
both the sites associated with the vertex.

Equation (6) can also be expressed as

〈〈G(R, R′,w2)〉〉 = 〈{∅} ⊗ R|(g + g D̃1 g

+g D̃1 g D̃1 g + · · · )|{∅} ⊗ R′〉. (10)

The first term in Eq. (10) gives

〈{∅} ⊗ R| g |{∅} ⊗ R′〉 = g(R, R′,w2).

Within the scattering diagram formalism, I shall associate a propagator represented by a horizontal arrow for each factor g.
This is shown in the last row of Fig. 1. The second term in Eq. (10) yields zero since 〈{∅} ⊗ R|D̃1|{∅} ⊗ R′〉 = 0. The third term
gives

〈{∅} ⊗ R|g D̃1 g D̃1 g|{∅} ⊗ R′〉 =
∑
S1S2

∑
S3S4

∑
{C}

∑
{C′}

〈{∅} ⊗ R| g |{∅} ⊗ S1〉〈{∅} ⊗ S1| D̃1 |{C} ⊗ S′′〉

×〈{C} ⊗ S2| g |{C ′} ⊗ S3〉〈{C ′} ⊗ S3| D̃1 |{∅} ⊗ S4〉 〈{∅} ⊗ S4| g |{∅} ⊗ R′〉.

A little more algebra yields the following contribution:

〈{∅} ⊗ R|g D̃1 g D̃1 g|{∅} ⊗ R′〉 =
∑
S1S2

g(R, S1,w
2) (Fw2) g(S1, S2,w

2) δ(S1 − S2) (Fw2) g(S2, R′,w2)

+
∑

S1

∑
S3S4

g(R, S1,w
2) (Fw2) g(S1, S3,w

2) δ(S1 − S3) D(2)
S3S4

g(S4, R′,w2)

+
∑

S1

∑
S3S4

g(R, S1,w
2) (Fw2) g(S1, S3,w

2) δ(S1 − S4) D(2)
S3S4

g(S4, R′,w2)

+
∑

S1

∑
S2S4

g(R, S1,w
2) D(2)

S1S2
g(S2, S4,w

2) δ(S1 − S4) (Fw2) g(S4, R′,w2)

+
∑

S1

∑
S2S4

g(R, S1,w
2) D(2)

S1S2
g(S2, S4,w

2) δ(S2 − S4) (Fw2) g(S4, R′,w2)

+
∑
S1S2

∑
S3S4

g(R, S1,w
2) D(2)

S1S2
g(S2, S3,w

2) δ(S1 − S3) D(2)
S3S4

g(S4, R′,w2)

+
∑
S1S2

∑
S3S4

g(R, S1,w
2) D(2)

S1S2
g(S2, S3,w

2)δ(S1 − S4) D(2)
S3S4

g(S4, R′,w2)

+
∑
S1S2

∑
S3S4

g(R, S1,w
2) D(2)

S1S2
g(S2, S3,w

2) δ(S2 − S3) D(2)
S3S4

g(S4, R′,w2)
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+
∑
S1S2

∑
S3S4

g(R, S1,w
2) D(2)

S1S2
g(S2, S3,w

2) δ(S2 − S4) D(2)
S3S4

g(S4, R′,w2)

+
∑
S1S2

∑
S3S4

g(R, S1,w
2) D(5)

S1S2
g(S2, S3,w

2) δ(S2 − S4)δ(S1 − S3) D(5)
S3S4

g(S4, R′,w2)

+
∑
S1S2

∑
S3S4

g(R, S1,w
2) D(5)

S1S2
g(S2, S3,w

2) δ(S1 − S4)δ(S2 − S3) D(5)
S3S4

g(S4, R′,w2). (11)

Referring to the above equation, I shall now build up the
scattering diagrams. I have already associated scattering ver-
tices with the terms in D̃1, as shown in Fig. 1. The dashed lines
with arrow are associated with the delta function. A connected
diagram to order “n” is built up by stringing together (n + 1)
propagators associated with g, connected by n vertices with
all fluctuation lines combined in pairs. For n = 2 there are 11
possible scattering diagrams, whose algebraic form is given in
Eq. (11). These diagrams are shown in Fig. 2. For n = 3, the
possible kinds of scattering diagrams are shown in Fig. 3. Note
that it involves terms with contribution from B, D(1), D(3),
and D(4) as well. These scattering vertices can not sit either in
the leftmost or in the rightmost positions because then one of
the associated pseudo fermion Green function lines vanishes.
In Figs. 3 A–3 F, each of the sections represents different
distinct classes of diagrams. I call each section as the topo-
logically distinct scattering diagrams. There exists three more
sections in addition to these (i.e., Figs. 3 A–3 F) which are
obtained simply by applying the reflection operators vertically
to the diagrams in sections B, D, and E. Hence in total, there
exist nine topologically distinct classes of scattering diagrams
for n = 3. For n = 4, there are various classes of diagrams as
shown in Fig. 4. In this figure, I have not shown the scattering
diagrams with all sorts of combinations of fluctuation lines,
but label the multiplicity within the parentheses for each di-
agram which actually gives the number of possible ways of

D
(5)

D
(2)

F g

FIG. 2. The possible scattering diagrams for n = 2.

combining the fluctuation lines for that particular diagram.
For the diagram in the last column of Fig. 4 A, the middle
decoration indicates a collection of all those diagrams lying
in-between two vertices such that a single pseudofermion line
goes out (from the left vertex) and a single pseudofermion
line comes in (at the right vertex) for n = 4. Similarly for the
diagrams in the last column of Fig. 4 E, the middle decoration
indicates a collection of all those diagrams lying in-between
two vertices such that either (i) one pseudofermion line goes
out (left vertex) and two pseudofermion line comes in (right
vertex) or (ii) two pseudofermion lines go out (left vertex)
and one pseudofermion line comes in (right vertex). For the
diagrams in the last column of Fig. 4 I, the middle decoration

FIG. 3. The possible scattering diagrams for n = 3.
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FIG. 4. The possible scattering diagrams for n = 4.

stands for a collection of all those diagrams lying in-between
two vertices such that two pseudofermion lines go out (from
the left vertex) and two pseudofermion lines come in (at
the right vertex). Each of these diagrams in the last column
are said to be the topologically distinct classes of diagrams.
Hence, overall there exist nine topologically distinct classes
of diagrams for n = 4 also.

