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Modeling refractory high-entropy alloys with efficient machine-learned
interatomic potentials: Defects and segregation

J. Byggmästar ,1,* K. Nordlund ,1 and F. Djurabekova1,2

1Department of Physics, P.O. Box 43, FI-00014 University of Helsinki, Finland
2Helsinki Institute of Physics, Helsinki, Finland

(Received 8 June 2021; revised 19 August 2021; accepted 23 August 2021; published 3 September 2021)

We develop a fast and accurate machine-learned interatomic potential for the Mo-Nb-Ta-V-W quinary system
and use it to study segregation and defects in the body-centered-cubic refractory high-entropy alloy MoNbTaVW.
In the bulk alloy, we observe clear ordering of mainly Mo-Ta and V-W binaries at low temperatures. In damaged
crystals, our simulations reveal clear segregation of vanadium, the smallest atom in the alloy, to compressed
interstitial-rich regions such as radiation-induced dislocation loops. Vanadium also dominates the population
of single self-interstitial atoms. In contrast, due to its larger size and low surface energy, niobium segregates to
spacious regions such as the inner surfaces of voids. When annealing samples with supersaturated concentrations
of defects, we find that in complete contrast to W, interstitial atoms in MoNbTaVW cluster to create only small
(∼1 nm) experimentally invisible dislocation loops enriched by vanadium. By comparison to W, we explain
this by the reduced but three-dimensional migration of interstitials, the immobility of dislocation loops, and the
increased mobility of vacancies in the high-entropy alloy, which together promote defect recombination over
clustering.
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I. INTRODUCTION

High-entropy alloys are a new class of materials that is
now being explored with increasing interest due to their many
unique or enhanced properties, such as high mechanical and
high-temperature strength, good resistance to corrosion, and
enhanced radiation tolerance [1–5]. The majority of previous
studies have focused on Fe- and Ni-based face-centered-cubic
(fcc) alloys [6]. Considerably less is known about refractory
alloys based on the body-centered-cubic (bcc) groups V and
VI transition metals [7]. With high melting points and me-
chanical strength, refractory metals and alloys are attractive
for a variety of applications. For example, bcc metals are
generally more tolerant to ion and neutron irradiation than fcc
metals [8]. This makes W-based high-entropy alloys particu-
larly interesting for nuclear applications, such as the shielding
material in fusion reactors [9]. Exceptional radiation tolerance
was indeed recently demonstrated for a W-based high-entropy
alloy, showing very little radiation hardening and no signs of
radiation-induced dislocation loops even at high doses [10].

The vast amount of possible alloy compositions makes the
search for promising high-entropy alloys for a given applica-
tion difficult. Computational modeling is therefore essential,
both for guiding experimental manufacturing towards alloy
compositions with the desirable properties and for under-
standing the atom-level mechanisms that give high-entropy
alloys their unique properties. However, the chemical com-
plexity also makes most modeling techniques challenging.
Density functional theory (DFT) is an invaluable tool for
quantifying fundamental material and defect properties, but
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is computationally too demanding for large-scale atomistic
simulations. Beyond DFT, most modeling techniques rely on
a parametrized model for the interatomic interactions, which
for a high-entropy alloy with many elements involves exceed-
ingly many cross-species interactions. Developing interaction
models, such as interatomic potentials or on-lattice cluster
expansion models, for increasingly complex alloys is now a
key step towards a more fundamental understanding of high-
entropy alloys and their exotic properties.

For W-based high-entropy alloys, recent studies along
these directions have led to important insights. Cluster-
expansion models and on-lattice machine-learning potentials
have revealed strong preferential ordering and segregation at
low temperatures in bulk W-based alloys [11–14]. Beyond on-
lattice models, Li et al. recently developed a machine-learning
potential for Mo-Nb-Ta-W alloys [15]. They used it to study
the fundamental properties of screw and edge dislocations and
found that Nb segregates to grain boundaries. However, not
much effort has been focused on the quinary MoNbTaVW
alloy. Here, we develop an accurate machine-learned inter-
atomic potential for all Mo-Nb-Ta-V-W alloys. We use the
potential to study the preferential ordering and segregation in
bulk MoNbTaVW and around defects. Furthermore, we show
how the mobility of vacancy and interstitial defects controls
the defect evolution and leads to a vastly different defect
structure compared to pure W.

II. METHODS

A. Machine-learning potential

We first use the Gaussian approximation potential (GAP)
framework [16,17] to train an interatomic potential for the
complete Mo-Nb-Ta-V-W system. With five elements and the
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aim to get a fairly general potential that is at least reasonably
transferable to any alloy composition, constructing the train-
ing database is a challenge. We also require that the potential
can describe not only bulk crystals, but also any form of
defects that may be present or form due to irradiation. We
found that with a reasonably sized training data set, using
the many-body SOAP descriptor [18] that is typically used in
GAPs leads to overfitting issues (showing significantly larger
test errors than training errors). Converging a SOAP-GAP
towards DFT accuracy for independent test data would likely
require a prohibitively large training set due to the vast de-
scriptor space with five elements. Our solution is therefore
to rely on low-dimensional two- and three-body descriptors,
which require less data but as we demonstrate can still achieve
remarkably good accuracy for multicomponent alloys. In fact,
it outperforms a SOAP-GAP trained to the same training
data. Additionally, the use of only low-dimensional descrip-
tors allows for a tabulation scheme that provides a significant
computational speedup, as discussed in Sec. II B.

