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Screened configuration interaction method for open-shell excited states applied to NV centers
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We present a computational approach, based on density functional theory and screened configuration interac-
tion, able to accurately treat highly correlated electron spins localized around semiconductor defects, typically
occurring in the context of qubit implementations. The method is computationally not more demanding than a
usual density functional theory calculation, which makes it suitable for the calculation of isolated defects, or
defect complexes, typically requiring large simulation cells. We illustrate the approach by applying it to the
three different charge states of the nitrogen vacancy defect in diamond and obtain very good agreement with
experiment.
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I. INTRODUCTION

Impurities in bulk or nanostructures are involved in a broad
range of applications. A prominent example is the nitrogen-
vacancy (NV) defect in diamond, consisting of a substitutional
nitrogen atom with an adjacent vacancy, which can be used as
a sensor of magnetic and electric fields with high sensitivity
and spatial resolution [1–3], as solid-state quantum bit (qubit)
[4,5], or as quantum probes for living cells [6,7]. All these
examples require a clear understanding of the ground and
the excited states and the ensuing optical properties of the
defect center. The state-of-the-art approach for the calcula-
tion of excitation energies of defect states in semiconductors
at the ab initio level is the GW approach in combination
with the Bethe-Salpeter equation (GW-BSE) [8,9]. However,
using this methodology provides for the NV center results,
which do not agree with the experiment [10]. This is due
to the fact that the standard GW-BSE approach does only
take one configuration out of the three-fold ground state 3A2

into account. GW-BSE considers single electron-hole exci-
tations starting from this single ground-state configuration.
As a consequence, the optically excited states belongs to a
two-fold instead of the six-fold degenerate 3E representation
[8]. A method which takes several ground-state configurations
into account is therefore required [8,10]. One possibility is to
combine GW with a Hubbard model [10] and in a next step
solving the Hamiltonian with exact diagonalization, which
requires a fitting of the model Hamiltonian parameters to
a GW calculation. Another method for defects in solids is
based on the solution of an effective local Anderson impurity
problem with a few strongly interacting localized orbitals
using a truncated configuration interaction [11]. Another re-
cent approach is a configuration interaction (CI) constrained
random phase approximation (cRPA) approach [12], which
leads to very accurate results but requires a computationally
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very demanding screening. Very recently, Bhandari et al. [13]
used the quantum chemical approach complete active space
self-consistent field (CASSCF) to calculate the many-body
energies of small nanodiamond clusters containing one NV−

center, which are in very good agreement to the experimental
results. However, the representation of the bulk defect as de-
fect in a small atomic cluster (around 1 nm in diameter) will
only work for very localized defects. Another new method
was very recently presented by Ma et al. [14] and uses a hy-
brid density functional theory (DFT) calculation paired with
full CI for the active space, just as in the cRPA [12] (or
our method), but going beyond the RPA approximation for
the screening, yielding good agreement with experiment, but
requiring—similarly to cRPA [12]—a computationally very
demanding screening.

In this article we present an alternative approach based on
a combination of DFT and screened CI that can be used for
open shell systems, especially defects in semiconductors as
suggested for qubit implementations. It is a semi-empirical
approach in the sense that we use a model screening for
Coulomb and exchange integrals. Our approach starts from
DFT or GW eigenvalues and eigenfunctions. A subset of the
electronic system, consisting of the highly correlated elec-
trons, is subsequently used in our screened CI formalism
where Coulomb, exchange, and correlations are explicitly
(re)calculated. This introduces a double counting which will
be accounted for in our approach. Furthermore, a nonlocal
screening function is implemented to ensure reduced screen-
ing, when the studied system contains vacancies. Without
the nonlocal screening function our method is ab initio and
has no parameters. We apply our methodology to study the
electronic structure of the different charge states of the nega-
tively, neutral, and positively charged NV defects. For NV−

and NV0 a very good agreement between the calculation
and experimental findings is obtained. For NV+ we predict a
many-body multiplet structure. (1A1 - 3E - 1E - 3A2 - 1E ) with
degeneracy 1-6-2-3-4 and many-body energies with splittings
of 1.07-0.24-1.26-0.25 eV.
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II. METHOD

The full CI method is applicable to compute exact solutions
to the electronic time-independent Schrödinger equation