Amongst the above sets of diagrams (for n = 3 and 4),
there exist three basic subsets, namely,

(i) a set of separable diagrams, which are those that can be
broken into two along a propagator line without also breaking
a pseudofermion line;

(ii) a set of nonseparable, nonskeleton diagrams which can
not be broken into two, but the VCA Green function in this
diagram can be renormalized;

(iii) skeleton diagrams involving all the crossed and com-
plicated structured diagrams.

If I club together the contribution of all the skeleton di-
agrams calling this the self-energy, and allow all phonon
Green functions except the leftmost to be renormalized by the
separable and nonseparable, nonskeleton diagrams, I get the
Dyson equation

〈〈G〉〉 = g + g �〈〈G〉〉.

     Key   
(2)

  D

  D

  

F

(5)

FIG. 5. Topological structure of the skeleton diagrams for the
self-energy �. The central dark semicircle represents all possible
arrangements of scattering vertices to all orders.

For homogeneous disorder, it is already shown earlier by
us that the translational symmetry remains intact in the full
augmented space [22]. We can then take Fourier transform of
the above equation to get

〈〈G(q, E )〉〉 = g(q, E ) + g(q, E ) �(q, E ) 〈〈G(q, E )〉〉.

The diagrams for the self-energy are skeleton diagrams all
of which have the structure as shown in Fig. 5. Each of these
diagrams starts or ends with any one of either F, D(2), or
D(5) vertex. The central dark semicircle stands for all possible
arrangements of scattering vertices to all orders.

B. Effect of disorder on two-particle Green functions: Lattice
thermal conductivity

1. Configuration averaging of lattice thermal conductivity

The Kubo formula which relates the optical conductivity to
a current-current correlation function is well established. The
Hamiltonian contains a term

∑
i ji · A(r, t ) which drives the

electrical current. For thermal conductivity, I do not have a
similar term in the Hamiltonian which drives a heat current.
The derivation of a Kubo formula in this situation requires
an additional statistical hypothesis which states that a sys-
tem in steady state has a space-dependent local temperature
T (r) = [κBβ(r)]−1. The expression for the heat current has
been discussed in great detail by Hardy [23] and Allen and
Feldman [24]. The readers are referred to these papers for the
details of calculation. The matrix element of the heat current
in the basis of the eigenfunctions of the Hamiltonian is given
by

Sμ

γγ ′ (k) = h̄

2
(ωkγ + ωkγ ′ ) vμ

γγ ′ (k), (12)
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where the phonon group velocity vγ γ ′ (k) is given by

vγ γ ′ = i

2
√

ωkγ ωkγ ′

∑
μ

∑
ν

εμ
γ (k) εν

γ ′ (k)

×
⎛⎝∑

Ri j

�μν (Ri j )√
MiMj

⎞⎠Ri j eik·Ri j

= 1

2
√

ωkγ ωkγ ′

∑
μ

∑
ν

εμ
γ (k) ∇kDμν (k) εν

γ ′ (k), (13)

where i, j label the atoms, γ , γ ′ label the various modes of vi-
brations, μ, ν label the Cartesian directions, ωkγ , ωkγ ′ are the
eigenfrequencies, εμ

γ (k), εν
γ ′ (k) are the polarization vectors

associated with the γ th and γ ′th mode of vibrations. Dμν (k)
is the Fourier transform of mass-scaled dynamical matrix.

I shall consider the case where the temperature gradient is
uniform within the system. The linear heat current response
is related to the temperature gradient field via a generalized
susceptibility

〈Sμ(t )〉 = −
∑

ν

∫ ∞

−∞
dt ′κμν (t − t ′) ∇νδT (t ).

The generalized susceptibility is the thermal conductivity in
this case, given by

κμν (τ ) = �(τ )
1

T

∫ β

0
dλ〈Sμ(−ih̄λ), Sν (τ )〉,

�(τ ) is the Heaviside step function, and

S(−ih̄λ) = eλH S e−λH ,

the angle brackets on the right-hand side stand for thermal
averaging over states in the absence of the temperature gra-
dient. The above equation can be rewritten in the form of a
Kubo-Greenwood expression

κμν (ω, T ) = κ
μν
I (ω, T ) + κ

μν
II (ω, T ),

κ
μν
I (ω, T ) = π

T

∫
d3k

8π3

∑
γ ,γ ′ �=γ

〈nkγ ′ 〉 − 〈nkγ 〉
h̄(ωkγ − ωkγ ′ )

×Sμ

γγ ′ (k)Sν
γ ′γ (k) δ(ωkγ − ωkγ ′ − ω), (14)

κ
μν
II (ω, T )= 1

κBT 2

[{∫
d3k

8π3

∑
γ

〈nkγ 〉 Sμ
γγ (k)

}

×
{∫

d3k

8π3

∑
γ

〈nkγ 〉 Sν
γ γ (k)

}

−κBT
∫

d3k

8π3

∑
γ

∂〈nkγ 〉
∂ (h̄ωkγ )

Sμ
γγ (k) Sν

γ γ (k)

]
δ(ω),

(15)

where 〈nkγ 〉 = (eβ h̄ωkγ − 1)−1 is the equilibrium Bose-
Einstein distribution function and T is the absolute tem-
perature. For an isotropic response, Eq. (14), for interband

transition, can be expressed as

κI (ω, T ) = π

3T

∑
μ

∫
dω′

∫
d3k

8π3

∑
γ ,γ ′

Ŝμ

γγ ′ (k, T )̂Sμ

γ ′γ (k, T )

×δ(ω′ − ωkγ ′ )δ(ω′ + ω − ωkγ ), (16)

where

Ŝμ

γγ ′ (k, T ) =
√∣∣∣∣ 〈nkγ ′ 〉 − 〈nkγ 〉

h̄(ωkγ − ωkγ ′ )

∣∣∣∣ Sμ

γγ ′ (k).