We use the following expression for the total energy of a
system of N atoms:

EGAP
tot. =

N∑
i< j

E rep.

i j (ri j ) + δ2
2b

N∑
i< j

M2b∑
p

αi j,pK2b(ri j, rp)

+ δ2
3b

N∑
i, j<k

M3b∑
t

αi jk,t K3b(qi jk, qt ). (1)

Here, the first term is a purely repulsive screened Coulomb
potential fitted to each element pair using all-electron DFT
data [19]. Our methods for fitting and including the repulsive
pair potentials are described in detail in Ref. [20]. The sec-
ond term is a machine-learning pair potential, carried out as
Gaussian process regression with the interatomic distance of
each pair i j as the descriptor. The final term is the three-body
machine-learning term as a sum over all atom triplets i jk. α

are the optimized regression coefficients, and K2b, K3b are the
kernel functions, for which we use the squared-exponential
kernel with 1 Å as the length-scale hyperparameter. M2b and
M3b are the number of representative pairs p and triplets t from
the training structures used to carry out the regression. We
use M2b = 20 and M3b = 300 for all element combinations.
Values higher than M3b = 300 provided similar accuracy, but
showed an increasing (although small) tendency of overfitting.
The machine-learning energy predictions are scaled by the
parameters δ2

2b = 10 eV and δ2
3b = 1 eV. The GAP frame-

work and its parameters are described in more detail in, e.g.,
Refs. [17,21].

The three-body descriptor calculated for each triplet of
atoms i jk is the vector [17]

qi jk =

⎛
⎜⎝

ri j + rik

(ri j − rik )2

r jk

⎞
⎟⎠ fcut (ri j ) fcut (rik ), (2)

which is invariant to permutations of jk. Smooth cutoff func-
tions fcut (r) are imposed on the bonds to the central atom i.
We use 5 Å cutoff radii for both the two-body and three-body
descriptors and all element pairs and triplets. Initially, we
experimented with longer cutoffs for the pairwise potentials

(to capture possible long-range interactions) and shorter three-
body cutoffs, but found that 5 Å cutoffs for both descriptors
lead to better accuracy.

The potential is trained to total energies, forces, and virial
stresses obtained from DFT calculations using VASP [22–25]
for a variety of Mo-Nb-Ta-V-W structures. The training set
includes bulk Mo-Nb-Ta-V-W bcc crystals sampled at all
compositions, including the pure elements. The pure-element
data are small (∼13%) subsets of the training sets from
Ref. [26], picked using farthest-point sampling of the aver-
age SOAP vectors as described in Ref. [27]. The majority
of the alloys are randomly ordered, but we also found it
necessary to include ordered alloys. Defected structures (up
to five vacancies and self-interstitial atoms) are only included
in the pure elements and in equiatomic random MoNbTaVW
alloys. Liquid structures are included for pure elements and all
equiatomic binary, ternary, quaternary, and quinary alloys of
Mo-Nb-Ta-V-W, but with most structures for the equiatomic
MoNbTaVW high-entropy alloy (HEA). The training set ad-
ditionally includes HEA crystals with one randomly added
interstitial atom that is relatively close (but not too close) to
its neighbor atom. These structures ensure that the repulsion
between all elements in crystals is captured. Surface structures
are included for the pure elements along with a few HEA sur-
faces to ensure some transferability to alloy surfaces, although
we do not specifically target surface properties. Our strategy
for constructing the training structures and the training pro-
cess is described in more detail in the Supplemental Material
[28]. The potential is trained using the QUIP code [29].

B. Tabulated machine-learning potential

Carrying out the Gaussian process regression terms of
Eq. (1) is computationally expensive due to the loop over the
(sparsified) training points M2b, M3b. Because our GAP only
contains pure two- and three-body-dependent terms, it is pos-
sible to create a tabulated version of the potential, which we
will call tabGAP. Creating computationally efficient tabulated
machine-learning potentials was initially demonstrated by
Glielmo et al. [30] and recently further developed in the FLARE

framework [31,32], although details vary from our approach.
The pairwise terms can be evaluated as one-dimensional (1D)
interpolations between tabulated pair energies and the three-
body terms as three-dimensional (3D) interpolations between
tabulated triplet energies. We use a grid of (ri j, rik, cos θi jk )
points for the three-body interpolation. With S1D and S3D

representing 1D and 3D cubic spline interpolations, the total
energy of the tabGAP becomes

E tabGAP
tot. =

N∑
i< j

S1D
i j (ri j ) +

N∑
i, j<k

S3D
i jk (ri j, rik, cos θi jk ), (3)

where the repulsive pair potential and the GAP pair potential
in Eq. (1) are merged into one 1D spline per element pair. With
five elements, there are 15 unique pairs and 75 triplets (with
symmetry on the jk elements), each requiring a tabulated
grid of energies. With sufficiently dense grids, the tabGAP
is virtually identical to the original GAP. The convergence of
the interpolation error with increasing numbers of grid points
is demonstrated in the Supplemental Material [28].
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We have implemented this cubic-spline-interpolated po-
tential as a pair_style for LAMMPS [33] (based on the
implementation from the open-source FLARE code [31,32]).
The speedup compared to the original GAP evaluated as in
Eq. (1) is around two orders of magnitude with the current
implementation, making it comparable in speed to traditional
angular-dependent potentials like Tersoff and MEAM poten-
tials [34–36]. The potential file is available from [37] and the
tabulation and LAMMPS implementation from [38].

