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Accurate phase diagram calculation from molecular dynamics requires systematic treatment and convergence
of statistical averages. In this work we propose a Gaussian process regression based framework for reconstructing
the free-energy functions using data of various origins. Our framework allows for propagating statistical
uncertainty from finite molecular dynamics trajectories to the phase diagram and automatically performing
convergence with respect to simulation parameters. Furthermore, our approach provides a way for automatic
optimal sampling in the simulation parameter space based on a Bayesian optimization approach. We validate our
methodology by constructing phase diagrams of two model systems, the Lennard-Jones and soft-core potential,
and compare the results with the existing studies and our coexistence simulations. Finally, we construct the
phase diagram of lithium at temperatures above 300 K and pressures below 30 GPa from a machine-learning
potential trained on ab initio data. Our approach performs well when compared to coexistence simulations and
experimental results.
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I. INTRODUCTION

Computational materials science is a rapidly evolving field
enabling the calculation of materials properties that have tra-
ditionally been accessible mostly by experiment. The phase
diagram is one such aggregate property, answering the fol-
lowing question: Which phase of material will be stable under
given conditions (temperature, pressure, composition)? Phase
diagrams are thus indispensable as guidance for materials
synthesis. Physically, a phase diagram can be thought of as a
map of free energy of different phases of material; if we know
the free-energy function of different phases, then we can tell
which phase, or a mixture of phases, will be stable under a
given condition.

CALPHAD (standing for CALCulation of PHAse
Diagrams) [1,2] is by far the most prominent approach
to constructing phase diagrams in practice. The core of
CALPHAD is a classical fitting approach, using polynomial-
like functions, to represent the Gibbs free-energy functions
of different phases. The free energy is fitted mostly to the
experimental data, and in this sense, the obtained phase
diagram is an experimentally obtained materials property
(at least when contrasted against modern ab initio–based
materials modeling). With the rise of ab initio materials
modeling, the experimental data can be supplemented by
quantum-mechanical data when the former is not available
(e.g., when a phase cannot be experimentally realized at given
conditions).
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There are efforts to further advance the CALPHAD
methodology by applying modern data analysis algorithms.
Early attempts are dedicated to the use of the Bayesian frame-
work in combination with the classical CALPHAD approach
[3–5]. In these works, the authors focus on a methodology for
uncertainty prediction of model parameters of CALPHAD.
More recent studies are aimed at overcoming the problem
of database extension [6] with the use of first-principles data
calculation. The further development of the approach [6] in-
cludes uncertainty estimation of predicted results based on
uncertainty in model parameters via Monte Carlo Markov
chains combined with the Bayesian inference [7,8]. Another
problem related to a mixture of experimental and calculation
results was approached recently in [9] with k-fold cross-
validation of the input datasets.

From the side of computational materials science, state-
of-the-art algorithms for the free-energy computation are
grouped together under the umbrella of thermodynamic in-
tegration. The central idea of these algorithms is that one
can easily compute derivatives of free energy from molecular
dynamics (MD) simulations (or similar simulations for saving
the Gibbs distribution), and hence the free energy can be
obtained by integrating these data from a point where the free
energy can be calculated exactly (e.g., at zero temperature)
[10]. Thermodynamic integration, in its essence, is a way to
obtain computational thermodynamic data and hence is not
an algorithm that is competing with CALPHAD but rather
complementing it.

Indeed, there are many works that use both ideas:
Obtaining computational thermodynamic data and fitting it
with simple functions of thermodynamic parameters for a
number of systems. Examples of such works are studies of the
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Lennard-Jones system [11], where the authors examine the de-
pendence of melting temperature with respect to the size of the
simulation cell. In [12], the reconstruction of the aluminum
phase diagram via density functional theory (DFT) data is
presented. In [13] authors reconstruct the P-T phase diagram
of uranium with a combination of the USPEX algorithm [14]
and standard thermodynamic integration technique for the
free-energy calculation. In the work [13] authors focus on
phase stability calculation under finite temperature conditions
in specific points. In [15] a detailed phase diagram of water is
explored.

In this work we propose a Gaussian process-based
methodology to reconstruct the phase diagram based on ther-
modynamic data. Although we focus on nonexperimental data
(computed from first principles or with empirical potentials)
in the work, the methodology itself should be applicable to the
experimental data as well. The essence of our methodology
can simply be described as treating thermodynamic data com-
ing from any source (zero-temperature limit or MD averages
or coexistence simulations) as training data for a Gaussian
process. Including numerical parameters (such as the num-
ber of atoms or the cutoff radius of the potentials) into the
feature vector enables an automatic analysis of convergence
and, moreover, taking the limit as numerical parameters go
to infinity. Furthermore, the predictive variance of the Gaus-
sian process naturally allows us to estimate the error of our
prediction, including the statistical error originating from the
finite MD trajectories, interpolation error arising from the
finite number of conditions (temperature/pressure) at which
simulations are run, and the error of extrapolation with respect
to numerical parameters. Finally, Gaussian processes allow
for an automatic assessment of the ratio by which the error
in the quantity of interest (such as the melting temperature)
can be reduced by running a simulation at given parameters,
leading to autonomous algorithms of sampling the phase dia-
gram points.

The presented methodology is applied to two model sys-
tems: Soft-core and Lennard-Jones potentials as a part of the
validation procedure. We compare our calculations with the
work [16] on the soft-core potential in which the authors
estimated the melting curves in a wide temperature-pressure
range. The Lennard-Jones system’s properties, including the
dependence on the simulation parameters, were investigated
in various works. The points of interest on the Lennard-Jones
phase diagram are the critical point where gas and liquid
become indistinguishable and the triple point where all the
three phases—gas, liquid, and solid—coexist. The location of
the critical point strongly depends on the size of the simulation
cell. In literature, there are two main approaches to study this
dependence. The first one is associated with the projections of
a simulation cell with periodic boundary conditions into the
surface of a four-dimensional sphere [17]. Another approach
relies on the use of cutoff radius bounded to the half-size of
the simulation cell and corresponding long-range correction
[18]. The critical point temperature estimations are not in
agreement with each other with the given narrow confidence
intervals. This fact shows that the approach for systematic
phase transition calculation and uncertainty estimation is in
demand in computational materials science. For validation of
our results with respect to triple and melting points calculation

of the Lennard-Jones system, we have chosen the work of
Ref. [11].