H |�〉 = E |�〉. (1)

H is the Hamilton operator, � the many-body wave function,
and E the energy. The “true” molecular electronic Hamilto-
nian can be written in terms of creation (a†) and annihilation
(a) operators in the second quantization formalism

H =
∑

ai

haia
†
aai︸ ︷︷ ︸

A

+ 1

2

∑
ab ji

Vab jia
†
aa†

ba jai

︸ ︷︷ ︸
B

, (2)

with one and two electron matrix elements

hai =
∫

φ∗
a (χ)

(
−1

2
∇2 −

∑
I

ZI

rI

)
φi(χ) dχ, (3)

Vab ji =
∫∫

dχ1dχ2
φ∗

a (χ1)φ∗
b (χ2) φ j (χ1)φi(χ2)

r12
, (4)

where ZI are the nuclear charges, rI the electron-nuclear
separations, r12 the electron-electron separation, and φi(χ)
the spin orbital, where the coordinates χ represent collec-
tively the spatial coordinates r and the spin coordinate σ of
the electron. The first term of Eq. (2)—the one electron
operator—represents the kinetic energy of the electrons and
the potential energy arising from the interaction of the elec-
trons with the nuclei. The second term takes the Coulomb
interaction between electrons into account.

In the CI approach the many-body wave function |�〉 is
expanded in terms of Slater determinants

|�〉 = c0|�0〉 +
∑
i,a

ca
i

∣∣�a
i

〉 + ∑
i > j
a > b

cab
i j

∣∣�ab
i j

〉 + · · · ,

where the indices i, j represent occupied orbitals in the ref-
erence determinant |�〉 whereas a, b represent unoccupied
(virtual) orbitals. The expansion space is spanned by the refer-
ence determinant (|�0〉) and by determinants associated with
single (|�a

i 〉), double (|�ab
i j 〉), and so on, excitations, where

c0, ca
i , cab

i j , and so on, are expansion coefficients. Increasing
the number of basis states leads to an exponential increase in
the number of determinants in CI so that a restricted basis set
is necessary [15]. To limit the computational costs Eq. (2) can
be split into an active space (as), and a permanently occupied
space (core). The division of the active space is shown in
Fig. 1. The term A in Eq. (2) can be rewritten as:

A =
core∑

i

core∑
j

hi ja
†
i a j +

core∑
i

as∑
p

hipa†
i ap

︸ ︷︷ ︸
=0,iis always occupied

+
as∑
p

core∑
i

hpia
†
pai

︸ ︷︷ ︸
=0,icannot be changed

+
as∑
p

as∑
q

hpqa†
paq (5)

=
core∑
i j

hi ja
†
i a j +

as∑
pq

hpqa†
paq. (6)

-

FIG. 1. Schematic illustration of the different subspaces. occ de-
scribes the occupied states in the ground state. The active space is
denoted by as. core captures all states which are excluded of the
active space (as) and are therefore permanently occupied. as-occ
denotes states which are occupied in the ground state and are part of
as, while vs describes the unoccupied virtual space which we neglect
in our calculations.

The sums running over as include states in the active space,
and sums running over core describe bulk-like states, which
are not treated explicitly in our approach. The first term in
Eq. (5) is a constant since the core subspace is never changed,
and is therefore not considered. The second term in Eq. (5)
vanishes because it attempts to create an electron in core,
which is always fully occupied. The third term in Eq. (5)
vanishes because it would change a core state from occupied
to unoccupied, which is forbidden in our restricted space
approach.

Applying the same rules to the two body term B [see
Eq. (2)] we can simplify the 16 terms to just one (see Supple-
mental Material [16]). The 15 terms that are neglected in our
limited subspace approach can be cast into 11 qualitatively
different types of excitations shown in a diagrammatic form
in Fig. 2 using full circles for electrons and empty circles
for holes. The arrows show the scattering path of the particle
(just as in Feynman diagrams [17]). The direct Coulomb terms
[Figs. 2(a), 2(f) and 2(l)] and the exchange terms [Figs. 2(d),
2(j) and 2(o)] take a form very similar to the Goldstone

