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Symmetry, nodal structure, and Bogoliubov Fermi surfaces for nonlocal pairing
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Multiband effects can lead to fundamentally different electronic behavior of solids, as exemplified by the
possible emergence of Fermi surfaces of Bogoliubov quasiparticles in centrosymmetric superconductors which
break time-reversal symmetry. We extend the analysis of possible pairing symmetries, the corresponding nodal
structure, and the Bogoliubov Fermi surfaces in two directions: we include nonlocal pairing and we consider
internal degrees of freedom other than the effective angular momentum of length j = 3/2 examined so far.
Since our main focus is on the Bogoliubov Fermi surfaces, we concentrate on even-parity pairing. The required
symmetry analysis is illustrated for several examples, as a guide for the reader. We find that the inclusion of
nonlocal pairing leads to a much larger range of possible pairing symmetries. For infinitesimal pairing strength,
we find a simple yet powerful criterion for nodes in terms of a scalar product of form factors.
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I. INTRODUCTION

In condensed matter physics, we are used to study the
electronic properties of materials by considering one band at
a time. Only when we are interested in excitations at higher
energies, e.g., by electromagnetic waves, we include multiple
bands. However, it is not always true that the low-energy and
equilibrium properties of a solid can be understood based
on the single-band paradigm. A case in point is the recent
realization that in centrosymmetric multiband superconduc-
tors that break time-reversal symmetry (TRS) and have gap
nodes, these nodes are generically two dimensional [1,2]. We
call these two-dimensional nodes Bogoliubov Fermi surfaces
(BFSs). This result has put meat on the bones of the proof
[3,4] that in such systems two-dimensional Fermi surfaces can
be protected by a Z2 topological invariant. This invariant is
related to the Pfaffian of the Bogoliubov–de Gennes (BdG)
Hamiltonian, unitarily transformed into antisymmetric form
[1,2].

Another example is the belief that optical excitations across
the gap are forbidden in clean superconductors, which is based
on the single-band paradigm but does not hold for multiband
superconductors, as recently shown by Ahn and Nagaosa [5].
One criterion for when optical excitations across the gap are
allowed is the existence of BFSs—this holds both for cen-
trosymmetric and for noncentrosymmetric superconductors.

Experimental signatures of BFSs [6] and their instability
against spontaneous breaking of inversion symmetry either
electronically [7–9] or by lattice distortions [10] have been
considered by several groups. BFSs can be protected by mul-
tiple topological invariants [2,11], which imposes constraints
on how they can merge and gap out for strong coupling.
Recently, a classification of nodal structures for all magnetic
space groups based on compatibility relations has been put
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forward [12], also predicting BFSs. Furthermore, Herbut and
Link [9] have revealed an analogy between the antisymmetric
form of the BdG Hamiltonian—the existence of which is
essential for the definition of the Pfaffian [1,2]—and classical
relativity. In this analogy, one can understand the BFSs from a
condition of orthogonal fictitious electric and magnetic fields
in momentum space [9]. The analogy is useful for studying
the interaction-induced instability of the BFSs. However, it is
restricted to four-dimensional internal Hilbert spaces.

Link and Herbut [13] have also presented a complementary
study of BFSs in noncentrosymmetric multiband supercon-
ductors with broken TRS and gap nodes. Although no Z2

topological invariant exists, BFSs are typically present since
the breaking of TRS causes band shifts that are larger than
the induced gaps [13]. This result is reminiscent of BFSs gen-
erated by band shifts induced by a superflow [14,15], which
breaks TRS explicitly.

In the language of tight-binding models, the presence of
multiple bands in the vicinity of the Fermi energy results
from the existence of multiple (Wannier) orbitals per unit cell
that appreciably contribute to the Bloch states at the Fermi
energy. These orbitals can be located at the same site or, for
structures with a basis, at different sites. We will refer to
these orbital and site degrees of freedom, together with the
electron spin, as internal degrees of freedom. Superconducting
pairing states can be nontrivial with respect to these internal
degrees of freedom (internally anisotropic [2]). This allows
nontrivial pairing states even for perfectly local pairing, which
corresponds to a momentum-independent gap matrix, as we
will discuss further below.

If the orbital degrees of freedom form a degenerate triplet,
for example px, py, pz or dyz, dzx, dxy in a cubic crystal
field, they can be combined with the spin to form states with
effective angular momentum j = 1/2 or 3/2 [1,2,7,8,10,16–
20]. The latter leads to a natural description of the fourfold
�8 band-touching points in cubic crystals. While the results
concerning the existence of BFSs and their Z2 topological
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invariant were general, they were mostly illustrated by the
example of the j = 3/2 model [1,2,7,8,10]. It is important to
realized that the possibilities for internal degrees of freedom
are much richer. Many superconductors that do not fit the
j = 3/2 description nevertheless have multiple bands close
together and close to the Fermi energy.

Moreover, the examples studied so far were restricted to
local pairing. However, nonlocal pairing is generically present
and is often necessary to obtain any superconductivity if local
pairing is excluded by a repulsive Hubbard interaction. We
will see that nonlocal pairing typically allows for a large range
of additional pairing states with symmetries that do not appear
for local pairing.

In this paper, we extend the analysis of BFSs in cen-
trosymmetric superconductors in two directions: We include
nonlocal pairing and we consider internal degrees of freedom
other than an effective angular momentum j = 3/2. While we
mainly discuss the physically most relevant case that the inter-
nal degrees of freedom include the spin and the time-reversal
transformation squares to minus the identity operation, we
also derive results for the converse case. We are mainly in-
terested in the properties of BFSs in this more general setting
and therefore concentrate on even-parity pairing. We provide
details on the symmetry analysis to help readers perform such
an analysis for specific systems of interest. Everything said
here applies to three-dimensional crystals.

To be clear, we also specify what we do not consider:
We do not address systems with a normal-state Fermi surface
that is not topologically equivalent to a sphere enclosing the
� point, for example quasi-two-dimensional systems such as
Sr2RuO4 [21]. In such cases, directions in momentum space
with symmetry-imposed nodes for infinitesimal pairing might
not intersect with the normal-state Fermi surface so that these
symmetry-imposed nodes would not be present. Furthermore,
we do not consider accidental gap nodes, pairing states that
combine different irreducible representations (irreps) of the
point group, and new BFSs that emerge for strong coupling
away from the normal-state Fermi surface. The descrip-
tion of such phenomena would only require straightforward
extensions of the theory. Moreover, we do not address odd-
frequency pairing [22], which is expected to permit additional
contributions to pairing states of given symmetry. Recently,
Dutta et al. [20] have shown that odd-frequency pairing am-
plitudes generically appear together with BFSs.

The remainder of this paper is organized as follows. In
Sec. II, we describe the symmetry analysis that produces all
symmetry-allowed contributions to pairing of any symmetry
for any crystallographic point group, together with the nodal
structure for infinitesimal pairing strength and criteria for the
inflation of nodes into BFSs beyond infinitesimal pairing. In
Sec. III, we apply this general framework to a number of
model systems of increasing complexity. Finally, in Sec. IV,
general insights gained by the preceding sections are dis-
cussed and an outlook on open questions is given. Several
formal points are presented in Appendices.

II. GENERAL ANALYSIS

In this section, we describe the general symmetry analysis.
We assume the normal state to satisfy inversion symmetry

and TRS. The first condition implies that the only possi-
ble point groups are Ci, C2h, D2h, D3d , C4h, D4h, C6h, D6h,
S6 = C3i, Th, and Oh. Of these groups, Ci, C2h, and D2h have
only one-dimensional irreps. C4h, C6h, and S6 in addition
have two-dimensional real irreps which decompose into one-
dimensional complex irreps. The real irreps are relevant for
the analysis of Hermitian irreducible tensor operators. Finally,
D3d , D4h, D6h, Th, and Oh also have multidimensional complex
irreps. Pairing states described by multidimensional irreps are
the most interesting for us since they lead to multicomponent
order parameters, which naturally accommodate the breaking
of TRS.

It is advantageous to consider the magnetic point group of
the crystal since this allows us to treat point-group symmetries
and TRS on equal footing [23–28]. Since TRS is preserved in
the normal state, the antiunitary time-reversal operator T is an
element of the magnetic point group. Hence, we are dealing
with a gray group: If G is the structural point group, then
the gray point group is M = G + T G, where T G contains all
elements of G multiplied by time reversal T (the elements of
G commute with T [28]).

The theory of complex corepresentations of magnetic
groups [24–27] has been reviewed for example by Bradley
and Davies [28]. However, this theory is not the appropri-
ate one for our purposes since it is based on the notions of
unitary equivalence of matrices and reducibility of corepre-
sentations by unitary transformations. This leads to the result
that two corepresentations that represent T by +1 and −1,
respectively, can be equivalent. Since we need to distinguish
operators that are even or odd under time reversal this is not
the appropriate equivalence relation. We rather require real
corepresentations based on orthogonal equivalence, which
leaves the properties under time reversal invariant, and re-
ducibility by orthogonal transformations. By using Wigner’s
construction of corepresentations [25,28] but restricting one-
self to orthogonal transformations, it is fairly easy to see that
for every irrep � of G, the gray magnetic point group M has
two irreps �+ and �−, which are distinguished by a (further)
index ± which indicates the sign under time reversal. Char-
acter tables of real corepresentations of the magnetic point
groups are given by Erb and Hlinka [29].

One more piece of group theory is needed. Since we are
studying single-fermion Hamiltonians, we have to consider
double groups, i.e., a rotation by 2π does not give the group
identity but only a rotation by 4π does. This leads to ad-
ditional “double-valued” or spinor irreps [23]. However, the
double-valued irreps do not play any role in our analysis
for the following reason: We will expand Hamiltonians into
sums of basis matrices with momentum-dependent coeffi-
cients which are basis functions of irreps. The momentum
components kx, ky, kz are basis functions of single-valued
irreps, which implies that momentum-dependent functions
can only be basis functions of single-valued irreps. Hence,
double-valued irreps do not occur in the expansion.

We now introduce relevant notations. The superconductor
is described by a BdG Hamiltonian of the form

H(k) =
(

HN (k) �(k)
�†(k) −HT

N (−k)

)
, (1)
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where HN (k) is the normal-state Hamiltonian and �(k) is the
pairing potential. Both are operators on the N-dimensional
Hilbert space of internal degrees of freedom and are given
by N × N matrices for a particular basis. Antisymmetry of
fermionic states implies that [30–32]

�T (−k) = −�(k). (2)

By construction, the BdG Hamiltonian satisfies particle-hole
(charge-conjugation) symmetry C, which is expressed as

UC HT (−k)U†
C = −H(k), (3)

with UC = σ1 ⊗ 1. We denote the Pauli matrices by σ1, σ2,
σ3 and the 2 × 2 identity matrix by σ0. Identity matrices in
any dimension are denoted by 1. Symmetries in the structural
point group G are expressed as

U H(R−1k)U† = H(k), (4)

where R is an appropriate three-dimensional generalized rota-
tion matrix and

U =
(

U 0
0 U ∗

)
(5)

is unitary. This form of U follows from particle-hole symme-
try. The most important case of us is inversion symmetry or
parity P, which is implemented by a unitary matrix UP. We
assume inversion symmetry of the normal state, i.e.,

UP HN (−k)U †
P = HN (k). (6)

Finally, TRS takes the form

UT HT (−k)U†
T = H(k), (7)

where

UT =
(

UT 0
0 U ∗

T

)
(8)

is (the matrix form of) the unitary part of the antiunitary
time-reversal operator. Time reversal T can square to plus or
minus the identity. We denote the sign of T 2 by sT = ±1.
Then UT U ∗

T = sT 1 and thus

U T
T = sT UT . (9)

If the internal degrees of freedom include the electron spin
we have sT = −1 and UT is antisymmetric. The matrix UT

is also unitary so that its dimension N must be even since its
spectrum consists of pairs ±eiφ . The case sT = +1 can only
be realized if the spin does not occur explicitly, for example
because electrons in one spin state are pushed to high energies
by a strong magnetic field. Then T is not the physical TRS
but an effective antiunitary symmetry. For sT = +1, UT is
symmetric and the dimension N is not restricted. Beyond these
considerations, the specific form of UT as well as the specific
form of structural point-group transformations depend on the
physical nature of the internal degrees of freedom.

It is useful to write the pairing matrix as

�(k) = D(k)UT . (10)

Under a general unitary symmetry transformation, Eq. (4), the
pairing matrix transforms as

�(k) �→ U �(R−1k)U T , (11)

i.e., not like a matrix. One easily sees that D(k) transforms as

D(k) �→ U D(R−1k)U †, (12)

i.e., like a matrix. Analogously, one finds that under time
reversal, D(k) transforms as

D(k) �→ UT D∗(−k)U †
T . (13)

Hence, D(k) transforms like HN (k) under the magnetic point
group, noting that HT

N (k) = H∗
N (k) because of Hermiticity.

The condition (2) from fermionic antisymmetry together
with Eqs. (9) and (10) implies

UT DT (−k)U †
T = −sT D(k). (14)

For the standard case of sT = −1, this relation is similar to
TRS but differs from it since D(k) is generally not Hermitian
so that DT (k) is not the same as D∗(k).

The general steps of the symmetry analysis are now as
follows.

(1) Construct a basis {hν} of Hermitian matrices on the
space of the internal degrees of freedom so that the hν trans-
form as irreducible tensor operators of the magnetic point
group M. In the case of point groups with two-dimensional
real irreps that decompose into two one-dimensional complex
irreps, use the real irreps since this allows one to find Hermi-
tian hν ; the irreducible tensor operators of the corresponding
one-dimensional complex irreps are generally not Hermitian.
We call the hν basis matrices and normalize them in such a
way that Tr h2

ν = N (the identity matrix is then normalized).
It is possible that not all irreps occur. If the dimension of the
internal Hilbert space is N there are N2 basis matrices.

To find the appropriate basis matrices and their irreps, it
is necessary to determine the explicit forms of the symmetry
operators, i.e., of the unitary matrices UT for time reversal
and Ug for at least a set of generators g of the structural point
group G.

(2) Generate a list of all irreps of M that possess basis func-
tions of momentum. These are all irreps that have the same
parity under time reversal and inversion since the momentum
k is odd under both. This allows g+ and u− irreps but forbids
g− and u+ irreps. It is also useful to obtain characteristic
basis functions for those irreps that have them but it should
be kept in mind that these are understood as placeholders
for arbitrary sets of functions with the same symmetry under
operations from M. In this paper, we will usually represent
basis functions by the lowest-order polynomials.

(3) Construct the general form of the normal-state Hamil-
tonian HN (k) by expanding it into the previously constructed
basis,

HN (k) =
∑

n

cn(k) hn. (15)

We enumerate all basis matrices by ν but the subset that occurs
in HN (k) by n. The Hamiltonian and every term in the expan-
sion must be invariant under M, i.e., it must transform as an
irreducible tensor operator belonging to the trivial irrep Atriv of
M. This irrep is even under inversion and under time reversal,
i.e., it is Ag+ or A1g+ depending on the group. This requires the
form factors cn(k) to transform as basis functions of the same
irrep to which hn belongs. Moreover, for multidimensional
irreps, cn(k) and hn must transform as the same component of
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the irrep and all of them must have the same amplitude if the
basis functions and tensor operators are properly normalized.
If there is no corresponding basis function for the irrep of
some hν , this matrix does not occur in Eq. (15). This excludes
hν belonging to g− or u+ irreps. Note that h0 ≡ 1 is always
an allowed basis matrix since it is a reducible tensor operator
of the trivial irrep Atriv and c0(k) ∼ 1 is always an appropriate
basis function.

As noted above, for the standard case that the internal
degrees of freedom include the electron spin, time reversal
squares to −1 and the dimension N of the internal Hilbert
space must be even. Then the number of allowed basis ma-
trices hn appearing in HN (k) is N (N − 1)/2, as shown in
Appendix A.

The case of N = 2 corresponds to spin being the only
internal degree of freedom. There is only a single allowed
basis matrix, namely h0 = 1. This means that the normal-state
Hamiltonian is independent of spin, which is required by TRS.
For N = 4, there are six basis matrices h0 = 1, h1, ..., h5.
These matrices have the special property that h1, ..., h5 an-
ticommute pairwise [33,34], while all matrices commute with
h0. Results restricted to this case are discussed in Sec. II A.

(4) Construct the allowed pairing states. Here, we have
much greater freedom than in constructing HN (k) since the
superconducting state may break symmetries contained in M.
We write the pairing matrix as

D(k) =
∑

j

δ jD j (k), (16)

where the Dj (k) are linearly independent matrix-valued func-
tions transforming like (being irreducible tensor operators
belonging to) components of a specific irrep �s, s = ±, of
the magnetic point group M and the δ j are complex pairing
amplitudes. Recall that D(k) transforms like a matrix. Dj (k)
can be chosen to be either Hermitian or anti-Hermitian. This
can be seen as follows: Note first that Eq. (14) has to be
satisfied by each component separately since the Dj (k) are
independent functions,

UT DT
j (−k)U †

T = −sT Dj (k). (17)

Depending on the irrep �s, Dj (k) is either even (s = +) or
odd (s = −) under time reversal. Hence, Eq. (13) implies that

UT D∗
j (−k)U †

T = s Dj (k). (18)

It follows that DT
j (k) = −sT s D∗

j (k) and thus

D†
j (k) = −sT s Dj (k). (19)

This equation states that the matrix functions Dj (k) are Her-
mitian or anti-Hermitian depending on the sign sT of T 2 and
on the pairing state being even or odd under time reversal.
Since we consider pure-irrep pairing all appearing Dj (k) have
the same sign −sT s under Hermitian conjugation.

For the standard case of sT = −1, Dj (k) is Hermitian (anti-
Hermitian) for time-reversal-even (time-reversal-odd) irreps.
For a time-reversal-odd irrep �−, we can pull a common
factor of i out of all Dj (k) and absorb it into the order
parameters δ j in Eq. (16). This makes Dj (k) Hermitian and
changes the irrep from �− to �+ since the behavior under
spatial transformations is unaffected. Hence, for sT = −1 it is

sufficient to consider only the time-reversal-even g+ and u+
irreps for pairing states. This has the desirable consequence
that the breaking of TRS is only encoded in the complex order
parameters δ j . If and only if all δ j can be made real by a global
phase rotation the system respects TRS. This is equivalent to
the nonvanishing δ j having phase differences of 0 or π .

Conversely, for the nonstandard sign sT = +1, Dj (k)
is anti-Hermitian (Hermitian) for time-reversal-even (time-
reversal-odd) irreps. Pulling out a factor of i, we can make
sure that Dj (k) is Hermitian and the irrep is odd under time
reversal (g− or u−). Again, the breaking of TRS is only
encoded in the order parameters δ j . If and only if all δ j can be
made purely imaginary by a global phase rotation the system
respects TRS. This is again equivalent to the nonvanishing δ j

having phase differences of 0 or π .
A given model does not necessarily permit all time-

reversal-even (or odd) irreps, though. To see this, note that the
Hermitian-matrix-valued functions Dj (k) can be expanded
into the Hermitian basis matrices hν as

Dj (k) =
∑

ν

d jν (k) hν, (20)

with real functions d jν (k). Consider all products of mo-
mentum basis functions gl (k) belonging to irreps �l and of
matrices hν belonging to irreps �ν . Any such product trans-
forms according to the product representation �l ⊗ �ν , which
is generally reducible. A reduction into irreps by standard
methods reveals which symmetries of pairing states can occur.
Recall that only g+ and u− irreps possess momentum basis
functions. The possible irreps of basis matrices hν have been
obtained in step (1). By reducing all possible products and
keeping only those irreps that are even (odd) under time rever-
sal for sT = −1 (sT = +1), we obtain the possible irreps. The
coefficients d jν (k) in Eq. (20) can be constructed out of the
functions gl (k) by standard methods. The full pairing matrix
then has the form

D(k) =
∑

ν

d∑
j=1

δ jd jν (k) hν ≡
∑

ν

fν (k) hν . (21)

The sum in Eq. (16) generally contains many terms: While
the number of possible basis matrices hν is finite, there are
infinitely many smooth functions of momentum that transform
according to the same irrep. This implies that TRS can be
broken spontaneously for pairing belonging to any irrep, by
having amplitudes δ j with nontrivial phase differences [35].
Consideration of energetics [1,2,16,31,36] is useful to find
plausible modes of TRS breaking. Spontaneous breaking of
TRS occurs most naturally for multidimensional irreps, in the
form of nontrivial phase factors of contributions belonging to
different components of the irrep.

Since the normal state is inversion symmetric the supercon-
ducting pairing is either even (g irreps) or odd (u irreps) under
inversion (parity). Table I shows the possible combinations
of signs under inversion and time reversal. We note that for
sT = −1 and even-parity pairing, only basis matrices belong-
ing to g+ and u− irreps occur. These are the same matrices hn

that appear in the normal-state Hamiltonian HN (k) in Eq. (15).
On the other hand, for sT = −1 and odd-parity pairing, only
those basis matrices hν that do not occur in HN (k) can appear
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TABLE I. Possible combinations of the signs under inversion
(parity, g for even, u for odd) and under time reversal (+ for even,
− for odd) of irreps of pairing states for time reversal squaring to
sT = ±1. Recall that sT = −1 is the standard case for electrons.

sT pairing state coefficients djν (k) basis matrices hν

+1 g− g+ g−
u− u+

u− g+ u−
u− g+

−1 g+ g+ g+
u− u−

u+ g+ u+
u− g−

in D(k). The numbers of allowed basis matrices are given in
Appendix A.