I can rewrite the above equation as

κI (ω, T ) = 1

3πT

∑
μ

∫
dω′

∫
d3k

8π3
Tr

[
Ŝμ(k, T )

×Im{G(k, ω′)} Ŝμ(k, T ) Im{G(k, ω′ + ω)}].
(17)

The operator G(ω) is the phonon Green operator (Mω2I −
�)−1. The trace is invariant in different representations. For
crystalline systems, usually the Bloch basis {|k, γ 〉} is used.
For disordered systems, prior to configuration averaging, it
is more convenient to use the basis {|k, α〉}, where k is the
reciprocal vector and α represents the coordinate axes direc-
tions. I can transform from the mode basis to the coordinate
basis by using the transformation matrices ϒγα (k) = εα

γ (k).
For example,

Ŝμ
αβ (k, T ) = ϒ−T

αγ (k) Ŝμ

γγ ′ (k, T ) ϒ−1
γ ′β (k).

If I define

κ (z1, z2) =
∫

d3k

8π3
Tr

[
Ŝ G(k, z1) Ŝ G(k, z2)

]
, (18)

then Eq. (17) becomes

κI (ω, T ) = 1

12πT

∑
μ

∫
dω′ [κμμ(ω′−, ω′+ + ω)

+κμμ(ω′+, ω′− + ω) − κμμ(ω′+, ω′+ + ω)

−κμμ(ω′−, ω′− + ω)], (19)

where

f (ω±) = lim
δ→0

f (ω ± iδ).

I have also used the Herglotz analytic property of the Green
operator

G(ω + iδ) = Re[G(ω)] − i sgn(δ) Im[G(ω)].

For disordered materials, I am interested in obtaining the
configuration-averaged response functions. This will require
the configuration averaging of quantities like κ (z1, z2). For
disordered materials, Eq. (19) should be expressed as

〈〈κI (ω, T )〉〉 = 1

12πT

∑
μ

∫
dω′ 〈〈[κμμ(ω′−, ω′+ + ω)

+κμμ(ω′+, ω′− + ω) − κμμ(ω′+, ω′+ + ω)

−κμμ(ω′−, ω′− + ω)]〉〉, (20)
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Let us discuss the configuration averaging of the two-particle
Green function of the kind κ (z1, z2). The augmented space
theorem immediately implies that

〈〈κ (z1, z2)〉〉 = Tr
〈{∅}∣∣ [ S̃G̃(z1) S̃†G̃(z2)

] |{∅}〉. (21)

The first thing to note about Eq. (21) is that the right-hand
side is an average of four random functions whose fluctuations
are correlated. The average of the product then involves the
product of the averages and other contributions which come
from averages taken in pairs, triplets, and all four random
functions.

Following a similar procedure as for a single-particle
Green function, the operator S̃ in the augmented space takes
the form

S̃ =
∑
Rα

∑
R′α′

[〈〈̂S〉〉Rα,R′α′ Ĩ + S(1)
Rα,R′α′ (p↓

R + p↓
R′ )

+ S(2)
Rα,R′α′ (T ↑↓

R + T ↑↓
R′ ) + S(3)

Rα,R′α′ p
↓
R ⊗ p↓

R′

+ S(4)
Rα,R′α′ (p↓

R ⊗ T ↑↓
R′ + p↓

R′ ⊗ T ↑↓
R )

+ S(5)
Rα,R′α′T ↑↓

R ⊗ T ↑↓
R′

] ⊗ TRR′ , (22)

where

S(1) = (y − x) Ŝ(1), S(2) = √
xy Ŝ(1),

S(3) = (y − x)2 Ŝ(2), S(4) = √
xy (y − x) Ŝ(2),

S(5) = xy Ŝ(2)

and

Ŝ(1)
Rα,R′α′ = x

(̂
SAA

Rα,R′α′ − ŜAB
Rα,R′α′

)
−y

(̂
SBB

Rα,R′α′ − ŜBA
Rα,R′α′

)
,

Ŝ(2)
Rα,R′α′ = ŜAA

Rα,R′α′ + ŜBB
Rα,R′α′ − ŜAB

Rα,R′α′ − ŜBA
Rα,R′α′ .

2. Disorder-renormalized current

I now start to set up the scattering diagrams for the thermal
conductivity. A look at Eq. (22) shows us that the first term
is the averaged VCA current. This term is absorbed in the
unscattered part of the phonon Green function and leads to the
zeroth-order approximation. Equation (22) looks very similar
to Eq. (9) from the operator point of view. The only difference
is that the former equation arises due to the disorder in heat
currents while the latter equation due to the disorder in the
dynamical matrix. Exactly as before, I can associate scattering
vertices with the terms in S̃. Figure 6 shows 16 different scat-
tering vertices arising out of the Eq. (22). Let us now discuss
how the scattering diagrams are set up and then examine them.
The rule for obtaining the diagrams for the correlation func-
tion 〈〈κ (z1, z2)〉〉 is as follows: Take any two current diagrams
from Fig. 6 and two propagators and join them end to end.
Now join the configuration fluctuation lines (shown as dashed
arrows) in all possible ways. The zeroth-order approximation
for 〈〈κ (z1, z2)〉〉 can be shown diagrammatically as in Fig. 7.
The most dominant contribution comes from this particular
diagram. Here the two current terms are the averaged cur-
rent, and all configuration-fluctuation decorations renormalize
only the two-phonon propagators. The bold propagators in
this diagram are fully scattering renormalized propagators

FIG. 6. The scattering vertices corresponding to the random
heat-current terms ]see Eq. (22)].

corresponding to the configuration-averaged Green function.
The contribution of this term to the correlation function
〈〈κ (z1, z2)〉〉 is∫

d3k

8π3
〈〈̂S(k)〉〉〈〈G(k, z1)〉〉〈〈̂S(k)〉〉〈〈G(k, z2)〉〉. (23)

The rest of the terms in Eq. (22) give rise to scattering. I
shall now focus on the main correction terms to the expression
in Eq. (23). These are the correction terms to the averaged
current which, as I will show, are closely related to the self-
energies. The first type of scattering diagrams are those in
which no disorder propagator (shown as the dashed lines)
joins either two-phonon propagators or two of the current lines
directly. Figure 8 shows few such scattering diagrams. These
sets of diagrams may be clubbed together and renormalized in
a form which will consist of two fully renormalized phonon
propagators connected at the two ends by a new form of
the renormalized current. This new form of the renormalized
current may be obtained in the following way.