C. Simulation methods

All DFT calculations are carried out with VASP [22–25]
with projector augmented-wave potentials [39,40] (_pv for
Ta and _sv for all other elements), the Perdew-Burke-
Ernzerhof generalized gradient approximation exchange-
correlation functional [41], a 500 eV cutoff energy, 0.15 Å−1

maximum k-point spacing on �-centered Monkhorst-Pack
grids [42], and 0.1 eV Methfessel-Paxton smearing [43]. All
molecular statics and dynamics simulations are done with
LAMMPS [33] with a custom implementation of the tabulated
machine-learned potential (tabGAP) as discussed above.

The average lattice constant and mixing energy of bulk
equiatomic HEA properties are obtained by relaxing 50 differ-
ent randomly ordered 2000-atom bcc systems. The simulation
cells were cubic during the energy and pressure minimization.
Allowing for noncubic relaxation produced cubic systems
within the statistical uncertainty of the cubic bcc lattice con-
stant. The elastic constants are computed for the same relaxed
50 HEA systems. The bulk modulus is obtained from volume-
energy fits to the Birch-Murnaghan equation of state [44]. The
remaining elastic constants are solved from parabolic fits to
strain-energy curves of the tetragonal and trigonal deforma-
tion modes (see, e.g., Ref. [45]), using ±2% strain intervals
and optimizing the atom positions at every strain.

Nudged elastic band calculations for vacancy migration
barriers are performed in boxes of 128 atoms using LAMMPS.
The migration energy is obtained from the saddle point of
the converged barrier. For relaxing single self-interstitials we
use boxes of 251 atoms. For the formation energies of single
vacancies we use 54-atom boxes in both VASP and LAMMPS.
We optimize both the positions and relax the box size to zero
pressure for the vacancy and self-interstitial calculations. The
formation energy for an A vacancy (where A is Mo, Nb, Ta, V,
or W) is calculated as

EAvac
f = Evac − Ebulk + μA, (4)

where Evac is the total energy of the relaxed vacancy system
and Ebulk is the total energy of the relaxed HEA bulk with
the vacancy filled by an atom of element A. The chemical
potential μA is approximated simply as the energy per atom
of A in its ground state (bcc bulk), which is close to the real
chemical potential estimated using other methods [46]. The
vacancy relaxation volume is calculated as

�Avac
rel. = Vvac − Vbulk

�A
, (5)

where Vvac and Vbulk are the total volumes of the relaxed
vacancy and bulk HEA systems and �A is the volume per atom
of pure bcc A.

Relaxing self-interstitial atoms in the HEA often results
in stable interstitial configurations far from the initial con-
figuration, as many local atomic environments provide no
local minima. This, combined with the fact that many inter-
stitial configurations are mixed dumbbells, makes the choice
or construction of the corresponding reference bulk system
somewhat ambiguous. Hence, we define and compute the
formation energy of an A-B interstitial dumbbell configuration
as the formation energy of the entire interstitial system with
N = 251 atoms (E self-interstitial atom (SIA)

f ), and then compare it
to an average defect-free HEA bulk reference to get only the
formation energy associated with the interstitial as

EA-B
f = ESIA

f − NEHEA
mix . (6)

The formation energy and mixing energy (per atom) of a HEA
system of N atoms with total energy E is Ef = E − ∑N

i Ei

and Emix = Ef/N , where Ei is the energy per atom of the pure
ground state of atom i. EHEA

mix is computed as the average mix-
ing energy of randomly ordered HEA systems and is −41.85
meV/atom in the tabGAP (as listed in Table II and discussed
later).

Hybrid Monte Carlo–molecular dynamics (MC+MD) sim-
ulations are carried out as implemented in LAMMPS. MD is
done in the NPT ensemble at different constant temperatures
and zero pressure. For the single-crystal simulations we use
100 trial MC atom swaps every ten MD steps using boxes of
6750 atoms. The simulations are continued until the poten-
tial energy and short-range order parameters have sufficiently
converged, although for at least 1×106 MC steps and about
8×106 MC steps for the lower temperatures. The short-range
order parameter for element pairs AB with interatomic bonds
in the interval �ri j is computed using the definition

SAB
�ri j

= 1 −
pAB

�ri j

cB
, (7)

where pAB
�ri j

is the probability of finding a B atom around A
in the neighbor shell �ri j and cB is the concentration of B in
the alloy. For first-nearest-neighbor (1NN) pairs, we used the
interval �ri j = [0, 3] Å and for the second-nearest neighbors
(2NN) �ri j = [3, 3.9] Å.

For the void and dislocation loop MC+MD simulations,
we allow for more MD relaxation with ten MC trial swaps
every ten MD steps in boxes of around 20 000 atoms. Here,
we run the simulations until the concentrations around the
defects have stabilized (disregarding the surrounding bulk),
which only required a few hundred thousand MC steps.