-
-

FIG. 2. Illustration of the different terms in part (B), (a)–(e) are
the considered terms and (f)–(p) are neglected.
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diagrams [17] (where in our case the wiggly interaction
line is not drawn). Within our restricted space we neglect
all excitations corresponding to the diagrams in Figs. 2(f)
to 2(p). Neglecting all these diagrams corresponds to the
electronic screening of the considered excitations shown in
Figs. 2(a) to 2(e), so that we obtain the very simplified
expression [18]

B =
as∑

pqrs

V SCR
pqrs a†

pa†
qaras. (7)

Substituting A and B by Eq. (6) and Eq. (7) in Eq. (2) yields

H =
as∑
pq

hpq a†
paq + 1

2

as∑
pqrs

V SCR
pqrs a†

pa†
qaras . (8)

The second term includes screened integrals

V SCR
pqrs =

∫∫
dχ1dχ2

φ∗
p(χ1)φ∗

q (χ2) φr (χ1)φs(χ2)

ε(r1, r2)|r1 − r2| , (9)

as a consequence of the neglected excitations into and out of
the core space, as described above. The screening ε(r1, r2)
is modeled utilizing a combination of the Resta model [19],
expressing the static, isotropic bulk screening of diamond as
εbulk(|r1 − r2|). Using this model without any further mod-
ifications yields the “unmasked” calculation subsequently
described in Fig. 6.

In an attempt to improve the results (we will see later that
the improvement is noticeable), at the price of introducing an
empirical parameter, we modify the screening in the vicity
of the vacancy (slightly reducing it) using a so-called “mask
function” m(r) [20,21]:

1

ε(r1, r2)
= 1 +

(
1

εbulk(|r1 − r2|) − 1

)
m(r1)m(r2), (10)

with

m(r) =
{ 1

2

[(
cos

(
rπ

2rNV

) + 1
)
(� − 1)

] + 1 for r � 2rNV,

1 for r > 2rNV,

(11)

with � < 1. The mask function m(r) varies smoothly between
m(0) = � at the vacancy site (r = 0) to a value of one (which
means that the full bulk screening is used) at 2rNV and beyond,
where rNV is the distance from the vacancy to the neighbor-
ing nitrogen atom. The screening is therefore reduced in the
vicinity of the vacancy using the parameter � (0 < � < 1). A
value of 0.78 was used for � in the subsequent work. When-
ever the empirical mask function was used in the calculation
we use the term “masked results.”

The calculation of the screened integrals in Eq. (9)
when the nonlocal screening introduced by Eq. (10) is used
(“masked results”) require three steps: (i) an unmasked un-
screened [ε(r1, r2) = 1]; (ii) a masked [i.e., m(r) is multiplied
onto the wave functions] screened [ε(r1, r2) = εbulk (|r1 −
r2|)]; and (iii) a masked unscreened calculation (see the Sup-
plemental Material for further information [16]).

In the following we address the issue of double-counting
interactions since we will start from a DFT ground state

that we first partially empty and then repopulate at the CI
level. For simplicity we start with the Hartree-Fock (HF)
theory, where the Hamiltonian is associated with the Fock
operator [18]

F̂ =
∑

i j

fi j a†
i a j

=
∑

i j

hi j a†
i a j +

∑
i j

occ∑
l

(Vil jl − Vill j ) a†
i a j (12)

and the Fock matrix elements are given as

fi j = hi j +
occ∑

l

(Vil jl − Vill j ), (13)

which simplifies in the basis of canonical spin orbitals to [22]

fi j = εHF
j δi j . (14)

Using Eqs. (13) and (14) and the partitioning from Fig. 1,
hi j can be written as

hi j = εHF
j δi j −

occ∑
l

(Vil jl − Vill j )

= εHF
j δi j −

core∑
l

(Vil jl − Vill j ) −
as-occ∑

l

(Vil jl − Vill j ), (15)

and the associated one-particle operator is consequently
given by

∑
i j

hi j a†
i a j =

core,as∑
i j

hi j a†
i a j =

core,as∑
i j

[
εHF

j δi j a†
i a j

−
core∑

l

(Vil jl − Vill j ) a†
i a j

−
as-occ∑

l

(Vil jl − Vill j ) a†
i a j

]
. (16)

