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Free energies of iron phases at high pressure and temperature: Molecular dynamics study
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The crystal structure of iron, the major component of the Earth’s inner core (IC), is unknown under the IC
high pressure (P) (3.3–3.6 Mbar) and temperature (T) (5000–7000 K). Experimental and theoretical data on
the phase diagram of iron at these extreme PT conditions are contradictory. Applying quasi-ab initio and ab
initio molecular dynamics we computed free energies of the body-centered cubic (bcc), hexagonal close-packed
(hcp), and liquid phases. The ionic free energies, computed for the embedded-atom model, were corrected for
electronic entropy. Such correction brings the melting temperatures of the hcp iron in very good agreement with
previous ab initio data. This validates the calculation of the bcc phase, where fully ab initio treatment is not
technically possible due to large sizes required for convergence. The resulting phase diagram shows stabilization
of the bcc phase prior to melting in the pressure range of the IC. The melting temperature of the bcc phase is
equal to 7190 K at the pressure 360 GPa.
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I. INTRODUCTION

It has been established that the Earth’s inner core (IC)
mainly consists of iron [1–5]. It has been assumed that Fe
is stable at the IC pressure (P) (3.3–3.6 Mbar) and tem-
perature (T) (5000–7000 K) in the hexagonal close-packed
(hcp) phase, likely alloyed with Ni and light elements [5].
This assumption, of course, has some ground—the hexagonal
close-packed (hcp) phase of Fe was demonstrated to be stable
at room temperature up to the pressure of 3 Mbar [5]. The
impact of temperature has appeared to be rather controver-
sial. A number of phases have been suggested in addition
to face-centered cubic (fcc), body-centered cubic (bcc), hcp,
and liquid. Namely, the orthorhombic phase, the double hcp
phase, the fcc phase outside of the “orthodox” PT field of its
stability, and finally, the high-PT nonmagnetic bcc phase. The
general consensus, based on the observation of the hcp [6–9]
in a broad-PT range (but not quite at the IC PT conditions) is
that the hcp phase is stable in the IC.

However, a number of theoretical [10–19] and experi-
mental [14,20–25] studies demonstrate that this might not
be the case. Particularly strong evidence in support of the
bcc phase is that the hcp phase becomes isotropic at the PT
of the IC [11,26] and, thus, is incapable to account for the
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anisotropy of the IC [27]. There is widespread confusion that
the hcp is anisotropic and that confusion is based on the
paper by Steinle-Neumann and co-authors [28]. The results
of that paper have been demonstrated to be incorrect [11].
Steinle-Neumann and co-authors [28] later confirmed that the
results on anisotropy were wrong and that the anisotropy of
the hcp iron under core conditions is less than 1% [26,29],
well below the anisotropy in the Earth’s IC. Another paper
that supports the anisotropic nature of the hcp phase is the
work by Antonangeli et al. [30]. In that paper, the elastic
data were obtained at rather moderate pressures and rather
low temperatures compared with the PT in the IC. Then the
data were extrapolated ad hoc to the IC conditions, the theory
being in reasonable agreement with the experiment predicts
isotropic hcp at the IC conditions. Such features as strong
attenuation and low shear modulus of the material in the IC
are at odds with the high shear modulus of the hcp phase.
On the contrary, the bcc phase has low shear modulus [12]
and is strongly attenuating material due to its uniquely low
viscosity [19].

Finally, a very recent paper [31] shows that the innermost
IC has anisotropy where the fast and slow directions of seis-
mic signal propagation cross at the angle 54◦. This is the exact
match to the fast and slow directions of sound propagation
in the bcc phase [13,32]. Namely, the fast (111) and slow
(100) directions in the bcc cross at the angle 54.73◦ —the
exact match to the seismic data. This match is of paramount
importance—the Earth itself tells us what kind of material is
inside its core.