Figure 8 clearly shows that these types of diagrams are
made out of a left renormalized current diagram chosen out
of any one of the diagrams from Figs. 9(a) and 9(b) and
one right renormalized current diagram from any one of the
diagram Figs. 9(c) and 9(d) connected by two renormalized
propagators.

FIG. 7. The VCA or zeroth-order approximation for 〈〈κ (z1, z2)〉〉.
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FIG. 8. Few examples of scattering diagrams where no disorder
line joins the two-phonon propagators.

Let us now obtain expressions for the renormalized cur-
rents. A careful look at the self-energy diagrams (see Fig. 5)
shows that all self-energy diagrams have the structure

�(k, z) = �(k, z) �(k, z) �(k, z), (24)

where �(k, z) is the Fourier transform of

�RR′ (z) =
∑
R1R2

GRR1 (z) PRR′
R1R2

(z) GR2R′ (z) (25)

FIG. 9. Scattering diagrams contributing to effective heat current.

FIG. 10. The scattering diagrams associated with joint fluctua-
tions of one current term and two propagators.

and

�(k, z) = F z2 + 2 D(2)(k) + 2 D(5)(k).

In the above equation, the quantity “P” stands for the cen-
tral dark semicircle of Fig. 5 which represents all possible
arrangements of scattering vertices to all orders.

If I compare the diagrams of Fig. 9(a) with the diagrams for
the self-energy Fig. 5, I note that the only difference between
the two is that the leftmost scattering vertex is replaced by a
very similar heat-current term. In the diagrams of Fig. 9(a),
the leftmost diagonal terms similar to the vertex F of Fig. 1 is
of course missing. The contribution of such diagrams may be
written in a mathematical form as

(2 S(2)(k) + 2 S(5)(k)) �(k, z) �(k, z),

which may be expressed in terms of the self-energy “�” by
using Eq. (24) as

(2 S(2)(k) + 2 S(5)(k)) [�(k, z1)]−1 �(k, z1).

The contribution of the diagrams in Fig. 9(b) is

�(k, z2) [�(k, z2)]−1(2 S(2)(k) + 2 S(5)(k)).

Similarly, the contribution of the diagrams in Figs. 9(c) and
9(d) are, respectively, given by

�(k, z1) [�(k, z1)]−1(2 S(2)(k) + 2 S(5)(k))

and

(2 S(2)(k) + 2 S(5)(k)) [�(k, z2)]−1 �(k, z2).

The next most dominant disorder corrections come from a
group of diagrams which describe joint fluctuation of one
current and two propagators. A few such diagrams are shown
in Fig. 10.
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FIG. 11. The scattering diagrams associated with joint fluctua-
tions of two current terms and one propagator.

The contributions of these diagrams [Figs. 10(a) and 10(b)]
can also be expressed in terms of the self-energy as

(a) �(k, z2) [�(k, z2)]−1 S(5)(k)[�(k, z1)]−1 �(k, z1),

(b) �(k, z1) [�(k, z1)]−1 S(5)(k)[�(k, z2)]−1 �(k, z2).

If I now gather all the contributions from these diagrams
[from Figs. 9(a)–9(d) and 10(a) and 10(b)], I can define a
renormalized current term as follows:

Seff (k, z1, z2) = 〈〈̂S(k)〉〉 + �S1(k, z1, z2) + �S2(k, z1, z2),
(26)

where

�S1(k, z1, z2) = 2[S(2)(k) + S(5)(k)][�(k, z1)]−1�(k, z1)

+�(k, z2)[�(k, z2)]−12[S(2)(k) + S(5)(k)],

�S2(k, z1, z2) = �(k, z2)[�(k, z2)]−1S(5)(k)[�(k, z1)]−1

×�(k, z1).

The contribution of these disorder-renormalized currents and
propagators to the correlation function is

〈〈κ(1)(z1, z2)〉〉 =
∫

d3k

8π3
Tr[Seff (k, z1, z2)〈〈G(k, z1)〉〉

×S†
eff (k, z1, z2)〈〈G(k, z2)〉〉]. (27)

I shall now discuss the disorder correction terms which
involve joint fluctuations between the two current terms and
one propagator. Few such diagrams are shown in Fig. 11. A
close inspection of these diagrams shows that these are also
related to the self-energy diagrams with vertices at both ends
replaced by currents. The corrections due to these terms can
therefore be related to the self-energy as before.

The contribution of these diagrams to the correlation func-
tion is given by

〈〈κ(2)(z1, z2)〉〉 = 4
∫

d3k

8π3
Tr[�S3(k, z1)〈〈G(k, z2)〉〉

+ �S4(k, z2)〈〈G(k, z1)〉〉], (28)

FIG. 12. Various scattering diagrams, such as ladder diagram,
maximally crossed diagram, etc., leading to vertex correction.

where

�S3(k, z1) = (S(2)(k) + S(5)(k))[�(k, z1)]−1

×�(k, z1)[�(k, z1)]−1(S(2)(k) + S(5)(k))†,

�S4(k, z2) = (S(2)(k) + S(5)(k))[�(k, z2)]−1

×�(k, z2)[�(k, z2)]−1(S(2)(k) + S(5)(k))†.

In our earlier paper [25] on a similar problem, I have argued
that these are the dominant disorder corrections to the average
current. Intuitively, I also expect the same to be true in the
present case as well. It is important to note that these correc-
tions can be obtained from the self-energy and is therefore
computationally feasible in the case of realistic alloys, once I
have a feasible method for obtaining the self-energy.

There are other scattering diagrams which are not related to
the self-energy but rather to the vertex corrections. In these di-
agrams, a disorder line connects both the phonon propagators
directly. These are the diagrams which are possibly responsi-
ble for the weak localization. For the sake of completeness,
I shall indicate in detail how to obtain them within a ladder
diagram approximation in the next subsection.