Finally, we apply our approach to a physical system,
lithium, chosen because it undergoes various phase transitions
under pressure. The CALPHAD approach for this material is
based on experimental data from Refs. [19–21]. These works
are attributed to fcc-liquid-bcc phase transitions. In [22] the
phase diagram of lithium is examined in a wide tempera-
ture and pressure range from first-principles complementing
experiment. Recently, in [23] authors compute the former
transition lines with the existing classical potentials.

The paper is organized as follows. In Sec. II we present the
theoretical aspect of the methodology and some implemen-
tation details. In particular, in Sec. II A we give the details
of free-energy calculations, and in Sec. II B we introduce our
Gaussian process regression approach. In Sec. III we show the
results of the application of our approach to the phase diagram
calculation of the model systems and lithium. Concluding
remarks are given in Sec. IV.

II. THEORY

In the current section we will obtain the relations between
free-energy derivatives and statistical averages as will be used
by Gaussian processes. In what follows we distinguish the
extensive and intensive quantities in the notation; the former
will have a hat accent: Ê , V̂ . The corresponding intensive,
per-atom quantities are E = Ê/N , V = V̂ /N , where N will
denote the number of atoms.

A. Free energy

Let x be a configuration with N atoms enclosed in a volume
V̂ (we will interchangeably use V̂ for the actual region in
space and its measure) with periodic boundary conditions. Let
Ê (x) be the potential energy of the interatomic interaction. We
assume that the units for the temperature T are the same as
for the energy Ê ; in other words, our Boltzmann constant is
kB = 1.

We define the free energy by

−T log
∫

V̂ N

exp[−Ê (x)/T ]dx = F̂ref − T Ŝ, (1)

where F̂ref will be explicitly assigned later (differently for each
phase), and we will call Ŝ the entropy. We will rely on compar-
ing the absolute free energies of different phases (as opposed
to the free-energy difference between phases); therefore it is
important to choose F̂ref and Ŝ consistently across phases.

For solids we choose

F (s)
ref := E0 + T

( − log(NV ) + 1 − 3
2 log(2πT )

)
, (2)

where E0 = E0(V ) is the potential energy at zero temperature
for the given volume. Here and in what follows the superscript
(s) denotes the solid phase. Choosing F (s)

ref in the form (2) is
motivated by the fact that in this case the entropy admits a
simple low-temperature expansion

S(s) = − 1

2N
log det Ĥ− log(V ) + O(T ), (3)
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where Ĥ is the Hessian of the energy Ê at the equilibrium
configuration x0. For the derivation of (2) and (3), refer to
Appendix A 1. A well-defined zero-temperature limit of S(s)

such as (3) is important for reconstructing the free energy with
a Gaussian process, as molecular dynamics can generate the
data on derivatives of S and thus allow, without (3), one to
reconstruct S(s) = S(s)(T,V ) only up to an additive constant.

Indeed, an NVT-thermostated molecular dynamics pro-
duces the averages of the form

〈 f 〉 :=
∫

V̂ N f (x) exp[−Ê (x)/T ]dx∫
V̂ N exp[−Ê (x)/T ]dx

.

One can then find that

∂S(s)

∂T
= T −2〈E − E0〉 − 3

2
T −1, and (4)

∂S(s)

∂V
= T −1〈P − P0〉, (5)

where P0 := − ∂E0
∂V is the pressure at zero temperature. Here

and in what follows by P we denote the virial part of the
pressure. The virial pressure is, in fact, easier to compute from
molecular dynamics. The derivation of (4) and (5) is given in
Appendix A 2.

Also, we consider the liquid and gas phases. A single
free-energy curve can describe these phases because they
are indistinguishable at temperatures above the critical one.
Hence, we will denote the corresponding phase by the super-
script (f) and refer to it as the fluid phase. For the fluid we
simply choose ideal gas as a reference,

F (f)
ref := −T log(NV ), (6)

so that

lim
T →∞

S(f) = lim
V →∞

S(f) = 0. (7)

This equality is a consequence of our definition of free energy
in (1). In the limit of T → ∞, the exponent in the inte-
gral is approaching 1. Hence, the integral itself is equal to
NV . In the same manner, when V → ∞, the interaction be-
tween particles is negligible [Ê (x) → 0] and the integral also
approaches NV .

The derivatives of S(f) are thus

∂S(f)

∂V
= T −1〈P〉, and (8)

∂S(f)

∂T
= T −2〈E〉. (9)

The derivation of (8) and (9) is very similar to the corre-
sponding formulas for the solid, and hence we omit such a
derivation.

The harmonic (2) and ideal gas (6) limits are not always
applicable—for instance, there are systems with solid phases
being dynamically unstable at low temperature. For such sys-
tems, the limit (2) is irrelevant. In such cases we determine
the additive constant of the free energy through fitting to the
melting (or, more generally, coexistence) point of a phase.
We find melting point at pressure P by solving the system of

equations⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂S(f)

∂V(f)
= P

T
+ 1

T

∂F (f)
ref

∂V (f)

∂S(s)

∂V (s)
= P

T
+ 1

T

∂F (s)
ref

∂V (s)

S(f) − S(s) = F (f)
ref − F (s)

ref

T
+ P

(
V (f) − V (s)

)
T

(10)

with respect to the temperature T and specific volumes of
solid and fluid, V (f) and V (s).

B. Gaussian process regression

The derivatives of the entropy from an NVT molecular dy-
namics (MD) cannot be obtained without some noise arising
from averaging over a finite trajectory. Due to randomness in
the initial state or in the thermostat, such a trajectory is ran-
dom. Thus, the free energy that we reconstruct from the MD
data is also random, but hopefully, it has a narrow distribution
around the true free energy. The effect of a thermostat—let
us consider a Langevin thermostat, for instance—consists of
making a large number of small perturbations to the trajec-
tory [24]. Thanks to the central limit theorem, it is hence
reasonable to assume that averages over such a trajectory
are distributed according to the Gaussian distribution. This
assumption brings us to the Gaussian process framework.