Therefore, it is not a question anymore of what phase of
iron is stable in the Earth IC. Rather, it is a question of what
makes it so difficult to observe the bcc phase in experiments.
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In this paper, by computing free energies of iron phases, we
determine the PT field of stability of the bcc phase, in particu-
lar, the hcp–bcc phase boundary and the melting temperatures
of the bcc phase.

II. METHODS

To compute the free energies of the iron phases, we per-
formed ab initio and classical molecular dynamics (AIMD and
MD, correspondingly) simulations of the bcc, hcp, and liquid
phases of iron under the IC PT and beyond conditions.

The reason for such a combination (AIMD+MD) is the
following. The bcc phase is dynamically unstable at low tem-
perature. Its dynamical stability is due to the high temperature
that enables superioniclike diffusion [18,19]. The mechanism
of the stabilization is common both for DFT [18] and for the
embedded-atom method (EAM) [10,11] description of inter-
actions. The onset of the diffusion is forbidden in too small
computational cells because of the oversymmetrization due to
periodic boundary conditions (PBC). While the calculation of
the forces is not affected by small sizes, the correlated motion
that involves several crystal planes is affected by the small
size of the cell due to imposed periodicity. Therefore, for
correct modeling of the bcc phase one needs a rather large
(and depending on PT conditions at times very large) number
of particles involved in the simulation. This makes application
of the DFT method prohibitively expensive even for single
runs. For the calculations of free energies it becomes quite
impractical. It was demonstrated that the thermodynamic sta-
bilization of bcc on temperature increase at the pressure in the
center of the Earth is due to electronic entropy [18]. However,
there are no electrons in the EAM description. The electrons
are implicitly there affecting the interaction of atoms; how-
ever, the substantial part of the entropy is lost in the EAM
description because of the significant reduction in the number
of degrees of freedom. One needs to estimate the electronic
entropy independently. Therefore, the strategy of the calcula-
tions in this paper is to compute the free energies using the
EAM model and then correct them by the electronic entropy
computed from first principles.

In our DFT-based MD runs we used the generalized-
gradient approximation of the electronic exchange-correlation
energy [33] and the Fe potential with 3p63d64s2 valence
electrons. Electronic structure calculations [34–36] were per-
formed with a plane-wave set corresponding to a 350.0 eV
energy cutoff and the electronic iterations were converged to
within 10−4 eV. We used a 1.0-fs time step for the AIMD
calculations and the total energy of the electron-ion system
was conserved with an accuracy of 8 meV/ps. We have ap-
proximated the hcp and bcc phases by supercells with sizes
ranging from 432 atoms (6 × 6 × 6 unit cells) for the hcp
structure to 1024 atoms (8 × 8 × 8 cubic unit cells). Liquid
phase was obtained by heating the hcp phase up to a very
high temperature and then equilibrating it at the temperatures
around melting.

The structure of phases was monitored by calculating radial
distribution function (RDF) and diffusion. We ran the AIMD
calculations for all three phases in the NPT ensemble with the
Nosé thermostat and Parrinello-Rahman barostat. The AIMD
runs duration were at least 4000 time steps and up to 18,000

time steps. The electronic entropy for all three phases was
computed at two pressures, namely, 120 and 360 GPa at the
temperatures 4000 and 7000 K, correspondingly. The AIMD
runs have been performed for �–point only. At the sizes of the
supercells that we use, the �–point is quite sufficient. In all our
AIMD runs, we used the VASP [35,36] software package.

The EAM MD runs were performed using the EAM po-
tential developed without reference to experimental data, the
so-called quasi-ab initio [10]. The potential was fitted to the
energies of a number of iron configurations including liquid-
like at zero temperature computed by the full potential linear
muffin-tin orbital (FPLMTO) method. The EAM is in the
Sutton-Chen [37] format fitted to FPLMTO energy-volume
data for hcp and liquid iron [10]. The total potential energy
of a configuration is

Econf =
N∑

i=1

Ei, (1)

where N is the number of atoms and Ei is the potential energy
of atom i. The Sutton-Chen potential includes two parts: One
part is a pairwise potential term, and the other part is the term
of embedding energy that is the energy required to place an
atom into an electron cloud. Its particular form is as follows:

Ei = 1

2

N∑
j=1, j �=i

ϕ(ri j ) + F (ρi ), (2)

with

ϕ(ri j ) = ε

(
a

ri j

)n

, (3)

F (ρi ) = −εC
√

ρi, (4)

ρi =
N∑

j=1, j �=i

(
a

ri j

)m

, (5)

where ri j is the distance between atom i and atom j, ϕ(r)
is the pairwise potential between atom i and j, F (ρ) is the
embedding energy function, and ρi is the sum of contribution
of electron charge density of j sites atoms at the location of
i site. As a result of the fit, the parameters are n = 8.137,
m = 4.788, ε = 0.0173, a = 3.4714 Å, and C = 24.939. The
potential was demonstrated to perform well at high pressures
in close agreement with DFT results [10]. Even though the
bcc configurations have not been used for fitting, the dynamic
stability dependence on size calculated for the EAM and DFT
models is identical for the sizes available to ab initio MD [18].

Using this potential we computed a number of properties
of hcp, bcc, and liquid phases including free energies. Since
the EAM-based MD are very fast, the calculations were per-
formed on large samples (up to 16,000,000 atoms) for long
times (up to 1,000,000 time steps). The same thermostat and
barostat as well as the time step as for the AIMD have been
used. We also ran NVT EAM MD runs and also used Ander-
sen thermostat. All the EAM-based MD runs were performed
using LAMMPS software package [38].

We calculated the absolute free energies of liquid and solid
phases using nonequilibrium (NE) MD, which is implemented
in the LAMMPS package [39,40]. In the NE method, the
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coupling parameter λ = λ(t ) changes continuously during the
simulation to drive a system from an initial state (i) to a final
state ( f ).

It is assumed that the free energy of the final state is
known analytically or numerically. Then, the Hamiltonian in-
terpolation procedure allows for determining the free-energy
difference between the two states and the absolute free energy
of the initial state. In this approach the potential energy func-
tion U is parameterized to construct the linear interpolation
between two states:

U (λ) = (1 − λ)Ui + λUf , (6)

where Ui is the system of interest interaction potential and Uf

is the reference model with the known free energy.
Setting λi = 0 and λ f = 1, respectively, the irreversible

work during the switching procedure in a time ts is
determined as

W irr
i− f =

∫ ts

0

dλ

dt
(Uf − Ui )dt . (7)

The free-energy difference between two states �F could
be accurately determined by conducting multiple simulations
in both directions,

�F = 1
2

(
W

irr
i− f − W

irr
f −i

)
, (8)

where W
irr
i− f and W

irr
f −i are the mean value over independent

switching simulations for the forward and backward direc-
tions correspondingly.

In practice, the integral in Eq. (7) is calculated in terms of
the sum

W irr
i− f =

N∑
n

�λn(Uf − Ui )n�t , (9)

where �t is the time step, the index n is the number of time
step, and N is the total number of time steps.

Having determined the free-energy difference, the absolute
Helmholtz and Gibbs free energies of a physical system are
determined from

Fsyst (V0, T0) = Ff (V0, T0) + 1
2

(
W

irr
i− f − W

irr
f −i

)
(10)

Gsyst (P0, T0) = Fsyst (V0, T0) + P0V0, (11)

where V0 is the equilibrium volume at the given P = P0 and
T = T0.

We use the Einstein crystal as the reference for the free
energy of a solid phase:

F sol
f (V0, T0) = 3NkbT ln

(
h̄ω

kbT0

)
. (12)

The frequency ω is determined from mean-square displace-
ment (MSD) calculations at the each volume and temperature:

ω(V0, T0) =
√

3kbT0

m〈�r2〉V0,T0

. (13)

The Uhlenbeck-Ford (UF) model is used as the reference
for the calculation of the free energy of the liquid phase. It is

defined by the interatomic pair potential

UUF(r) = −pkbT ln
(
1 − e(−r/σ )2)

, (14)

where σ is a length-scale parameter, and p > 0 is a scaling
factor [41].