The defect annealing simulations are done using boxes of
250 000 atoms with 10 000 randomly created Frenkel pairs,
corresponding to a supersaturated (4%) defect concentration.
The atomic positions are first optimized, which already anni-
hilates many Frenkel pairs and causes some initial clustering
of interstitials and vacancies. This is followed by a 1 ns NPT
annealing run at 2000 K and zero pressure. The final frames
are then again optimized to allow a more reliable analysis of
the final defect structure. The dislocations are identified using
the dislocation extraction algorithm (DXA) [47] in OVITO

[48]. Interstitials and vacancies are found using the Wigner-
Seitz method and grouped into clusters with the cutoff radius
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TABLE I. Root-mean-square energy (E ) and force component
(F ) errors of the tabGAP compared to DFT for independent test sets
of different classes of structures. Ns is the number of structures in the
test sets (although the number of atoms in different structure classes
varies).

Structure type Ns E (meV/atom) F (eV/Å)

Bulk pure elements 220 3.17 0.15
Bulk random alloys 100 2.99 0.11
Bulk ordered alloys 165 3.31 0.04
Bulk HEA 40 3.03 0.09
Vacancies in HEA 10 3.59 0.09
Interstitials in HEA 10 3.39 0.22
Liquid pure elements 225 28.61 0.71
Liquid HEA 11 40.03 0.78

between the second- and third-nearest neighbor for vacancies
and between the third and fourth for interstitials.

III. RESULTS

A. Validating the machine-learned potential

Before using the tabGAP to study segregation and the
defect structure of the equiatomic MoNbTaVW high-entropy
alloy, we here briefly demonstrate the accuracy of the po-
tential. Table I lists root-mean-square errors (RMSE) of the
tabGAP compared to DFT for a range of structures used
as test sets. All atoms in the bulk crystals have been ran-
domly displaced from the perfect lattice positions to produce
significant interatomic forces. The accuracy of the tabGAP
is around 3 meV/atom and 0.05–0.2 eV/Å for any given
composition of Mo-Nb-Ta-V-W as well as for HEA lattices
containing vacancies or self-interstitial atoms. Some further
test results are provided in the Supplemental Material [28],
where we show that the tabGAP also reproduces the W-Mo
alloy training dataset from Ref. [49] with similar accuracy as
in Table I, verifying that the potential is accurate also for the
binary alloys.

To further verify that the tabGAP can describe the phase
stability and elastic response of arbitrary alloy compositions,
we compare the 0 K equation of state for a variety of alloys
between DFT and the tabGAP in Fig. 1. From the energy-
volume data, we obtain the bulk moduli and equilibrium
mixing energies from fits to the Birch-Murnaghan equation
of state [44]. Figure 1(a) shows the energy-volume data for
randomly ordered alloys at all equiatomic alloy compositions
(one system per composition) and Fig. 1(c) shows data for
20 different quinary alloys randomly ordered and at randomly
sampled compositions. The corresponding bulk moduli and
mixing energies are shown in Figs. 1(b) and 1(d), compared
between DFT and the tabGAP. The tabGAP reproduces the
DFT data within only a few meV/atom for mixing energies
and a few GPa for the bulk moduli. Also noteworthy is that
the agreement between DFT and the tabGAP is good for the
entire wide range of volumes for all alloys in Figs. 1(a) and
1(c), where each curve spans an energy difference around
1–2 eV/atom.

In Table II, we list average properties of MoNbTaVW
predicted by the tabGAP and computed from 50 relaxed 2000-
atom systems. The lattice constant in the tabGAP (3.195 Å) is
close to the experimental value 3.1832 Å [50].

Reproducing liquid properties for arbitrary compositions,
densities, and temperatures with very high accuracy cannot
be expected with a simple three-body-dependent potential. As
seen in Table I, the RMSEs for liquids are up to ten times
higher than for any crystalline structures. Nevertheless, we
confirmed that the tabGAP still provides a reasonable descrip-
tion of the liquid phase and melting. The melting point of the
HEA predicted by the tabGAP is 2760 ± 20 K as determined
by NPT MD simulations of a solid-liquid interface. A rough
estimate of the experimental melting point can be taken as the
average of the pure-element melting temperatures, yielding
2961 K [51]. However, previously we found that even highly
accurate many-body GAPs tend to underestimate the melting
point slightly [26]. The corresponding average of the pure-
element many-body GAPs from Ref. [26] is 2796 K [26],
which is very close to the HEA melting point predicted by
the tabGAP.

B. Order and disorder in bulk MoNbTaVW

We first apply the tabGAP in a study of ordering and
segregation in the single-crystal equiatomic HEA using hybrid
MC+MD simulations. Previous studies using cluster expan-
sion models and DFT calculations have established that there
is a strong preference for local ordering of Mo-Ta binary
crystals due to their relatively low mixing energy [11,52,53].
Additionally, it has been previously shown that including
lattice relaxation is crucial in order to reproduce the correct
phase stabilities at finite temperatures [13]. Relaxation effects
and realistic thermal vibrations are here naturally included
in the NPT MC+MD simulations with the tabGAP. Since
the tabGAP is trained to both random and ordered alloys,
including all the binary alloys and (MC+MD)-optimized or-
dered systems obtained in an active-learning fashion (see the
Supplemental Material [28]), we are confident that it can
accurately model order and disorder in the HEA.