In the Gaussian process framework, we assume that the
data, and the reconstructed free energy, are distributed accord-
ing to a multivariate Gaussian distribution. We assume zero
mean—any prior information about a nonzero mean is already
accounted for in F ref . Further, we assume that the values
of the free energy at different points (V1, T1) and (V2, T2)
are correlated with covariance Cov[S(V1, T1), S(V2, T2)] =
k[(V1, T1), (V2, T2)]. Such a distribution of functions S(V, T )
is called the Gaussian process (GP) and k is called the kernel.
An simple example of the kernel is

k[(V1, T1), (V1, T1)] ∼ exp

(
− (T1 − T2)2

2θ2
T

)

× exp

(
− (V1 − V2)2

2θ2
V

)
. (11)

A property of the Gaussian processes that will be very
helpful in our application is that any linear functional of the
Gaussian process is also Gaussian distributed. For example,
the derivative with respect to volume [as, e.g., in (8)] at
(V1, T1) is correlated with S(V2, T2) as given by the following
formula:

Cov

(
∂S

∂V1
(V1, T1), S(V2, T2)

)
= ∂

∂V1
k[(V1, T1), (V2, T2)].

This allows us to make predictions based on data. In
the most general case, each data point is a linear func-
tional X on S, for example, 〈S|X1〉 = S(V, T ), 〈S|X2〉 =
∂

∂V S(V, T ), etc. The data is usually given with noise, hence
the input data to our Gaussian process is of the form
(X1,Y1,�Y1), (X2,Y2,�Y2), . . . , which means that 〈S|Xi〉 is
measured (e.g., from molecular dynamics) as Yi ± �Yi, or
to be precise, 〈S|Xi〉 is distributed according to the normal
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FIG. 1. Illustration of integration via the trapezoidal quadrature rule (red) and Gaussian process (blue) on noisy data. The left graph shows
how the function f (x) = sin(x) is reconstructed, and the right one shows how the derivative is reconstructed. The Gaussian process has the
same accuracy but produces a smooth result and also yields uncertainties of prediction within which the exact solution (purple) falls.

distribution

〈S|Xi〉 ∼ N (Yi, (�Yi )
2).

We denote Cov (〈S|X1〉, 〈S|X2〉) = k(X1, X2), extending the
definition for the kernel. We assume that the uncertainties �Yi

are all statistically independent from each other.
Suppose we want to make a prediction of Y∗ = 〈S|X∗〉; for

simplicity one can think of Y∗ = F (V∗, T∗). The Gaussian pro-
cess framework is a particular case of the Bayesian framework
in which the prediction problem is formulated as the following
question: What is the most likely value of Y∗ given data Xi, Yi,
and �Yi? To that end we form a joint distribution

[
Y
Y∗

]
∼ N

⎛
⎝

(
0
0

)
,

(
K (X , X ) + diag(�Y ) K (X , X∗)

K (X∗, X ) K (X∗, X∗).

)⎞
⎠,

where X , Y , and �Y are the vectors composed of Xi, Yi, and
�Yi, which makes K (X , X ) a matrix composed of k(Xi, Xj ).
From this, we find that Y∗ is normally distributed with mean

Y∗ = K (X∗, X )[K (X , X ) + diag(�Y )]−1Y

and variance

Var(Y∗) = K (X∗, X∗) − K (X∗, X )[K (X , X )

+ diag(�Y )]−1K (X , X∗). (12)

The variance of a nonlinear functional F (S), which is
needed to predict the uncertainty of determining the melting
point (10), is derived in Appendix A 4 in the limit of a large
amount of data [in which can we can linearize F (S) around
the mean prediction S].

For a given application, one needs to find the right values
of hyperparameters θ = (θT , θV ) in (11). This is done by max-
imizing the so-called marginal likelihood p(Y |X , θ), which
is proportional to the probability that the underlying data is
distributed according to the hyperparameters θ. The marginal
likelihood is calculated according to the formula

log p(Y |X , θ) = − 1

2
Y T [K (X , X ) + diag(�Y )]−1Y

− 1

2
log |K (X , X )+diag(�Y )|− n

2
log(2π ),

(13)

where |K| denotes the determinant of the matrix K
and n is the dimension of the model (number of input
points).

The Bayesian variance expressed in Eqs. (12) and (A3)
does not directly depend on Y . This allows us to define the
quantity

H(Q, X ∗) = − log
V (Q|X ∪ X ∗)

V (Q|X )
, (14)

which expresses an expected improvement of the variance of
Q after adding a new point X ∗ to the dataset X . We will call
(14) the information function. By maximizing H with respect
to X ∗, we find the point that is best in reducing the variance
of the quantity Q. This gives rise to our active sampling
algorithm, whose essence is to simply greedily add points
with maximum information to the training set, one by one.
For simplicity, when deciding which new point to add to the
training set, we assume that we would add data with zero
variance.

C. Illustrative example: Performing integration
with a Gaussian process

Before applying Gaussian processes to reconstruct the
free-energy function from its derivatives, let us consider an
illustrative problem of simply reconstructing f (x) = sin(x)
on the interval [0, π ] from its value f (x) = 0 and nine noisy
values of f ′(x). To that end, we take nine evenly spaced
points, x1 = 0, x2 = π/8, ..., x9 = π , and consider yi =
f (xi ) + N (0, σ 2) (i.e., added to yi some normally distributed
noise) with variance σ = 0.1. The added noise simulates the
statistical noise always present in averages taken over finite
MD trajectories.

The results of the comparison are shown in Fig. 1. To
mimic thermodynamic integration, the state-of-the-art method
used for calculating the free energy, we use the second-
order trapezoidal quadrature rule, shown with red in the
figure. The “integration” with the Gaussian process was
done as outlined in Sec. II B. We see that the accuracy of
the two methods is comparable, but the Gaussian process
yields smoother results and also gives an accurate confidence
interval.
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FIG. 2. General scheme of the Bayesian framework for calculat-
ing phase diagrams.