3. Vertex correction

The vertex corrections are basically those scattering dia-
grams in which disorder lines connect both the propagators
directly. I have not yet incorporated these kinds of diagrams
in the disorder renormalization. These diagrams arise due to
the correlated propagation. The diagrams leading to the vertex
corrections may be of different kinds, e.g., ladder diagrams,
maximally crossed diagrams, etc. The ladder diagrams are
those which are built out of repeated vertices, as shown on
the first row of Fig. 12. These kinds of diagrams can be
summed up to all orders. This is the disorder scattering version
of the random-phase approximation (RPA) for the phonon-
phonon scattering. The maximally crossed diagrams are those
diagrams in which the ladder inserts between the crossed
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FIG. 13. The ladder scattering diagrams for the vertex correction.

vertices. These types of diagrams are shown in the second row
of Fig. 12. Here I shall consider the ladder diagrams in detail
and show how to obtain the contribution of these diagrams
in terms of mathematical expression. I then sum these ladder
diagrams to all orders. The possible scattering diagrams for
the ladder kind of vertex correction involving the vertices
B, F, D(1) to D(5) are shown in Fig. 13.

The contribution of seven categories (A–G), shown in
Fig. 13, of the ladder scattering diagrams in terms of math-
ematical expressions [(W γ δ

αβ )i, i = A–G] are presented in the
Appendix. Considering the above seven categories, the sum
of all possible scattering diagrams contributing to the four-
legged vertex ( shown in the extreme right column of Fig. 13)
will be given by

W γ δ

αβ =
G∑

i=A

(
W γ δ

αβ

)
i
.

Here I shall sum the ladder diagrams to all orders. The con-
tribution of a single ladder diagram to the correlation function,
as shown in the first row of Fig. 14, can be mathematically

FIG. 14. The structure of infinite series of ladder diagrams con-
tributing to the correlation function 〈〈κ (z1, z2)〉〉.

expressed as∑
R1R2

∑
R3R4

∑
R5

∑
α1α2

∑
α3α4

∑
α5α6

Seff
R5α6,R1α1

GR1α1,R2α2 (z1)

×W α5α5
α2α2

GR2α2,R3α3 (z1)
(
Seff

R3α3,R4α4

)†

×GR4α4,R2α5 (z2) GR2α5,R5α6 (z2). (29)

If I apply the homogeneity in full augmented space, it
will imply that the above expression is independent of “R”
which allows us to take the Fourier transform leading to the
following expression:[∫

BZ

d3k

8π3
G(k, z2)Seff (k, z1, z2)G(k, z1)

]
W

×
[∫

BZ

d3k′

8π3
G(k′, z1)(Seff (k′, z1, z2))†G(k′, z2)

]
= �(z1, z2) W �̂(z1, z2),

where I have defined

�(z1, z2) =
∫

BZ

d3k

8π3
G(k, z2)Seff (k, z1, z2)G(k, z1),

�̂(z1, z2) =
∫

BZ

d3k′

8π3
G(k′, z1)(Seff (k′, z1, z2))†G(k′, z2).

Let us now look at the contribution of the infinite series of
ladder diagrams (shown in the third row of Fig. 14) to the
correlation function. Each one of them has the same structure
as Eq. (29). I can then sum up the series as follows.

Let us define

�
γ δ

αβ (z1, z2) =
∫

BZ

d3k

8π3
Gαβ (k, z1) Gγ δ (k, z2).

Then,

	(z1, z2) = W + W�W + W�W�W + · · ·
= W(z1, z2)(I − �(z1, z2)W(z1, z2))−1.
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Thus, the contribution of the infinite series of ladder dia-
gram vertex corrections to the correlation function may be
expressed as

〈〈�κ (z1, z2)ladder〉〉 =
∑
αβ

∑
γ δ

�α
β (z1, z2)	αν

βδ (z1, z2)

×�̂ν
δ (z1, z2). (30)

Including all types of disorder corrections [as derived in
Eqs. (21), (28), and (30)], the configuration average of the
correlation function will have the following form:

〈〈κ (z1, z2)〉〉 = 〈〈κ(1)(z1, z2)〉〉
+ 〈〈κ(2)(z1, z2)〉〉 + 〈〈�κ (z1, z2)ladder〉〉. (31)

It can be shown that the transition rate β(ν, T ) (related to
the heat-current operator) is strongly dependent on both initial
and final energies throughout the phonon spectrum by simply
calculating the configuration-averaged joint density of states
(JDOS) 〈〈J (ν)〉〉 defined as

〈〈J (ν)〉〉

=
∫

dν ′
∫

d3k
8π3

Tr[Im〈〈G(k, ν ′)〉〉Im〈〈G(k, ν ′ + ν)〉〉].
(32)

In other words, κ (ν, T ) �= |β(ν, T )|J (ν).
Thermal diffusivity captures the effect of disorder in a

more striking fashion and gives an idea about the localization.
For a harmonic solid, the temperature-independent thermal
diffusivity D(ν) is defined as

D(ν) = 1

π2

∫
dν ′

∫
d3k
8π3

×Tr[ImG(k, ν ′)S(k)ImG(k, ν ′)S(k)ImG(k, ν)]

(33)

which is similar to the expression of thermal conductivity ex-
cept that D(ν) is a product of five random functions instead of
four, for a disordered alloy. A similar diagrammatic procedure
can be used to calculate the configuration-averaged thermal
diffusivity 〈〈D(ν)〉〉.

III. NUMERICAL IMPLEMENTATION

I shall now briefly outline the steps of numerical imple-
mentation of the developed formalism. As evident from the
above section(s), although we have used numerous scattering
diagrams to evaluate different contributions to κ , all the con-
tributions are eventually renormalized and expressed in the
form of mathematical expressions [e.g., see Eqs. (27), (28),
(30), (32), and (33)]. These expressions involve quantities
which are essentially related to the atomic masses, dynamical
matrices, heat current, and the alloy compositions (x and y).
Few of the key quantities involved are the self-energy �, VCA
Green matrix g, configuration-averaged Green matrix 〈〈G〉〉,
VCA heat-current matrix 〈〈Ŝ〉〉, and effective heat-current ma-
trix 〈〈Se f f 〉〉. I have already shown how to calculate the first
three quantities in earlier papers [1,26]. Interested readers are
advised to follow these papers for further details. Heat-current
matrices involve two-site disorder and hence share exactly the

same feature as the dynamical matrices. In fact, they them-
selves depend on the atomic masses and dynamical matrices
[see Eqs. (12) and (13)]. As such, calculation of any quantity
involving heat-current matrices can be done in an exactly
similar manner as that of dynamical matrices.