The UF fluid is thermodynamically stable for; a set of
accurate numerical cubic-spline approximations is available
to determine the excess free energy of this model [42].

A similar procedure can be used to construct the temper-
ature dependence of the Gibbs free energy G(P0, T ) at finite
pressure P = P0. Scaling the potential energy U (r1, . . . , rN )
by the coupling parameter λ, the configurational part of the
partition function ZRS (λ) at pressure P(λ) and temperature T0

is given by

ZRS (λ) =
∫ ∞

0
dV exp

[
−P(λ)V

kbT0

] ∫
V

d3N r exp

(
− λU

kbT0

)
.

(15)
Introducing the scaling relation T = T0/λ, it can be shown

that the Gibbs free energy of the scaled and physical system
is related according to

Gsyst (T ) = GRS (λ)

λ
+ 3

2
NkbT0

ln λ

λ
. (16)

The function GRS (λ) is evaluated with the NE technique,
where λ(t ) and P(λ(t )) are varied dynamically at a fixed
temperature T0. The parameter (λ) varies from λ(0) = 1 to
λ(ts) = λ f . The final value λ f determines the temperature
range of Gibbs free energy. Assuming the linear scaling of
pressure P = λ(t )P0, the corresponding irreversible work is
calculated from [43]

W irr
1− f =

∫ ts

0

dλ

dt

(
U (t ) + dP

dλ
V (t )

)
dt

=
∫ ts

0
(U (t ) + P0V (t ))dt . (17)

After repeating the procedure in both directions multiple
times, we obtain the temperature dependence of Gibbs free
energy along the isobar P = P0:

Gsyst (P0, T ) = GRS (P0, T0)

λ
+ 3

2
NkbT0

ln λ

λ

+ 1

2λ

(
W

irr
1− f − W

irr
f −1

)
. (18)

The simulations of bcc solid were carried out in a cubic box
with 18 × 18 × 18 bcc unit cells (11,664 atoms). The same
system is used for liquid simulations.

To determine the melting temperature Tm at a given pres-
sure P0 we use the following procedure. At the first step the
equilibrium densities of bcc and hcp solids are calculated
at a temperature T1 below the estimated melting point Tm.
We determine the average value over a 1-ns MD trajectory,
obtained with constant pressure-temperature simulation. The
same procedure is repeated for liquid at a temperature T2

above the estimated melting point.
At the next step, the nonequilibrium Hamiltonian interpola-

tion technique is used to determine the absolute values of the
Gibbs free energy of bcc Gbcc(P0, T1), hcp Ghcp(P0, T1), and
liquid Gliq(P0, T2). We perform 10 independent NVT MD sim-
ulations in forward and backward directions. Each run starts
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from the equilibration part during 0.1 ns, then the interaction
potential is switched during 0.5 ns. The Langevin thermostat
is used to control the temperature. The UF fluid with p = 75
and σ = 1.2 is used as a reference for liquid simulations.

Finally, the RS method is used to construct tempera-
ture dependence of the Gibbs free energy Gbcc(P0, T ) and
Gliq(P0, T ).