Similarly to Eq. (2) we completely remove the core part
from the equation by introducing a screening on the remaining
integrals

as∑
pq

hpq a†
paq =

as∑
pq

(
εHF

q δpq a†
paq

−
as-occ∑

s

(
V SCR

psqs − V SCR
pssq

)
a†

paq

)
. (17)

Rewriting Eq. (8) using Eq. (17) we obtain

H =
as∑
pq

[
εHF

p δpq −
as-occ∑

s

(
V SCR

psqs − V SCR
pssq

)]
a†

paq

+ 1

2

as∑
pqrs

V SCR
pqrs a†

pa†
qaras. (18)
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Equation (18) can be rewritten as

H =
as∑
p

εeff
p a†

pap −
as∑

p�=q

as-occ∑
s

(
V SCR

psqs − V SCR
pssq

)
a†

paq

+ 1

2

as∑
pqrs

V SCR
pqrs a†

pa†
qaras, (19)

where an effective eigenvalue has been introduced:

εeff
p = εHF

p −
as-occ∑

s

(
V SCR

psps − V SCR
pssp

)
, (20)

and V SCR
psps are Coulomb and V SCR

pssp exchange screened inte-
grals. With this approach we explicitly eliminate the double
counting of the Coulomb and exchange integrals and only the
correlation in the active space already included in DFT/GW
is calculated twice and are not explicitly removed.

An issue arises from partially occupied degenerate states
in the reference Slater determinant. For a set of m degenerate
states occupied by n electrons, the effective eigenvalues εeff

p

are given by the HF eigenvalues εHF
p corrected by the sum

given in Eq. (20). This correction is different for the occupied
and for the unoccupied states introducing an artificial breaking
of the degeneracy. To circumvent this problem, we use the
same fractional occupation cl = n/m for all the degenerate
states. For the eigenvalue εHF

p we use the best available quasi-
particle eigenvalues. In the NV case presented subsequently,
we use GW, where we expect an accuracy in the 0.1-eV range.
For larger systems, either experimental values, or from high-
level DFT (e.g., hybrid functionals), or from semi-empirical
approaches such as atomic effective pseudopotentials (AEP)
[23] can be used:

εeff
p = εGW,DFT,AEP

p −
as-occ∑

s

cs
(
V SCR

psps − V SCR
pssp

)
(21)

and accordingly,

H =
as∑
p

εeff
p a†

pap −
as∑

p�=q

as-occ∑
s

cs
(
V SCR

psqs − V SCR
pssq

)
a†

paq

+ 1

2

as∑
pqrs

V SCR
pqrs a†

pa†
qaras. (22)

We explicitly perform spin-unpolarized calculations since
spin-polarized DFT calculations using a local density func-
tional (SLDA), similar to unrestricted HF, result in wave
functions represented by a single determinant and are there-
fore not pure spin states, i.e., the wave functions are not
eigenfunctions of the total spin operator Ŝ2. SLDA leads to
different spatial distributions for spins of opposite signs and
hence a spin dependence in the Coulomb integrals. As an
example, the net spin S = +1 state of the NV− system should
be entirely identical to the state with S = −1, however, in
SLDA one configuration is chosen arbitrarily and the majority
spin eigenvalues are shifted lower in energy. In other words,
the Coulomb integrals become irreparably spin-dependent. To
preserve the equivalence of these two configurations, both
the eigenvalues and eigenfunctions must be entirely spin-
degenerate, i.e., spin-unpolarized calculations must be carried

out. Hence, our approach is based on ground-state calculations
within LDA instead of SLDA or spin-unpolarized GW. All
calculations were performed at the spin triplet ground-state
geometries, which yields vertical excitation energies [equal to
the sum of zero phonon line (ZPL) and excited state Stokes
energies].

III. COMPUTATIONAL DETAILS

All calculations were performed with the ABINIT [24] soft-
ware package. For the DFT calculations the Brillouin zone is
sampled at the 
 point and a kinetic energy cutoff of Ec = 35
Hartree is used. A Troullier-Martins norm-conserving pseu-
dopotential is used with lmax = 1 and lloc = 1 for carbon as
well as for nitrogen. To obtain the NV center orbitals the
calculations were performed at the LDA level on 511 atom
supercells with periodic boundary conditions; fractional oc-
cupation was used and the structures fully relaxed. The GW
calculations were performed with a 215 atom supercell with a
cutoff of Ec = 15 Hartree. The plasmon-pole model is applied
with 768 empty bands.