III. RESULTS AND DISCUSSION

A. Methods

The formulas from Sec. II A apply to any data regardless
of their source. In this work, we use classical molecular dy-
namics implemented in the LAMMPS package [25] to generate
the input data for the Gaussian process. Molecular dynamics
simulations are performed in the canonical ensemble (NVT).

The core of classical MD simulations is the interatomic
potential. An interatomic potential is a functional form that
allows one to calculate the potential energy of the system.
In our work we study the behavior of the systems described
by the Lennard-Jones potential, the soft-core potential (being
simply the repulsive term of the Lennard-Jones potential), and

the moment tensor potential [26,27]. For each of these func-
tional forms, the total potential energy E (x) can be partitioned
into the sum of atomic contributions

E (x) =
∑

i

E (xi ),

where xi is the coordinate of the atom with the index i. The
potential energy of a particle, E (xi ), is a sum of atomic con-
tributions within finite sphere of radius rcut called cutoff radius

E (xi ) =
∑

j:|xi−x j |<rcut

ϕ(|xi − x j |),

where ϕ is the function that describes potential energy of
two-particle interaction with respect to their positions xi and
x j . The potential energy of the soft-core and Lennard-Jones
systems can be explicitly decomposed into a sum of pair con-
tributions. Here and in what follows, the functional form of
the potential energy of single pair interaction will be denoted
by ϕ(r).

The temperature T , specific volume V , cutoff radius of
interatomic potential rcut, and a number of atoms in the
simulation cell N form the entries of the matrix X of the
Gaussian process. The entries of the vector Y are formed from
derivatives and values of the free energy. The derivatives are
calculated via formulas (4), (5), (8), and (9) using the averaged
potential energy 〈E〉 and the virial pressure 〈P〉 obtained from
MD. An additive constant of the free energy is set via har-
monic (2) and ideal gas (6) limits. Where these limits are not
applicable, we determine the additive constant difference via
(10). The standard deviation of the corresponding thermody-
namic quantities over the MD trajectories forms entries of the
vector �Y . An active sampling algorithm defined in Sec. II B
is applied to reduce the uncertainty of the target quantities sys-

FIG. 3. Melting line of the soft-core potential plotted with the 68% confidence interval: The red curve represents the GP prediction of the
melting curve at the limit of infinite cutoff and an infinite number of atoms; the blue point is our coexistence simulation result at the cutoff of
6 and number of atoms of 2048 for each phase. Green points are the results from [16], with the cutoff of 2 and the number of atoms of 16 000.
Our data is seen to be in an excellent agreement with coexistence simulation results and previous studies.
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tematically. The general scheme of our framework is shown in
Fig. 2.

Analyzing and accelerating convergence with a Gaussian process

Gaussian processes will allow us to automate one more
job that is traditionally done manually: The analysis and
acceleration of the convergence with respect to numerical
parameters, such as the number of atoms or the cutoff radius.
The fundamental property of the Gaussian processes enabling
this is what we have already used for the derivatives; taking
the limit of a Gaussian process (e.g., with N → ∞), being a
linear operation, still yields a Gaussian process. Moreover, we
choose the kernel functional form so that it reflects as much
as possible the physical behavior of the system of interest, as
we illustrate in the applications below. As a result, the trained
Gaussian processes reproduce free energy with high accuracy.

B. Model system: Soft-core potential

We first validate our methodology on two model systems:
Soft-core and Lennard-Jones potentials. In the soft-core po-
tential, there is only one phase transition. This simplifies the
comparison between our GP estimation and the existing data.

MD calculations in the case of soft-core and Lennard-Jones
potentials are performed with a Metropolized Langevin ther-
mostat [28] to avoid error related to a finite time step. The data
presented below is given in the reduced Lennard-Jones units.

We consider the soft-core interatomic potential with pair
interaction described by

ϕ(r) = 4

r12
,

where r is the distance between two atoms. Thanks to the
simplicity of the soft-core potential, the free energy admits
the following invariant transformation:

F (T,V ) = −T ln V + F (TV 4, 1).

Hence, the free-energy dependence for such a potential can
be expressed as F (T,V ) ∼ F (T, 1). This means that given a
dependence of the free energy on the temperature at a certain
volume, we know the dependence of the free energy in arbi-
trary volume and temperature range.

With this invariance in mind and also asymptotic behavior
of the free energy for V → 0, we define the GP kernel—a
functional form that we use to estimate the correlation be-
tween the training set points X1 and X2:

kscp(X1, X2) ∼ exp

⎛
⎜⎝−

((
1 − T1

1+T1

) 1
4 − (

1 − T2
1+T2

) 1
4

)2

2θ2
T

−
( T1

1+T1
− T2

1+T2

)2

2θ ′2
T

⎞
⎟⎠

×
[

1 + θ10
c

c5
1c5

2

exp

(
−

(
1

c2
1

− 1

c2
2

)2
θ4

c

2

)]
exp

[
−

(
1

N1
− 1

N2

)2
θ2

N

2

]
,

where θ = (θT , θ ′
T , θc, θN ) are the hyperparameters of our

model; T1, T2 are the temperatures of the first and second
point; and c1, c2 and N1, N2 are the interatomic potential cutoff
radius and the number of atoms in the simulation cell, corre-
spondingly. The choice of the kernel reflects our knowledge of
the system in the following way. We operate with the rescaled
temperature T

1+T instead of T to avoid divergence at an infinite
temperature limit in the case of liquid. We modify the tem-
perature dependence with a 1

4 power term to account for the
two-particle interaction in the liquid free energy at high tem-
perature. The cutoff term depends on rcut as c−5 (in fact, the
dependency in the case of the soft-core potential is stronger,
but we choose the form with c−5 to match the asymptotics
for the Lennard-Jones system). Dependencies of lower order
are taken into account via long-term correction. Finally, the
free-energy dependence with respect to the number of atoms
in the simulation cell is derived from Taylor series expansion
and is proportional to 1

N .
We compare our results of melting point calculation

with coexistence simulation data at P = 1. The melting
temperature predicted via GP is equal to 0.1849(8) [error
in parenthesis corresponds to the 68% confidence interval,
0.1849(8) should be read as 0.1849 ± 0.0008]. The value
obtained by our coexistence simulations is 0.1846(2). The
obtained data are in agreement with respect to a given con-
fidence interval. We note, however, that the GP provides a
more reliable confidence interval being a natural statistical

estimation of uncertainty, unlike the coexistence simulations
in which it is not easy to control all sources of error.