(5) Analyze the nodal structure for each pairing symmetry
(irrep) assuming infinitesimal pairing strength. Since we are
interested in the fate of BFSs we concentrate on the case
sT = −1 and even-parity pairing, while the other cases are
briefly discussed in Appendix B. In the limit of infinitesimal
pairing amplitudes δ j , superconductivity can be described for
each band separately. This is because the superconducting gap
is of first order in δ j , whereas interband effects are of second
order. Moreover, there are at most point or line nodes but no
BFSs since interband pairing is responsible for the latter [1,2].

The normal-state bands are twofold degenerate because of
inversion symmetry and TRS. Hence, in an effective descrip-
tion of a single band, the dimension of the internal Hilbert
space is N = 2 and the internal degree of freedom can be
described by a pseudospin of length 1/2 [2,10]. The super-
conducting pairing must be in the pseudospin-singlet channel
since it is of even parity. The pairing matrix is then f0(k) σ0.
Since σ0 belongs to a g+ irrep, namely, the trivial one, f0(k)
must be a basis function of a g+ irrep; see Table I. The
symmetry of the pairing state under the magnetic point group
can then only be encoded in the function f0(k). This function
thus generically transforms like the pairing matrix D(k) of the
full model. Moreover, the symmetry-imposed zeros of f0(k)
in momentum space correspond to gap nodes for infinitesimal
pairing (IP nodes). One of the main messages of Refs. [1,2,16]
was that a momentum-independent but internally anisotropic
pairing matrix can lead to a momentum-dependent function
f0(k) and to gap nodes.

A simple but powerful criterion for IP nodes can be
obtained as follows. As noted above, for sT = −1 and even-
parity pairing, the same basis matrices hn appear in HN (k)
and D(k). From Eq. (15), we know that the normal-state
coefficients cn(k) transform like the basis matrices hn under
the magnetic point group. Hence, the scalar function

F (k) ≡
∑

n

cn(k) fn(k) (22)

transforms like the pairing matrix D(k) and thus also like the
form factor f0(k) in the single-band picture and, in particular,
has the same symmetry-induced nodes. Therefore we can use
F (k) as a proxy for the IP nodal structure. In fact, instead
of the normal-state coefficients cn(k), we could use any set

of basis functions belonging to the same irreps. We will see
that an analogous measure emerges naturally for the case of
N = 4.

(6) Check whether the nodes thereby obtained are inflated
if the pairing amplitudes are not infinitesimal. The main tool
is the Pfaffian Pf H̃(k) of an antisymmetric Hamiltonian H̃(k)
that is unitarily equivalent to the BdG Hamiltonian H(k).
Such a unitary transformation is guaranteed to exist if the
point group contains the inversion, as shown in [1]. A simpler
version of the proof is presented in Appendix C.

The square of the Pfaffian equals the determinant of the
BdG Hamiltonian and thus the product of the quasiparticle
energies. Hence, nodes of any kind correspond to Pf H̃(k) =
0. As shown in Appendix C, the Pfaffian is real for even N and
imaginary for odd N . We define

P(k) ≡
{

Pf H̃(k) for N even,

i Pf H̃(k) for N odd,
(23)

to obtain a real quantity. We will simply call P(k) the Pfaf-
fian in the following. The sign of P(k) turns out to depend
on the choice of unitary transformation which leads to the
antisymmetric matrix H̃(k). We choose this transformation in
such a way that the Pfaffian is positive at some point far from
the normal-state Fermi surface. Since the Pfaffian is a smooth
function of momentum this fixes the sign for all k.

For sT = −1 and preserved TRS, P(k) is non-negative for
all k, the topological Z2 invariant is thus trivial, and there
are no topologically protected BFSs, as shown in Refs. [1,2].
Conversely, such BFSs are expected for broken TRS. The
argument is reviewed in Appendix C. In addition, we there
show that the Pfaffian can change sign and BFSs are expected
also for sT = +1, regardless of symmetry.

A. Four-dimensional internal Hilbert space

Even-parity superconductors with a four-dimensional in-
ternal Hilbert space (and time reversal squaring to −1)
constitute the simplest case beyond the single-band paradigm.
According to Appendix A, the normal-state Hamiltonian
HN (k) = ∑

n cn(k) hn is a superposition of six basis matri-
ces h0, ..., h5. As noted above, the same six basis matrices
appear in the pairing matrix D(k). These matrices realize a
nice algebraic structure of 4 × 4 gamma matrices: One can
always choose the hn in such a way that h1, ..., h5 anticommute
pairwise, while h0 = 1 commutes with any matrix [33,34];
see Appendix D. This implies that for any such model the
eigenenergies in the normal state are

EN±(k) = c0(k) ±
√

c2
1(k) + . . . + c2

5(k), (24)

both twofold degenerate. The algebraic structure also allows
to derive analytical results for the quasiparticle energies in the
superconducting state and for the Pfaffian P(k). We obtain
universal results when expressing these quantities in terms of
coefficients of basis matrices.

Since we have found negative values of the Pfaffian and
thus BFSs there, the same should be true for any model with
N = 4 in this class. For this conclusion to hold, it is important
that the prefactors of the matrices are not constrained by
symmetries so that all values of the Pfaffian can actually occur.
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TABLE II. Commutation relations of the matrices defined in Eqs. (26)–(28). + (−) denotes commutation (anticommutation).

H0 H1 H2 H3 H4 H5 �0 �1 �2 �3 �4 �5 	0 	1 	2 	3 	4 	5

H0 + + + + + + − − − − − − − − − − − −
H1 + + − − − − − − + + + + − − + + + +
H2 + − + − − − − + − + + + − + − + + +
H3 + − − + − − − + + − + + − + + − + +
H4 + − − − + − − + + + − + − + + + − +
H5 + − − − − + − + + + + − − + + + + −
�0 − − − − − − + + + + + + − − − − − −
�1 − − + + + + + + − − − − − − + + + +
�2 − + − + + + + − + − − − − + − + + +
�3 − + + − + + + − − + − − − + + − + +
�4 − + + + − + + − − − + − − + + + − +
�5 − + + + + − + − − − − + − + + + + −
	0 − − − − − − − − − − − − + + + + + +
	1 − − + + + + − − + + + + + + − − − −
	2 − + − + + + − + − + + + + − + − − −
	3 − + + − + + − + + − + + + − − + − −
	4 − + + + − + − + + + − + + − − − + −
	5 − + + + + − − + + + + − + − − − − +

The BdG Hamiltonian in Eq. (1) can be written as a linear
combination of 18 Hermitian 8 × 8 matrices,

H(k) =
5∑

n=0

cn(k) Hn +
5∑

n=0

f 1
n (k) �n +

5∑
n=0

f 2
n (k) 	n. (25)

The coefficients are all real functions of momentum. The 18
matrices are

Hn =
(

hn 0
0 −U ∗

P hT
n U T

P

)
, (26)

�n =
(

0 hnUT

U †
T hn 0

)
, (27)

	n =
(

0 ihnUT

−iU †
T hn 0

)
, (28)

where n = 0, . . . , 5. The definition of Hn requires some dis-
cussion. The matrices hn are irreducible tensor operators of g
or u irreps and

Hn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
hn 0
0 −hT

n

)
for g irreps,

(
hn 0
0 hT

n

)
for u irreps.

(29)

For g irreps, the minus sign of −k in the lower right block
of Eq. (1) drops out and the first term in Eq. (25) is obvi-
ous. For u irreps, the form factor cn(k) is an odd function
and the lower right block obtains an additional sign change.
Since in Eq. (25) the coefficient of Hn is cn(k) this sign
must be incorporated into Hn. The matrices Hn, �n, and 	n

are all Hermitian, traceless, square to 1, and either commute
or anticommute according to Table II. Moreover, if Aα , α =
1, . . . , 18 denote all 18 matrices, we have

Tr{Aα, Aβ} ≡ Tr(AαAβ + AβAα ) = 16 δαβ. (30)

The Pfaffian can be expressed in closed form, as dis-
cussed in more detail in Appendix E. We suppress momentum

arguments for the rest of this section. It is useful to define the
real five-vectors

�c ≡ (c1, c2, c3, c4, c5), (31)

�f 1 ≡ (
f 1
1 , f 1

2 , f 1
3 , f 1

4 , f 1
5

)
, (32)

�f 2 ≡ (
f 2
1 , f 2

2 , f 2
3 , f 2

4 , f 2
5

)
(33)

and the Minkowski-type scalar product

〈A, B〉 ≡ A0B0 − �A · �B. (34)

The Pfaffian can then be written as

P(k) = 〈c, c〉2 + 〈 f 1, f 1〉2 + 〈 f 2, f 2〉2

+ 4 (〈c, f 1〉2 + 〈 f 1, f 2〉2 + 〈 f 2, c〉2)

− 2 (〈c, c〉 〈 f 1, f 1〉 + 〈 f 1, f 1〉 〈 f 2, f 2〉
+ 〈 f 2, f 2〉 〈c, c〉). (35)

Another form that will prove useful is

P(k) = (〈c, c〉 − 〈 f 1, f 1〉 − 〈 f 2, f 2〉)2

+ 4 (〈c, f 1〉2 + 〈c, f 2〉2 + 〈 f 1, f 2〉2

− 〈 f 1, f 1〉〈 f 2, f 2〉). (36)

Nodes are signaled by P(k) = 0. If P(k) becomes negative
for some momenta k we obtain two-dimensional BFSs [1,2].
The algebraic structure and the expressions for the Pfaffian
are the same for all models with even-parity superconduc-
tors, time reversal squaring to −1, and N = 4. Hence, the
conclusion of Refs. [1,2] that nodes are inflated into BFSs
for TRS-breaking superconducting states applies to all such
models.

For infinitesimal pairing, we can neglect terms of fourth
order in the amplitudes f α

n compared to terms of second order
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in Eq. (36). The result

P(k) ∼= (〈c, c〉 − 〈 f 1, f 1〉 − 〈 f 2, f 2〉)2

+ 4 (〈c, f 1〉2 + 〈c, f 2〉2) (37)

is non-negative. Hence, the momentum-space volume of the
BFSs shrinks to zero for infinitesimal pairing, leaving only
point and line nodes. Since the expression in Eq. (37) is a
sum of squares IP nodes occur when three conditions hold
simultaneously. The first reads as

〈c, c〉 − 〈 f 1, f 1〉 − 〈 f 2, f 2〉 = 0. (38)

Since 〈c, c〉 = EN+EN− = 0 is a criterion for the normal-state
Fermi surface we can say that Eq. (38) describes a renor-
malized Fermi surface. It will be close to the normal-state
Fermi surface in the typical case that the pairing energy
is small compared to the chemical potential. The second
and third condition read as 〈c, f 1〉 = 〈c, f 2〉 = 0, which are
equivalent to

〈c, f 〉 = 0, (39)

where f ≡ f 1 + i f 2. Explicitly, this condition reads as

c0
(

f 1
0 + i f 2

0

) −
5∑

n=1

cn
(

f 1
n + i f 2

n

) ≡ c0 f0 −
5∑

n=1

cn fn = 0.

(40)

Except for the signs, which do not matter, this agrees with
the function F (k) that we found above to encode the IP nodal
structure; see Eq. (22).

III. APPLICATIONS

In the following, we illustrate the general procedure for
specific examples. We will mainly consider a familiar setting:
the dimension of the internal Hilbert space is N = 4, resulting
from spin and either orbital or basis site, and the model is
described by the cubic point group Oh. This point group has
ten irreps, A1g, A2g, Eg, T1g, T2g, A1u, A2u, Eu, T1u, and T2u.
For the corresponding gray magnetic point group, the number
of irreducible real corepresentations is doubled to A1g+, A1g−,
A2g+, etc.

A. Two s orbitals

We first consider a lattice without basis and with two
orbitals per site that are invariant under all point-group trans-
formations. This means that they transform according to the
trivial irrep A1g or, in other words, like s orbitals. The inter-
esting point here is that even such a simple model supports
nontrivial multiband superconductivity with BFSs.

For the internal Hilbert space, we use the basis
{|1↑〉, |1↓〉, |2↑〉, |2↓〉}, where 1, 2 refers to the orbital and
↑, ↓ to the spin. In this section, the first factor in Kronecker
products refers to the orbital and the second to the spin. The
matrix representation of the inversion or parity operator P has
the trivial form

UP = 1 = σ0 ⊗ σ0. (41)

TABLE III. Basis matrices on the internal Hilbert space for the
case of two s orbitals and point group Oh. The basis matrices are
irreducible tensor operators of the irreps listed in the second column.
For multidimensional irreps, the states transforming into each other
under point-group operations are distinguished by the index in the
third column.

hν Irrep Component

σ0 ⊗ σ0 A1g+
σ0 ⊗ σ1 T1g− 1
σ0 ⊗ σ2 2
σ0 ⊗ σ3 3
σ1 ⊗ σ0 A1g+
σ1 ⊗ σ1 T1g− 1
σ1 ⊗ σ2 2
σ1 ⊗ σ3 3
σ2 ⊗ σ0 A1g−
σ2 ⊗ σ1 T1g+ 1
σ2 ⊗ σ2 2
σ2 ⊗ σ3 3
σ3 ⊗ σ0 A1g+
σ3 ⊗ σ1 T1g− 1
σ3 ⊗ σ2 2
σ3 ⊗ σ3 3

The unitary part of the time-reversal operator is

UT = σ0 ⊗ iσ2 (42)

since the orbitals are invariant under time reversal, while in
the spin sector we have the standard form iσ2.

The 16 basis matrices hν of the space of Hermitian 4 × 4
matrices obtained as Kronecker products are listed in Ta-
ble III, together with the corresponding irreps. To understand
the table, first consider the structural point group. Since the
orbitals transform trivially under all point-group elements the
spin alone determines the irrep. Then σ0 obviously transforms
trivially, i.e., according to A1g, while σ = (σ1, σ2, σ3) is a
pseudovector, which transforms according to T1g. Regarding
time reversal, σ0 in the spin sector is of course even, whereas
σ is odd. However, the time-reversal operator T is antilinear
so that the imaginary Pauli matrix σ2 in the orbital sector gives
another sign change. Note that although the orbital degree of
freedom appears to be a trivial spectator, it does lead to the
appearance of the additional irreps A1g− and T1g+.

Next, we consider momentum basis functions. As noted
above, they only exist for g+ and u− irreps. Low-order poly-
nomial basis functions can be found in tables [23,37]. It is
important to note that for our purposes the constant function
and the second-order function k2

x + k2
y + k2

z are allowed ba-
sis functions of A1g+ but are not listed in some tables. The
tables usually do not show a basis function for A1u− since
the simplest one is of order l = 9, specifically kxkykz [k4

x (k2
y −

k2
z ) + k4

y (k2
z − k2

x ) + k4
z (k2

x − k2
y )] [23,38]. The possible irreps

of pairing states are now obtained by reducing all products of
the allowed irreps of the momentum-dependent form factor
and of pairing matrices and excluding the ones that are odd
under time reversal and thus violate fermionic antisymme-
try. The reduction of the remaining combinations is shown
in Table IV. The normal-state Hamiltonian HN (k) can, and
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TABLE IV. Reduction of product representations of the allowed irreps of k-dependent form factors (rows) and basis matrices hν (columns)
for two s orbitals. For the form factors, the minimum order of polynomial basis functions is given in the second column. “◦” indicates products
that are forbidden since they violate fermionic antisymmetry.

Form factor: Pairing matrix: Irrep

Irrep Minimum order l A1g+ T1g+ A1g− T1g−

A1g+ 0 A1g+ T1g+ ◦ ◦
A2g+ 6 A2g+ T2g+ ◦ ◦
Eg+ 2 Eg+ T1g+ ⊕ T2g+ ◦ ◦
T1g+ 4 T1g+ A1g+ ⊕ Eg+ ⊕ T1g+ ⊕ T2g+ ◦ ◦
T2g+ 2 T2g+ A2g+ ⊕ Eg+ ⊕ T1g+ ⊕ T2g+ ◦ ◦
A1u− 9 ◦ ◦ A1u+ T1u+
A2u− 3 ◦ ◦ A2u+ T2u+
Eu− 5 ◦ ◦ Eu+ T1u+ ⊕ T2u+
T1u− 1 ◦ ◦ T1u+ A1u+ ⊕ Eu+ ⊕ T1u+ ⊕ T2u+
T2u− 3 ◦ ◦ T2u+ A2u+ ⊕ Eu+ ⊕ T1u+ ⊕ T2u+

generically does, contain all combinations that transform ac-
cording to A1g+, set in bold face. Only the first row of the
table (form-factor irrep A1g+) is compatible with purely local
pairing, which can thus have A1g+ or T1g+ symmetry. Note that
the latter is impossible for a single-orbital system.

The normal-state Hamiltonian contains two types of terms,
generated by A1g+ ⊗ A1g+ and by T1g+ ⊗ T1g+, respectively.
For the first, there are three basis matrices belonging to A1g+
according to Table III, hence we get

HN1(k) = c00(k) σ0 ⊗ σ0 + c10(k) σ1 ⊗ σ0 + c30(k) σ3 ⊗ σ0,

(43)
where c00, c10, and c30 are generally distinct basis functions of
A1g+. In other words, they are invariant under all elements of
the magnetic point group. The leading polynomial terms read
a [23,37]

cm0(k) = c(0)
m0 + c(2)

m0

(
k2

x + k2
y + k2

z

) + c(4)
m0

(
k4

x + k4
y + k4

z

)
+ c(6)

m0 k2
x k2

y k2
z + . . . (44)

for m = 0, 1, 3. For the second type, we observe that there is a
single triplet of matrices belonging to T1g+, namely σ2 ⊗ σ. To
obtain an invariant Hamiltonian, they must each be multiplied
by the corresponding momentum basis function, which gives

HN2(k) = c21(k) σ2 ⊗ σ1 + c22(k) σ2 ⊗ σ2

+ c23(k) σ2 ⊗ σ3. (45)

The functions c2n are not independent but must transform into
each other under the magnetic point group. The leading terms
are [23,37]

c21(k) = c(4)
2 kykz

(
k2

y − k2
z

) + c(6)
2 kykz

(
k4

y − k4
z

) + . . . , (46)

c22(k) = c(4)
2 kzkx

(
k2

z − k2
x

) + c(6)
2 kzkx

(
k4

z − k4
x

) + . . . , (47)

c23(k) = c(4)
2 kxky

(
k2

x − k2
y

) + c(6)
2 kxky

(
k4

x − k4
y

) + . . . (48)

The full normal-state Hamiltonian

HN (k) = HN1(k) + HN2(k) =
5∑

n=0

cn(k) hn (49)

is a linear combination of the six basis matrices

h0 ≡ σ0 ⊗ σ0 A1g+, (50)

h1 ≡ σ1 ⊗ σ0 A1g+, (51)

h2 ≡ σ3 ⊗ σ0 A1g+, (52)

h3 ≡ σ2 ⊗ σ1 T1g+, (53)

h4 ≡ σ2 ⊗ σ2 T1g+, (54)

h5 ≡ σ2 ⊗ σ3 T1g+, (55)

where the irreps are also given. h1, ..., h5 anticommute pair-
wise; see Appendices A and D.

Table IV also provides useful information on supercon-
ductivity: (a) All ten irreps that are even under time reversal
appear as symmetries of possible pairing states. In fact, every
g+ irrep �g+ is possible for any model since such a symmetry
can be realized by combining an even momentum-space basis
function belonging to �g+ with the A1g+ basis matrix h0 = 1.
On the other hand, u+ pairing state require g− basis matrices,
here belonging to A1g− and T1g− [39]. (b) For the even-parity
pairing states, only the five g+ irreps are relevant. From Ta-
ble IV, we see that then only the basis matrices transforming
according to A1g+ or T1g+ occur. Further inspection shows that
both types of basis matrices contribute to all g+ pairing states
(all five occur in both columns). We conclude that for pairing
states belonging to any single g+ irrep, all A1g+ and T1g+ basis
matrices can appear in the pairing matrix

D(k) =
5∑

n=0

fn(k) hn. (56)

What changes between different pairing states are the
momentum-dependent form factors fn(k). In the following,
we analyze the nodal structure for several exemplary pairing
symmetries.

1. A1g+ pairing

We start with the simplest pairing symmetry, A1g+. The
construction of allowed terms in D(k) is analogous to the con-
struction of HN (k). From Table IV, we find two contributions
to A1g+ pairing: (a) form factors that transform according to
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A1g+ combined with the three A1g+ basis matrices and (b) a
triplet of T1g+ form factors combined with the triplet of T1g+
basis matrices. We discuss these two contributions in turn. It
will prove useful to separate momentum-independent pairing
amplitudes denoted by δ··· from suitably normalized momen-
tum basis functions denoted by d···(k), as done in Eq. (21).