Figure 2 shows the results from the MC+MD simula-
tions. The 1NN and 2NN short-range order parameters as
functions of temperature in Fig. 2(a) show, consistent with
previous studies, that Mo and Ta are locally ordered at low
temperatures. A strongly negative 1NN Mo-Ta short-range
order (SRO) value and a positive 2NN SRO value indicate the
presence of MoTa in the CsCl (B2) order, which is confirmed
by visually analyzing the lattice. Figure 2(b) shows snapshots
of the systems at two temperatures. In addition to Mo-Ta
ordering, Mo-Nb and W-V 1NN pairs are also favored. W-V
pairs stand out by also having negative 2NN SRO value, indi-
cating a more complex structure than the CsCl order, as was
also observed in Ref. [11]. All SRO values start approaching
zero after 300 K, initiating the transition from the ordered
phases to a random solid solution. Still, a relatively strong
local ordering of mainly Mo-Ta is retained up to temperatures
beyond 1000 K.

The preferential ordering and segregation can largely
be understood by the mixing energies of the binary
alloys. Figure 2(c) shows mixing curves at 0 K for all
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FIG. 1. Comparison between DFT and the tabGAP for bulk moduli and mixing energies for a test set of Mo-Nb-Ta-V-W alloys. Energy
per atom as a function of volume for random alloys for (a) all equiatomic compositions and (c) 20 different randomly sampled Mo-Nb-Ta-V-W
alloy compositions. (b),(d) Bulk moduli and mixing energies at equilibrium volumes obtained from the energy-volume data and compared
between DFT and the tabGAP.

binaries as given by the tabGAP (which are identical within
2.9 meV/atom to DFT data; see Fig. S2 in the Supplemental
Material [28]). The connected data points in Fig. 2(c) are mix-

TABLE II. Bulk properties of MoNbTaVW at 0 K obtained with
the tabGAP. The values are the averages and standard deviations of
50 randomly ordered and relaxed 2000-atom systems.

MoNbTaVW

a (Å) 3.195 ± 0.001 Å
Emix (meV/atom) −41.85 ± 0.71
B (GPa) 210.4 ± 0.3
C11 (GPa) 382.2 ± 0.6
C12 (GPa) 124.5 ± 0.3
C44 (GPa) 47.5 ± 0.3

ing energies for randomly ordered alloys (using 1024-atom
boxes) and the large solid points are the ordered CsCl phase.
The mixing curves show that Mo-Ta alloys have the lowest
mixing energies and that the ordered MoTa phase is by far the
most preferred binary alloy. The mixing energies also suggest
that Nb-V alloys are the least favored, with clearly positive
mixing energies for both the random and the ordered CsCl
phase. This is reflected in the MC+MD simulations by the
fact that Nb and V are strongly segregated from each other,
showing positive SRO values for both 1NN and 2NN pairs.

C. Vacancies and self-interstitial atoms in MoNbTaVW

The presence of defects introduces local lattice relaxation
and long-range strain fields that may influence the prefer-
ential ordering and segregation of the different-sized atoms
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FIG. 2. Short-range order in MoNbTaVW. (a) Short-range order parameters as a function of temperature from the MC+MD simulations
for both 1NN and 2NN pairs. (b) Snapshots of the final lattices at two temperatures, showing clear local ordering at 300 K. (c) Mixing energy
curves for randomly ordered binary alloys. The large solid points are the ordered CsCl (B2) phase.

in the HEA. We use the tabGAP to investigate the ener-
getics of single vacancies and self-interstitials in the HEA.
The chemical complexity provides exceedingly many possible
configurations for even these simple defects, which calls for a
statistical treatment. Here, we only consider randomly ordered
HEAs with randomly added single vacancies and interstitials,
followed by relaxation. Figures 3(a) and 3(b) show distribu-
tions of formation energies and relaxation volumes of single
vacancies in the HEA. The vacancies are created in ten dif-
ferent HEA systems. For each vacancy system, reference bulk
systems are created by filling the vacancy with each element
separately, so that we in total obtain data for 50 different
vacancies. Figure 3 also shows results from DFT calculations
to further validate the predictive accuracy of the tabGAP. The
tabGAP slightly underestimates the average formation energy
and the relaxation volume compared to DFT, but overall pro-
vides similar distributions. The average vacancy formation
energy is 3.3 eV according to DFT and 3.1 eV according to
the tabGAP. The average relaxation volume is −0.35 at. vol.
in DFT and −0.40 at. vol. in the tabGAP.

The single-vacancy data are separated by element in
Fig. 3(c), revealing additional insight. First, there is no cor-
relation in the formation energy of vacancies between the
elements, with energies in the range 2.5–4 eV for all elements.
There is, however, a clear separation between the elements
for relaxation volumes. Filling a vacancy with a V atom, the
smallest atom, causes the least relaxation around the vacancy
with most relaxation volumes around −0.2 to −0.3 at. vol.
Vice versa, being the largest atoms, Nb and Ta vacancies pro-
duce significantly stronger relaxation with relaxation volumes
around −0.4 to −0.5 at. vol.