In the case of melting curve estimation, we compare our
results with a direct calculation based on coexistence simu-
lation and previous results from [16]. The obtained data is
shown in Fig. 3. In this case, the GP estimation of the melting
curve agrees well with our simulations. Our data is in good
agreement with the previous results. The melting point at
P ≈ 70 can be seen to deviate by about 3σ (i.e., three standard
deviations), which is statistically significant, but we attribute
this to the low value of cutoff (rcut = 2 for the green points
taken from [16]).

C. Model system: Lennard-Jones potential

The Lennard-Jones potential was selected as a system with
three phases and hence a more complex phase diagram. Also,
the 1

r6 term of the Lennard-Jones potential results in the strong
dependence of obtained data on the size of the simulation
cell and cutoff radius of the interatomic potential. As in the
soft-core case, the MD calculations are performed with a
Metropolized Langevin thermostat [28].

The potential energy of the pair interaction of the Lennard-
Jones system has a form

ϕ(r) = 4

(
1

r12
− 1

r6

)
.
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TABLE I. Critical point (index crit) estimation. r∗
cut denotes the

cutoff radius of the interatomic potential with a long-range correc-
tion. Our results are in good agreement with previous studies.

Source r∗
cut System size Tcrit ρcrit

Ref. [17] ∞ ∞ 1.326(1) 0.316(1)
This work ∞ ∞ 1.327(1) 0.316(2)

Compared to the soft-core potential the Lennard-Jones po-
tential has an additional term 1

r6 . This leads to a phase
diagram with three different phases: Solid, gas, and liquid.
The last two can be described by a single free-energy curve
because they are indistinguishable at temperatures above crit-
ical. The kernel for the Lennard-Jones free energy is similar
to the kernel of the soft-core potential except that we treat
the volume dependence of the free energy explicitly in the
kernel,

kLJ(X1, X2) ∼ kscp(X1, X2)

(
exp

(
− (ρ1 − ρ2)2

2θ2
ρ

)

− exp

(
−

(
ρ2

1 + ρ2
2

)
2θ2

ρ

))
,

where ρi, simply defined as ρi := V −1
i , are densities at first

and second points. We subtract exp(− (ρ2
1 +ρ2

2 )
2θ2

ρ
) from the Gaus-

sian kernel to account for the zero-density (or infinite-volume)
limit of the free energy (7).

We first validate our algorithm by computing the critical
and triple points of the Lennard-Jones potential. The critical
point is the point on the phase diagram where the liquid and
gas phases become indistinguishable. Our results, along with
the previous studies, are shown in Table I.

There are a lot of studies for comparison, but we have
chosen [17] as the one with the most reliable values. In [17],
the authors calculated the critical point using MC simulation
and estimated effect of the system’s finite size. Our results
agree well with respect to confidence interval. Moreover, the
estimated confidence interval is in agreement with the previ-
ous results.

We next estimate the triple point as a part of our validation
procedure. An active sampling algorithm was used to improve
the accuracy of the triple-point calculation significantly. An
illustrative example of two steps of the active sampling algo-
rithm is shown in Fig. 4.

Our results of the triple-point calculation, along with previ-
ous studies, are presented in Table II. Our results are in perfect
agreement with the work of Ref. [11], where the authors per-
formed the study of convergence with respect to the size of the
system. From a comparison of the results with [29], one can
deduce that the choice of rcut strongly affects the triple-point
calculation for the Lennard-Jones potential.

We next compare the melting line of the Lennard-Jones
potential with our coexistence simulation results and the pre-
vious studies. The obtained data is shown in Fig. 5. Our
results agree well with the previous studies. We have chosen
[11] as reference data because the authors have examined
the effect of the finite system size on the triple and melt-
ing points calculation. Compared to the study [11] we have
treated cutoff and system size as explicit parameters of our
model.

We next calculate the phase diagram of Lennard-Jones at
the limit of infinite cutoff radius and system size. The phase
diagram is presented in Fig. 6. As one can see, we have
predicted the phase diagram and estimated the confidence
interval of our calculation. Also, the phase diagram obtained
via GP fitted with a limited number of points for both phases
is in agreement with the previous studies.

FIG. 4. Illustration of the active sampling algorithm applied to the calculation of the triple-point temperature estimation. Color plot
represents the value of the information function H from (14) at a given point of the phase diagram. In step (a), the information function
is calculated at each point. Then, in step (b), a new point Xnew that maximizes the information function is added to the dataset. This finalizes
the first iteration of the algorithm. Figures (c) and (d) correspond to the second iteration of the active sampling procedure. The proposed active
sampling algorithm allows one to decrease the error of the target property systematically.
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TABLE II. Triple-point (index tp) estimation. Indexes “gas,” “liq,” and “sol” denote gas, liquid, and solid phases, respectively. Our results
agree well with existing studies.