(a) This contribution to the pairing matrix reads as

D1(k) = δ00d00(k) σ0 ⊗ σ0 + δ10d10(k) σ1 ⊗ σ0

+ δ30d30(k) σ3 ⊗ σ0, (57)

where d00(k), d10(k), and d30(k) are basis functions of A1g+,
and δ00, δ10, and δ30 denote the corresponding pairing ampli-
tudes. The leading polynomial forms of the basis functions are

dm0(k) = d (0)
m0 + d (2)

m0

(
k2

x + k2
y + k2

z

) + . . . , (58)

where we can set the three constants d (0)
m0 to unity as a nor-

malization. The higher-order coefficients are then generally
distinct for different m. These contributions can be inter-
preted as s-wave pairing since the minimum order of the basis
functions is l = 0. We use the terms s-wave, p-wave, etc. to
describe only the momentum dependence, not the symmetry
of the full pairing state, for which we always use the irreps.
The contribution is evidently spin-singlet pairing because the
matrix acting in spin space is σ0.

(b) The reducible representation T1g+ ⊗ T1g+ has nine
matrix-valued basis functions dm(k) σ2 ⊗ σn, m, n = 1, 2, 3,
where dm(k) are momentum basis functions of T1g+. The re-
duction T1g+ ⊗ T1g+ = A1g+ ⊕ Eg+ ⊕ T1g+ ⊕ T2g+ tells us that
a basis change to matrix basis functions of the four indicated
irreps exists. We here need to find the linear combination of
the dm(k) σ2 ⊗ σn that transforms according to A1g+. This is
simply the sum over products of corresponding components
with identical coefficients, i.e.,

D2(k) = δt [d21(k) σ2 ⊗ σ1 + d22(k) σ2 ⊗ σ2

+ d23(k) σ2 ⊗ σ3], (59)

where d21(k), d22(k), and d23(k) form a triplet of T1g+ basis
functions and δt is their common amplitude. The leading poly-
nomials are

d3(k) ≡ d21(k) = d (4)
t kykz

(
k2

y − k2
z

) + . . . , (60)

d4(k) ≡ d22(k) = d (4)
t kzkx

(
k2

z − k2
x

) + . . . , (61)

d5(k) ≡ d23(k) = d (4)
t kxky

(
k2

x − k2
y

) + . . . , (62)

where we can choose d (4)
t = 1 as a normalization. This is g-

wave spin-triplet (hence the subscript “t”) pairing since the
minimum order is l = 4 and the Pauli matrices σ1, σ2, σ3 act
on the spin Hilbert space. This combination is made possible
by the nontrivial orbital content.

The full A1g+ pairing matrix has the usual form

D(k) ≡ D1(k) + D2(k) =
5∑

n=0

fn(k) hn, (63)

where the symmetry properties of the form factors fn(k) have
been obtained above.

We first consider pairing that respects TRS. Then, all fn(k)
can be chosen real. Equation (40) gives the condition for IP
nodes. Each pairing form factor fn(k) is multiplied by the cor-
responding normal-state form factor cn(k). The contribution
(a) give, to leading order,

c0(k) f0(k) − c1(k) f1(k) − c2(k) f2(k)

= c(0)
00 δ00 − c(0)

10 δ10 − c(0)
30 δ30 + . . . , (64)

which is generically nonzero and nodeless. The expression
can of course have accidental nodes from higher-order terms,
which we disregard here.

For the contribution (b), (c3, c4, c5) and ( f3, f4, f5) are
corresponding basis functions of T1g+, and we find

− c3(k) f3(k) − c4(k) f4(k) − c5(k) f5(k)

= −c(4)
2 δt

[
k2

y k2
z

(
k2

y − k2
z

)2 + k2
z k2

x

(
k2

z − k2
x

)2

+ k2
x k2

y

(
k2

x − k2
y

)2] + . . . (65)

This expression vanishes if the conditions

k2
y k2

z (ky − kz )2(ky + kz )2 = 0, (66)

k2
z k2

x (kz − kx )2(kz + kx )2 = 0, (67)

k2
x k2

y (kx − ky)2(kx + ky)2 = 0 (68)

hold simultaneously. This is the case for the 6 + 8 + 12 = 26
high-symmetry directions in the Oh Brillouin zone. Hence,
there are 26 point nodes on a spheroidal normal-state Fermi
surface around the � point. The higher-order terms in the
basis functions do not change this picture since the nodes are
imposed by T1g+ symmetry. Since the conditions only contain
squares, they are second-order (“double Weyl”) point nodes
[2,31,40].

Together with the generically nodeless contribution (a),
〈c, f 〉 can contain first-order line nodes provided that the
amplitude c(4)

2 δt is sufficiently large and not all terms have
the same sign. The location of these line nodes is not fixed
by symmetries. In this respect, the situation is similar to the
case of mixed singlet-triplet pairing in noncentrosymmetric
superconductors [41]. However, there is nothing that prevents
a full gap, which is typically energetically favorable.

Breaking of TRS is possible for one-dimensional irreps,
see Sec. II. However, since the A1g+ time-reversal-symmetric
state is generically nodeless, the breaking of TRS is not ex-
pected to lead to a reduction of the internal energy [31]. If
TRS does break, then the condition (40) for IP nodes splits
into two independent conditions for the real and imaginary
parts of 〈c, f 〉. Hence, TRS-breaking A1g+ pairing states are
even less likely to have nodes than time-reversal-symmetric
ones.

2. A2g+ pairing

A2g+ pairing is potentially interesting since it is governed
by a nontrivial one-dimensional irrep. It appears in two places
in Table IV: (a) A2g+ ⊗ A1g+ and (b) T2g+ ⊗ T1g+. Hence, it
is incompatible with purely local pairing, for which the first
factor must be A1g+. We discuss the two cases in turn.
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TABLE V. Leading-order polynomial forms of the form factors
fn(k) describing A2g+ pairing for a model with two s orbitals.

n fn

0 δ00

[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
1 δ10 [k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)
]

2 δ30 [k4
x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)
]

3 δt kykz

4 δt kzkx

5 δt kxky

(a) Each of the three A1g+ basis matrices is combined with
a A2g+ form factor, giving

D1(k) = δ00d00(k) σ0 ⊗ σ0 + δ10d10(k) σ1 ⊗ σ0

+ δ30d30(k) σ3 ⊗ σ0. (69)

The leading-order polynomial form is

dm0(k) = d (6)
m0

[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

)
+ k4

z

(
k2

x − k2
y

)] + . . . , (70)

where we set d (6)
m0 = 1 as a normalization. These are i-

wave (l = 6) spin-singlet contributions. Based on the rule
of thumb that terms of lower order in k are energetically
favored since they have fewer nodes or nodes of lower
order and thus lead to higher condensation energy, we ex-
pect this contribution to be weak compared to the following
one.

(b) The reducible representation T2g+ ⊗ T1g+ has nine
matrix-valued basis functions dm(k) σ2 ⊗ σn, m, n = 1, 2, 3,
where dm(k) are basis functions of T2g+. The construction
parallels the one for A1g+ pairing. The leading polynomial
form factors read as

d1(k) ≡ d21(k) = d (2)
2 kykz + . . . , (71)

d2(k) ≡ d22(k) = d (2)
2 kzkx + . . . , (72)

d3(k) ≡ d23(k) = d (2)
2 kxky + . . . (73)

We choose d (2)
2 = 1 as normalization. The A2g+ part of T2g+ ⊗

T1g+ has the matrix-valued basis function

DA2g+ (k) = d1(k) h3 + d2(k) h4 + d3(k) h5

∼= kykz σ2 ⊗ σ1 + kzkx σ2 ⊗ σ2 + kxky σ2 ⊗ σ3,

(74)

which describes d-wave (l = 2) spin-triplet pairing, allowed
due to nontrivial orbital content. Thus the second contribution
to the pairing matrix is

D2(k) ∼= δt (kykz σ2 ⊗ σ1 + kzkx σ2 ⊗ σ2 + kxky σ2 ⊗ σ3).
(75)

The leading order form factors fn(k) can now be read off.
They are summarized in Table V.

For time-reversal-symmetric pairing, we can choose all
fn(k) real. For the condition for IP nodes, Eq. (40), we require
the products cn(k) fn(k), which are listed in Table VI. The
amplitudes appearing the these products are distinguished by

TABLE VI. Leading-order polynomial forms of the products
cn(k) fn(k) of form factors describing A2g+ pairing for a model with
two s orbitals. The amplitudes of the leading terms in cn(k) have been
absorbed into new pairing amplitudes marked by a tilde.

n cn fn

0 δ̃00

[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
1 δ̃10

[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
2 δ̃30

[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
3 δ̃t k2

y k2
z

(
k2

y − k2
z

)
4 δ̃t k2

z k2
x

(
k2

z − k2
x

)
5 δ̃t k2

x k2
y

(
k2

x − k2
y

)

a tilde. We obtain, to leading order,

c0(k) f0(k) − �c(k) · �f (k)

∼= (δ̃00 − δ̃10 − δ̃30 − δ̃t )
[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

)
+ k4

z

(
k2

x − k2
y

)]
= −(δ̃00 − δ̃10 − δ̃30 − δ̃t ) (kx − ky)(kx + ky)

× (ky − kz )(ky + kz )(kz − kx )(kz + kx ). (76)

This product clearly vanishes if two of the three components
of k are equal in magnitude. The IP gap thus generically has
six line nodes in the {110} planes. They are of first order since
〈c, f 〉 changes sign at the nodes.

The most obvious way to break TRS is to have a nontrivial
phase difference between at least two of the amplitudes δ̃00,
δ̃10, δ̃30, and δ̃t . Then IP nodes exist where both the real part
and the imaginary part of 〈c, f 〉 vanish. Equation (76) shows
that the real and imaginary parts have the same symmetry-
imposed line nodes so that the TRS-breaking state also has
these line nodes for infinitesimal pairing.

To check whether these line nodes are inflated beyond
infinitesimal pairing, we consider the Pfaffian. It is useful to
keep the full momentum dependence of the normal-state form
factors, not just the leading terms. The form factors c0(k),
c1(k), and c2(k) are independent functions with A1g+ sym-
metry, while the remaining three form factors can be written
as

c3(k) = aT (k) kykz
(
k2

y − k2
z

)
, (77)

c4(k) = aT (k) kzkx
(
k2

z − k2
x

)
, (78)

c5(k) = aT (k) kxky
(
k2

x − k2
y

)
, (79)

where aT (k) is another function with A1g+ symmetry. Without
loss of generality, we consider the plane kx = ky, which is
nodal for infinitesimal pairing. In this plane, the generalized
scalar products read as

〈c, c〉 = c2
0(k)−c2

1(k)−c2
2(k)−2a2

T (k) k2
x k2

z

(
k2

x − k2
z

)2
,(80)

〈c, f1〉 = 〈c, f2〉 = 0, (81)

〈 f 1, f 1〉 = −(Re δt )
2 k2

x

(
2k2

z + k2
x

)
, (82)

〈 f 2, f 2〉 = −(Im δt )
2 k2

x

(
2k2

z + k2
x

)
, (83)

〈 f 1, f 2〉 = − Re δt Im δt k2
x

(
2k2

z + k2
x

)
, (84)
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where k = (kx, kx, kz ). Equation (36) then gives the Pfaffian

P(k) = (〈c, c〉 − 〈 f 1, f 1〉 − 〈 f 2, f 2〉)2

+ 4 (〈 f 1, f 2〉2 − 〈 f 1, f 1〉〈 f 2, f 2〉). (85)

The first term is a complete square and its zeros de-
fine the renormalized Fermi surface discussed above. Using
Eqs. (82)–(84), the second term obviously vanishes, which
can be attributed to the fact that in the plane kx = ky only a
single pairing channel (T2g+ ⊗ T1g+) contributes to the pairing.
The phase of the corresponding amplitude δt can always be
chosen real so that TRS breaking does not affect the supercon-
ducting state. The upshot is that for noninfinitesimal pairing
the Pfaffian still has second-order zeros in the {110} planes
and thus does not change sign. At least within these planes
the line nodes are shifted but neither gapped out nor inflated.

The question arises of what happens in the vicinity of these
line nodes when we go off the high-symmetry planes. The
first term of the general Pfaffian given in Eq. (36) has second-
order zeros at the renormalized Fermi surface. We expand the
second term about a point on the plane kx = ky by setting k =
(kx + q/

√
2, kx − q/

√
2, kz ). The leading form in q reads as

4 (〈c, f 1〉2 + 〈c, f 2〉2 + 〈 f 1, f 2〉2 − 〈 f 1, f 1〉〈 f 2, f 2〉)

∼= 32 k2
x

(
k2

x − k2
z

)4 (|c0δ00 − c1δ10 − c2δ30 − aT δt |2

+ k2
x

(
k2

x + 2k2
z

) |δt |2 [|δ00|2 sin2(φ00 − φt )

− |δ10|2 sin2(φ10 − φt ) − |δ30|2 sin2(φ30 − φt )]
)

q2,

(86)

where δ00 = |δ00|eiφ00 , etc. The expression contains contribu-
tions of second and fourth order in the pairing amplitudes. At
weak coupling, we can neglect the fourth-order contributions.
Then, the leading correction to the Pfaffian away from the
(110) plane is non-negative and generically is strictly positive
for kx �= kz. Hence, in this case, there is no BFS in the vicinity
of the shifted line node, in any direction. On the other hand,
for strong coupling, the coefficient in Eq. (86) can become
negative. In this case, BFSs can exist on both sides of the
{110} planes and touching each other at these planes.

For the special case kx = kz, the whole q2 term in Eq. (86)
vanishes. Since we already had assumed kx = ky this cor-
responds to the threefold rotation axis [111]. Here, for
infinitesimal pairing three nodal lines intersect. We consider
k = (kx + q/

√
2, kx − q/

√
2, kx ). The leading form in the ex-

pansion of the second term of the Pfaffian here reads as

128 k6
x

(|c0δ00 − c1δ10 − c2δ30 − aT δd |2

+ 3 k4
x |δt |2 [|δ00|2 sin2(φ00 − φd )

− |δ10|2 sin2(φ10 − φd ) − |δ30|2 sin2(φ30 − φd )]
)

q6.

(87)

This term is also non-negative at weak coupling so that there
are no BFSs close to the 〈111〉 directions.

In conclusion, the line nodes for the TRS-breaking A2g+
pairing state are not inflated into BFSs. However, they
are shifted away from the normal-state Fermi surface ev-
erywhere but remain within the high-symmetry (mirror)
planes. The lack of inflation within the high-symmetry planes

can be understood on the basis that there is only a single
relevant pairing amplitude, which can be chosen real.

3. Eg+ pairing

Pairing conforming to the two-dimensional irrep Eg+ is
of interest since the breaking of TRS occurs naturally for
multidimensional irreps. Eg+ pairing can emerge from the
products (a) Eg+ ⊗ A1g+, (b) T1g+ ⊗ T1g+, and (c) T2g+ ⊗ T1g+
in Table IV. Hence, it is incompatible with purely local pair-
ing. We discuss the contributions in turn.

(a) The three A1g+ matrices are each combined with a
doublet of Eg+ form factors, giving

D1(k) = [
δ1

00d1
00(k) + δ2

00d2
00(k)

]
σ0 ⊗ σ0

+ [
δ1

10d1
10(k) + δ2

10d2
10(k)

]
σ1 ⊗ σ0

+ [
δ1

30d1
30(k) + δ2

30d2
30(k)

]
σ3 ⊗ σ0. (88)

The leading polynomial terms are

d1
m0(k) = d (2)

m0

(
k2

x − k2
y

) + d (4)
m0

(
k4

x − k4
y

) + . . . , (89)

d2
m0(k) = d (2)

m0√
3

(
2k2

z − k2
x − k2

y

) + d (4)
m0√
3

(
2k4

z − k4
x − k4

y

)
+ · · · , (90)

where we can set the coefficients d (2)
m0 of the leading terms

to unity as a normalization. Recall that the higher-order co-
efficients are then generally distinct for different m. These
contributions can be described as d-wave (l = 2) spin-singlet
pairing.

(b) The reducible representation T1g+ ⊗ T1g+ has nine
matrix-valued basis functions dm(k) σ2 ⊗ σn, m, n = 1, 2, 3,
where dm(k) are momentum basis functions of T1g+. The
leading polynomial terms read as

d1(k) = d (4) kykz
(
k2

y − k2
z

) + . . . , (91)

d2(k) = d (4) kzkx
(
k2

z − k2
x

) + . . . , (92)

d3(k) = d (4) kxky
(
k2

x − k2
y

) + . . . , (93)

where d (4) can be chosen to be unity. The reduction T1g+ ⊗
T1g+ = A1g+ ⊕ Eg+ ⊕ T1g+ ⊕ T2g+ implies that a basis change
to matrix basis functions of the four indicated irreps exists.
The linear combinations of the functions dm(k) σ2 ⊗ σn that
transform according to Eg+ are

Dx2−y2 (k) = d1(k) σ2 ⊗ σ1 − d2(k) σ2 ⊗ σ2, (94)

D3z2−r2 (k) = 2d3(k)√
3

σ2 ⊗ σ3 − d1(k)√
3

σ2 ⊗ σ1

− d2(k)√
3

σ2 ⊗ σ2. (95)

These matrix basis functions are no longer simply the prod-
uct of a scalar momentum-dependent form factor and a
momentum-independent matrix. Their contribution to the
pairing matrix is

D2(k) = δ1
2t Dx2−y2 (k) + δ2

2t D3z2−r2 (k). (96)

This describes g-wave (l = 4) spin-triplet pairing, made pos-
sible by nontrivial orbital content.
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TABLE VII. Leading-order polynomial forms of the form factors
fn(k) describing Eg+ pairing for a model with two s orbitals.

n fn

0 δ1
00

(
k2

x − k2
y

) + δ2
00√
3

(
2k2

z − k2
x − k2

y

)
1 δ1

10

(
k2

x − k2
y

) + δ2
10√
3

(
2k2

z − k2
x − k2

y

)
2 δ1

30

(
k2

x − k2
y

) + δ2
30√
3

(
2k2

z − k2
x − k2

y

)
3

(
δ1

2t − δ2
2t√
3

)
kykz

(
k2

y − k2
z

) + (− δ1
2t ′√

3
− δ2

2t ′
)

kykz

4
(
−δ1

2t − δ2
2t√
3

)
kzkx

(
k2

z − k2
x

) + (− δ1
2t ′√

3
+ δ2

2t ′
)

kzkx

5
2δ2

2t√
3

kxky

(
k2

x − k2
y

) + 2δ1
2t ′√
3

kxky

(c) The analysis for T2g+ ⊗ T1g+ = A2g+ ⊕ Eg+ ⊕ T1g+ ⊕
T2g+ is analogous, except that now the momentum basis func-
tions belong to T2g+,

d ′
1(k) = d ′(2) kykz + . . . , (97)

d ′
2(k) = d ′(2) kzkx + . . . , (98)

d ′
3(k) = d ′(2) kxky + . . . , (99)

where we choose d ′(2) = 1. We have the matrix basis functions

D′
x2−y2 (k) = 2d ′

3(k)√
3

σ2 ⊗ σ3 − d ′
1(k)√

3
σ2 ⊗ σ1

− d ′
2(k)√

3
σ2 ⊗ σ2, (100)

D′
3z2−r2 (k) = −d ′

1(k) σ2 ⊗ σ1 + d ′
2(k) σ2 ⊗ σ2. (101)

Note that the forms of the expressions for the two components
of Eg, i.e., for the x2 − y2 and the 3z2 − r2 matrix basis func-
tions, are interchanged compared to case (b). To determine
the correct components, their behavior under twofold rotation
about the [110] direction has been examined. Furthermore, to
find the relative factor, which turns out to be −1, the behavior
under threefold rotation about [111] has been considered. The
contribution to the pairing matrix is

D3(k) = δ1
2t ′ D′

x2−y2 (k) + δ2
2t ′ D′

3z2−r2 (k). (102)

This is d-wave spin-triplet pairing, again made possible by
nontrivial orbital content.

The matrix D(k) = D1(k) + D2(k) + D3(k) is evidently
of the form of Eq. (56). The form factors fn(k) are com-
plicated functions of k with nodes in different places. The
leading-order polynomial forms are listed in Table VII.