Figure 4 shows distributions of migration energies for sin-
gle vacancies in the HEA. In total, we calculated over 1100
migration barriers in different randomly ordered HEAs with
the tabGAP to obtain reliable statistics. Figure 4 reveals that
the migration energies for each element are roughly normally
distributed and span a wide energy range of around 1 eV.
There is again a clear separation between the elements of
the migrating atom. The group 6 elements W and Mo have
the highest migration energies. The average migration energy
for W is 1.56 eV and for Mo 1.48 eV. The group 5 elements

show significantly lower migration energies, with the averages
1.06 eV for Nb, 1.12 eV for Ta, and 1.11 eV for V. The trend
is consistent with the vacancy migration energies in the pure
elements, where W and Mo have by far the highest migration
energies (around 1.7 and 1.3 eV [54]) while the group 5
elements all have migration energies around 0.6–0.7 eV [54].

FIG. 3. Formation energies and relaxation volumes of single
vacancies MoNbTaVW. (a) Distribution of formation energies and
(b) distribution of relaxation volumes compared between DFT and
the tabGAP. Dashed lines are the averages. (c) The same data sepa-
rated by element (of the filled vacancy in the reference bulk). Solid
points are averages.
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FIG. 4. Distribution of vacancy migration energies in
MoNbTaVW. The dashed lines are the averages for each migrating
element.

The result of alloying on the vacancy migration is thus a
wide distribution of migration energies where the averages are
reduced for W and Mo and increased for Nb, Ta, and V.

To explore the preferential chemical and geometrical con-
figurations of self-interstitial atoms, we relaxed 1000 HEA
systems each containing one randomly inserted interstitial
atom. Relaxation produces mainly dumbbell configurations of
atom pairs. Distributions of the relaxed dumbbell configura-
tions and formation energies are shown in Fig. 5. Figures 5(a)
and 5(b) reveal that there is a clear preference for V-containing
interstitial dumbbells, and in particular pure V-V dumbbells
which make up the majority of stable interstitials. V-V dumb-
bells also have on average the lowest formation energy, as
shown in Fig. 5(b). Note that there are not enough non-V
dumbbells to provide reliable distributions and average forma-
tion energies, but the trend of V-containing dumbbells having
the lowest formation energies is clear. This can again be un-
derstood by the fact that V is the smallest atom and therefore
prefers shorter interatomic bonds than the other elements.

Figure 5(c) shows the relaxed dumbbell directions. Based
on the pure elements, one would expect mainly 〈111〉 direc-
tions, which are the lowest-energy configurations in Nb, V,
and Ta, and directions between 〈111〉 and 〈221〉, which are
preferred in pure Mo and W (i.e., the 〈11ξ 〉 interstitial re-
vealed in Ref. [55]). Although these directions make up a large
fraction of the relaxed interstitial dumbbells, Fig. 5(b) shows
that 〈110〉 dumbbells are observed in almost equal numbers
to 〈221〉 dumbbells. By looking at the relaxed systems, we
find that the preferred direction is strongly influenced by the
chemical environment. Stable configurations are found by
a competition between low-energy dumbbell directions and
the possibility to form V-V or other V-containing pairs. We
found no statistically significant correlation between element
pair and dumbbell direction, and hence only show the total
distribution of directions in Fig. 5(c).

We also find that the preferential formation of V-containing
dumbbell interstitials guides the mobility and migration
mechanisms of single interstitials. In contrast to the pure
metals, where single interstitials migrate one-dimensionally
along the 〈111〉 direction in all elements [55], interstitial
migration in the HEA is three-dimensional. From constant-
temperature MD simulations, we observe that the interstitials

FIG. 5. Distribution of stable self-interstitial dumbbell atoms in
MoNbTaVW obtained with the tabGAP. (a) Elements making up
the stable interstitial dumbbells, (b) violin plot showing distributions
and average formation energies of all observed dumbbell pairs, and
(c) the stable dumbbell directions.

migrate mainly through connections of V atoms, so that the
V-containing dumbbells are most likely to migrate to other
neighboring V atoms. If no V atoms are present in the local
environment, the V interstitial remains stationary for signifi-
cantly longer times.

Many of the above-discussed observations are consistent
with the results by Zhao in a recent DFT study of point
defects in a similar bcc alloy (VTaCrW) [46]. Namely, (1)
there is no clear difference in the vacancy formation energies
between the different elements, (2) the relaxation volume of
vacancies directly correlates with the size of the removed
atom, (3) vacancy migration energies vary significantly be-
tween the elements, (4) self-interstitial atoms are most stable
when containing smaller atoms, like V-V dumbbells, and (5)
self-interstitial dumbbells adopt different directions depend-
ing on the chemical environment, with 〈110〉 as one of the
most probable low-index directions, in clear contrast to the
pure elements.
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FIG. 6. Segregation around voids. Concentration of each element
as a function of the distance from the void center for two different
void sizes (containing 15 and 65 vacancies, corresponding to diame-
ters of 0.8 and 1.3 nm). The snapshots show the inner surface atoms
of the voids.