III. RESULTS

It has been demonstrated that properties of the bcc phase
are strongly size dependent [18,19]. However, that observa-
tion was objected [44]. The authors wrote that they computed
free energies of the bcc phase and found the free energy to be
constant while changing the size of the cell from 1024 atoms
(8 × 8 × 8 unit cells) to 65,536 atoms (32 × 32 × 32 unit
cells). This result was obtained for the free energy computed
at the pressure of 360 GPa and temperature 7000 K. We have
performed the simulations in the NPT ensemble at the same
PT parameters and the EAM potential that was used by the
authors [44]. We observed that at these conditions the bcc
structure was not preserved. Instead, the bcc phase melted and
the RDFs for both sizes [Fig. 1(a)] are typical for the liquid
state. Figure 1(b) shows MSD computed for 1024 and 65,536
atoms. They are also almost identical and typical of the liquid
state. That means that all the results obtained by the authors
[44] are relevant for the liquid state. Indeed, the properties of
the liquid metal converge at very small sizes. Normally, com-
putational cells containing a hundred and more atoms are quite
sufficient for calculation of thermodynamic properties. There-
fore, it is only natural that the authors did not see any changes
when computing the free energy with 1024 and 65,536 atoms.
They simply computed it for the liquid (or superheated states
if the runs have been too short). We note that the authors used
the Anderson thermostat in their simulations. The thermostat
requires randomization of velocities with some period. That
period was set by the authors equal to 5000 time steps. We
computed MSD for the 65,536 atoms applying both Nosé ther-
mostat and Anderson thermostat. We used the EAM potential
[19] that preserves the bcc phase at the P = 360 GPa and T
= 7000 K. One can see (Fig. 2) that the MSD is substantially
higher for the Nosé thermostat. The reason is the following.
Atoms in the bcc are in a superionic state. The motion is
highly correlated and it takes time for atoms to move in a
correlated way. The Anderson thermostat destroys that corre-
lation by periodic randomization of correlated velocities. That
decreases the diffusion (Fig. 2). Such decrease might restrict
the number of available states (or, at least, increase the time
needed for simulation) and, correspondingly, the entropy that
is proportional to the logarithm of the visited states. Thus, we
can conclude that the paper [44] did not study the bcc phase
and even if it would have, the thermostat they used [44] is
not suitable for simulating a superionic state. The thermostat
provides the data on diffusion in substantial disagreement with
the thermostat known to provide correct thermodynamics. We
can safely conclude that the results obtained by Schultz and
co-authors [44] are not relevant for the bcc phase and the
method they used is not suitable for the study of the bcc phase.

However, the question remains: What is the size depen-
dence of the thermodynamic properties in general and free
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FIG. 1. RDF (a) and MSD (b) calculated with the EAM as ap-
plied in Ref. [44]. Both RDF and MSD in Ref. [44] are calculated
using NVT ensemble with the Andersson thermostat, while results in
this paper are computed with Nosé thermostat. The RDFs and MSD
are nearly identical. The MSD from the EAM in Ref. [44] is typical
of solid for nearly 100,000 time steps and then is typical of liquid
state. The slope of MSDs is the same. This suggests that Ref. [44]
describes the data obtained for the liquid state.

energy of the bcc phase in particular? We performed simu-
lations of the bcc phase at 7000 K and 360 GPa in a wide
range of sizes, from 432 to 2 million atoms. Figure 3 shows
the RDFs of the calculated samples. The bcc phase preserves
its structure starting from 1024 atoms. From that size and
above one can see only subtle changes in RDF (Fig. 3). When
the size of the system is under 1024 atoms, that is less than
8 × 8 × 8 unit cells, the bcc structure collapses into the hcp
structure. Remarkably, this is exactly the result we observe in
DFT MD simulations [18]. This suggests that the dynamics
of Fe atoms in the EAM and DFT description are very sim-
ilar. The dynamics of Fe atoms in the bcc structure is very
special. Atoms are diffusing like in liquid, yet preserving all
the properties of a solid [12,13]. Figure 4 shows the MSD
size dependence computed at 7000 K and 360 GPa. We note
that while the bcc structure is preserved already at the size
8 × 8 × 8 unit cells, the MSD is not converged until there
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FIG. 2. Comparison of the MSD in bcc structure computed with
Nosé and Andersson thermostat. The MD simulations performed for
the EAM potential in Ref. [10]. The Andersson thermostat provides
considerably smaller MSD because of velocities randomization ev-
ery 5000 time steps. This randomization destroys highly correlated
motion and should not be used. On large times the slope of the MSD
becomes equal.