In the condition for IP nodes, Eq. (40), each pairing
form factor fn(k) is multiplied by the normal-state form
factor cn(k). We list the leading-order polynomial form of
these products in Table VIII. The contributions for n =
0, 1, 2 have the same form and can be grouped together with
new amplitudes δ̃1

0 and δ̃2
0 . With this, we obtain, to leading

TABLE VIII. Leading-order polynomial forms of the products
cn(k) fn(k) of form factors describing Eg+ pairing for a model with
two s orbitals. The amplitudes of the leading terms in cn(k) have been
absorbed into new pairing amplitudes marked by a tilde.

n cn fn

0 δ̃1
00

(
k2

x − k2
y

) + δ̃2
00√
3

(
2k2

z − k2
x − k2

y

)
1 δ̃1

10

(
k2

x − k2
y

) + δ̃2
10√
3

(
2k2

z − k2
x − k2

y

)
2 δ̃1

30

(
k2

x − k2
y

) + δ̃2
30√
3

(
2k2

z − k2
x − k2

y

)
3

(
δ̃1

2t − δ̃2
2t√
3

)
k2

y k2
z

(
k2

y − k2
z

)2

+ (− δ̃1
2t ′√

3
− δ̃2

2t ′
)

k2
y k2

z

(
k2

y − k2
z

)
4

(−δ̃1
2t − δ̃2

2t√
3

)
k2

z k2
x

(
k2

z − k2
x

)2

+ (− δ̃1
2t ′√

3
+ δ̃2

2t ′ ) k2
z k2

x (k2
z − k2

x )

5
2δ̃2

2t√
3

k2
x k2

y

(
k2

x − k2
y

)2 + 2δ̃1
2t ′√
3

k2
x k2

y

(
k2

x − k2
y

)

order,

c0(k) f0(k) − �c(k) · �f (k) ∼= δ̃1
0

(
k2

x − k2
y

)
+ δ̃1

2t k2
z

(
k2

x − k2
y

)(
k4

x + k4
y + k4

z + k2
x k2

y − 2k2
x k2

z − 2k2
y k2

z

)
+ δ̃1

2t ′√
3

(
k2

x − k2
y

)(
k4

z − 2k2
x k2

y − k2
x k2

z − k2
y k2

z

)

+ δ̃2
0√
3

(
2k2

z − k2
x − k2

y

) + δ̃2
2t√
3

(−2k6
x k2

y + 4k4
x k4

y

− 2k2
x k6

y + k6
x k2

z + k6
y k2

z − 2k4
x k4

z −2k4
y k4

z +k2
x k6

z + k2
y k6

z

)
+ δ̃2

2t ′ k2
z

(
k4

x +k4
y −k2

x k2
z − k2

y k2
z

)
. (103)

We first discuss time-reversal-symmetric pairing, for which
all amplitudes can be chosen real. Based on the order alone,
we expect that typically δ̃1

0 and δ̃2
0 dominate. Unless both

amplitudes vanish these contributions give two first-order line
nodes—the function changes sign at these nodes. Note that
all contributions belonging to the first component of Eg+
have nodal planes at ky = ±kx. This is because these nodes
are symmetry induced and must lie in the diagonal mirror
planes. On the other hand, the contributions belonging to
the second component also have two nodal surfaces (two
line nodes on the normal-state Fermi surface) but these are
not pinned to high-symmetry planes. Hence, higher-order
terms can shift them around. Their only symmetry-enforced
property is to pass through the 〈111〉 directions, where they
intersect with the nodes of the first component. If both compo-
nents have nonzero amplitudes there are still generically two
line nodes, which have to pass through the 〈111〉 directions
[42].

If TRS is broken and only δ̃1
0 and δ̃2

0 are nonzero there must
be a nontrivial phase difference between these two amplitudes
and we find different line nodes in the real and imaginary
parts, resulting in point nodes at their crossings. Since the real
and imaginary parts are zero in the 〈111〉 directions, we obtain
at least eight point nodes in these directions. All higher-order
terms are zero there so that they cannot shift or gap out these
point nodes.
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We next turn to the possibility of BFSs. Without loss
of generality, we consider the IP point node in the [111]
direction. For k = k (1, 1, 1)/

√
3 ≡ k n̂111, the normal-state

form factors c0(k) ≡ c00(k), c1(k) ≡ c10(k), and c2(k) ≡
c30(k) are independent even functions of k; see Eq. (44). On
the other hand, c3(k) ≡ c21(k), c4(k) ≡ c22(k), and c5(k) ≡
c23(k) vanish in this direction; see Eqs. (46)–(48). Further-
more, Table VII shows that

f0(k) = f1(k) = f2(k) = 0, (104)

f3(k) = − δ1
2t ′

3
√

3
k2 − δ2

2t ′

3
k2, (105)

f4(k) = − δ1
2t ′

3
√

3
k2 + δ2

2t ′

3
k2, (106)

f5(k) = 2δ1
2t ′

3
√

3
k2. (107)

This implies that

〈c, c〉 = c2
0(k) − c2

1(k) − c2
2(k), (108)

〈c, f 1〉 = 〈c, f 2〉 = 0, (109)

〈 f 1, f 1〉 = −2k2

9

[(
Re δ1

2t ′
)2 + (

Re δ2
2t ′

)2]
, (110)

〈 f 2, f 2〉 = −2k2

9

[(
Im δ1

2t ′
)2 + (

Im δ2
2t ′

)2]
, (111)

〈 f 1, f 2〉 = −2k2

9

[
Re δ1

2t ′ Im δ1
2t ′ + Re δ2

2t ′ Im δ2
2t ′

]
. (112)

Equation (36) then gives

P(k n̂111)

= [
c2

0(k) − c2
1(k) − c2

2(k) + 2
9 k2

∣∣δ1
2t ′

∣∣2 + 2
9 k2

∣∣δ2
2t ′

∣∣2]2
− 16

81 k4
∣∣δ1

2t ′
∣∣2∣∣δ2

2t ′
∣∣2

sin2(φ1 − φ2), (113)

where the two relevant pairing amplitudes are written as
δ1,2

2t ′ = |δ1,2
2t ′ | eiφ1,2 . The first term has a second-order zero at

the renormalized normal-state Fermi surface. The second term
is negative whenever the phase difference between δ1

2t ′ and
δ2

2t ′ is not an integer multiple of π . This is generically the
case for broken TRS. This means that in the vicinity of the
renormalized normal-state Fermi surface we find a region with
P(k n̂111) < 0 and thus the point node is inflated into a BFS
pierced by the [111] axis [43].

If the superconducting energy scale becomes comparable
to normal-state energies the BFSs are no longer spheroidal
pockets close to the IP point nodes. The BFSs might then
merge and could move either to the � point or to the edge
of the Brillouin zone and annihilate there [2]. We now check
whether this can happen. On the unrenormalized normal-state
Fermi surface in the [111] direction, c2

0 − c2
1 − c2

2 vanishes.
The Pfaffian can then be written as

P(kF n̂111) = 4
81 k4

F

(∣∣δ1
2t ′

∣∣2 − ∣∣δ2
2t ′

∣∣2)2

+ 16
81 k4

F

∣∣δ1
2t ′

∣∣2∣∣δ2
2t ′

∣∣2
cos2(φ1 − φ2). (114)

This means that for the special TRS-breaking state with
|δ1

2t ′ | = |δ2
2t ′ | and phase difference ±π or equivalent, the Pfaf-

fian vanishes at k = kF so that the BFS must touch the

normal-state Fermi surface. In this case, the BFSs cannot
annihilate for strong pairing. The special conditions of equal
amplitudes and phase difference of ±π are quite natural from
the point of view of energetics [1,2,16,31,36].

In conclusion, at infinitesimal pairing, the gap generically
has point nodes in the 〈111〉 directions if TRS is broken. These
nodes are expected to be inflated into BFSs if the amplitudes
δ1

2t ′ and δ2
2t ′ are both nonzero and have a nontrivial phase dif-

ference. All other amplitudes do not contribute to the inflation
of nodes along the 〈111〉 directions since the corresponding
form factors fn(k) vanish there. For the energetically favored
(1, i) state, the BFSs stick to the normal-state Fermi surface at
the former point nodes.

4. T1g+ pairing

The analysis for the three-dimensional irrep T1g+ is anal-
ogous and we will be brief. All functions of momentum
are represented by the lowest-order polynomials of correct
symmetry. T1g+ pairing appears in the following products in
Table IV: (a) A1g+ ⊗ T1g+, (b) Eg+ ⊗ T1g+, (c) T1g+ ⊗ A1g+, (d)
T1g+ ⊗ T1g+, (e) T2g+ ⊗ T1g+. T1g+ symmetry is possible even
for purely local pairing due to the momentum-independent
contribution (a).

(a) For the contribution A1g+ ⊗ T1g+, we find the matrix
basis functions

Dx,A1g+ (k) ∼= h3 = σ2 ⊗ σ1, (115)

Dy,A1g+ (k) ∼= h4 = σ2 ⊗ σ2, (116)

Dz,A1g+ (k) ∼= h5 = σ2 ⊗ σ3. (117)

These describe s-wave spin-triplet pairing, made possible by
the nontrivial orbital structure.

(b) For Eg+ ⊗ T1g+, the basis functions read as

Dx,Eg+ (k) ∼= 1
3

(
2k2

x − k2
y − k2

z

)
h3

= 1
3

(
2k2

x − k2
y − k2

z

)
σ2 ⊗ σ1, (118)

Dy,Eg+ (k) ∼= 1
3

(
2k2

y − k2
z − k2

x

)
h4

= 1
3

(
2k2

y − k2
z − k2

x

)
σ2 ⊗ σ2, (119)

Dz,Eg+ (k) ∼= 1
3

(
2k2

z − k2
x − k2

y

)
h5

= 1
3

(
2k2

z − k2
x − k2

y

)
σ2 ⊗ σ3. (120)

This is d-wave spin-triplet pairing.
(c) T1g+ ⊗ A1g+ involves three triplets of basis functions,

Dx,m0(k) ∼= kykz
(
k2

y − k2
z

)
σm ⊗ σ0, (121)

Dy,m0(k) ∼= kzkx
(
k2

z − k2
x

)
σm ⊗ σ0, (122)

Dz,m0(k) ∼= kxky
(
k2

x − k2
y

)
σm ⊗ σ0, (123)

for m = 0, 1, 3. This is g-wave spin-singlet pairing.
(d) For T1g+ ⊗ T1g+, we get the basis functions

Dx,T1g+ (k) ∼= kzkx
(
k2

z − k2
x

)
h5 − kxky

(
k2

x − k2
y

)
h4

= kzkx
(
k2

z − k2
x

)
σ2 ⊗ σ3 − kxky

(
k2

x − k2
y

)
σ2 ⊗ σ2,

(124)
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TABLE IX. Leading-order polynomial forms of the form factors
fn(k) describing T1g+ pairing for a model with two s orbitals.

n fn

0 δx,00 kykz

(
k2

y − k2
z

) + δy,00 kzkx

(
k2

z − k2
x

)
+ δz,00 kxky

(
k2

x − k2
y

)
1 δx,10 kykz

(
k2

y − k2
z

) + δy,10 kzkx

(
k2

z − k2
x

)
+ δz,10 kxky

(
k2

x − k2
y

)
2 δx,30 kykz

(
k2

y − k2
z

) + δy,30 kzkx

(
k2

z − k2
x

)
+ δz,30 kxky

(
k2

x − k2
y

)
3 δx,A1g+ + δx,Eg+

3

(
2k2

x − k2
y − k2

z

)
+ δy,T1g+ kxky

(
k2

x − k2
y

) − δz,T1g+ kzkx

(
k2

z − k2
x

)
+ δy,T2g+ kxky + δz,T2g+ kzkx

4 δy,A1g+ + δy,Eg+
3

(
2k2

y − k2
z − k2

x

)
+ δz,T1g+ kykz

(
k2

y − k2
z

) − δx,T1g+ kxky

(
k2

x − k2
y

)
+ δz,T2g+ kykz + δx,T2g+ kxky

5 δz,A1g+ + δz,Eg+
3

(
2k2

z − k2
x − k2

y

)
+ δx,T1g+ kzkx

(
k2

z − k2
x

) − δy,T1g+ kykz

(
k2

y − k2
z

)
+ δx,T2g+ kzkx + δy,T2g+ kykz

Dy,T1g+ (k) ∼= kxky
(
k2

x − k2
y

)
h3 − kykz

(
k2

y − k2
z

)
h5

= kxky
(
k2

x − k2
y

)
σ2 ⊗ σ1 − kykz

(
k2

y − k2
z

)
σ2 ⊗ σ3,

(125)
Dz,T1g+ (k) ∼= kykz

(
k2

y − k2
z

)
h4 − kzkx

(
k2

z − k2
x

)
h3

= kykz
(
k2

y − k2
z

)
σ2 ⊗ σ2 − kzkx

(
k2

z − k2
x

)
σ2 ⊗ σ1.

(126)

This is g-wave spin-triplet pairing.
(e) For T2g+ ⊗ T1g+, we get the basis functions

Dx,T2g+ (k) ∼= kzkx h5 + kxky h4

= kzkx σ2 ⊗ σ3 + kxky σ2 ⊗ σ2, (127)

Dy,T2g+ (k) ∼= kxky h3 + kykz h5

= kxky σ2 ⊗ σ1 + kykz σ2 ⊗ σ3, (128)

Dz,T2g+ (k) ∼= kykz h4 + kzkx h3

= kykz σ2 ⊗ σ2 + kzkx σ2 ⊗ σ1. (129)

This is d-wave spin-triplet pairing.
The resulting form factors are summarized in Table IX. To

determine the IP nodes, we require the products cn(k) fn(k),
which are listed in Table X. Defining δ̃ν,0 ≡ δ̃ν,00 − δ̃ν,10 −
δ̃ν,30 − δ̃ν,A1g+ for ν = x, y, z, we obtain

c0(k) f0(k) − �c(k) · �f (k)

=
[
δ̃x,0 − δ̃x,Eg+

3

(
2k2

x − k2
y − k2

z

) + δ̃x,T2g+ k2
x

]

× kykz
(
k2

y − k2
z

) + . . . , (130)

where two terms with cyclically permuted indices x, y, and z
have been suppressed. Note that contribution (d) has dropped
out. This is an artifact of having used the same leading-order
basis functions for cn(k) and fn(k). Using different ones, we
see that the terms do not cancel. They do not change the
following discussion, though.

TABLE X. Leading-order polynomial forms of the products
cn(k) fn(k) of form factors describing T1g+ pairing for a model with
two s orbitals. The amplitudes of the leading terms in cn(k) have been
absorbed into new pairing amplitudes marked by a tilde.

n cn fn

0 δ̃x,00 kykz

(
k2

y − k2
z

) + δ̃y,00 kzkx

(
k2

z − k2
x

)
+ δ̃z,00 kxky

(
k2

x − k2
y

)
1 δ̃x,10 kykz

(
k2

y − k2
z

) + δ̃y,10 kzkx

(
k2

z − k2
x

)
+ δ̃z,10 kxky

(
k2

x − k2
y

)
2 δ̃x,30 kykz

(
k2

y − k2
z

) + δ̃y,30 kzkx

(
k2

z − k2
x

)
+ δ̃z,30 kxky

(
k2

x − k2
y

)
3 δ̃x,A1g+ kykz

(
k2

y − k2
z

)
+ δ̃x,Eg+

3 kykz

(
2k2

x − k2
y − k2

z

)(
k2

y − k2
z

)
+ δ̃y,T1g+ kxk2

y kz

(
k2

x − k2
y

)(
k2

y − k2
z

)
− δ̃z,T1g+ kxkyk2

z

(
k2

z − k2
x

)(
k2

y − k2
z

)
+ δ̃y,T2g+ kxk2

y kz

(
k2

y − k2
z

) + δ̃z,T2g+ kxkyk2
z

(
k2

y − k2
z

)
4 δ̃y,A1g+ kzkx

(
k2

z − k2
x

)
+ δ̃y,Eg+

3 kzkx (2k2
y − k2

z − k2
x )

(
k2

z − k2
x

)
+ δ̃z,T1g+ kxkyk2

z

(
k2

y − k2
z

)(
k2

z − k2
x

)
− δ̃x,T1g+ k2

x kykz

(
k2

x − k2
y

)(
k2

z − k2
x

)
+ δ̃z,T2g+ kxkyk2

z

(
k2

z − k2
x

) + δ̃x,T2g+ k2
x kykz

(
k2

z − k2
x

)
5 δ̃z,A1g+ kxky

(
k2

x − k2
y

)
+ δ̃z,Eg+

3 kxky

(
2k2

z − k2
x − k2

y

)(
k2

x − k2
y

)
+ δ̃x,T1g+ k2

x kykz

(
k2

z − k2
x

)(
k2

x − k2
y

)
− δ̃y,T1g+ kxk2

y kz

(
k2

y − k2
z

)(
k2

x − k2
y

)
+ δ̃x,T2g+ k2

x kykz

(
k2

x − k2
y

) + δ̃y,T2g+ kxk2
y kz

(
k2

x − k2
y

)

If only the δ̃x amplitudes are different from zero, i.e., for
pairing of (1,0,0) type [2,16,31], we expect four first-order
line nodes in the planes ky = 0, kz = 0, ky = kz, and ky = −kz.
This is a new example of a state that is necessarily nodal even
for purely local pairing, in which case δ̃x,0 is the only nonvan-
ishing amplitude. Time-reversal-symmetric superpositions of
(1,0,0), (0,1,0), and (0,0,1) pairing generically also have four
line nodes.

If TRS is broken, the states with (1, i, 0) and (1, ω, ω2)
where ω = e2π i/3 are plausible [16,31,36]. The (1, i, 0) state
has IP nodes where both the real and the imaginary part of
c0(k) f0(k) − �c(k) · �f (k) vanish. This leads to 18 point nodes
in the 〈001〉, 〈101〉, 〈111〉 directions outside of the kz = 0
plane, and one line node in the kz = 0 plane. Compare the
T2g+, (1, i, 0) pairing state for the j = 3/2 example [1,2],
where we found two point nodes and one line node in the
kz = 0 plane.

For the (1, ω, ω2) state, there are point nodes where both
the real and the imaginary part vanish. Figure 1 illustrates the
zeros of the real and imaginary parts for a typical parameter
set. For generic parameters, there are point nodes in the 26
cubic high-symmetry directions. Six of these are special in
that either the zero contours of the real and imaginary part

094529-14



SYMMETRY, NODAL STRUCTURE, AND BOGOLIUBOV … PHYSICAL REVIEW B 104, 094529 (2021)

FIG. 1. Zeros of real (blue) and imaginary (red) parts of 〈c, f 〉
for the T1g+ pairing state with order parameter 1, ω, ω2, with ω =
e2π i/3, as functions of the spherical polar angles θ , φ of k. Lowest-
order polynomial basis functions and the parameter values |k| = 1,
δ̃i,Eg+/δ̃i,0 = 0.5, and δ̃i,T2g+/δ̃i,0 = 0.3 for i = x, y, z have been used.

are cotangent or in that the imaginary zero contour has a self
crossing. In these cases, the quasiparticle dispersion close to
the point node is linear in all directions except along a single
axis, where it is quadratic to leading order. The other 20 point
nodes show linear dispersion.

For noninfinitesimal pairing, we expect the nodes to be
inflated. We here only consider the (1, i, 0) state. We write the
pairing amplitudes as δx,00 = δ00, δy,00 = iδ00, and δz,00 = 0,
etc. The superconducting form factors then read as

f0(k) = δ00
[
kykz

(
k2

y − k2
z

) + i kzkx
(
k2

z − k2
x

)]
, (131)

f1(k) = δ10
[
kykz

(
k2

y − k2
z

) + i kzkx
(
k2

z − k2
x

)]
, (132)

f2(k) = δ30
[
kykz

(
k2

y − k2
z

) + i kzkx
(
k2

z − k2
x

)]
, (133)

f3(k) = δA1g+ + δEg+

3

(
2k2

x − k2
y − k2

z

)
+ i δT1g+ kxky

(
k2

x − k2
y

) + i δT2g+ kxky, (134)

f4(k) = iδA1g+ + i δEg+

3

(
2k2

y − k2
z − k2

x

)
− δT1g+ kxky

(
k2

x − k2
y

) + δT2g+ kxky, (135)

f5(k) = δT1g+
[
kzkx

(
k2

z − k2
x

) − i kykz
(
k2

y − k2
z

)]
+ δT2g+ [kzkx + i kykz]. (136)

Equation (130) shows that 〈c, f 1〉 = 〈c, f 2〉 = 0 remains
valid in the radial direction through all point nodes. To go on,
we have to distinguish between the inequivalent point nodes.
In the [001] direction, we have

f0(k) = f1(k) = f2(k) = f5(k) = 0, (137)

f3(k) = δA1g+ − δEg+

3
k2, (138)

f4(k) = iδA1g+ − iδEg+

3
k2. (139)

We find 〈 f 1, f 2〉 = 0 and 〈 f 1, f 1〉 = 〈 f 2, f 2〉 = −(δA1g+ −
δEg+k2/3)2 and thus for the Pfaffian

P(k) = 〈c, c〉
[
〈c, c〉 + 4

(
δA1g+ − δEg+

3
k2

)2]
. (140)

The first factor changes sign at the normal-state Fermi surface.
The second is generically nonzero there and thus the Pfaffian
also changes sign at the normal-state Fermi surface. Hence,
the point nodes in the 〈001〉 directions are inflated and touch
the normal-state Fermi surface at the IP point nodes.