D. Segregation around voids and dislocation loops

Going beyond single vacancies and interstitials, we now in-
vestigate how clusters of defects influence their local chemical
ordering. The most stable vacancy- and interstitial-type defect
clusters formed during irradiation in bcc materials are small
voids and dislocation loops. We carry out MC+MD simu-
lations for HEAs containing (separately) voids of two sizes
(15 vacancies and 65 vacancies) and interstitial dislocation
loops with the Burgers vectors 1/2〈111〉 and 〈100〉 and di-
ameter 2 nm.

The simulations show that elemental segregation around
the defect clusters is clearly energetically favored. Figure 6
shows the concentration profiles as functions of the distance
from the void center for both void sizes. Snapshots of the
inner surface atoms of the voids are shown as insets. The
equilibrated inner void surface is almost completely covered
by Nb. This is understandable as Nb is (along with Ta) the
largest atom and also has the lowest surface energy (lower
than Ta) [26]. Figure 6 also shows that there is an excess of
V at the interface of the Nb-covered inner surface and the
bulk. The snapshots reveal that this is because V atoms tend
to decorate the edges of the void surface. The presence of
the large Nb atoms and the polyhedral shape of the voids
make these subsurface regions compressed, which explains
why they are preferentially occupied by V, the smallest atom.

Interstitial dislocation loops produce strong strain fields
with a locally compressed lattice, which our previous obser-
vations suggest should be favored by V. Indeed, Fig. 7 shows
that essentially 100% of the atoms within the strain field of
the dislocation loops are V after the MC+MD simulations
reach a steady state. This is also in line with the previous

FIG. 7. Segregation to interstitial dislocation loops. Concentra-
tion of each element as a function of the distance from the loop center
for a 1/2〈111〉 loop (top) and 〈100〉 loop (bottom). The loops contain
45 and 43 interstitial atoms corresponding to a diameter of 2 nm.

observation that the single V-V interstitial dumbbell is the
most favored interstitial configuration. The results for both
voids and interstitial loops are almost identical in MC+MD
simulations at both 300 and 1000 K, showing that the prefer-
ential segregation, driven mainly by the atom size, is strong
and occurs also at high temperatures.

E. High-concentration defect structure

In the previous sections, we have described the energetics
of point defects as well as segregation and ordering in the bulk
and around possible radiation-induced defect clusters in the
HEA. It is not straightforward to combine all these results into
an understanding of how the HEA behaves during irradiation
and the subsequent defect annealing and recovery. To this end,
we carry out annealing MD simulations of a supersaturated
concentration of defects and observe how the defect structure
evolves over time. We prepare three 250 000-atom HEA sam-
ples with randomly inserted interstitial atoms and vacancies
corresponding to a defect concentration of 4%. After an initial
minimization of positions, the samples are annealed at zero
pressure and 2000 K for 1 ns. For comparison, we also anneal
a pure W sample in the same way. The results are summarized
in Fig. 8. Animations of the defect evolution are provided in
the Supplemental Material [28].

Figure 8 shows striking differences between W and the
HEA during annealing. In W, interstitial atoms are extremely
mobile and join to form 1/2〈111〉 dislocation loops already
during the first few picoseconds. This is clear from Fig. 8(a),
which shows that the fraction of interstitials in clusters reaches
100% very rapidly. Over time, the initially small dislocation
loops grow by migrating and coalescing with other nearby
dislocation loops, eventually resulting in only a few large
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FIG. 8. Defect evolution during annealing. (a) Defect statistics (defect concentration, dislocation density, and fractions of vacancies and
interstitials in clusters) during annealing at 2000 K. (b) Snapshots of the final defect structure in W and the MoNbTaVW HEA, showing
1/2〈111〉 dislocation loops (green lines), interstitial atoms, and vacancies.

loops as seen in Fig. 8(b). The coalescence of loops is in
Fig. 8(a) reflected by the rapid decrease in the dislocation
density. Compared to interstitials, vacancies in W migrate
slowly (migration energy 1.7 eV [54]). Additionally, the bind-
ing energies of small vacancy clusters in W is close to zero
or even repulsive [20], which further limits the formation of
vacancy clusters. Only around 20% of the vacancies in W are
in clusters of two or more, as shown in Fig. 8(a).

The defect evolution in the HEA is in many ways different.
Figure 8(a) shows that the recombination of defects is more
efficient, especially during the early stage of the annealing
simulations. Figure 8(b) shows that the final defect structure
in the HEA only contains small dislocation loops. These dislo-
cation loops form already in the early part of the simulations
but, unlike in W, then remain stationary and similar in size
throughout the rest of the simulation. This is evidenced by the
constant dislocation density over time in Fig. 8(a).