IV. SINGLE-PARTICLE RESULTS

We study the NV center in the three existing [25–29]
charged states NV−, NV0, and NV+. Calculations performed
at the LDA level on 511 and 215 atom supercells and fully
relaxed structures reveal that the single-particle energies are
converged to within 5 meV already in the smaller super-
cell (see Supplemental Material [16] and note that the wave
functions require the larger supercells for convergence). This
reduction of supercell size allows us to base the quasipar-
ticle energy part of our screened-CI calculations on results
obtained at the more accurate GW level. This is a rather for-
tunate situation where GW is affordable; for more delocalized
defects requiring larger supercells the use of more empirical
eigenvalues (corrected AEP or extracted from experiment)
would be necessary.

The quasiparticle GW eigenvalues along with the bulk di-
amond conduction band minimum (CBM) and valence band
maximum (VBM) are shown in Fig. 3. The defect related
band-gap states a1 and ex,y have different occupations depend-
ing on the charge of the defect center. For the NV− defect
center six electrons are involved: three from the three neigh-
boring carbon atoms, two from the nitrogen dangling bond,
and one captured from the lattice. Two of them occupy the
a1(1) state laying energetically below the VBM and not shown
in Fig. 3. We consider this state in our calculations, but adding
it to the active space in the CI changes the many-body energy
for NV− by less then 60 meV. For the NV0 and NV+ center
the change is below 10 meV. The six electrons occupy the
a1(1), a1(2), and ex,y states. In the NV−, NV0, and NV+ cases
only four, three, and two electrons occupy the band-gap defect
states, respectively. A clear shift of band-gap states towards
the VBM is observed by removing electrons going from NV−

to the NV+ system as shown in Fig. 3. The splittings between
the VBM and the a1(2) states are 0.92 eV (NV−), 0.64 eV
(NV0), and 0.51 eV (NV+) while the energy differences be-
tween the two gap states a1(2) and ex,y are 2.09 eV, 1.86 eV,
and 1.61 eV, respectively.
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FIG. 3. Quasiparticle eigenvalues of bulk diamond (215 atom su-
percell) with an embedded negatively, neutral, and positively charged
NV center (NV−/0/+) calculated within GW. All eigenvalues are
aligned to the VBM. The a1(1) defect state is not shown and below
the VBM, but taken into account in our active CI space.

To illustrate the localization of the state a1(1) we plot in
Fig. 4 the square of the wave function as a yellow isosur-
face and notice the rather localized character with strongest
contribution around the nitrogen atom. On the lower panel of
Fig. 5 a one-dimensional representation of the single-particle
wave functions of the a1(2) (yellow), the a1(1) (blue), and the
ex,y (green) states is shown, along with the delocalized VBM
state (black dashed) and an artificial constant charge back-
ground (purple), for comparison. Compared to the delocalized
states (black and purple), the defect states are highly localized
around the vacancy. We use this localization description to
illustrate our mask function m(r) introduced in Eq. (11) on
the upper panel of Fig. 5. When using our empirical screening
reduction (“masked results”) we therefore reduce the screen-
ing by about 15% in the region of space where the localized
states reside.

FIG. 4. Electron density (yellow) for the defect state a1(1) of the
NV− defect laying energetically in the valence band. The nitrogen,
carbon, and vacancy are shown in blue, grey, and red, respectively.

FIG. 5. Upper panel: Plot of the mask function m(r) as a function
of the distance from the vacancy. Lower panel: One-dimensional
plots of different single particle states of the NV− defect: a1(2) is
shown in yellow, a1(1) in blue, ex,y in green, a delocalized state
from the valence band states in black, and a constant wave function
(purple) for comparison. The dashed vertical lines show the distance
from the vacancy to the nearest-neighbor nitrogen and carbon atoms
as well as to the second, nearest-neighbor carbon.

Note that while the use of GW quasiparticle energies was
possible and meaningful using the smaller supercell of 215
atoms, the Coulomb and exchange integrals must be calcu-
lated using wave functions obtained for the larger 511 atom
supercell. Indeed, using wave functions from the smaller 215
atom supercell leads to errors in the many-body energies in
the order of 200 meV (see Supplemental Material [16]).