In the [101] direction, we have k = k (1, 0, 1)/
√

2 and

f0(k) = f1(k) = f2(k) = 0, (141)

f3(k) = δA1g+ + δEg+

6
k2, (142)

f4(k) = iδA1g+ − iδEg+

3
k2, (143)

f5(k) = δT2g+

2
k2. (144)

This implies that 〈 f 1, f 2〉 = 0 but 〈 f 1, f 1〉 and 〈 f 2, f 2〉 are
generally unequal. The Pfaffian thus reads as

P(k) = [〈c, c〉 − 〈 f 1, f 1〉 − 〈 f 2, f 2〉]2 − 4 〈 f 1, f 1〉〈 f 2, f 2〉.
(145)

The first term goes to zero on a renormalized Fermi surface.
The second term

−4 〈 f 1, f 1〉〈 f 2, f 2〉 = − 4

(
δA1g+ − δEg+

3
k2

)2

×
[(

δA1g+ + δEg+

6
k2

)2

+
δ2

T2g+

4
k4

]

(146)

generically is strictly negative. Then, the Pfaffian becomes
negative and we find a BFS for a range of k values in the
vicinity of but not usually touching the normal-state Fermi
surface. The Pfaffian is identical for the directions [1̄01],
[011], [01̄1], and their negatives.

Finally, along [111], we have k = k (1, 1, 1)/
√

3 and

f0(k) = f1(k) = f2(k) = 0, (147)

f3(k) = δA1g+ + iδT2g+

3
k2, (148)

f4(k) = iδA1g+ + δT2g+

3
k2, (149)

f5(k) = 1 + i

3
δT2g+ k2. (150)

We thus obtain

〈 f 1, f 2〉 = − 1
3 δT2g+k2

(
2 δA1g+ + 1

3 δT2g+k2
)

(151)

and

〈 f 1, f 1〉 = 〈 f 2, f 2〉 = −(
δ2

A1g+ + 2
9 δ2

T2g+k4
)
. (152)
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The Pfaffian is

P(k) = [〈c, c〉 − 〈 f 1, f 1〉 − 〈 f 2, f 2〉]2

+ 4[〈 f 1, f 2〉2 − 〈 f 1, f 1〉〈 f 2, f 2〉], (153)

wherein the second term evaluates to

4[〈 f 1, f 2〉2 − 〈 f 1, f 1〉〈 f 2, f 2〉]
= − 4

27

(
3 δA1g+ − δT2g+ k2

)2

× [
2 δ2

A1g+ + (
δA1g+ + δT2g+ k2

)2]
. (154)

Since this is generally negative we also expect BFSs that do
not touch the normal-state Fermi surface in the 〈111〉 direc-
tions.

For the equatorial line node, we take k = (kx, ky, 0). The
superconducting form factors are

f0(k) = f1(k) = f2(k) = f5(k) = 0, (155)

f3(k) = δA1g+ + δEg+

3

(
2k2

x − k2
y

)
+ i δT1g+ kxky

(
k2

x − k2
y

) + i δT2g+ kxky, (156)

f4(k) = iδA1g+ + i δEg+

3

(
2k2

y − k2
x

)
− δT1g+ kxky

(
k2

x − k2
y

) + δT2g+ kxky. (157)

This gives

〈 f 1, f 2〉 = − 1
3 kxky

[
6 δA1g+δT2g+

+ 3 δEg+δT1g+
(
k2

x − k2
y

)2 + δEg+δT2g+
(
k2

x + k2
y

)]
,

(158)

〈 f 1, f 1〉 = −1

9

[
3δA1g+ + δEg+

(
2k2

x − k2
y

)]2

− [
δT1g+

(
k2

x − k2
y

) − δT2g+
]2

k2
x k2

y , (159)

〈 f 2, f 2〉 = − 1
9

[
3δA1g+ + δEg+

(
2k2

y − k2
x

)]2

− [
δT1g+

(
k2

x − k2
y

) + δT2g+
]2

k2
x k2

y . (160)

The Pfaffian again has the form of Eq. (153), where the second
term

4[〈 f 1, f 2〉2 − 〈 f 1, f 1〉〈 f 2, f 2〉]
= − 4

81

[
9 δ2

A1g+ + 2 δA1g+δEg+
(
k2

x + k2
y

)
+ δ2

Eg+

(
2k2

x − k2
y

)(
2k2

y − k2
x

)
+ 9 δ2

T1g+ k2
x k2

y

(
k2

x − k2
y

)2 − 9 δ2
T2g+ k2

x k2
y

]2
(161)

is nonpositive and generically negative so that the line node
is inflated by noninfinitesimal pairing. The resulting BFS is
toroidal but may be pinched off, i.e., have self crossings, at
some momenta, but these self crossings would be accidental.
Since the first term in Eq. (153) becomes zero close to but not
at the normal-state Fermi surface the BFS generically does not
touch the normal-state Fermi surface.

In summary, the point and line nodes of the T1g+, (1, i, 0)
pairing state are all inflated by noninfinitesimal pairing. Only
the inflated point nodes on the kz axis touch the normal-state

TABLE XI. Basis matrices on the internal Hilbert space for the
case of one s and one fxyz orbital and point group Oh. The basis
matrices are irreducible tensor operators of the irreps listed in the
second column. For multidimensional irreps, the states transforming
into each other under point-group operations are distinguished by the
index in the third column.

hν Irrep Component

σ0 ⊗ σ0 A1g+
σ0 ⊗ σ1 T1g− 1
σ0 ⊗ σ2 2
σ0 ⊗ σ3 3
σ1 ⊗ σ0 A2u+
σ1 ⊗ σ1 T2u− 1
σ1 ⊗ σ2 2
σ1 ⊗ σ3 3
σ2 ⊗ σ0 A2u−
σ2 ⊗ σ1 T2u+ 1
σ2 ⊗ σ2 2
σ2 ⊗ σ3 3
σ3 ⊗ σ0 A1g+
σ3 ⊗ σ1 T1g− 1
σ3 ⊗ σ2 2
σ3 ⊗ σ3 3

Fermi surface, the other pockets are shifted away from it and
could thus be annihilated at strong coupling.

B. Two orbitals of opposite parity

To have a single even and a single odd orbital per unit cell
for the point group Oh, the first must transform like a one-
dimensional g irrep and the second like a one-dimensional u
irrep. The most natural possibilities are A1g (s orbital) and A2u

( fxyz orbital). Now the inversion or parity matrix is nontrivial:

UP = σ3 ⊗ σ0. (162)

Moreover, the fxyz orbital is odd under fourfold rotations but
even under threefold rotations. Models of this symmetry have
been analyzed in the context of Dirac and Weyl semimetals
[44].

The unitary part of time reversal is

UT = σ0 ⊗ iσ2 (163)

since the orbitals are invariant. The basis matrices can be
written as Kronecker products, which transform according
to the irreps as summarized in Table XI. Compared to the
example of two s orbitals, Table III, the Pauli matrices σ1

and σ2 for the orbital degree of freedom are now odd under
inversion. The new element is that u irreps occur, due to the
nontrivial parity operator. This provides additional possibil-
ities for the products of irreps of k-dependent form factors
and basis matrices. Table XII shows all relevant reductions of
product representations.

The normal-state Hamiltonian is a linear combination of
all basis matrices that allow to form products with full A1g+
symmetry, marked in bold face in Table XII. These basis
matrices, together with their irreps, are

h0 ≡ σ0 ⊗ σ0 A1g+, (164)
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TABLE XII. Reduction of product representations of the allowed irreps of k-dependent form factors (rows) and basis matrices hν (columns)
for one s and one fxyz orbital. For the form factors, the minimum order of polynomial basis functions is given in the second column. “◦” indicates
products that are forbidden since they violate fermionic antisymmetry.

Form factor: Pairing matrix: Irrep

Irrep Min. l A1g+ T1g− A2u+ T2u+ A2u− T2u−

A1g+ 0 A1g+ ◦ A2u+ T2u+ ◦ ◦
A2g+ 6 A2g+ ◦ A1u+ T1u+ ◦ ◦
Eg+ 2 Eg+ ◦ Eu+ T1u+ ⊕ T2u+ ◦ ◦
T1g+ 4 T1g+ ◦ T2u+ A2u+ ⊕ Eu+ ⊕ T1u+ ⊕ T2u+ ◦ ◦
T2g+ 2 T2g+ ◦ T1u+ A1u+ ⊕ Eu+ ⊕ T1u+ ⊕ T2u+ ◦ ◦
A1u− 9 ◦ T1u+ ◦ ◦ A2g+ T2g+
A2u− 3 ◦ T2u+ ◦ ◦ A1g+ T1g+
Eu− 5 ◦ T1u+ ⊕ T2u+ ◦ ◦ Eg+ T1g+ ⊕ T2g+
T1u− 1 ◦ A1u+ ⊕ Eu+ ⊕ T1u+ ⊕ T2u+ ◦ ◦ T2g+ A2g+ ⊕ Eg+ ⊕ T1g+ ⊕ T2g+
T2u− 3 ◦ A2u+ ⊕ Eu+ ⊕ T1u+ ⊕ T2u+ ◦ ◦ T1g+ A1g+ ⊕ Eg+ ⊕ T1g+ ⊕ T2g+

h1 ≡ σ3 ⊗ σ0 A1g+, (165)

h2 ≡ σ2 ⊗ σ0 A2u−, (166)

h3 ≡ σ1 ⊗ σ1 T2u−, (167)

h4 ≡ σ1 ⊗ σ2 T2u−, (168)

h5 ≡ σ1 ⊗ σ3 T2u−. (169)

There are thus six matrices that satisfy the same algebra as
for the case of two s orbitals; see Appendices A and D. The
normal-state Hamiltonian reads as

HN (k) = c00(k) σ0 ⊗ σ0 + c30(k) σ3 ⊗ σ0 + c20(k) σ2 ⊗ σ0

+ c11(k) σ1 ⊗ σ1+c12(k) σ1 ⊗ σ2+c13(k) σ1 ⊗ σ3,

(170)

where the leading polynomial forms are

c00(k) = c(0)
00 + c(2)

00

(
k2

x + k2
y + k2

z

) + . . . , (171)

c30(k) = c(0)
30 + c(2)

30

(
k2

x + k2
y + k2

z

) + . . . , (172)

c20(k) = c(3)
20 kxkykz + . . . , (173)

c11(k) = c(3)
1 kx

(
k2

y − k2
z

) + . . . , (174)

c12(k) = c(3)
1 ky

(
k2

z − k2
x

) + . . . , (175)

c13(k) = c(3)
1 kz

(
k2

x − k2
y

) + . . . (176)

Four of the form factors are odd in momentum. They do not
break inversion symmetry since they multiply orbital matrices
that are also odd under inversion.

Turning to superconducting pairing, it is interesting that
local pairing is now either trivial (A1g+) or has odd parity
(A2u+, T2u+), as seen from the first row of Table XII. Fur-
thermore, for even-parity pairing (g+ irreps), only the basis
matrices belonging to A1g+, T2u−, and A2u− can occur, i.e.,
the same matrices h0, ..., h5 as in HN (k). Since CP squares
to +1 the Hamiltonian can be unitarily transformed into anti-
symmetric form, guaranteeing the existence of a Pfaffian [1].
In the present example, where UP = σ3 ⊗ σ0, the matrix �

mediating this transformation reads as

� = 1√
2

(
1 1
i −i

)
⊗ exp

(
−i

π

2

σ3

2

)
⊗ σ0. (177)

This specific form does not affect the eigenvalues, though.
Since the algebra of the basis matrices is unchanged, the
expressions for the eigenvalues, the Pfaffian, and the condition
for IP nodes remain unchanged. In the following, we briefly
discuss the A2g+ and Eg+ pairing states and compare them to
the case of two s orbitals.

1. A2g+ pairing

A2g+ appears in three places in Table XII: (a) A2g+ ⊗ A1g+,
(b) A1u− ⊗ A2u−, and (c) T1u− ⊗ T2u−. Note that the minimum
orders of form factors are (a) 6, (b) 9, and (c) 1 so that one
expects that the T1u− ⊗ T2u− contribution typically dominates.

(a) For A2g+ ⊗ A1g+:

DA2g+ (k) = δ00d00(k) σ0 ⊗ σ0 + δ30d30(k) σ3 ⊗ σ0. (178)

To the leading order, dm0(k) takes the form

dm0(k) ∼= d (6)
m0

[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
.

(179)

d (6)
m0 is set to unity.

(b) For A1u− ⊗ A2u−:

DA1u− (k) = δA1u−dA1u− (k) σ2 ⊗ σ0, (180)

with dA1u− (k) to the leading order given by

dA1u− (k) ∼= d (9)
A1u− kxkykz

[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

)
+ k4

z

(
k2

x − k2
y

)]
. (181)

We set d (9)
A1u− to unity.

(c) For T1u− ⊗ T2u−:

DT1u− (k) ∼= δT1u− (kx σ1 ⊗ σ1 + ky σ1 ⊗ σ2 + kz σ1 ⊗ σ3)
(182)

to leading order. The components are assigned such that the
whole term DT1u− (k) changes sign under any fourfold rotation
[45].
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TABLE XIII. Leading-order polynomial forms of the form fac-
tors fn(k) describing A2g+ pairing for a model with one s and one fxyz

orbital.

n fn

0 δ00 [k4
x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)
]

1 δ30 [k4
x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)
]

2 δA1u− kxkykz

[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
3 δT1u− kx

4 δT1u− ky

5 δT1u− kz

The resulting superconducting form factors fn and the
products cn fn, which are required to determine the IP nodes,
are listed in Tables XIII and XIV, respectively, to the leading
order. The condition for IP nodes reads as

c0(k) f0(k) − �c(k) · �f (k)

= (
δ̃00 − δ̃30 − δ̃A1u−k2

x k2
y k2

z

)
× [

k4
x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
= 0. (183)

Contribution (c) has dropped out. This is again an artifact of
using the same basis functions for cn and fn. Going beyond
leading order, a contribution remains but does not affect the
conclusions. For example, the T1u− basis functions k3

x , k3
y , k3

z

generate another term proportional to k4
x (k2

y − k2
z ) + k4

y (k2
z −

k2
x ) + k4

z (k2
x − k2

y ). Equation (183) is satisfied whenever any
two of the components of k are equal. Thus there are line
nodes in the {110} planes for infinitesimal pairing.

Form factors in the (110) plane read as

f0(k) = f1(k) = f2(k) = 0, (184)

f3(k) = f4(k) = δT1u−kx, (185)

f5(k) = δT1u−kz, (186)

which gives

〈 f 1, f 1〉 = −(Re δT1u− )2
(
2k2

x + k2
z

)
, (187)

〈 f 2, f 2〉 = −(Im δT1u− )2
(
2k2

x + k2
z

)
, (188)

〈 f 1, f 2〉 = − Re δT1u− Im δT1u−
(
2k2

x + k2
z

)
, (189)

TABLE XIV. Leading-order polynomial forms of the products
cn(k) fn(k) of form factors describing A2g+ pairing for a model with
one s and one fxyz orbital. The amplitudes of the leading terms in
cn(k) have been absorbed into new pairing amplitudes marked by a
tilde.

n cn fn

0 δ̃00

[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
1 δ̃30

[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
2 δ̃A1u− k2

x k2
y k2

z

[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
3 δ̃T1u− k2

x

(
k2

y − k2
z

)
4 δ̃T1u− k2

y

(
k2

z − k2
x

)
5 δ̃T1u− k2

z

(
k2

x − k2
y

)

and also 〈c, f 1〉 = 〈c, f 2〉 = 0. In this case, the Pfaffian sim-
plifies to the form of Eq. (85). The second term 4 [〈 f 1, f 2〉2 −
〈 f 1, f 1〉〈 f 2, f 2〉] vanishes, which implies that there is no in-
flation of the line nodes in the mirror plane. The vanishing can
be attributed to the fact that in the {110} planes, only a single
amplitude δT1u− leads to a superconducting gap, the phase of
which can always be chosen real so that the TRS breaking is
irrelevant. On the other hand, 〈 f 1, f 1〉 + 〈 f 2, f 2〉 is nonzero
so that the nodes are shifted. This is analogous to the case of
two s orbitals.

2. Eg+ pairing

In Table XII, pairing with Eg+ symmetry occurs in (a)
Eg+ ⊗ A1g+, (b) Eu− ⊗ A2u−, (c) T1u− ⊗ T2u−, and (d) T2u− ⊗
T2u−. The matrix-valued basis functions are given in the fol-
lowing to leading order only.

(a) For Eg+ ⊗ A1g+:

Dx2−y2,00(k) ∼= (
k2

x − k2
y

)
σ0 ⊗ σ0, (190)

D3z2−r2,00(k) ∼= 1√
3

(
2k2

z − k2
x − k2

y

)
σ0 ⊗ σ0, (191)

Dx2−y2,30(k) ∼= (
k2

x − k2
y

)
σ3 ⊗ σ0, (192)

D3z2−r2,30(k) ∼= 1√
3

(
2k2

z − k2
x − k2

y

)
σ3 ⊗ σ0. (193)

(b) For Eu− ⊗ A2u−:

Dx2−y2,20(k) ∼= kxkykz
(
k2

x − k2
y

)
σ2 ⊗ σ0, (194)

D3z2−r2,20(k) ∼= 1√
3

kxkykz
(
2k2

z − k2
x − k2

y

)
σ2 ⊗ σ0. (195)

Note that kxkykz σ2 × σ0 is invariant under Oh.
(c) For T1u− ⊗ T2u−:

Dx2−y2,T1u− (k) ∼= 1√
3

(−kx σ1 ⊗ σ1 − ky σ1 ⊗ σ2

+ 2 kz σ1 ⊗ σ3), (196)

D3z2−r2,T1u− (k) ∼= −(kx σ1 ⊗ σ1 − ky σ1 ⊗ σ2). (197)

For this and the following contribution, the transformation
properties under three- and fourfold rotations have been used
to determine the two components.

(d) For T2u− ⊗ T2u−:

Dx2−y2,T2u− (k) ∼= [
kx

(
k2

y − k2
z

)
σ1 ⊗ σ1

− ky
(
k2

z − k2
x

)
σ1 ⊗ σ2

]
, (198)

D3z2−r2,T2u− (k) ∼= 1√
3

[−kx
(
k2

y − k2
z

)
σ1 ⊗ σ1

− ky
(
k2

z − k2
x

)
σ1 ⊗ σ2

+ 2 kz
(
k2

x − k2
y

)
σ1 ⊗ σ3

]
. (199)

The resulting superconducting form factors fn(k) are given
in Table XV and the products cn(k) fn(k) appearing in the
condition (40) for IP nodes are shown in Table XVI. The total
contribution to 〈c, f 〉 from x2 − y2 basis functions (with am-
plitudes δ̃1

···) has two symmetry-imposed first-order line nodes
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TABLE XV. Leading-order polynomial forms of the form factors
fn(k) describing Eg+ pairing for a model with one s and one fxyz

orbital.

n fn

0 δ1
00

(
k2

x − k2
y

) + δ2
00√
3

(
2k2

z − k2
x − k2

y

)
1 δ1

30

(
k2

x − k2
y

) + δ2
30√
3

(
2k2

z − k2
x − k2

y

)
2 δ1

20 kxkykz

(
k2

x − k2
y

) + δ2
20√
3

kxkykz

(
2k2

z − k2
x − k2

y

)
3

(− δ1
T1u−√

3
− δ2

T1u−
)

kx + (
δ1

T2u− − δ2
T2u−√

3

)
kx

(
k2

y − k2
z

)
4

(− δ1
T1u−√

3
+ δ2

T1u−
)

ky + (−δ1
T2u− − δ2

T2u−√
3

)
ky

(
k2

z − k2
x

)
5

2 δ1
T1u−√

3
kz + 2 δ2

T2u−√
3

kz

(
k2

x − k2
y

)

at ky = ±kx. In a time-reversal-symmetric state, the inclusion
of 3z2 − r2 basis functions (with amplitudes δ̃2

···) generically
leads to two line nodes elsewhere on the normal-state Fermi
surface. The nodes must intersect with the 〈111〉 axes, though,
since there the full expression vanishes. TRS-breaking states
generically lead to point nodes in the 〈111〉 directions. This
is for example the case for the generalized (1, i)-type state.
These point nodes are solely determined by symmetry and
therefore agree with the case of two s orbitals.