System Ttp ρgas

Source r∗
cut size ×10−3 ρliq ρsol

Ladd and Woodcock [30] 2.5 1500 0.67(1) – 0.818(4) 0.963(6)
Hansen [31] – 864 0.68(2) – 0.85(1) –
Kofke [32] – 236 0.698 – 0.854 0.963
Kofke [32] – 932 0.687(4) – 0.850 0.960
Ahmed and Sadus [29] 2.5 2048 0.661 – 0.864 0.978
Mastny and de Pablo [11] 6 ∞ 0.694(4) – – –
This work ∞ ∞ 0.695(4) 1.9(1) 0.845(2) 0.961(1)

D. Physical system: Lithium

Finally, we apply our methodology to lithium, modeled
with a machine-learning potential trained on DFT calcula-
tions. We compute the phase diagram of lithium at pressures
below 30 GPa and temperatures above room temperature in
this work. We hence examine the bcc, fcc, and liquid phases
of lithium. In particular, the bcc phase is not stable at T = 0;
therefore to accurately obtain the additive constant of the
bcc-Li free energy, we rely on the harmonic limit for the fcc
phase, fcc-liquid coexistence simulations to obtain the addi-
tive constant of the liquid phase, and bcc-liquid coexistence
simulations to finally obtain the additive constant of the bcc
phase.

Thermodynamic data is obtained with the use of a moment
tensor potential (MTP) [26,27] as implemented in the MLIP

software package [33]. We have trained a single MTP for all
phases fitted on quantum-mechanical data in the examined
temperature and pressure range. The MTP potential was ac-
tively trained on the fly by running MD simulations of fcc
Li with 108 atoms and bcc Li with 128 atoms for a range of
volumes covering the pressure range of interest and increasing
temperature from normal conditions up to 900 K to observe
melting. The default, level-16 MTP potential was used, with

the cutoff radius of 5 Å and the mindist value set to 1.4 Å.
The DFT calculations were conducted with the plane-wave
DFT, and a PAW pseudopotential with one electron treated
as the valence electron, as implemented in the VASP package
[34–36].

The kernel for the lithium fcc phase is chosen as

kfcc
Li (x1, x2) ∼ exp

(
− (T1 − T2)2

2θ2
T

)
exp

(
− (ρ1 − ρ2)2

2θ2
ρ

)

× exp

(
−

(
1

N1
− 1

N2

)2

θ2
N

)
.

For liquid and bcc phases we do not have reference at zero
temperature. In order to account for divergence of entropy at
this limit we modify temperature part of the kernel by adding
the 1

T term:

kbcc,liquid
Li (x1, x2)

∼
[

θ2
T

T1T2
+ exp

(
− (T1 − T2)2

2θ ′2
T

)]

× exp

(
− (ρ1 − ρ2)2

2θ2
ρ

)
exp

[
−

(
1

N1
− 1

N2

)2
θ2

N

2

]
.

FIG. 5. Melting curve of the Lennard-Jones potential. The red curve corresponds to the calculation via GP. Rhombus is an extrapolation of
coexistence simulation results to the limit of infinite rcut and infinite system size. Green dots denote the existing results from [11]. Our results
are in an excellent agreement with [11] and coexistence simulation data.

104102-8



BAYESIAN LEARNING OF THERMODYNAMIC … PHYSICAL REVIEW B 104, 104102 (2021)

FIG. 6. The Lennard-Jones phase diagram at the limit of infinite rcut and N with a confidence interval. Blue and red points are the training
points for solid and liquid, respectively; the orange curve is a phase diagram estimated via GP. The green dot denotes the critical point. The
pink dot represents the triple point. Only a few points of both solid and liquid phases are used to calculate all possible phase transitions of the
Lennard-Jones system with high accuracy.

In the cases where we do not have reference data, we
explicitly add melting points to the dataset. Using the MTP
fitted on quantum-mechanical data, we cannot approach the
limit of infinite temperature or volume (since the potential
was not fitted at those conditions). Also, the bcc phase of
lithium is dynamically unstable at zero temperature. Thus
we use the bcc-liquid and fcc-liquid phase transition as ref-
erence data. For this reason, to validate our approach, we
compare the prediction of GP with coexistence simulation
results at various phase transition points. Results are presented
in Table III. Predicted results lie well within the 95% con-
fidence interval with respect to the coexistence simulation
data. Finally, we compute the phase diagram of lithium in

TABLE III. Comparison between the GP-predicted phase transi-
tion temperatures and the coexistence simulation results. The indices
“coex” and “GP” denote coexistence simulation and estimations of
the GP, respectively. “*” refers to the phase transition points used
as free-energy references. The points not marked with “*” are the
validation data, not used in the fitting of the GP. σ refers to the
total confidence interval (combined coexistence and GP confidence
intervals). �T is the absolute difference (error) between melting
temperature predicted by coexistence simulation and GP (�T =
|Tcoex − TGP|). �T/σ is the error measured in standard deviations,
value 1 is the expected value of the error, a value above 2 would
indicate a statistically significant error. Our GP-based algorithm is
thus in an excellent agreement with coexistence simulation results.

Phase P, Tcoex, TGP, �T/σ

transition GPa K K

fcc - liq∗ 12 495(2) 495(2) 0
fcc - liq 15 482(3) 483(2) 0.5
fcc - liq 20 456(2) 454(2) 0.7
fcc - liq 30 376.3(5) 378(2) 0.8
bcc - liq∗ 0 476(2) 476(2) 0
bcc - liq 4 521(3) 521(2) 0.03

a range of pressures below 30 GPa and a range of tempera-
tures above 300 K extrapolated to the limit of infinite system
size. To that end, we first train the MTP for these conditions
by running short NVT-MD trajectories covering the chosen
pressure and temperature conditions and actively learning the
quantum-mechanical interaction on the fly [27,33,37]. In total,
290 108-atom and 128-atom (for fcc and bcc, respectively)
crystalline and liquid configurations were selected and com-
puted on DFT. We then switch off active learning and used the
final potential with the developed methodology to construct
the phase diagram of Li. The corresponding phase diagram,
coexistence simulation results, and experimental data are
shown in Fig. 7.

We observe that the GP estimates the phase diagram with
high accuracy in a wide temperature and pressure range.
Moreover, GP predicts the bcc-liquid phase transition accu-
rately when compared to the experimental results [19,20]. The
difference between our calculation and previous studies is less
than 10 K. However, the fcc-liquid phase transition shows
a greater divergence from the experimental data [21]. The
difference could be due to inaccuracies of the DFT calcula-
tions as compared to the experimental data. The fcc-bcc phase
transition below 500 K and above 300 K is not explored to the
authors’ knowledge. The available data around 300 K from
[22] is in excellent agreement with the transition estimated
via GP: Our bcc-fcc transition line goes directly through the
region of pressures where both fcc and bcc phases were real-
ized experimentally.