V. MANY-BODY RESULTS OF THE NV− DEFECT

Since the NV− defect has been thoroughly investigated
theoretically and experimentally this gives us the opportu-
nity to use it as benchmark system. In Fig. 6 we show an
extensive comparison to experiment and other calculations.
The photoexcited states are shown in blue while the states
before excitation are shown in black. Figures 6(a) to 6(h)
show theoretical results obtained by various approaches as
described subsequently and in the figure caption. The length
of the arrows corresponds to the experimental results, as
described next.

We start by comparing our unmasked [Fig. 6(a)] and
masked results [Fig. 6(b)] to the experimental data. Davies
et al. measured a vertical excitation energy (VEE) of 2.2 eV
[30]. Our unmasked result overestimate this splitting by about
70 meV and our masked result is within excellent agreement
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(a) (b) (c) (d) (e) (f) (g) (h)

FIG. 6. Comparison of the many-body energies of NV− calculated with different approaches. Photoexcited states are shown in blue.
Experimental known values of the vertical excitation (VEE) are shown as red arrows [30], the singlet state splitting (singlet split.) is shown
as green arrows [31], and the singlet-triplet splitting (ST split.) is shown as black line with error bars [32,33]. (a) Our “ab initio” results
without modifying the screening in the vicinity of the vacancy (unmasked). (b) Our results using a mask function m(r) with � = 0.78.
(c) CI-constrained RPA results of Ref. [12]. (d) Extended Hubbard model fitted to GW calculations solved using exact diagonalization, taken
from Ref. [10]. (e) Extended Hubbard model fitted to GW calculations with BSE Ref. [10]. (f) G0W0-BSE results taken from Ref. [8]. (g)
Beyond-RPA (hybrid DFT coupled with Full CI) from Ref. [14]. (h) CASSCF calculation of a 162 Atom cluster from Ref. [13].

with this experiment. Our calculations reveal that the VEE is
a poor indicator of the quality of the correlated calculations.
Indeed, applying no screening at all changes the VEE by
only 30 meV, while the integrals and the splittings between
the black and the blue states change by up to a factor of 2.
The VEE is mainly a direct consequence of the quasiparticle
energies (GW in our case).

Another experimentally known quantity is the singlet-
triplet splitting (3E - 1A1) as measured by Goldman et al.
[32–34]. A combination of experiment and simple model lead
to singlet-triplet splitting (3E - 1A1) in a region between 340
to 430 meV. The black dashed line with the two black bars
represent the 340 and 430 meV splittings in Fig. 6 and is
placed in the figure in such a way as to ease the comparison to
the theoretical results. Our masked result is in good agreement
with this experiment and our unmasked result overestimates
this splitting by 460 meV.

The third experimental results on the NV− system is the
singlet splitting measured by Rogers et al. [31]. Using a mag-
netic field and uniaxial stress a 1E - 1A1 splitting of 1190 meV
(singlet split) could be determined. Our masked result is again
in good agreement with this experiment and our unmasked
result underestimates this splitting by 320 meV.

We pursue by a comparison to other calculations. The
calculations of Figs. 6(c) [12] and 6(d) [10] overestimate the
singlet-triplet and underestimate the singlet splitting. Both

approaches have very good quasiparticle energies and cal-
culate a VEE with excellent agreement to the experiment.
The 3A2 - 1E and 1E - 1A1 splittings of Figs. 6(c) and 6(d)
are very similar to our unmasked results of Fig. 6(a). The
results of beyond-RPA [Fig. 6(g)] [14] underestimates the
VEE by about 0.2 eV due to a different set of quasiparticle
energies. However, their use of an improved screening yields
a singlet-triplet and singlet splitting in excellent agreement
with the experiment. The recent work of Bhandari et al.
[Fig. 6(h)] using CASSCF on very small clusters, show excel-
lent agreement for all the known quantities. The GW + BSE
calculations of the authors of Refs. [8,10] show a very poor
agreement with the experiment since the electron hole picture
used in the BSE formalism forces the selection of a single
ground-state determinant on which all single-electron-hole
excitations are constructed, yielding an incomplete descrip-
tion. This was already recognized and described by Choi et al.
[10].