I shall now apply the developed formalism on a real binary
alloy. It should be noted that the two main quantities which
go as an input to our simulation are the atomic masses and
the dynamical matrices between respective pairs (A-A, A-B,
and B-B pairs for a binary A-xBy alloy). Atomic masses of
different elements are readily available in the literature. The
dynamical matrices between different atomic pairs (specially
for a random alloy), however, are not trivial to calculate.
To demonstrate the strength of the method, I have chosen
Au1−xFex alloy as a test case for which a detailed ab initio
lattice dynamics calculation is done by us recently [27]. One
of the main objectives of this paper was to evaluate the dy-
namical matrices between different pairs within an ab initio
framework. This was done by combining two complementary
techniques, namely, special quasirandom structure (SQS) [28]
and the augmented space formalism, which together facilitate
a powerful approach to capture the multisite disorder effects,
as required in the phonon problem. The simulated nearest-
neighbor dynamical matrices between different pairs (Au-Au,
Au-Fe, and Fe-Fe) of four different Au1−xFex alloys are listed
in Table I of this paper [27]. For further details, readers are
referred to Ref. [27]. These force constants along with the
atomic masses of the constituent elements (mAu = 196.97
amu and mFe = 55.85 amu) are used as the input parameters
to our thermal transport simulation, as described below. A
similar SQS study of force constants but a different approach
to the thermal transport for semiconducting alloys is reported
recently [29], where a strong influence of directional bonding
is illustrated.

IV. RESULTS AND DISCUSSION

Figure 15 (left) shows the frequency dependence of
configuration-averaged lattice thermal conductivity 〈〈κ (ν)〉〉
and the scaled joint density of states 〈〈J (ν)〉〉 at T = 280 K
for Au50Fe50 alloy. The dotted-dashed (red) line shows the
thermal conductivity within the VCA approximation where no
higher-order disorder corrections are included, while the solid
line (black) shows the data where all the disorder-induced cor-
rections including the vertex corrections are explicitly taken
into account. It is clear that the effect of renormalized higher-
order corrections is not small in the entire phonon frequency
range and hence can not be neglected. Thus, the conventional
single-site mean field approximation is not sufficient to cap-
ture the multiple-scattering phenomenon associated with the
phonon transport. It is also evident from the JDOS plot that
κ (ν, T ) �= |β(ν, T )|J (ν), i.e., the transition rate β is strongly
dependent both on initial and final energies of the phonon
spectrum. Interestingly, both 〈〈κ (ν)〉〉 and 〈〈J (ν)〉〉 have a
sharp dip at an extremely small energy (ν → 0), reflecting the
missing intraband (κ II ) contribution to the conductivity. Such
dip arises due to a smooth convolution of two Green matrices
G(k, ν ′ + ν) and G(k, ν ′). An estimate of the dc thermal
conductivity can be obtained by extrapolating our 〈〈κ (ν)〉〉
curve from a value just above ν = 0 to a value at ν = 0.
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FIG. 15. (Left) Frequency (ν ) dependence of configuration-averaged thermal conductivity and joint density of states for Au50Fe50 alloy at
T = 280 K. Solid (black) line shows the result including all disorder-induced corrections + the vertex correction [see Eq. (31)], dotted-dashed
(red) line includes the VCA average only, while dashed (blue) line shows the JDOS. (Right) Temperature dependence of 〈〈κ (T )〉〉 for Au94Fe06,
Au75Fe25, and Au50Fe50 alloys.

This estimate turns out to be 26.3 W m−1 K−1 for Au50Fe50

alloy. A detailed literature survey shows the availability of
only limited experimental data on few dilute binary alloys
involving Au. The typical values of the experimental lattice
thermal conductivity for pure Au and some of its dilute alloys
fall in the range 20–60 W m−1 K−1 [30]. The right panel
of Fig. 15 shows the temperature dependence of 〈〈κ (T )〉〉
for three different Au1−xFex alloys. A close inspection of
low T (T � 30 K) behavior of κ (T ) confirms a quadratic
dependence on T , which mainly originates from low-energy
vibrations. With further increase in T , κ (T ) increases and
finally saturates to an almost constant value beyond a certain
temperature. Such saturation, within harmonic approxima-
tion, arises mainly from the T dependence of the Einstein
specific-heat part of the κ expression. One can also relate
such saturation to the dominant phonon-phonon scattering in
the high-T range which becomes so strong that the phonon
mean-free path (MFP) reaches a minima. This, in turn, freezes
further reduction in MFP due to any enhancement in disorder
scattering by raising T and hence resulting in a T -independent
κ . Another important observation is the reduction in κ with
increasing the disorder concentration (x). This is the most
common effect which arises due to the enhanced scattering
caused by the difference in atomic masses, radii, and dynam-
ical matrices of the two constituent elements of the alloy. In
the present case of Au-Fe alloy, this scattering is dominated
mainly by the difference in atomic masses (MAu/MFe = 3.53)
because the radii and force constants for Au and Fe are mostly
similar.