For noninfinitesimal pairing that breaks TRS, the point
nodes are inflated. This is seen by considering the Pfaffian on
the high-symmetry axis k = k (1, 1, 1)/

√
3 through a IP point

node. On this axis, we have, to leading order,

f0(k) = f1(k) = f2(k) = 0, (200)

f3(k) = −δ1
T1u−

3
k − δ2

T1u−√
3

k, (201)

f4(k) = −δ1
T1u−

3
k + δ2

T1u−√
3

k, (202)

f5(k) = 2 δ1
T1u−

3
k. (203)

TABLE XVI. Leading-order polynomial forms of the products
cn(k) fn(k) of form factors describing Eg+ pairing for a model with
one s and one fxyz orbital. The amplitudes of the leading terms in
cn(k) have been absorbed into new pairing amplitudes marked by a
tilde.

n cn fn

0 δ̃1
00

(
k2

x − k2
y

) + δ̃2
00√
3

(
2k2

z − k2
x − k2

y

)
1 δ̃1

30

(
k2

x − k2
y

) + δ̃2
30√
3

(
2k2

z − k2
x − k2

y

)
2 δ̃1

20 k2
x k2

y k2
z

(
k2

x − k2
y

) + δ̃2
20√
3

k2
x k2

y k2
z

(
2k2

z − k2
x − k2

y

)
3

(− δ̃1
T1u−√

3
− δ̃2

T1u−
)

k2
x

(
k2

y − k2
z

)
+ (

δ̃1
T2u− − δ̃2

T2u−√
3

)
k2

x

(
k2

y − k2
z

)2

4
(− δ̃1

T1u−√
3

+ δ̃2
T1u−

)
k2

y

(
k2

z − k2
x

)
+ (−δ̃1

T2u− − δ̃2
T2u−√

3

)
k2

y

(
k2

z − k2
x

)2

5
2 δ̃1

T1u−√
3

k2
z

(
k2

x − k2
y

) + 2 δ̃2
T2u−√

3
k2

z

(
k2

x − k2
y

)2

For the (1, i) pairing state with δ2
T1u− = iδ1

T1u− , δ1
T1u− ∈ R, we

find

〈 f 1, f 1〉 = 〈 f 2, f 2〉 = −2k2

3

(
δ1

T1u−

)2
, (204)

〈 f 1, f 2〉 = 0. (205)

On the other hand, the normal-state form factors are, to lead-
ing order,

c0(k) = c(0)
00 , (206)

c1(k) = c(0)
30 , (207)

c2(k) = 1

3
√

3
c(3)

20 k3, (208)

c3(k) = c4(k) = c5(k) = 0. (209)

We thus find 〈c, f 1〉 = 〈c, f 2〉 = 0 and the analysis is analo-
gous to the one for the (1, i) state for two s orbitals. Hence,
we expect BFSs that touch the normal-state Fermi surface at
the IP nodes.

C. Two-side basis: diamond structure

Another origin of internal degrees of freedom is a nontriv-
ial basis of the crystal. This is a good place to consider an
example: the diamond structure with one s orbital per basis
site. The space group is 227, belonging to the point group Oh.
We write matrices as Kronecker products of a matrix acting
on site space and a matrix on spin space.

The parity matrix UP = σ1 ⊗ σ0 is nontrivial since inver-
sion interchanges the basis sites. This case has also been
analyzed in the context of semimetals [44]. Moreover, the
fourfold axes also interchange the basis sites, whereas the
threefold axes do not. Time reversal is unchanged, UT =
σ0 ⊗ iσ2. The basis matrices are listed in Table XVII. This
is the same scheme as for two orbitals of opposite parity, see
Table XI, except that the Pauli matrices σ1 and σ3 in the first
(orbital/site) factor are interchanged. Thus the results for the
pairing can be mapped over from Sec. III B without effort.

D. Effective spin 3/2

Here, we consider electrons with effective angular momen-
tum j = 3/2. It is of interest to check whether the results
obtained for local pairing in such a model [1,2] are robust
under nonlocal pairing and which additional pairing states are
allowed for nonlocal pairing. The Hilbert space for j = 3/2
is four dimensional. In this case, it is useful to express all
matrices as polynomials of the standard angular-momentum-
3/2 matrices

Jx =

⎛
⎜⎜⎝

0
√

3/2 0 0√
3/2 0 1 0
0 1 0

√
3/2

0 0
√

3/2 0

⎞
⎟⎟⎠, (210)

Jy =

⎛
⎜⎜⎝

0 −i
√

3/2 0 0
i
√

3/2 0 −i 0
0 i 0 −i

√
3/2

0 0 i
√

3/2 0

⎞
⎟⎟⎠, (211)
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TABLE XVII. Basis matrices on the internal Hilbert space for the
case of s orbitals forming a diamond structure. The basis matrices are
irreducible tensor operators of the irreps listed in the second column.
For multidimensional irreps, the states transforming into each other
under point-group operations are distinguished by the index in the
third column.

hν Irrep Component

σ0 ⊗ σ0 A1g+
σ0 ⊗ σ1 T1g− 1
σ0 ⊗ σ2 2
σ0 ⊗ σ3 3
σ1 ⊗ σ0 A1g+
σ1 ⊗ σ1 T1g− 1
σ1 ⊗ σ2 2
σ1 ⊗ σ3 3
σ2 ⊗ σ0 A2u−
σ2 ⊗ σ1 T2u+ 1
σ2 ⊗ σ2 2
σ2 ⊗ σ3 3
σ3 ⊗ σ0 A2u+
σ3 ⊗ σ1 T2u− 1
σ3 ⊗ σ2 2
σ3 ⊗ σ3 3

Jz =

⎛
⎜⎝

3/2 0 0 0
0 1/2 0 0
0 0 −1/2 0
0 0 0 −3/2

⎞
⎟⎠, (212)

and the 4 × 4 identity matrix J0 ≡ 1.
The parity matrix is trivial, UP = 1 = J0, since the angular

momentum is invariant under inversion. The unitary part of
the time-reversal operator now reads as

UT = eiJyπ =

⎛
⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎠. (213)

The 16 basis matrices hν of the space of Hermitian 4 × 4
matrices are listed in Table XVIII, together with the corre-
sponding irreps. We normalize the basis matrices in such a
way that Tr h2

ν = 4. Apart from this, the entries in the table
follow from known basis functions [37], taking into account
that J = (Jx, Jy, Jz ) is even under inversion and odd under time
reversal, and symmetrizing products of angular-momentum
matrices so as to generate Hermitian matrices [19]. A new
feature is the presence of basis matrices belonging to the
two-dimensional irrep Eg+.

Table XIX shows all relevant reductions of product rep-
resentations. The normal-state Hamiltonian can only contain
the highlighted A1g+ combinations and local pairing is only
compatible with the first row of the table—this reproduces
the known three irreps A1g+, T2g+, and Eg+ [1,2]. Again,
all ten time-reversal-even pairing symmetries can occur and
we restrict ourselves to g+ irreps (even parity). All of these

TABLE XVIII. Basis matrices on the internal Hilbert space for
the case of electrons with angular momentum j = 3/2. The basis
matrices are irreducible tensor operators of the irreps listed in the
second column. For multidimensional irreps, the states transforming
into each other under point-group operations are distinguished by the
index in the third column.

hν Irrep Component

J0 A1g+
2√
5

Jx T1g− 1
2√
5

Jy 2
2√
5

Jz 3
1√
3

(JyJz + JzJy ) T2g+ 1
1√
3

(JzJx + JxJz ) 2
1√
3

(JxJy + JyJx ) 3
1√
3

(
J2

x − J2
y

)
Eg+ 1

1
3

(
2J2

z − J2
x − J2

y

)
2

2√
3

(JxJyJz + JzJyJx ) A2g−
8√
365

J3
x T1g− 1

8√
365

J3
y 2

8√
365

J3
z 3

1√
3

[
Jx

(
J2

y − J2
z

) + (
J2

y − J2
z

)
Jx

]
T2g− 1

1√
3

[
Jy

(
J2

z − J2
x

) + (
J2

z − J2
x

)
Jy

]
2

1√
3

[
Jz

(
J2

x − J2
y

) + (
J2

x − J2
y

)
Jz

]
3

occur for any of the three irreps A1g+, T2g+, and Eg+ of basis
matrices.

The normal-state Hamiltonian HN (k) is a linear combina-
tion of the basis matrices

h0 ≡ J0 A1g+, (214)

h1 ≡ 1√
3

(JyJz + JzJy) T2g+, (215)

h2 ≡ 1√
3

(JzJx + JxJz ) T2g+, (216)

h3 ≡ 1√
3

(JxJy + JyJx ) T2g+, (217)

h4 ≡ 1√
3

(
J2

x − J2
y

)
Eg+, (218)

h5 ≡ 1

3

(
2J2

z − J2
x − J2

y

)
Eg+, (219)

which again satisfy the universal algebra; see Appendices A
and D. The normal-state Hamiltonian contains these matrices
with form factors c0(k), . . . , c5(k), which must transform in
the same way as h0, . . . , h5.

1. A2g+ pairing

A2g+ pairing appears in three places in Table XIX: (a)
A2g+ ⊗ A1g+, (b) Eg+ ⊗ Eg+, and (c) T1g+ ⊗ T2g+. This is a
potentially interesting pairing state since it is impossible for
purely local pairing and it is an example of a nontrivial
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TABLE XIX. Reduction of product representations of the allowed irreps of k-dependent form factors (rows) and basis matrices hν

(columns) for electrons with angular momentum j = 3/2. For the form factors, the minimum order of polynomial basis functions is
given in the second column. “◦” indicates products that are forbidden since they violate fermionic antisymmetry. For brevity, the symbols
A ≡ A1u+ ⊕ Eu+ ⊕ T1u+ ⊕ T2u+ and B ≡ A2u+ ⊕ Eu+ ⊕ T1u+ ⊕ T2u+ are used.

Form factor: Pairing matrix: Irrep

Irrep Min. l A1g+ T2g+ Eg+ T1g− A2g− T2g−

A1g+ 0 A1g+ T2g+ Eg+ ◦ ◦ ◦
A2g+ 6 A2g+ T1g+ Eg+ ◦ ◦ ◦
Eg+ 2 Eg+ T1g+ ⊕ T2g+ A1g+ ⊕ A2g+ ⊕ Eg+ ◦ ◦ ◦
T1g+ 4 T1g+ A2g+ ⊕ Eg+ ⊕ T1g+ ⊕ T2g+ T1g+ ⊕ T2g+ ◦ ◦ ◦
T2g+ 2 T2g+ A1g+ ⊕ Eg+ ⊕ T1g+ ⊕ T2g+ T1g+ ⊕ T2g+ ◦ ◦ ◦
A1u− 9 ◦ ◦ ◦ T1u+ A2u+ T2u+
A2u− 3 ◦ ◦ ◦ T2u+ A1u+ T1u+
Eu− 5 ◦ ◦ ◦ T1u+ ⊕ T2u+ Eu+ T1u+ ⊕ T2u+
T1u− 1 ◦ ◦ ◦ A T2u+ B
T2u− 3 ◦ ◦ ◦ B T1u+ A

one-dimensional irrep. In the following, we give the basis
functions to the leading order only.

(a) For A2g+ ⊗ A1g+:

DA2g+ (k) ∼= [
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

)
+ k4

z

(
k2

x − k2
y

)]
h0. (220)

(b) For Eg+ ⊗ Eg+:

DEg+ (k) ∼= (
k2

x − k2
y

)
h5 − 1√

3

(
2k2

z − k2
x − k2

y

)
h4. (221)

(c) For T1g+ ⊗ T2g+:

DT1g+ (k) ∼= kykz
(
k2

y − k2
z

)
h1 + kzkx

(
k2

z − k2
x

)
h2

+ kxky
(
k2

x − k2
y

)
h3. (222)

The assignment of the components is done in such a way that
the form factor changes sign under any fourfold rotation.

The resulting superconducting form factors fn and the
products cn fn, which are required to determine the IP nodes,
are listed in Tables XX and XXI, respectively, to the leading
order. The condition for IP nodes reads as

c0(k) f0(k) − �c(k) · �f (k)

= δ̃A2g+
[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
− δ̃T1g+

[
k2

y k2
z

(
k2

y − k2
z

) + k2
z k2

x

(
k2

z − k2
x

)
+ k2

x k2
y

(
k2

x − k2
y

)]
= 0, (223)

where the contributions of type (b) cancel. This is again an
artifact of having used the same basis functions for cn and fn.
For general basis functions, the terms do not cancel, but they
do not change the conclusions. The above expression vanishes
whenever any two of the three components of k are equal.
There are line nodes in the {110} planes for infinitesimal
pairing.

Next, we consider the TRS-breaking state where the am-
plitude from T1g+ ⊗ T2g+ has a phase shift of π/2 relative
to the amplitude from Eg+ ⊗ Eg+. The real and imaginary

parts of the condition for IP nodes have the same momentum
dependence. Hence, the line nodes of the real and imaginary
parts coincide and the TRS-breaking state retains the six line
nodes in the mirror planes. The form factors in the (110) plane
read as

f0(k) = f3(k) = f5(k) = 0, (224)

f1(k) = −iδT1g+kzkx
(
k2

z − k2
x

)
, (225)

f2(k) = iδT1g+kzkx
(
k2

z − k2
x

)
, (226)

f4(k) = − 2√
3

δEg+
(
k2

z − k2
x

)
, (227)

with δT1g+ and δEg+ real, which gives

〈 f 1, f 1〉 = −4

3
δ2

Eg+

(
k2

z − k2
x

)2
, (228)

〈 f 2, f 2〉 = −2 δ2
T1g+k2

z k2
x

(
k2

z − k2
x

)2
, (229)

〈 f 1, f 2〉 = 0, (230)

TABLE XX. Leading-order polynomial forms of the form factors
fn(k) describing A2g+ pairing for electrons with angular momentum
j = 3/2.

n fn

0 δA2g+
[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
1 δT1g+ kykz

(
k2

y − k2
z

)
2 δT1g+ kzkx

(
k2

z − k2
x

)
3 δT1g+ kxky

(
k2

x − k2
y

)
4 − δEg+√

3

(
2k2

z − k2
x − k2

y

)
5 δEg+

(
k2

x − k2
y

)
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TABLE XXI. Leading-order polynomial forms of the products
cn(k) fn(k) of form factors describing A2g+ pairing for electrons with
angular momentum j = 3/2. The amplitudes of the leading terms in
cn(k) have been absorbed into new pairing amplitudes marked by a
tilde.

n cn fn

0 δ̃A2g+
[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
1 δ̃T1g+ k2

y k2
z

(
k2

y − k2
z

)
2 δ̃T1g+ k2

z k2
x

(
k2

z − k2
x

)
3 δ̃T1g+ kxky

(
k2

x − k2
y

)
4 − δ̃Eg+√

3

(
k2

x − k2
y

)(
2k2

z − k2
x − k2

y

)
5

δ̃Eg+√
3

(
k2

x − k2
y

)(
2k2

z − k2
x − k2

y

)

and also 〈c, f 1〉 = 〈c, f 2〉 = 0. In this case, the Pfaffian sim-
plifies to

P(k) = (〈c, c〉 − 〈 f 1, f 1〉 − 〈 f 2, f 2〉)2 − 4〈 f 1, f 1〉〈 f 2, f 2〉.
(231)

The second term

−4〈 f 1, f 1〉〈 f 2, f 2〉 = − 32
3 δ2

Eg+δ2
T1g+k2

z k2
x

(
k2

z − k2
x

)4
(232)

is generically negative. Thus we expect all the line nodes
to inflate for strong coupling unlike for the two examples
of A2g+ pairing discussed above. The inflated line nodes are
not attached to the normal-state Fermi surface. However, the
inflation vanishes in special high-symmetry directions: On the
[111] axis, 〈 f 1, f 1〉 = 〈 f 2, f 2〉 = 0, thus the nodes are not
inflated and stick to the normal-state Fermi surface. For [001]
and [110], nodes are also not inflated because there is only a
single amplitude from Eg+ ⊗ Eg+ and its phase can be gauged
away. Moreover, along these directions 〈 f 1, f 1〉 and 〈 f 2, f 2〉
are not both zero. Thus here the nodes are neither inflated
nor attached to the normal-state Fermi surface. The vanishing
inflation in high-symmetry directions implies that the BFSs
have self-touching points there. Interestingly, [111] is the
direction in which three weak-coupling line nodes intersect
whereas two intersect in the [001] direction and there is no
intersection in the [110] direction.

2. Eg+ pairing

We consider Eg+ pairing as an example for a symmetry that
is also possible for purely local pairing. The question is what
changes for nonlocal pairing. Eg+ appears in six places in Ta-
ble XIX: (a) A1g+ ⊗ Eg+, (b) A2g+ ⊗ Eg+, (c) Eg+ ⊗ A1g+, (d)
Eg+ ⊗ Eg+, (e) T1g+ ⊗ T2g+, and (f) T2g+ ⊗ T2g+. The matrix-
valued basis functions are given in the following to leading
order only.

(a) For A1g+ ⊗ Eg+, we find constants to leading order:

Dx2−y2,A1g+ (k) ∼= h4 = J2
x − J2

y , (233)

D3z2−r2,A1g+ (k) ∼= h5 = 1√
3

(
2J2

z − J2
x − J2

y

)
. (234)

These are of course the contributions from local pairing [1,2].

TABLE XXII. Leading-order polynomial forms of the form
factors fn(k) describing Eg+ pairing for electrons with angular mo-
mentum j = 3/2.

n fn

0 δ1
0

(
k2

x − k2
y

) + δ2
0√
3

(
2k2

z − k2
x − k2

y

)
1

( δ1
T1g+√

3
+ δ2

T1g+
)

kykz

(
k2

y − k2
z

) + (−δ1
T2g+ + δ2

T2g+√
3

)
kykz

2
( δ1

T1g+√
3

− δ2
T1g+

)
kzkx

(
k2

z − k2
x

) + (
δ1

T2g+ + δ2
T2g+√

3

)
kzkx

3 − 2δ1
T1g+√

3
kxky

(
k2

x − k2
y

) − 2δ2
T2g+√

3
kxky

4 δ1
A1g+ − δ2

A2g+
[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
+ δ1

Eg+√
3

(
2k2

z − k2
x − k2

y

) + δ2
Eg+

(
k2

x − k2
y

)
5 δ2

A1g+ + δ1
A2g+

[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
+ δ1

Eg+
(
k2

x − k2
y

) − δ2
Eg+√

3

(
2k2

z − k2
x − k2

y

)

(b) For A2g+ ⊗ Eg+:

Dx2−y2,A2g+ (k)

∼= [
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
h5 (235)

D3z2−r2,A2g+ (k)

∼= −[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
h4.

(236)

(c) For Eg+ ⊗ A1g+:

Dx2−y2,0(k) ∼= (
k2

x − k2
y

)
h0, (237)

D3z2−r2,0(k) ∼= 1√
3

(
2k2

z − k2
x − k2

y

)
h0. (238)

(d) For Eg+ ⊗ Eg+:

Dx2−y2,Eg+ (k) ∼= 1√
3

(
2k2

z − k2
x − k2

y

)
h4 + (

k2
x − k2

y

)
h5,

(239)

D3z2−r2,Eg+ (k) ∼= (
k2

x − k2
y

)
h4 − 1√

3

(
2k2

z − k2
x − k2

y

)
h5.

(240)

(e) For T1g+ ⊗ T2g+:

Dx2−y2,T1g+ (k) ∼= 1√
3

[
kykz

(
k2

y − k2
z

)
h1

+kzkx
(
k2

z − k2
x

)
h2 − 2 kxky

(
k2

x − k2
y

)
h3

]
,

(241)

D3z2−r2,T1g+ (k) ∼= kykz
(
k2

y − k2
z

)
h1 − kzkx

(
k2

z − k2
x

)
h2. (242)

(f) For T2g+ ⊗ T2g+:

Dx2−y2,T2g+ (k) ∼= −kykz h1 + kzkx h2, (243)

D3z2−r2,T2g+ (k) ∼= 1√
3

(kykz h1 + kzkx h2 − 2 kxky h3). (244)

The resulting superconducting form factors fn(k) are given
in Table XXII and the products cn(k) fn(k) appearing in the
condition (40) for IP nodes are shown in Table XXIII. The
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TABLE XXIII. Leading-order polynomial forms of the products
cn(k) fn(k) of form factors describing Eg+ pairing for electrons with
angular momentum j = 3/2. The amplitudes of the leading terms in
cn(k) have been absorbed into new pairing amplitudes marked by a
tilde.

n cn fn

0 δ̃1
0

(
k2

x − k2
y

) + δ̃2
0√
3

(
2k2

z − k2
x − k2

y

)
1

( δ̃1
T1g+√

3
+ δ̃2

T1g+
)

k2
y k2

z

(
k2

y − k2
z

) + (−δ̃1
T2g+ + δ̃2

T2g+√
3

)
k2

y k2
z

2
( δ̃1

T1g+√
3

− δ̃2
T1g+

)
k2

z k2
x

(
k2

z − k2
x

) + (
δ̃1

T2g+ + δ̃2
T2g+√

3

)
k2

z k2
x

3 − 2δ̃1
T1g+√

3
k2

x k2
y

(
k2

x − k2
y

) − 2δ̃2
T2g+√

3
k2

x k2
y

4 δ̃1
A1g+

(
k2

x − k2
y

) − δ̃2
A2g+

(
k2

x − k2
y

)
× [

k4
x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
+ δ̃1

Eg+√
3

(
k2

x − k2
y

)(
2k2

z − k2
x − k2

y

) + δ̃2
Eg+

(
k2

x − k2
y

)2

5
δ̃2

A1g+√
3

(
2k2

z − k2
x − k2

y

) + δ̃1
A2g+√

3

(
2k2

z − k2
x − k2

y

)
× [

k4
x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
+ δ̃1

Eg+√
3

(
k2

x − k2
y

)(
2k2

z − k2
x − k2

y

)
− δ̃2

Eg+
3

(
2k2

z − k2
x − k2

y

)2

analysis is analogous to the previous cases of Eg+ pairing:
by inserting ky = ±kx, one can see that the contribution to
〈c, f 〉 from x2 − y2 basis functions (with amplitudes δ̃1

···) has
two symmetry-imposed first-order line nodes for ky = ±kx.
In a time-reversal-symmetric state, the inclusion of 3z2 − r2

basis functions generically leads to two line nodes elsewhere
on the normal-state Fermi surface. The nodes must intersect
with the 〈111〉 axes. TRS-breaking states generically lead to
point nodes in the 〈111〉 directions, for example for order
parameters proportional to (1, i). These point nodes are solely
determined by symmetry. The presence of these eight point
nodes was also found for purely local pairing [2]. We thus
find that the inclusion of nonlocal pairing does not change the
nodal structure.