Our screened CI formalism allows for an analysis of our
many-body states in terms of the importance of certain con-
figurations. The results are presented in Table I where the
many-body character is described in terms of the percent-
age of the different constituting configurations. The a1(2)
state is numbered “1,” ex,y are numbered “2” and “3.” The
overbared (bare) numbers mark spin-down (spin-up) elec-
trons. The a1(1) state is not shown since it is fully occupied
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TABLE I. The electronic dominant configurations (Config.), the
many-body states (MB), the many-body state index, and the char-
acter of the corresponding wave functions of the NV− defect are
given. The a1 state is numbered “1,” ex,y are numbered “2” and “3.”
The overbared (bare) numbers mark spin-down (spin-up) electrons.
Configurations with a weight below one percent are not shown.

Config. MB Index Wave function

3A2 1 100%|1123〉
2 50%|1123〉 + 50%|1123〉
3 100%|1123〉

a2
1e2 1E 1 32%|1123〉 + 32%|1123〉 + 12%|1133〉

12%|1122〉 + 6%|1233〉 + 6%|1233〉
2 32%|1133〉 + 32%|1122〉 + 12%|1123〉

12%|1123〉 + 6%|1223〉 + 6%|1223〉
1A1 1 48%|1133〉 + 48%|1122〉 + 3%|2233〉
3E 1 66%|1223〉 + 32%|1233〉

2 65%|1223〉 + 27%|1233〉 + 6%|1223〉
6%|1223〉

3 27%|1223〉 + 17%|1223〉 + 17%|1233〉
13%|1233〉 + 8%|1223〉 + 8%|1233〉

4 61%|1233〉 + 39%|1223〉
a1

1e3 5 26%|1233〉 + 26%|1233〉 + 17%|1223〉
17%|1223〉 + 8%|1233〉 + 6%|1233〉

6 53%|1233〉 + 33%|1223〉 + 4%|1233〉
4%|1233〉 + 3%|1223〉 + 3%|1223〉

1E ′ 1 31%|1223〉 + 31%|1223〉 + 13%|1233〉
13%|1233〉 + 6%|1123〉 + 6%|1123〉

2 31%|1233〉 + 31%|1233〉 + 13%|1223〉
13%|1223〉 + 6%|1133〉 + 6%|1122〉

in every configuration Our calculations reveal, for instance,
that the ground state (3A2) consists of Slater determinants
all belonging to the a2

1 e2 configuration, while the 1E state
shows a 14% contribution from Slater determinants of the
excited sates configuration a1

1e3 (namely |1233〉 and |1233〉
for state index (1). The corresponding results for NV0 and
NV+ are shown in the Supplemental Material [16].

VI. MANY-BODY RESULTS OF THE NV0 AND
NV+ DEFECTS

Now that we established the quality of the approach, we
show in Fig. 7 our screened CI many-body energies for all
three charge states of the NV center. Our results for NV− al-
ready discussed in detail are repeated here on the left panel for
comparison. For NV0 we obtain the sequence of many-body
sates 2E - 4A2 - 2A2 - 2E - 2A1 shown in Fig. 7 with respective
degeneracies 4-4-2-4-2. The splitting between the states are
0.68-0.97-0.39-0.89 eV, which corresponds to a first optically
allowed transition from 2E to the 2A2 state at 1.65 eV com-
pared to the experimental VEE of 2.156 eV (575 nm) [35,36].
As described already for the NV− defect, the VEE is very
sensitive to the single-particle splitting of the band-gap states
a1 and ex,y and show only a weak dependence on the screening
and quality of the integrals. Note that the NV0 ground state
is a Jahn-Teller distorted state and the ex,y states are split
by 90 meV [37]. However, this rather small splitting cannot
bring the theoretical results in agreement with experiment.
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FIG. 7. Screened CI many-body energies for NV−/0/+. Photoex-
cited states are shown in blue. The experimentally known quantities
are shown as arrows. The black dashed arrow means that the transi-
tion is optically dark.