Also, we have calculated the pressure Ptp and temperature
Ttp at the triple bcc-liquid-fcc point. Ptp is equal to 8.8 GPa;
Ttp = 501(2) K. The obtained result is in agreement with ex-
perimental estimations. As in the case of the Lennard-Jones
potential, we have applied an active learning strategy to im-
prove the accuracy of the triple points. An example of two
steps of the algorithm applied to the lithium system is given
in Fig. 8.
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FIG. 7. Lithium phase diagram at the infinite system size limit plotted with a confidence interval. Blue, green, and pink dots are training
points for bcc, fcc, and liquid phases, respectively. The orange points are the coexistence simulation results. The red curve is the phase diagram
obtained via GP. The gray dot is the location of the bcc-fcc-liquid triple point. The blue and green diamonds represent the fcc and bcc data
from [22]. The experimental results [19–21] are denoted by black markers. The CALPHAD approximation, based on the data from [19–21], is
shown by diamonds. Overall, we observe a very good agreement with the experimental data.

The total computational cost of constructing the phase
diagram consists of three major parts: Obtaining the quantum-
mechanical data for training the machine-learning potential,

calculation of melting points, and running molecular dy-
namics to obtain the free-energy derivatives from statistical
averages. The cost of the quantum-mechanical calculations

FIG. 8. The active sampling algorithm applied to the calculation of the triple-point temperature estimation of the lithium phase diagram.
Color plot represents the value of the information function H from (14) at a given point of the phase diagram. The proposed active sampling
algorithm allows one to optimize datasets corresponding to different phases.
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was 28 000 CPU hours, about 100 hours per configuration
(a typical calculation takes about 3 h when parallelized over
36 cores). The cost of the calculation of the two melting points
used in the training set of the Gaussian process was about
10 000 h. Finally, the NVT-MD calculations took 16 000 CPU
hours. The computational cost of the last part is comparable
to the efficiency of a few melting-point calculations; however,
our approach allows one to fit the entire free-energy surface
with an error of less than 0.1 meV.

IV. CONCLUDING REMARKS

The construction of a phase diagram from atomistic simu-
lation data is typically associated with a significant amount
of manual work consisting of manual selection of numeri-
cal parameters, convergence tests, determining conditions at
which to run simulations, analysis of the results, going back
to the earlier stages if needed, etc. In the present work we have
developed a Gaussian process-based methodology automating
these stages of phase diagram calculation. In particular, the
Gaussian process allows us to reconstruct the free-energy
function based on various data sources (harmonic limit, zero-
density limit, MD averages, and coexistence simulations).
Furthermore, the dependence of the free energy on the nu-
merical parameters can also be learned, which allows us to
converge the results and estimate the exact value automati-
cally together with the confidence interval that includes the
error of extrapolation of the results with respect to the nu-
merical parameters. On top of that, the Gaussian predictive
variance allows for automatic sampling algorithms, automat-
ing the job of selecting the parameters for simulations. In view
of these features of our approach, we believe that it will be-
come increasingly useful with the rise of complex automatic
protocols of calculating materials properties [38].

We have validated our algorithm on two model systems,
soft-core potentials and the Lennard-Jones potentials, chosen
as systems with plenty of available data in the literature. Our
results agree very well with those from the literature, deviat-
ing only in those cases when the reference data we compare
with is calculated with low values of convergence parameters
(such as the Lennard-Jones cutoff radius). We then applied
our methodology to lithium as an interesting example of a
physical system. Comparison to our coexistence simulations
as well as the existing experimental data shows a very good
agreement, with discrepancies attributed to the error of DFT
itself.
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APPENDIX: DERIVATION OF
FREE-ENERGY RELATIONS

1. Reference for solid

Let us expand the free energy (1) around T = 0. To that
end we split x into two families of degrees of freedom: xN

and x̃ = (x1, . . . , xN−1). Let β := T −1. The determinant of the
Jacobian of this transformation is 1 and hence we can write

βF̂ref (T ) − Ŝ(T ) = − log
∫

dxN

∫
exp (−βÊ (x̃, xN ))d x̃.

Because of translational symmetry, we can fix xN = 0 in the
inner (second) integral and hence

βF̂ref (T ) − Ŝ(T ) = − log V̂ − log
∫

V̂ N−1
exp (−βE (x̃, 0))d x̃.

Now note that for small T , only the energy near the ground
state x0 is relevant. Given a ground state x0, it is repeated (N −
1)! times in the integral because of permutation invariance in
E (x̃, 0). Hence

βF̂ref (T ) − Ŝ(T ) = − log V̂ − log(N − 1)!

− log
∫

x̃∼x0

exp (−βE (x̃, 0))d x̃,

where the integration is taken specifically around the ground
state x0. E (x̃, 0) has a nondegenerate Hessian around the
ground state around which we will expand,

βF̂ref (T ) − Ŝ(T ) = − log V̂ − log(N − 1)! + βÊ0

− log
∫

exp (−〈x|H̃ |x〉/(2T ))dx

+ O(T ),

where H̃ is the Hessian of E (x̃, 0) at the ground state. Carry-
ing out the integration and calculating yields

β[F̂ref (T ) − Ê0] − Ŝ(T )

= − log V̂ − log(N − 1)!

− log[(2πT )/ det H̃ ]1/2 + O(T )

= − log V̂ + log(N ) − log N!

−1

2
(3N − 3) log(2πT ) + 1

2
log det H̃ + O(T )

= − log V̂ + log(N ) − N log N + N − log(2πN )

+ O(N−1)

− 1

2
(3N − 3) log(2πT ) + 1

2
log det H̃ + O(T )

= N[− log N + 1 − 3

2
log(2πT ) + 1

2N
log det H̃]

×[− log V̂ + 1

2
log(2π ) + 3

2
log(T )] + O(T + N−1).