For purely local pairing, the point nodes are inflated into
BFSs for noninfinitesimal pairing [2]. We briefly sketch the
analysis when nonlocal pairing is included. We consider the
Pfaffian on the [111] axis, k = k (1, 1, 1)/

√
3. Table XXII

then shows that

f0(k) = 0, (245)

f1(k) = −
δ1

T2g+

3
k2 +

δ2
T2g+

3
√

3
k2, (246)

f2(k) =
δ1

T2g+

3
k2 +

δ2
T2g+

3
√

3
k2, (247)

f3(k) = −
2 δ2

T2g+

3
√

3
k2, (248)

f4(k) = δ1
A1g+ , (249)

f5(k) = δ2
A1g+ . (250)

For the generalized (1, i) pairing state with δ2
A1g+ = iδ1

A1g+ ,

δ2
T2g+ = iδ1

T2g+ , and δ1
A1g+ , δ1

T2g+ ∈ R, we find

〈 f 1, f 1〉 = 〈 f 2, f 2〉 = −2k4

9

(
δ1

T2g+

)2 − (
δ1

A1g+

)2
, (251)

〈 f 1, f 2〉 = 0. (252)

On the other hand, the normal-state form factors are, to lead-
ing order,

c0(k) = c(0)
0 , (253)

c1(k) = c2(k) = c3(k) = c(2)
2

3
k2, (254)

c4(k) = c5(k) = 0. (255)

It follows that

〈c, c〉 = (
c(0)

0

)2 −
(
c(2)

2

)2

9
k4, (256)

〈c, f 1〉 = 〈c, f 2〉 = 0. (257)

The analysis is thus analogous to the previous two examples
with Eg+ pairing. The point nodes are inflated into BFSs,
which touch the normal-state Fermi surface. Hence, the inclu-
sion of nonlocal pairing does not affect the phenomenology
for this pairing state. Note that only two of the six contribu-
tions (a)–(f) lead to inflation in the [111] direction, namely
the local A1g+ ⊗ Eg+ contribution and the T2g+ ⊗ T2g+ contri-
bution. For this to happen, there must be a pair of nonzero
amplitudes with nontrivial phase difference in at least one of
these two channels.

3. T1g+ pairing

The irrep T1g+ provides an example for a pairing state that
cannot occur for local pairing in the j = 3/2 model but un-
like A2g+ is multidimensional. T1g+ pairing emerges in seven
places in Table XIX: (a) A2g+ ⊗ T2g+, (b) Eg+ ⊗ T2g+, (c)
T1g+ ⊗ A1g+, (d) T1g+ ⊗ T2g+, (e) T1g+ ⊗ Eg+, (f) T2g+ ⊗ T2g+,
and (g) T2g+ ⊗ Eg+. We give the the matrix-valued basis func-
tions to the leading order only.

(a) For A2g+ ⊗ T2g+:

Dx,A2g+ (k)

∼= [
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
h1, (258)

Dy,A2g+ (k)

∼= [
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
h2, (259)

Dz,A2g+ (k)

∼= [
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
h3. (260)

(b) For Eg+ ⊗ T2g+:

Dx,Eg+ (k) ∼= (
k2

y − k2
z

)
h1, (261)

Dy,Eg+ (k) ∼= (
k2

z − k2
x

)
h2, (262)

Dz,Eg+ (k) ∼= (
k2

x − k2
y

)
h3. (263)
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(c) For T1g+ ⊗ A1g+:

Dx,T1g+ (k) ∼= kykz
(
k2

y − k2
z

)
h0, (264)

Dy,T1g+ (k) ∼= kzkx
(
k2

z − k2
x

)
h0, (265)

Dz,T1g+ (k) ∼= kxky
(
k2

x − k2
y

)
h0. (266)

(d) For T1g+ ⊗ T2g+:

D′
x,T1g+ (k) ∼= kzkx

(
k2

z − k2
x

)
h3 + kxky

(
k2

x − k2
y

)
h2, (267)

D′
y,T1g+ (k) ∼= kxky

(
k2

x − k2
y

)
h1 + kykz

(
k2

y − k2
z

)
h3, (268)

D′
z,T1g+ (k) ∼= kykz

(
k2

y − k2
z

)
h2 + kzkx

(
k2

z − k2
x

)
h1. (269)

(e) For T1g+ ⊗ Eg+:

D′′
x,T1g+ (k) ∼= kykz

(
k2

y − k2
z

)(√
3

2
h4 − 1

2
h5

)
, (270)

D′′
y,T1g+ (k) ∼= −kzkx

(
k2

z − k2
x

)(√
3

2
h4 + 1

2
h5

)
, (271)

D′′
z,T1g+ (k) ∼= kxky

(
k2

x − k2
y

)
h5. (272)

(f) For T2g+ ⊗ T2g+:

Dx,T2g+ (k) ∼= kzkx h3 − kxky h2, (273)

Dy,T2g+ (k) ∼= kxky h1 − kykz h3, (274)

Dz,T2g+ (k) ∼= kykz h2 − kzkx h1. (275)

(g) For T2g+ ⊗ Eg+:

D′
x,T2g+ (k) ∼= −kykz

(
1

2
h4 +

√
3

2
h5

)
, (276)

D′
y,T2g+ (k) ∼= kzkx

(
−1

2
h4 +

√
3

2
h5

)
, (277)

D′
z,T2g+ (k) ∼= kxky h4. (278)

The analysis is analogous to the one for a system with
two s orbitals; see Sec. III A 4. The resulting superconducting
form factors fn(k) are given in Table XXIV and the products
cn(k) fn(k) appearing in the condition (40) for IP nodes are
shown in Table XXV. Hence,

c0(k) f0(k) − �c(k) · �f (k)

=
[
δ̃x,T1g+ − δ̃x,Eg+ + δ̃x,A2g+

(
k2

z − k2
x

)(
k2

x − k2
y

)

+ δ̃x,T ′
1g+ k2

x −
δ̃x,T ′′

1g+√
3

(
2k2

x − k2
y − k2

z

)

− δ̃x,T ′
2g+

]
kykz

(
k2

y − k2
z

) + . . . , (279)

where two terms with cyclically permuted indices x, y,
and z have been suppressed. For broken TRS, the pairing
states (1, i, 0) and (1, ω, ω2) with ω = e2π i/3, are plausible
[16,31,36]. We here consider the simpler (1, i, 0) state, which
has 18 point nodes in the 〈001〉, 〈101〉, and 〈111〉 directions
and one line node in the kz = 0 plane.

TABLE XXIV. Leading-order polynomial forms of the form
factors fn(k) describing T1g+ pairing for electrons with angular mo-
mentum j = 3/2.

n fn

0 δx,T1g+ kykz

(
k2

y − k2
z

) + δy,T1g+ kzkx

(
k2

z − k2
x

)
+ δz,T1g+ kxky

(
k2

x − k2
y

)
1 δx,A2g+

[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
+ δy,T ′

1g+ kxky

(
k2

x − k2
y

) + δz,T ′
1g+ kzkx

(
k2

z − k2
x

)
+ δy,T2g+ kxky − δz,T2g+ kzkx + δx,Eg+

(
k2

y − k2
z

)
2 δy,A2g+

[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
+ δz,T ′

1g+ kykz

(
k2

y − k2
z

) + δx,T ′
1g+ kxky

(
k2

x − k2
y

)
+ δz,T2g+ kykz − δx,T2g+ kxky + δy,Eg+

(
k2

z − k2
x

)
3 δz,A2g+

[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
+ δx,T ′

1g+ kzkx

(
k2

z − k2
x

) + δy,T ′
1g+ kykz

(
k2

y − k2
z

)
+ δx,T2g+ kzkx − δy,T2g+ kykz + δz,Eg+

(
k2

x − k2
y

)
4

√
3

2

[
δx,T ′′

1g+ kykz

(
k2

y − k2
z

) − δy,T ′′
1g+ kzkx

(
k2

z − k2
x

)]
− 1

2 (δx,T ′
2g+ kykz + δy,T ′

2g+ kzkx ) + δz,T ′
2g+ kxky

5 − 1
2

[
δx,T ′′

1g+ kykz

(
k2

y − k2
z

) + δy,T ′′
1g+ kzkx

(
k2

z − k2
x

)]
+ δz,T ′′

1g+ kxky

(
k2

x − k2
y

) −
√

3
2

(
δx,T ′

2g+ kykz − δy,T ′
2g+ kzkx

)

TABLE XXV. Leading-order polynomial forms of the products
cn(k) fn(k) of form factors describing T1g+ pairing for electrons with
angular momentum j = 3/2. The amplitudes of the leading terms in
cn(k) have been absorbed into new pairing amplitudes marked by a
tilde.

n cn fn

0 δ̃x,T1g+ kykz

(
k2

y − k2
z

) + δ̃y,T1g+ kzkx

(
k2

z − k2
x

)
+ δ̃z,T1g+ kxky

(
k2

x − k2
y

)
1 δ̃x,A2g+ kykz

[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
+ δ̃y,T ′

1g+ kxk2
y kz

(
k2

x − k2
y

) + δ̃z,T ′
1g+ kxkyk2

z

(
k2

z − k2
x

)
+ δ̃y,T2g+ kxk2

y kz − δ̃z,T2g+ kxkyk2
z + δ̃x,Eg+ kykz

(
k2

y − k2
z

)
2 δ̃y,A2g+ kzkx

[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
+ δ̃z,T ′

1g+ kxkyk2
z

(
k2

y − k2
z

) + δ̃x,T ′
1g+ k2

x kykz

(
k2

x − k2
y

)
+ δ̃z,T2g+ kxkyk2

z − δ̃x,T2g+ k2
x kykz + δ̃y,Eg+ kzkx

(
k2

z − k2
x

)
3 δ̃z,A2g+ kxky

[
k4

x

(
k2

y − k2
z

) + k4
y

(
k2

z − k2
x

) + k4
z

(
k2

x − k2
y

)]
+ δ̃x,T ′

1g+ k2
x kykz

(
k2

z − k2
x

) + δ̃y,T ′
1g+ kxk2

y kz

(
k2

y − k2
z

)
+ δ̃x,T2g+ k2

x kykz − δ̃y,T2g+ kxk2
y kz + δ̃z,Eg+ kxky

(
k2

x − k2
y

)
4

√
3

2

[
δ̃x,T ′′

1g+ kykz

(
k2

y − k2
z

) − δ̃y,T ′′
1g+ kzkx

(
k2

z − k2
x

)](
k2

x − k2
y

)
− 1

2 (δ̃x,T ′
2g+ kykz + δ̃y,T ′

2g+ kzkx )
(
k2

x − k2
y

)
+ δ̃z,T ′

2g+ kxky

(
k2

x − k2
y

)
5 − 1

2
√

3

[
δ̃x,T ′′

1g+ kykz

(
k2

y − k2
z

) + δ̃y,T ′′
1g+ kzkx

(
k2

z − k2
x

)]
× (

2k2
z − k2

x − k2
y

) +
δ̃z,T ′′

1g+√
3

kxky

(
k2

x − k2
y

)(
2k2

z − k2
x − k2

y

)
− 1

2 (δ̃x,T ′
2g+ kykz − δ̃y,T ′

2g+ kzkx )
(
2k2

z − k2
x − k2

y

)
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For noninfinitesimal pairing, we expect the nodes to be
inflated. For the nodes along the [001] direction, the form
factors read as

f0(k) = f3(k) = f4(k) = f5(k) = 0, (280)

f1(k) = −δEg+k2, (281)

f2(k) = iδEg+k2. (282)

We find 〈 f 1, f 1〉 = 〈 f 2, f 2〉 = −δ2
Eg+k4 and 〈 f 1, f 2〉 = 0 as

well as 〈c1, f 1〉 = 〈c2, f 2〉 = 0. In this case, the Pfaffian sim-
plifies to

P(k) = 〈c, c〉 (〈c, c〉 + 4δ2
Eg+k4

)
. (283)

The first factor changes sign at the normal-state Fermi surface
but the second factor does not and thus the Pfaffian changes
sign at the normal-state Fermi surface. Hence, the point nodes
in the 〈001〉 directions are inflated and remain attached to the
normal-state Fermi surfaces for arbitrarily strong coupling.

In the [101] direction, we have k = k(1, 0, 1)/
√

2 and the
form factors read as

f0(k) = f1(k) = f2(k) = 0, (284)

f3(k) = δT2g+

2
k2, (285)

f4(k) = −i
δT ′

2g+

4
k2, (286)

f5(k) = i

√
3 δT ′

2g+

4
k2. (287)

This implies 〈 f 1, f 2〉 = 0 but 〈 f 1, f 1〉 and 〈 f 2, f 2〉 are gener-
ally unequal. The Pfaffian is thus P(k) = [〈c, c〉 − 〈 f 1, f 1〉 −
〈 f 2, f 2〉]2 − 4 〈 f 1, f 1〉〈 f 2, f 2〉. The first term vanishes on a
renormalized Fermi surface. The second term

−4 〈 f 1, f 1〉〈 f 2, f 2〉 = − 1
4 δ2

T2g+δ2
T ′

2g+
k8 (288)

is generically negative. Hence, the Pfaffian generically be-
comes negative in the vicinity of the normal-state Fermi
surface but the BFS does not usually touch it. The Pfaffian
is identical for all 〈101〉 directions that are not in the kz = 0
plane.

Along [111], we have k = k (1, 1, 1)/
√

3 and

f0(k) = 0, (289)

f1(k) = i
δT2g+

3
k2, (290)

f2(k) = −δT2g+

3
k2, (291)

f3(k) = δT2g+

3
k2 − i

δT2g+

3
k2, (292)

f4(k) = −
δT ′

2g+

6
k2 − i

δT ′
2g+

6
k2, (293)

f5(k) = −
δT ′

2g+

2
√

3
k2 + i

δT ′
2g+

2
√

3
k2. (294)

We thus obtain

〈 f 1, f 2〉 = k4

18

(
2δ2

T2g+ + δ2
T ′

2g+

)
(295)

and

〈 f 1, f 1〉 = 〈 f 2, f 2〉 = −k4

9

(
2δ2

T2g+ + δ2
T ′

2g+

)
. (296)

The Pfaffian is

P(k) = [〈c, c〉 − 〈 f 1, f 1〉 − 〈 f 2, f 2〉]2

+ 4[〈 f 1, f 2〉2 − 〈 f 1, f 1〉〈 f 2, f 2〉], (297)

wherein the second term evaluates to

− k8

27

(
2δ2

T2g+ + δ2
T ′

2g+

)2
. (298)

Since this is generally negative we also expect the nodes to
inflate in the 〈111〉 directions but they are not attached to the
normal-state Fermi surface.

For the equatorial line node, we take k = (kx, ky, 0). The
superconducting form factors are

f0(k) = f3(k) = f4(k) = f5(k) = 0, (299)

f1(k) = δA2g+
(
k4

x k2
y − k4

y k2
x

) + δEg+ k2
y + iδT2g+kxky

+iδT ′
1g+kxky

(
k2

x − k2
y

)
, (300)

f2(k) = iδA2g+
(
k4

x k2
y − k4

y k2
x

) − iδEg+ k2
x − δT2g+ kxky

+δT ′
1g+kxky

(
k2

x − k2
y

)
. (301)

We find 〈 f 1, f 2〉 �= 0 and 〈 f 1, f 1〉 �= 〈 f 2, f 2〉. The Pfaffian
thus again has the form of Eq. (297). The second term reads
as

− 4k2
x k2

y

[
δ2

T2g+ − δ2
Eg+ − δA2g+δEg+

(
k2

x − k2
y

)2

+ (
δ2

A2g+k2
x k2

y − δ2
T ′

1g+

)(
k2

x + k2
y

)(
k2

x − k2
y

)]2
(302)

and is generically negative. We conclude that the equatorial
line node is inflated by noninfinitesimal pairing. The result-
ing BFS is toroidal but pinched on the kx and ky axes since
Eq. (302) gives zero there. Since the first term in Eq. (297) be-
comes zero close to but not at the normal-state Fermi surface
the BFS generically does not touch the normal-state Fermi
surface. This also holds on the kx and ky axes. The behavior
of the nodes is identical to the case of T1g+ pairing for two s
orbitals.

E. Orbital doublet

The discussion in Sec. III B suggests how to construct
further orbital models: the set of orbitals must be closed
under the action of the point group. This implies that the or-
bitals must transform like basis functions of one-dimensional
irreps or as complete sets of basis functions of multidimen-
sional irreps. In the previous examples, we have considered
two A1g orbitals and one A1g and one A2u orbital. As the
simplest example with a multidimensional irrep we here
analyze the case of two orbitals transforming like basis
functions of Eg. This is naturally realized by a doublet
of eg orbitals (dx2−y2 and d3z2−r2 ) per site. Since they are
of even parity we have UP = σ0 ⊗ σ0. Also, UT = σ0 ⊗ iσ2

holds.
The new aspect here is that the orbital part alone can

have higher-dimensional irreps. The irreps of Pauli matrices
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TABLE XXVI. Basis matrices on the internal Hilbert space for
the case of an Eg doublet of orbitals with spin and point group
Oh. The basis matrices are irreducible tensor operators of the irreps
listed in the second column. For multidimensional irreps, the states
transforming into each other under point-group operations are distin-
guished by the index in the third column.

hν Irrep Component

η0 ⊗ σ0 A1g+
η0 ⊗ σ1 T1g− 1
η0 ⊗ σ2 2
η0 ⊗ σ3 3
η1 ⊗ σ0 Eg+ 1
η2 ⊗ σ0 2

− 1
2 η1 ⊗ σ1 −

√
3

2 η2 ⊗ σ1 T2g− 1

− 1
2 η1 ⊗ σ2 +

√
3

2 η2 ⊗ σ2 2
η1 ⊗ σ3 3
√

3
2 η1 ⊗ σ1 − 1

2 η2 ⊗ σ1 T1g− 1

−
√

3
2 η1 ⊗ σ2 − 1

2 η2 ⊗ σ2 2
η2 ⊗ σ3 3
η3 ⊗ σ0 A2g−
η3 ⊗ σ1 T2g+ 1
η3 ⊗ σ2 2
η3 ⊗ σ3 3

in orbital space are the following: η0 ≡ σ0 belongs to A1g+.
The two matrices η1 ≡ σ1 and η2 ≡ −σ3 form an Eg+ doublet.
It is easy to check that under rotations η1 and η2 transform
like k2

x − k2
y and (2k2

z − k2
x − k2

y )/
√

3, respectively. Finally,
η3 ≡ σ2 belongs to A2g−.

In spin space, σ0 of course transforms according to
A1g+ and (σ1, σ2, σ3) form a T1g− triplet. Combining higher-
dimensional irreps from the orbital and spin parts, we obtain
reducible product representations. Thus Kronecker prod-
ucts of Pauli matrices in orbital and spin space have to
be linearly combined to construct the proper basis matri-
ces. (Such a construction is also implicit in Table XVIII
of basis matrices for the j = 3/2 case above.) Specif-
ically, we require the nontrivial reduction Eg+ ⊗ T1g− =
T1g− ⊕ T2g−. The resulting basis matrices are presented in
Table XXVI.

The basis matrices relevant for the normal-state Hamilto-
nian and for even-parity pairing are

h0 ≡ η0 ⊗ σ0 A1g+, (303)

h1 ≡ η3 ⊗ σ1 T2g+, (304)

h2 ≡ η3 ⊗ σ2 T2g+, (305)

h3 ≡ η3 ⊗ σ3 T2g+, (306)

h4 ≡ η1 ⊗ σ0 Eg+, (307)

h5 ≡ η2 ⊗ σ0 Eg+. (308)

TABLE XXVII. Classification of the Gell-Mann matrices acting
on orbital space for a T2g orbital triplet and point group Oh. The
matrices are irreducible tensor operators of the irreps listed in the
second column. For multidimensional irreps, the states transforming
into each other under point-group operations are distinguished by the
index in the third column.