Indeed, to reproduce the experimental VEE, a quasiparticle
energy splitting of 2.55 eV would be required instead of the
1.86 eV result from GW. Our discrepancy with the experi-
ment therefore originates mainly from a poor single-particle
description at the GW (and LDA) level: the NV0 ground state,
with its open-shell character, is only poorly represented by
a single determinant approach such as GW or LDA. Other
theoretical studies suggest a different many-electron energy
ordering; Ranjbar et al. [38] calculated 2E - 4A2 - 2A1 - 2E - 2A1

with a vertical excitation energy of 2.64 eV, based on a Hub-
bard Hamiltonian for small carbon clusters. Zyubin et al.
[39] obtained 2E - 2A2 - 2E - 2A1 - 2E with optical excitation of
2.4 eV, based on a CASSCF calculation of the ground state
(circumventing the GW and LDA shortcomings) and CASPT2
for the excited states, but also only for very small carbon
clusters.

For the NV+ charged defect we obtain the se-
quence 1A1 - 3E - 1E - 3A2 - 1E with the respective degen-
eracies 1-6-2-3-2. The many-body energy splitting are
1.071-0.235-1.515-0.98 eV. For the NV+ system no flu-
orescence is observed experimentally [28] in qualitative
agreement with our result of a triplet lowest-energy excited
state. An analysis of the many-body states (as shown in Ta-
ble I but for NV+, shown in the Supplemental Material [16])
reveals that the ground state (1A1) is constituted solely by
the configuration a2

1e0. Similarly, the six-fold multiplet (3E )
consists only of Slater determinants derived from the a1

1e1

configuration, while the 1E state includes 4% of Slater deter-
minants derived from the doubly excited configuration (a0

1e2).
Finally, note that the results presented here where obtained

for a CI basis containing Slater determinants built from the
four defect states a1(1), a1(2), ex,y. Expanding the CI basis by
Slater determinants including additional single-particle states
lying energetically in the VB shows very little influence. For
example, in the NV− case using Slater determinants with an
additional four states of the VB lead to a vertical excitation
shift of six meV. Adding four CB states shifts the excitation
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by two meV. The NV0 and NV+ defects behave very similarly
with respect to CI convergence.

VII. SUMMARY

In summary, we present a computational method to cal-
culate the correlated many-body multiplet levels typically
originating from atomic defects in semiconductors used in
the context of quantum information (qubits). The method
includes the static correlations among the localized defect
states, which is often inaccurately described at the level of
GW and BSE. The advantage of our method is the low com-
putational demand, which does not exceed a typical ab initio
DFT calculation. We base our method on a highly corre-
lated subspace of the localized defect states embedded in an
environment of bulk-like delocalized electrons, in a similar
spirit as in the dynamical mean-field theory [11,40]. The
dielectric environment is modeled by a semi-empirical mi-
croscopic screening function and the many-body Hamiltonian
is solved using a full configuration interaction approach with
screened Coulomb and exchange integrals. For the screen-
ing we used either a microscopic Thomas-Fermi-like model
derived from bulk diamond or an empirically modified ver-
sion of the latter where screening is slightly reduced in
the vicinity of the vacancy. We illustrate the capability of
the method by applying it to the different charged states
of the NV center in diamond. For this quite strongly local-
ized defect, the quasiparticle levels entering our screened-CI
approach are obtained from many-body perturbation theory

within the GW approach. For other, less localized defects, the
use of GW would be prohibitive and the quasiparticle energies
could be taken from experiment or from semi-empirical ap-
proaches such as atomic effective pseudopotentials [41–43],
which would allow to calculate systems with tens of thou-
sands of atoms [42]. For the extensively studied system
NV−, we obtain the sequence of states 3A2 - 1E - 1A1 - 3E - 1E ′
with energy splitting of 0.58-1.14-0.48-1.27 eV in excel-
lent agreement with the experiment. For NV0 we obtain
the sequence 2E - 4A2 - 2A2 - 2E - 2A1 with respective splittings
0.68-0.97-0.39-0.89 eV, corresponding to an underestimated
transition energy (theory: 1.62 eV, experiment: 2.156 eV). We
attribute the main part of this discrepancy to the inaccuracy
of the GW result, which is expected since the ground state
is an open-shell system. For the NV+ charged defect we
obtain the sequence 1A1 - 3E - 1E - 3A2 - 1E with splitting of
1.07-0.24-1.26-0.25 eV, which agrees with the experiment in
the sense that no emission is observed experimentally, and we
obtain a dipole forbidden lowest-energy transition.
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