Thermal diffusivity for alloys is an important descriptor
to evaluate the effect of disorder scattering on vibrational
states and hence the localization and delocalization of
phonon modes. Figure 16 shows the frequency dependence
of configuration-averaged thermal diffusivity 〈〈D(ν)〉〉 (top)
and phonon density of states (bottom) for Au50Fe50 alloys. A
close look at the high-frequency data indicates that diffusivity
decreases smoothly (almost linear in ν) above 4 THz and
vanishes (up to the sixth decimal place) at νc = 5.52 THz.
This critical frequency (νc) is called the mobility edge above
which the diffusivity strictly goes to zero in the infinite-size

limit. I have fitted the diffusivity data in this ν range (4–5.52
THz) with the expression 〈〈D(ν)〉〉 � (νc − ν)α , and found the
critical exponent α to be 1.018, which is in fair agreement
with the scaling and other theories of Andersen localization
[31,32] The allowed vibrational states above (below) the crit-
ical frequency give an estimate of the percentage of localized
(delocalized) states, as shown by the arrow in the DOS plot.
The inset of top panel of Fig. 16 shows the location of mobility
edge (νc) and the fraction of delocalized states with varying Fe

FIG. 16. Configuration-averaged thermal diffusivity 〈〈D(ν )〉〉
(top) and phonon density of states, DOS (bottom) vs phonon fre-
quency for Au50Fe50 alloy. νc locates the mobility edge above which
diffusivity goes to zero. The area under the DOS curve above (below)
νc provide an estimate of the fraction of localized (delocalized) state.
The inset in the top panel displays the concentration (x) dependence
of the mobility edge and delocalized state for Au1−xFex alloys.
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concentration in Au1−xFex alloy. It shows maximum localiza-
tion at xFe = 50.

V. CONCLUSIONS

I present a generalized multiple-scattering formalism to
calculate the configuration-averaged lattice thermal conduc-
tivity for random binary alloys. This formulation is based on a
conjugation between augmented space method and a Feynman
diagrammatic technique. Unlike the single-site-based earlier
approaches, the present generalized formulation accurately
captures the effect of essential off-diagonal disorder arising
out of the dynamical matrices in the phonon problem. I
have shown that the effect of disorder scattering can simply
be captured by renormalizing the phonon Green functions,
via a Dyson equation. Disorder scattering also renormal-
izes the heat currents. I have explicitly drawn all possible
disorder-induced scattering diagrams for single particle as
well as two-particle Green functions. The latter corresponds to
the lattice thermal conductivity. Apart from the conventional
mean-field averaged term in the two-particle Green function
expression, there are two relatively dominant classes of cor-
rection terms: one which is related to the self-energy and
another related to the vertex corrections. I used the Kubo-
Greenwood–type formula to first derive the key equations
for the lattice thermal transport and then use the augmented
space recursion algorithm [20] to obtain the self-energy and
the heat-current corrections from it. The expression for the
current-current correlation related to the vertex corrections is
also derived explicitly.

A similar configuration-averaged scheme is employed to
calculate other relevant properties such as joint density of

states, thermal diffusion, etc. Au1−xFex binary alloy is then
chosen as a test system to apply the presently developed
formalism. As compared to the single-site virtual crystal ap-
proximation, the disorder-induced higher-order corrections
to thermal conductivity (〈〈κ〉〉) are found to be significant
for Au50Fe50 alloy. This clearly confirms the strength of the
present method. In the low-temperature (T ) regime, 〈〈κ (T )〉〉
behaves quadratically, which increases smoothly with in-
creasing T and finally saturates to a constant value at high
T . Within harmonic approximation, such saturation in κ (T )
arises mainly from the T dependence of the Einstein specific-
heat part of the κ expression. Configuration-average thermal
diffusivity (〈〈D(ν)〉〉) is an important descriptor to evaluate the
fraction of localized states. The simulated 〈〈D(ν)〉〉 is used to
first locate the mobility edge, which is a critical frequency
(νc) above which the diffusivity is strictly zero in the infinite-
size limit. This mobility edge is then used to estimate the
% of localized states. I found Au50Fe50 alloy to show the
maximum localization (�44%). In the high-frequency range
(4.0 � ν � 5.52 eV), D(ν) is found to decrease smoothly (al-
most linearly), which when fitted to D(ν) ∝ (νc − ν)α gives
the critical exponent (α) to be 1.018 for Au50Fe50 alloy. This
agrees fairly well with the scaling and other theories of An-
dersen localization.
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APPENDIX: MATHEMATICAL EXPRESSION FOR DIFFERENT CATEGORIES OF VERTEX CORRECTIONS

This Appendix contains auxiliary elaborations on the mathematical expressions corresponding to seven categories (A–G, see
Fig. 13) of ladder scattering diagrams belonging to the vertex corrections.

Category A: (
W γ δ

αβ

)
A

= (z1z2)2 FαFγ δαβδγ δ + 2 z2
2 D(2)

αβ F γ δγ δ.

Category B:

(
W γ δ

αβ

)
B

= (z1
2z2)2

[∑
ν ′ν ′′

(Fαν ′δαν ′ ) GRν ′,Rν ′′ (Fν ′′βδν ′′β )

]
(Bνδδνδ ) + (

z1
2Bαβδαβ

)(
z2

2Bνδδνδ

) + 2
[
D(1)

αβ

(
z2

2Bνδδνδ

)]
+ 4

[∑
ν ′ν ′′

D(2)
αν ′GRν ′,Rν ′′D(2)

ν ′′β

]
(z2

2Bνδδνδ ) + 2

[∑
ν ′ν ′′

(
z1

2Fαν ′δαν ′
)
GRν ′,Rν ′′D(2)

ν ′′β

](
z2

2Bνδδνδ

) + D(5)
αβ

(
z2

2Bνδδνδ

)
.

Category C:

(
W γ δ

αβ

)
C = 2

[(
z1

2Bαβδαβ

)
D(1)

νδ

] + 2

[∑
ν ′ν ′′

(
z1

2Fαν ′δαν ′
)

GRν ′,Rν ′′
(
z1

2Fν ′′βδν ′′β
)]

D(1)
νδ + 4 D(1)

αβ D(1)
νδ

+ 8

[∑
ν ′ν ′′

D(2)
αν ′ GRν ′,Rν ′′ D(2)

ν ′′β

]
D(1)

νδ + 4

[∑
ν ′ν ′′

(
z1

2Fαν ′δαν ′
)
GRν ′,Rν′′ D(2)

ν ′′β

]
D(1)

νδ

+ 2

[∑
ν ′ν ′′

D(2)
αν ′ GRν ′,Rν ′′

(
z1

2Fν ′′βδν ′′β
)]

D(1)
νδ .
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Category D: (
W γ δ

αβ

)
D = 2

[(
z1

2Fαβδαβ

)
D(2)

νδ

] + 4 D(2)
αβ D(2)

νδ .