are much larger sizes. Therefore, the 8 × 8 × 8 size is the
minimum required for computing the bcc phase properties.
This invalidates all the previous MD simulations of the bcc
phase performed at smaller (and at times much smaller) sizes
than 1024 atoms.
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FIG. 3. RDFs of bcc iron at P = 360 GPa and T = 7000 K.
Calculations performed at the sizes indicated on the legend. At the
sizes below 1024 atoms the structure collapses to close-packed phase
while at the higher sizes the structure remains bcc. The number n
means the simulation was performed for the computational cell with
n × n × n unit cells, where the unit cell contains two atoms.
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FIG. 4. MSD in bcc iron at P = 360 GPa and T = 7000 K. The
MSD converges at about 100,000 atoms; still, certain differences
remain up to the highest size. The number n means the simulation
was performed for the computational cell with n × n × n unit cell,
where the unit cell contains two atoms.

We have also studied the limits of dynamic stability on
decreasing temperature at the same pressure of 360 GPa. The
cell with size 2,000,000 atoms (100 × 100 × 100 unit cells)
is dynamically stable down to the temperature of 3590 K.
However, the cell with the size 1,024,000 (80 × 80 × 80 unit
cells) transforms to the hcp structure. This means that de-
tailed studies of the iron phase diagram are not technically
possible at present on the basis of DFT methods alone. The
observed extreme size dependence implies that the DFT MD
have to be performed for very large sizes to pinpoint the
low-temperature limit of the bcc stability which is impossible.
While exact sizes where the size convergence of DFT MD will
be reached might be different from those of the EAM MD, the
similarity of size convergence at high temperature suggests
that very large sizes are needed similar to those we used in
EAM MD.

To check whether the free energy of the bcc phase is
affected by its size, we performed two-phase simulation of
melting where the solid and liquid are placed in one compu-
tational cell forming a common interface [45–47]. Two sizes
were explored, 1024 atoms bcc structure and 2,000,000 bcc
structure (the liquid part of the computational cell was equal
to the solid part size). The smaller system solidified at 7240 K
and melted at 7250 K. The larger system solidified at 7260 K
and melted at 7268 K. We see that the larger size increases
the melting temperature but the impact is minor. As soon as
the structure is stabilized dynamically and does not collapse
to a close-packed structure, the free energy remains pretty
constant.

We calculated the free energy of liquid, bcc, and hcp phases
at a number of pressures between 60 and 360 GPa as a func-
tion of temperature using the EAM potential [10]. At all these
pressures the hcp free energy is lower than the free energy
of bcc. The melting curve of the hcp phase is close to the
melting curve computed previously [10]. This suggests that
the free energies computed correctly for the EAM model. It
was demonstrated [18] that electronic entropy substantially
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FIG. 5. Difference of Gibbs free energies between the bcc, hcp,
and liquid phases of iron (as indicated on the axes) as a function of
temperature and pressures of 120 GPa (left column) and 360 GPa
(right column).