Contrary to W, vacancies in the HEA are more mobile
(Fig. 4) and about 40% of them are in clusters of two or
more. As observed in Sec. III C, single interstitials are most
stable as V-V dumbbells and migrate three-dimensionally,
preferentially through connections of V-V bonds. This is
fundamentally different from W, where interstitials mainly
migrate one-dimensionally along close-packed 〈111〉 direc-
tions with a very low migration energy. The consequence
of this difference is the much more efficient defect recom-
bination in the HEA seen in Fig. 8(a), as both interstitials
and vacancies are mobile and can explore their surroundings
through 3D migration. Furthermore, because the dislocation
loops are unable to move and interstitials are more likely to
recombine with nearby vacancies, the overall defect structure
does not significantly change over time. In particular, the
dislocation loops remain very small. All loops are around
1–1.5 nm in diameter with the Burgers vector 1/2〈111〉, with
most of the loops around 1 nm and consisting of 20–30
interstitials. Smaller interstitial clusters are also mostly par-
allel 〈111〉 interstitials, but cannot be classified as dislocation
loops and are thus not identified by the dislocation extraction

algorithm. Additionally and in line with our observations in
Secs. III C and III D, all interstitial clusters are enriched by V.

IV. DISCUSSION

We have studied segregation and the stability and evolu-
tion of radiation-induced defects in MoNbTaVW using a new
machine-learned interatomic potential. The potential relies
on low-dimensional two- and three-body descriptors, which
allows for good accuracy with a moderately sized training
data set. It also allows for creating tabulated potentials, which
can be efficiently evaluated using cubic spline interpolations
without carrying out the underlying machine-learning re-
gression. The resulting machine-learned spline potential (the
tabGAP) thus retains the flexibility of the machine-learning
framework, but runs at a speed comparable to conventional
analytical three-body potentials. Given the accuracy achieved,
our work demonstrates that developing low-dimensional tabu-
lated machine-learned potentials is a promising alternative or
complement to more expensive many-body machine-learning
potentials [16,56–58], especially for multicomponent alloys
where data efficiency becomes increasingly important.

Through MD simulations with the machine-learned poten-
tial, we have shown that there is a clear preferential chemical
ordering in the bulk MoNbTaVW HEA, with mainly Mo-Ta,
V-W, and Mo-Nb binaries, in agreement with previous studies
[11,13,14]. Our simulations also revealed that the presence
of defects introduces strong traps for elemental segregation.
We observe strong segregation of Nb to spacious regions like
voids. The inner surfaces of voids are preferentially almost
completely covered by Nb, due to Nb being the largest atom
with the lowest surface energy. We also found that V as the
smallest atom prefers compressed regions such as the strain
field of interstitial dislocation loops or even single interstitial
dumbbell configurations.

It is worth noting that for the observed segregation and
ordering of elements to take place, there must occur a mass
transport of the given elements through favorable migration
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mechanisms. In our MC+MD simulations, the kinetics of
the segregation and ordering is not explicitly modeled. How-
ever, the observations in Sec. III C bring additional insight.
Our results showed that the vacancy migration energies are
lowest for Nb, Ta, and V, which offers a possible pathway
for the observed segregation of Nb and V to defect clus-
ters. Additionally, we found that single interstitials occur
mostly as V-containing dumbbells that migrate preferentially
by connecting with a neighboring V atom, resulting in mass
transport of V through interstitial diffusion. In the annealing
simulations in Sec. III E we observe this directly as the final
dislocation loops and small interstitial clusters are all enriched
by V.

Perhaps the most striking result is the observation in
Sec. III E that dislocation loops never grow to substantial sizes
when annealing MoNbTaVW containing a large concentra-
tion of defects. This results in a radically different response
to irradiation than pure bcc metals such as W. Although it
still remains unclear how energetic radiation-induced collision
cascades would affect the defect evolution (i.e., whether larger
clusters could be directly produced in cascades), our results
offer an explanation for recent experimental observations. El-
Atwani et al. [10] recently irradiated a W-based Cr-Ta-V-W
alloy up to a high dose of 8 dpa (displacements per atom)
and yet did not resolve any dislocation loops from the trans-
mission electron microscopy (TEM) images, observing only
black spots. In comparison, TEM-visible dislocation loops
form in pure W already at extremely low dose (�0.01 dpa) as
a result of individual high-energy collision cascades [59,60].
Using atom probe tomography and cluster-expansion model-
ing, it was concluded that the black spots were precipitates
of Cr and V [10]. Our results suggest that even without such
a second-phase precipitation (which we do not observe in
MoNbTaVW) radiation-induced dislocation loops still remain
very small (around 1 nm). Considering the strain that comes
from different atom sizes of the constituent elements, such

very small dislocations are not fully ordered, and hence likely
to be invisible or seen only as black spots in TEM images.

V. SUMMARY

In summary, we have developed a computationally fast
machine-learned potential for Mo-Nb-Ta-V-W alloys and
used it to advance the understanding of segregation and defect
structure in the equiatomic MoNbTaVW high-entropy alloy.
We observed clear segregation of Nb to vacancy-rich spacious
regions and V to interstitial-rich compressed regions. Further-
more, our results indicate that dislocation loops remain very
small in irradiated MoNbTaVW and most likely experimen-
tally invisible or seen as structureless “black spot” damage.
We explain this by the comparable and three-dimensional
migration of interstitials and vacancies combined with the
immobility of the small dislocation loops, which leads to more
efficient defect recombination at the expense of clustering.
Our work opens up possibilities for further studies on the
radiation-induced chemical ordering and defect structure and
paves the way for a computational search of promising high-
entropy Mo-Nb-Ta-V-W compositions beyond the equiatomic
alloy.
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