Category E:

(
W γ δ

αβ

)
E = 2

[∑
ν ′ν ′′

(
z1

2Bαν ′δαν ′
)

GRν ′,Rν ′′
(
z1

2Bν ′′βδν ′′β
)]

D(3)
νδ

+ 8

[∑
ν ′ν ′′

(
z1

2Bαν ′δαν ′
)
GRν ′,Rν ′′ D(1)

ν ′′β

]
D(3)

νδ + 16

[∑
ν ′ν ′′

D(1)
αν ′ GRν ′,Rν ′′ D(1)

ν ′′β

]
D(3)

νδ

+ 4

[ ∑
ν1...ν6

(
z1

2Fαν1δαν1

)
GRν1,Rν2

(
z1

2Fν2ν3δν2ν3

)
GRν3,Rν4

(
z1

2Fν4ν5δν4ν5

)
GRν5,Rν6

(
z1

2Fν6βδν6β

) ]
D(3)

νδ

+16

[ ∑
ν1...ν6

(
z1

2Fαν1δαν1

)
GRν1,Rν2

(
z1

2Fν2ν3δν2ν3

)
GRν3,Rν4 D(2)

ν4ν5
GRν5,Rν6 D(2)

ν6β

]
D(3)

νδ + 4D(3)
αβ D(3)

νδ

+ 4

[∑
ν ′ν ′′

(
z1

2Fαν ′δαν ′
)

GRν ′,Rν ′′ D(4)
ν ′′β

]
D(3)

νδ + 4

[∑
ν ′ν ′′

(
z1

2Fαν ′δαν ′
)
GRν ′,Rν ′′ D(5)

ν ′′β

]
D(3)

νδ

+ 4

[ ∑
ν1...ν4

(
z1

2Bαν1δαν1

)
GRν1,Rν2

(
z1

2Fν2ν3δν2ν3

)
GRν3,Rν4

(
z1

2Fν4δδν4δ

)]
D(3)

νδ

+ 16

[ ∑
ν1...ν4

(
z1

2Bαν1δαν1

)
GRν1,Rν2

(
D(2)

ν2ν3

)
GRν3,Rν4

(
D(2)

ν4β

)]
D(3)

νδ

+ 8

[ ∑
ν1...ν4

(
z1

2Fαν1δαν1

)
GRν1,Rν2

(
z1

2Fν2ν3δν2ν3

)
GRν3,Rν4

(
D(1)

ν4β

)]
D(3)

νδ

+ 4

[ ∑
ν1...ν4

(
z1

2Fαν1δαν1

)
GRν1,Rν2

(
z1

2Fν2ν3δν2ν3

)
GRν3,Rν4

(
D(5)

ν4β

)]
D(3)

νδ

+ 32

[ ∑
ν1...ν4

(
D(1)

αν1

)
GRν1,Rν2

(
D(2)

ν2ν3

)
GRν3,Rν4

(
D(2)

ν4β

)]
D(3)

νδ

+ 16

[ ∑
ν1...ν4

(
D(2)

αν1

)
GRν1,Rν2

(
D(2)

ν2ν3

)
GRν3,Rν4

(
D(5)

ν4β

)]
D(3)

νδ + 5

[∑
ν ′ν ′′

(
D(5)

αν ′
)

GRν ′,Rν ′′
(
D(5)

ν ′′β

)]
D(3)

νδ

+ 64

[ ∑
ν1...ν6

(
D(2)

αν1

)
GRν1,Rν2

(
D(2)

ν2ν3

)
GRν3,Rν4

(
D(2)

ν4ν5

)
GRν5,Rν6

(
D(2)

ν6β

)]
D(3)

νδ .

Category F:

(
W γ δ

αβ

)
F = 6

[∑
ν ′ν ′′

(
z1

2Bαν ′δαν ′
)

GRν ′,Rν ′′
(
z1

2Fν ′′βδν ′′β
)]

D(4)
νδ + 12

[∑
ν ′ν ′′

(
D(1)

αν ′
)
GRν ′,Rν ′′

(
z1

2Fν ′′βδν ′′β
)]

D(4)
νδ

+ 24

[∑
ν ′ν ′′

(
D(1)

αν ′
)

GRν ′,Rν ′′
(
D(2)

ν ′′β

)]
D(4)

νδ + 12

[∑
ν ′ν ′′

(
z1

2Bαν ′δαν ′
)

GRν ′,Rν ′′
(
D(2)

ν ′′β

)]
D(4)

νδ + 12 D(4)
αβ D(4)

νδ

+ 10

[∑
ν ′ν ′′

(
D(5)

αν ′
)

GRν ′,Rν ′′
(
z1

2Fν ′′βδν ′′β
)]

D(4)
νδ + 20

[∑
ν ′ν ′′

(
D(5)

αν ′
)

GRν ′,Rν′′
(
D(2)

ν ′′β

)]
D(4)

νδ

+ 10

[∑
ν ′ν ′′

(
z1

2Fαν ′δαν ′
)

GRν ′,Rν ′′
(
D(5)

ν ′′β

)]
D(4)

νδ + 20

[∑
ν ′ν ′′

(
D(2)

αν ′
)

GRν ′,Rν ′′
(
D(5)

ν ′′β

)]
D(4)

νδ .
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Category G:

(
W γ δ

αβ

)
G = (

z1
2Bαβδαβ

)
D(5)

νδ + 2D(1)
αβD(5)

νδ + 4D(5)
αβD(5)

νδ + 4

[∑
ν ′ν ′′

(
z1

2Fαν ′δαν ′
)

GRν ′,Rν ′′
(
z1

2Fν ′′βδν ′′β
)]

D(5)
νδ

+ 8

[∑
ν ′ν ′′

(
z1

2Fαν ′δαν ′
)

GRν ′,Rν ′′
(
D(2)

ν ′′β

)]
D(5)

νδ + 8

[∑
ν ′ν ′′

(
D(2)

αν ′
)

GRν ′,Rν ′′
(
z1

2Fν ′′β δν ′′β
)]

D(5)
νδ

+ 16

[∑
ν ′ν ′′

(
D(2)

αν ′
)

GRν ′,Rν ′′
(
D(2)

ν ′′β

)]
D(5)

νδ .
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