affects the free-energy difference. At the same time, the EAM
model does not take electronic entropy into account explicitly.
This is a major problem of the EAM model. Even with the
potential that takes into account the temperature effect as,
for example, suggested by Ackland [48], the system is not
capable of taking into account the effect of electron degrees of
freedom on the free energy. We calculated the electronic en-
tropy using package VASP at the pressures 120 and 360 GPa
for the liquid, bcc, and hcp phases in the NPT ensemble at
the temperatures 4000 and 7000 K correspondingly. Figure 5
shows the free-energy difference for bcc-hcp, bcc-liquid, and
hcp-liquid with electronic entropy correction. We note first
that the melting temperature of the EAM hcp if corrected for
the electronic entropy becomes equal to 6800 K at 360 GPa.
The latest assessment of the hcp melting temperatures [49]
provides the range of temperatures between 5400 and 6345 K
at the pressure of 330 GPa (the pressure at the boundary
between solid IC and the liquid outer core). The derivative
of the melting temperature on pressure varies between 8 and
11 K per 1 GPa. One can estimate the melting temperature
at the pressure of 360 GPa as varying (depending on the
source) between 5700 and 6675 K. Given the error bars of
about 200 K, the 6800 K we obtained seems to be at the
upper end of the range, yet reasonably close (or even within
error bars) to most of the numbers provided in Table 2 of
Ref. [49]. This is confirmation that our approach is reasonable.
The temperature of the hcp-bcc transition is 4900 K, and the
bcc melts at 7190 K. At the pressure of 120 GPa the hcp
phase melts at 3450 K as compares with the 3970 K [50]. The
hcp-bcc transition is at 2800 K, and the bcc phase melts at
3650 K. Note, that the straight line that connects the points
of the hcp-bcc transition is in very decent agreement with
the experimental data as measured by Hrubiak et al. [25].
Figure 6 summarizes the calculated phase boundaries and
provides comparison with existing data. The calculated phase
boundaries are shown schematically by straight lines.
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FIG. 6. Iron phase diagram. The new data that shows (schemati-
cally) hcp- bcc and bcc-liquid boundaries as calculated in this work
(also shown hcp - liquid phase boundary for the metastable liquid
and hcp phases) are compared with the previous experimental and
theoretical data. The new data are shown in the plot by brown open
squares, blue open triangles, and brown open circles. The previous
data are as follows. The magenta dashed line is the Fe phase diagram
data reported in 1982 [65]. The blue solid line is diamond anvils
cell (DAC) data by fast x-ray diffraction, while the blue dotted line
represents the extrapolated melting line of Fe [6]. The blue dash-dot-
dotted line [58], the filled diamonds [63], the dashed line [66], the
open square [61], the dash-dotted line [60], and the open circles [59]
are DAC high pressure data. The red filled squares [67], the filled
down triangle [62], and the filled diamond [20] represent shockwave
compression data. The green dash-dotted [10] and dashed lines [50]
represent the Fe melting curve calculated by the MD method, while
the green filled square and the filled up triangle indicate other ab
initio results [57,64].

IV. DISCUSSION

The combination EAM MD along with electronic entropy
provided by DFT MD provide the melting curve of the hcp
phase in good agreement with the melting curve computed
using DFT MD [49–51]. The same combination provides the
hcp-bcc transition in good agreement with experiment [25].
Therefore, we have good reason to suggest that, indeed, iron
transforms to the high-PT bcc phase on heating at high pres-
sure, at least at the pressures of the Earth IC (330–364 GPa).
Finally, if we still are not convinced by the new theoreti-
cal and experimental data (admittedly scarce, though), then
it is the Earth itself telling us what phase of iron is in its
center. The exact match of the angles between the slow and
fast axes of sound propagation in the Earth IC [31] (54◦)
and in the bcc phase [13,32] (54.73◦) is the ultimate evi-
dence of stability in the IC. One might ask, however, why,
despite numerous experiments on iron, so few have actually
observed [14,20,21,24,25] the high-PT bcc phase? Why have
so many theoretical studies failed to observe the stability of
the high-PT bcc phase? As for the theoretical results, the
answer is simple. The simulation of the high-PT bcc requires
a large number of atoms (at least 1024 and much larger to
compute the range of the stability correctly). Practically all
of the previous DFT MD studies relied on simulation of a
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much smaller number of atoms; therefore, their results con-
cerning the dynamic and thermodynamic stability of bcc are
likely inconclusive [29,51–55] at best. The explanation for
the misleading theoretical results comes from the oversym-
metrization of small computational bcc cells by PBC. The
(110) planes in small cells preserve their entirety despite
strong thermal motion. Since the bcc phase is dynamically
unstable at low T, the planes slide along each other toward
the configurational energy minimum. This process is in action
also at high T if the size of the cell is small. The pressure
components in small cells change in a quite correlated way
where two components are always equal to each other [53]
(for example, xx and yy components of pressure tensor are
equal to each other, while the zz component changes on its
own, and after some time, the xx and zz are equal to each other
with yy oscillating independently). The cell oscillates between
close-packed-like states and that ruins the natural dynamics
of the bcc phase. It is no surprise when the configurational
energy is higher than that in the close-packed phase (being
very close, though) and the entropy is lower than that in the
bcc phase (because the dynamics of the motion is destroyed by
the small cell size) that the Gibbs free energy of the bcc phase
comes out higher than that for the hcp phase. This is, for exam-
ple, the case with the study in Ref. [52], where a quite small
cell of 54 atoms was simulated. The small cell size leads to
the appearance of the deviatoric stress that would destroy the
bcc structure. This was correctly noted in Ref. [55] where the
bcc cell with 150 atoms was simulated. However, the authors
of Ref. [55] misinterpreted their own results—they decided if
the results with 150 atoms demonstrate the nonzero deviatoric
stress, then any size of the cell would demonstrate such a
stress. Remarkably, they ignored the results that demonstrated
the dynamic stability of large bcc cells [11]. Instead, the
authors of Ref. [55] blamed the potential EAM that, as we now
know, produces the size dependence of the bcc stability onset,
in full agreement with DFT MD. Quite remarkably, both pa-
pers [52,55] while performing quite correct simulations—yet
for too small cells—completely misinterpreted the obtained
data. Needless to say, the results on elastic properties of the
bcc phase performed so far using DFT MD might be quite
misleading, again because of the small cell size. The authors
of Ref. [51] computed melting temperatures of bcc and hcp
iron at high pressure using small cells and claimed the close
proximity of those melting temperatures. The claim might
be correct, but apparently for the wrong reason, because the
authors simulated too small cells. The melting temperature
of the hcp phase is most likely correct, while the melting
temperature of the bcc phase is affected by the instability
of the small bcc cell. At the same time, there are quite a
few experimental studies that reported no observation of the
bcc phase. First, the most apparent reason could be the slow
kinetics of the hcp-bcc transition. The bcc phase is stabilized
by the entropy. Such stabilization is expected to be slower
than the stabilization by the lower enthalpy. It takes time to
visit all the accessible states in the bcc structure; besides, the