We can now make the reverse change of variables from x̃
back to x, with det H̃ = det Ĥ , where Ĥ is the (3N − 3) ×
(3N − 3) Hessian of Ê computed at the ground state and
projected onto the subspace orthogonal to the center of mass
xc = 1

N

∑
i xi. And finally, we will use the simplified version

of this formula for the intensive quantities:

β[Fref (T ) − E0] − S(T ) = − log N + 1 − 3

2
log(2πT )

+ 1

2N
log det Ĥ + O(T + N−1).
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Hence for solid, we choose

Fref (T ) := E0 + T
[ − log(NV ) + 1 − 3

2 log(2πT )
]
,

which is the same as (2), and then (3) follows. We note that
we could leave out V from Fref , but then it would enter the
expression for ∂S/∂V and hence create asymmetry with the
liquid.

2. Derivative for solid

An NVT-thermostated molecular dynamics used in this
work produces the averages

〈 f 〉 :=
∫

f (x) exp[−βÊ (x)]dx∫
exp[−βÊ (x)]dx

.

Here the integral is over V̂ N , and we omit the region of
integration when it is clear from the context.

Let us use this formula to find
∂ (βFref − S)

∂β
= − ∂

∂β
log

∫
exp[−βE (x)]dx

= −
( ∫

exp[−βE (x)]dx
)−1

×
∫

[−E (x)] exp[−βE (x)]dx.

Then we can determine the relation between the mean poten-
tial energy and the free energy:

〈E〉 = ∂ (βFref − S)

∂β
= −T 2 ∂ (βFref − S)

∂T
.

Hence

− ∂S

∂β
= −∂ (βFref )

∂β
+ 〈E〉

= − ∂

∂β

(
βE0 − log N + 1 − 3

2
log(2πT )

)
+ 〈E〉

= − ∂

∂β

(
3

2
log(β )

)
+ 〈E − E0〉 = 〈E − E0〉 − 3

2
T,

or
∂S(T,V )

∂T
= T −2〈E − E0〉 − 3

2
T −1. (A1)

Let us find a similar expression for the partial derivative
with respect to volume V :

∂ (βFref − S)

∂V
= − ∂

∂V
log

∫
exp[−βE (x)]dx

= −
( ∫

exp[−βE (x)]dx
)−1

×
∫

β

(
−∂E (x)

∂V

)
exp[−βE (x)]dx−1/V .

Assuming that − ∂E (x)
∂V = P(x), the formula can be rewritten as

∂ (βFref − S)

∂V
= −

( ∫
exp[−βe(x)]dx

)−1

×
∫

βP(x) exp[−βE (x)]dx−1/V .

From this, we can derive the relation between the mean full
pressure (sum of the ideal and virial parts) and free energy:

〈P〉 = − 1

β

∂ (βFref − S)

∂V
− 1

βV
.

Hence

− ∂S

∂V
= − ∂ (βFref )

∂V
− β〈P〉

= − ∂

∂V

(
βE0 − log[N (V )] + 1 − 3

2
log(2πT )

)

− β〈P〉− 1

V
= β(P0 − 〈P〉),

or
∂S

∂V
= ∂S(T,V )

∂V
= T −1〈P − P0〉. (A2)

3. Calculation of the Hessian term

The term N−1 log det Ĥ can be calculated by integrating
over the crystal Brillouin zone. Hessian is a matrix of second
derivatives with respect to displacement. First, let us define
Hessian for the interaction of two atoms. For this system, the
Hessian is just a 3 × 3 matrix calculated as

Hi j = − ∂2E

∂ri∂r j
, i, j ∈ {1, 2, 3}.

Here ri, r j are the components of the vector r, and E is the
potential energy of the system. The Hessian matrix for a larger
system is constructed by adding such 3 × 3 blocks of two-
atom interactions. For simplicity, we will only consider the
fcc lattice case, which can be easily extended to an arbitrary
lattice.

We start by denoting fcc the infinite fcc lattice with the
point (0, 0, 0) excluded. For a given vector in the k-space k,
cutoff rcut , and the per-atom volume V , we define the Fourier
transform of the Hessian matrix as

H̃i j =
∑

r ∈ fcc
|r| < rcut

Hi j (r)[1 − cos(2πk · r)].

We also define the auxiliary function

R̃i j =
∑

r ∈ fcc
|r| < 1

[1 − cos(2πk · r)],

which will help us to integrate the singularity at k = (0, 0, 0).
The vectors k lie in the Brillouin zone of fcc lattice. The

Brillouin zone Br of the fcc lattice is the set of points k defined
as

Br{k : |k|2 � |k − x|2, x ∈ bcc}.
Finally, we express the value of log det Ĥ as follows:

log det Ĥ = 2

⎛
⎝ ∫

0<k1,k2,k3<1,k∈Br

log det(H̃/R̃)

⎞
⎠

+ 6

⎛
⎝ ∫

0<k1,k2,k3<1,k∈Br

log R̃

⎞
⎠
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(note that H̃ is a 3 × 3 matrix, hence the factor of
6 in the second term). The material-independent part,∫

0<k1,k2,k3<1,k∈Br log R̃, is integrated beforehand with an accu-
racy of 10−15. The error of this calculation, for the purpose
of feeding it to the Gaussian process regression framework,
is as the mean square of accuracy and difference of log det Ĥ
values for the nearest cutoffs.

4. Variance of a nonlinear functional

The melting point, defined as a system of equations (10),
is a nonlinear functional of Gaussian processes. In this case

we reduce the problem to a linear functional, obtained by
expanding the original functional in the Taylor series around
the mean of the Gaussian process. We denote the original
nonlinear functional as F = F (S). Then the functional is
linearized near the solution and the quantity of interest is now
approximated with a linear functional, F (S) ≈ F (S) + 〈S −
S, J〉, where S is the mean predicted entropy, and J is the
gradient (Jacobian) of F evaluated at S. We can then evaluate
variance, similarly to (12):

V [F] ≈ V [J] = K (J, J ) − K (J, X )T K (X , X )−1K (J, X ).

(A3)
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