nuclei of the bcc has to be large to fully accommodate all the
states. Second, the bcc is a superionic phase; the diffusion of
atoms is comparable to that in a liquid. That might make x-ray
identification of the bcc structure difficult. It is not impossible
that the diffusion will lead to the observation of a diffuse
ring along with the crystalline spots, as, for example, was
observed in some experiments [6,56]. The strongest bcc peak
110 coincides with the 100 peak of hcp. The rest of the bcc
peaks are considerably less intense because of the thermal
motion coupled with superionic diffusion.

It becomes obvious that the whole field is likely affected by
the unexpected physics of the bcc iron phase. At the moment,
we have very little data on the bcc properties. Therefore, any
interpretation of the Earth IC seismic data is limited. New
careful experiments and simulations are required to put the
interpretation of seismic data on solid ground. Considering
that the properties of iron core are tightly connected to the
existence of the Earth-protecting magnetic field and that the
existence of such a field is considered as the condition for life,
the properties of iron predicted in this paper are needed to
search for inhabited exoplanets.

V. CONCLUSIONS

We demonstrated that the bcc phase becomes stable above
about 5000 K at the pressures of the Earth IC. At lower
pressures (above 120 GPa) the hcp-bcc phase boundary is
in close proximity with the melting curve as determined by
Boehler [58] and the experimental hcp-bcc phase boundary
as measured by Hrubiak et al. [25]. Given that the hcp-liquid
phase boundary, calculated before using fully ab initio MD
[49], and the one in this paper, calculated using the hybrid
approach, are practically identical, we trust that the precision
of the hcp-bcc phase boundary determination is similar to that
of fully ab initio MD. We note, however, that fully ab initio
MD calculation of the hcp-bcc phase boundary at present is
technically impractical. Ab initio MD data on the bcc phase
of iron at pressures of the Earth core and higher, in the range
of SuperEarth pressures, such as elastic constants, equation
of state, heat conductivity, viscosity, etc., are urgently needed.
Experimentalists should consider the very special nature of
the bcc phase.
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