Matrix Irrep Component

λ0 A1g+
λ3 T2g+ 1
λ2 2
λ1 3
λ6 T1g− 1
−λ5 2
λ4 3
λ7 Eg+ 1
−λ8 2

The symmetry properties are thus the same as for the j = 3/2
case. Hence, the analysis of pairing states is completely anal-
ogous to Sec. III D, except for the different definition of the
basis matrices hn.

F. Orbital triplet

We briefly consider the case of three t2g orbitals per site of
a cubic lattice, i.e., dyz, dzx, and dxy orbitals. In this example,
the dimension of the internal Hilbert space is N = 6 and
according to Appendix A there are 15 basis matrices for the
normal-state Hamiltonian and even-parity superconductivity.
Their algebra is much more complicated than for N = 4. In
particular, they do not anticommute pairwise. We require a
basis of 3 × 3 matrices that act on the orbital space. We take
the Gell-Mann matrices [21]

λ0 =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, (309)

λ1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, λ2 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, λ3 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠,

(310)

λ4 =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠, λ5 =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, λ6 =

⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠,

(311)

λ7 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, λ8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠. (312)

The associated irreps are given in Table XXVII. The Gell-
Mann matrices have to be combined with the Pauli matrices
acting on spin space to form basis matrices for the com-
bined internal degrees of freedom. σ0 of course transforms
according to A1g+ and (σ1, σ2, σ3) to T1g−. Possible basis
matrices for HN (k) and even-parity pairing must belong to
g+ irreps. They can thus be constructed by combining λ j

for j ∈ {0, 1, 2, 3, 7, 8} with σ0 and by combining λ j with
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TABLE XXVIII. Basis matrices on the internal Hilbert space
for the case of an T2g triplet of orbitals with spin and point group
Oh. Unlike for the previous examples, only the basis matrices hn

allowed in the normal-state Hamiltonian and for even-parity pairing
are listed. The basis matrices are irreducible tensor operators of the
irreps listed in the second column. For multidimensional irreps, the
states transforming into each other under point-group operations are
distinguished by the index in the third column.

hn Irrep Component

h0 ≡ λ0 ⊗ σ0 A1g+
h1 ≡ λ3 ⊗ σ0 T2g+ 1
h2 ≡ λ2 ⊗ σ0 2
h3 ≡ λ1 ⊗ σ0 3
h4 ≡ λ7 ⊗ σ0 Eg+ 1
h5 ≡ −λ8 ⊗ σ0 2
h6 ≡ λ6 ⊗ σ1 − λ5 ⊗ σ2 + λ4 ⊗ σ3 A1g+
h7 ≡ λ6 ⊗ σ1 + λ5 ⊗ σ2 Eg+ 1
h8 ≡ 1√

3
(2λ4 ⊗ σ3 − λ6 ⊗ σ1 + λ5 ⊗ σ2) 2

h9 ≡ −λ5 ⊗ σ3 − λ4 ⊗ σ2 T1g+ 1
h10 ≡ λ4 ⊗ σ1 − λ6 ⊗ σ3 2
h11 ≡ λ6 ⊗ σ2 + λ5 ⊗ σ1 3
h12 ≡ −λ5 ⊗ σ3 + λ4 ⊗ σ2 T2g+ 1
h13 ≡ λ4 ⊗ σ1 + λ6 ⊗ σ3 2
h14 ≡ λ6 ⊗ σ2 − λ5 ⊗ σ1 3

j ∈ {4, 5, 6} with σ1, σ2, or σ3. The relevant product represen-
tations are either trivial or involve the reduction T1g− ⊗ T1g− =
A1g+ ⊕ Eg+ ⊕ T1g+ ⊕ T2g+. The 15 allowed basis matrices and
the associated irreps are shown in Table XXVIII. Here, we
have not chosen any special normalization, except that the
entries belonging to the same multiplets have consistent nu-
merical factors. There are also 21 basis matrices belonging to
g− irreps, which are disallowed as pairing matrices and are
not listed for simplicity.

The normal-state Hamiltonian reads as

HN (k) =
14∑

n=0

cn(k) hn, (313)

where cn(k) transforms like hn. For even-parity superconduc-
tivity, we can combine the 15 matrices hn with form factors
fn(k) belonging to all the g+ irreps. This obviously generates
pairing states for all g+ irreps. Any pairing state can be
expressed in terms of a pairing matrix of the form

D(k) =
14∑

n=0

fn(k) hn. (314)

Moreover, all even-parity pairing states other than A2g+ can
occur for purely local pairing, i.e., with constant form factors,
because the basis matrices hn in Table XXVIII cover all g+
irreps except A2g+. Another interesting observation is that
purely local pairing with trivial (A1g+) symmetry now allows
for an orbitally nontrivial contribution from h6.

All pairing states including nonlocal contributions can be
constructed as described above. For the present case of N =
6, we typically find a larger number of contributions than

for N = 4. For example, Eg+ pairing can result from the
products (form factor times basis matrix) (a) A1g+ ⊗ Eg+, (b)
A2g+ ⊗ Eg+, (c) Eg+ ⊗ A1g+, (d) Eg+ ⊗ Eg+, (e) T1g+ ⊗ T1g+,
(f) T1g+ ⊗ T2g+, (g) T2g+ ⊗ T1g+, and (h) T2g+ ⊗ T2g+.

The leading-order contribution of type (a) to the pairing
matrix reads as

Dx2−y2,A1g+ (k) ∼= δ0 λ7 ⊗ σ0 + δ1 (λ6 ⊗ σ1 + λ5 ⊗ σ2),
(315)

D3z2−r2,A1g+ (k) ∼= −δ0 λ8 ⊗ σ0 + δ1√
3

(2λ4 ⊗ σ3

− λ6 ⊗ σ1 + λ5 ⊗ σ2), (316)

where one of the constants δ0 and δ1 could be set to unity. We
omit the construction of the other contributions.

The expression F (k) = ∑
n cn(k) fn(k) transforms like the

pairing matrix D(k) and the condition F (k) = 0 determines
the location of IP nodes, as shown in Sec. II. In principle, we
can now obtain the form factors cn(k) appearing in Eq. (313)
and fn(k) in Eq. (314) and thus F (k) and the IP nodal struc-
ture. Pairing of not infinitesimal amplitude, in particular the
existence of BFSs, could then be analyzed following Sec. II.
This requires the calculation of the Pfaffian Pf H̃(k). Due to
the absence of simple algebraic relations between the basis
matrices hn, there is no simple analytical expression in terms
of the functions cn(k) and fn(k) so that such an analysis would
likely require a numerical study of Pf H̃(k). We do not execute
this program here. BFSs have been predicted for Eg+ pairing
in an N = 6 model for Sr2RuO4 [21], which has the point
group D4h.

IV. DISCUSSION AND CONCLUSIONS

We have analyzed possible superconducting pairing sym-
metries for materials with local degrees of freedom beyond
the electronic spin, such as orbital or basis site. Local degrees
of freedom can enable unconventional pairing, in particular
with BFSs. We find that this is the case even in the simple
(and somewhat artificial) case of two s orbitals at each lattice
site, where the orbital index appears to be a spectator: Such
a model permits orbitally nontrivial pairing of T1g symmetry.
The main step taken in this paper is to go beyond local pairing.
This implies that not only the normal state is characterized by
momentum-dependent form factors cn(k) but also the super-
conducting pairing is characterized by momentum-dependent
form factors fn(k). In case of even-parity pairing, the func-
tions fn(k) have the same symmetry properties as the cn(k).

There are three distinct types of contributions to pairing
with nontrivial symmetry: (a) purely local pairing which is
internally anisotropic, (b) internally isotropic pairing with
nontrivial momentum-space form factors, and (c) contribu-
tions with nontrivial internal and momentum-space structure.
Type (a) has been studied in Refs. [1,2], whereas type (b) is
exemplified by dx2−y2 pairing in cuprates. Types (a) and (c)
are internally anisotropic, which means that the pairing matrix
�(k) = D(k)UT acts nontrivially on the internal degrees of
freedom. D(k) then contains one or more basis matrices on the
internal Hilbert space that are not proportional to the identity
matrix.
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Nonlocal pairing permits symmetries of pairing states that
usually cannot all be realized for local pairing. In fact, all
even-parity (g) irreps of the magnetic point group occur for
nonlocal pairing since they all have momentum-space basis
functions and thus at least permit a contribution of type (b). In
particular, there is always at least one basis matrix belonging
to the trivial irrep, which is even, namely the identity ma-
trix. Since the constant function of momentum also has full
symmetry, local pairing with full, trivial symmetry is always
allowed. Of course, it can be energetically suppressed by a
local repulsive interaction.

The example of two orbitals of opposite parity reveals that
if parity acts nontrivially on the internal degrees of freedom,
basis matrices become possible that are odd under parity; see
Sec. III B. These basis matrices can combine with odd-in-
momentum form factors to form even-parity superconducting
states [22,46].

Odd-parity superconductivity is characterized by u+ ir-
reps (odd under inversion, even under time reversal), which
requires g− basis matrices and u− form factors fν (k). All
u− irreps possess momentum-space basis functions and thus
allow to write down such form factors. Moreover, inspection
of multiplication tables for irreps shows that for any magnetic
point group with inversion, the existence of one g− basis
matrix is sufficient to generate pairing states belonging to all
u+ irreps.

The IP nodes are determined by both the normal-state
and the corresponding superconducting form factors, cn(k)
and fn(k), respectively, not by the superconducting factors
alone. Specifically, the simple criterion

∑
n cn(k) fn(k) = 0

diagnoses the presence of IP nodes. The position of the IP
nodes is generically unaffected by nonlocal contributions to
the extent that it is determined by symmetry. It is then only
determined by the irrep of the pairing state. As a counterexam-
ple, for pairing belonging to the second (3z2 − r2) component
of Eg for the point group Oh, there are always two line nodes
but these do not lie in high-symmetry planes and are only
constrained to pass through the 〈111〉 directions.

Pairing states belonging to one-dimensional irreps can
break TRS if the pairing has more than one contribution,
which allows nontrivial phase factors. In the resulting TRS-
breaking state, the symmetry-imposed line nodes of the
time-reversal-symmetric state persist for infinitesimal pairing.
The same mechanism is also possible for multidimensional
irreps, in addition to the more natural case of phase factors
between different components.

If the pairing strength is not infinitesimal the point or line
nodes can be inflated into BFSs. Like for local pairing [1,2],
the BFSs are given by the zeros of the Pfaffian P(k) of the
BdG Hamiltonian, unitarily transformed into antisymmetric
form. There are three possible cases for the inflated nodes: (1)
they are forced to contain the original node and thus remain
attached to the normal-state Fermi surface, (2) they do not
remain attached to the original node and thus generically shift
away from the normal-state Fermi surface with increasing
pairing strength, or (3) inflated line nodes remain attached
to the original line node only in high-symmetry directions
(we have only observed the situation that the inflation also
vanishes there). For increasing pairing, the BFSs typically
grow and eventually merge. In case (2), the merged pockets

can eventually shrink and finally disappear if this does not vio-
late any remaining nonzero topological invariants they possess
[2,11]. In real materials, this only seems likely if the BFSs are
located inside small normal-state Fermi pocket(s) of a poor
metal. It is an intriguing open question whether the resulting
fully gapped superconducting state is topologically nontrivial.

In principle, new BFSs can emerge at strong coupling,
when quasiparticle bands are shifted through the Fermi
energy. However, we expect that such BFSs are usually en-
ergetically disfavored and that the system can avoid them by
developing a suitable momentum-dependent pairing ampli-
tude.

The case of an internal Hilbert space of dimension N = 4 is
special [9]. We here only discuss the standard case where the
internal degrees of freedom include the electron spin so that
the transformation PT squares to −1. Then, there are exactly
six basis matrices hn with simple algebraic properties: One of
them, h0 ∝ 1, commutes with all others, which anticommute
pairwise. This structures allows us to find relatively compact
expressions for the Pfaffian P(k) in terms of the form factors
cn(k) and fn(k). For N > 4, there is no comparable algebraic
structure and the Pfaffian could only be given explicitly in
terms of the components of the transformed Hamiltonian. The
number of terms in the resulting expression is exponentially
large in N .

It is useful to review and compare our results for one-
dimensional A2g+ pairing and multidimensional T1g+ pairing,
which illustrate some of our general remarks. Note that it
is hard to envision local degrees of freedom that realize an
operator with A2g+ symmetry, ultimately because of the high
minimum order l = 6 of basis functions. Hence, purely local
pairing is unlikely to exist and it indeed does not appear in the
examples we have considered. For infinitesimal pairing, the
A2g+ pairing state for any model has six symmetry-imposed
line nodes in the {110} mirror planes. Since they are present
in the real and imaginary parts of the gap function, they persist
for TRS-broken states.

We find that beyond infinitesimal pairing, the nodes of the
TRS-broken A2g+ states either persist as line nodes or are
inflated into BFSs. Specifically, the nodes are inflated in the
mirror planes for the electrons with effective spin j = 3/2
but not for the cases of two s orbitals and of two orbitals
of opposite parity. The origin of this difference is that for
the j = 3/2 case, in the mirror planes, the two amplitudes
δEg+ and δT 2g+ contribute to the Pfaffian whenever there is
a phase difference between them. For the other two cases,
there is a single amplitude in the mirror planes and its phase
can be gauged away. Thus there is no inflation. A general
insight here is that if only a single amplitude contributes in
some high-symmetry direction or plane the breaking of TRS
cannot lead to the formation of a BFS or of a gap since the
physics is (gauge) invariant under changes of the phase of this
amplitude. This argument also applies to multidimensional
irreps.

TRS-breaking pairing states are more natural for multidi-
mensional irreps. In our context, T1g+ is an interesting pairing
symmetry. Whereas it appears for purely local pairing in the
case of two s orbitals, it only appears for nonlocal pairing
for effective-spin-3/2 fermions. Our study suggests that for
both cases all point and line nodes appearing for TRS-broken
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T1g+ pairing state with order parameter (1, i, 0) are inflated for
noninfinitesimal pairing. The point nodes on the kz axis are the
only ones which remains attached to the normal-state Fermi
surface, while all other point and line nodes are shifted away
from the normal-state Fermi surface and thus could annihilate
for strong coupling.

To conclude, nonlocal pairing typically permits a much
larger number of possible pairing symmetries. Their nodal
structure, including the possibility of BFSs, can be analyzed
based on symmetry. For nodes at infinitesimal pairing, there is
a simple yet powerful criterion in terms of a scalar product of
form factors. The known criterion for the appearance of BFSs
in terms of a Pfaffian extends to nonlocal pairing and general
internal degrees of freedom and shows that BFSs generically
exist if the superconducting state breaks TRS.
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APPENDIX A: ENUMERATION OF BASIS MATRICES

In this Appendix, we obtain the number of basis ma-
trices that can occur and thus generically do occur in the
normal-state Hamiltonian HN (k). The same basis matrices can
appear in the pairing matrix D(k) for sT = −1 and even-parity
superconductivity as well as for sT = +1 and odd-parity
superconductivity, while in the other two cases, only the re-
maining basis matrices can appear in D(k). The statements
can be obtained in a more general framework but it might
be useful to present them using representation theory of point
groups.

The following theorem is proven: Let N be the dimension
of the Hilbert space describing the local degrees of freedom
in the normal state. Let P be the unitary parity operator on
this Hilbert space and let T be the antiunitary time-reversal
operator. Then the number of Hermitian basis matrices hn that
can appear in a normal-state Hamiltonian that respects PT
symmetry is

nh =
{

N (N+1)
2 for (PT )2 = +1,

N (N−1)
2 for (PT )2 = −1.

(A1)

As we shall see, the case (PT )2 = −1 can only occur for even
N . Results for small N are given in Table XXIX.

To show this, the normal-state Hamiltonian is expanded as

HN (k) =
nh∑

n=1

cn(k) hn. (A2)

Under the magnetic point group M, the functions cn(k) must
transform like the corresponding hn to ensure that HN (k) is
invariant. The operation PT is an element of M. The irreps
of M can be uniquely and exhaustively divided into irreps that

TABLE XXIX. Number of basis matrices hn that appear in a
normal-state Hamiltonian HN (k) with PT symmetry for the two
cases that PT squares to ±1. N is the dimension of the internal
Hilbert space. For (PT )2 = −1, which is the standard case, N has
to be even.

nh

N (PT )2 = +1 (PT )2 = −1

1 1 –
2 3 1
3 6 –
4 10 6
5 15 –
6 21 15

are even or odd under PT . Only the PT -even irreps have
momentum-space basis functions since the momentum k is
PT even. Hence, all PT -even and no PT -odd hν can occur
in Eq. (A2). The proposition is thus a statement about the
number nh of N × N basis matrices hν that are even under
PT .

Since PT is antiunitary there exists a unitary N × N
matrix UPT with PT = UPTK, where K is the complex con-
jugation. Then we have

(PT )2 = UPTKUPTK = UPT U ∗
PT . (A3)

Thus (PT )2 = ±1 is equivalent to UPT U ∗
PT = ±1 and, since

U ∗
PT is unitary, to UPT = ±(U ∗

PT )−1 = ±U T
PT .

Case 1: (PT )2 = +1 and symmetric UPT . For any unitary
symmetric N × N matrix UPT , there exists a unitary matrix Q
such that

UPT = QQT . (A4)

hν being even/odd under PT means UPT h∗
νU †

PT = ±hν ,
which due to the Hermiticity of hν is equivalent to

UPT hT
ν U †

PT = ±hν . (A5)

Equation (A4) then gives

QQT hT
ν Q∗Q† = ±hν, (A6)

which is equivalent to

QT hT
ν Q∗ = (Q†hνQ)T = ±Q†hνQ. (A7)

Note that kν ≡ Q†hνQ is Hermitian. The dimension of the
vector space over R of Hermitian N × N matrices that are
also symmetric is N (N + 1)/2. Hence, the dimension of the
vector space of Hermitian PT -even N × N and thus the num-
ber of PT -even basis elements hν also equals N (N + 1)/2.
Analogously, the dimension of the space of Hermitian N × N
matrices that are antisymmetric and thus the number of PT -
odd basis matrices equals N (N − 1)/2. Note that the sum of
the two numbers is N2, as expected.

Case 2: (PT )2 = −1 and antisymmetric UPT . For any uni-
tary antisymmetric N × N matrix UPT , there exists a unitary
matrix Q such that

UPT = Q�QT , (A8)
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with

� = iσ2 ⊗ 1, (A9)

which clearly means that N must be even. We therefore write
N = 2M. hν being even/odd under PT means

UPT hT
ν U †

PT = ±hν . (A10)

Equation (A8) gives

Q�QT hT
ν Q∗�†Q† = ±hν, (A11)

which is equivalent to

�QT hT
ν Q∗�† = �(Q†hνQ)T �† = ±Q†hνQ. (A12)

Let kν ≡ Q†hνQ (Hermitian). We write � and kν in block
form as

� =
(

0 1
−1 0

)
, (A13)

kν =
(

κ11 κ12

κ
†
12 κ22

)
, (A14)

where κ11 and κ22 are Hermitian. Equation (A12) can then be
written as

�kT
ν �† =

(
κT

22 −κT
12

−κ∗
12 κT

11

)
=

(±κ11 ±κ12

±κ
†
12 ±κ22

)
= ±kν .

(A15)
This yields the relations κT

12 = ∓κ12 and κ22 = ±κT
11, and kν

thus assumes the form

kν =
(

κ11 κ12

κ
†
12 ±κT

11

)
, (A16)

with κ
†
11 = κ11 and κT

12 = ∓κ12. The blocks are M × M ma-
trices. The dimension of the vector space spanned by the
kν is M2 + M(M − 1) = M(2M − 1) for the upper sign and
M2 + M(M + 1) = M(2M + 1) for the lower sign. The sum
is 4M2 = N2, as expected. Hence, the dimension of the vector
space of Hermitian N × N matrices that are even under PT
is N (N − 1)/2, whereas the dimension for PT -odd matrices
is N (N + 1)/2. Note that the two numbers are interchanged
compared to the case of (PT )2 = +1. This completes the
proof.

We are concerned with systems that satisfy TRS and in-
version symmetry separately. Then the PT -even (odd) irreps
are the g+ and u− (g− and u+) irreps. Moreover, the two
operations commute [24,34] and P squares to +1. Hence,
(PT )2 = T 2. If the internal degrees of freedom include the
electron spin we have T 2 = −1 [24] and even dimension
N . The case T 2 = +1 can only be realized if the spin does
not occur explicitly, for example because one spin state is
pushed to high energies by a magnetic field. Then T is not
the physical TRS but an effective antiunitary symmetry.

APPENDIX B: INFINITESIMAL-PAIRING NODES

In this Appendix, we discuss the IP nodes for sT = −1 and
odd-parity pairing and for the unconventional sign sT = +1
of time reversal squared. For sT = −1 and odd-parity pairing,
it is still true that infinitesimal pairing can be described in
a single-band, pseudospin picture. However, it is now in the

pseudospin-triplet channel. The pairing matrix in the effec-
tive single-band picture thus has the form Deff (k) = d(k) · σ,
where σ is the vector of Pauli matrices representing the pseu-
dospin. Since the pseudospin is even under inversion and odd
under time reversal its components belong to one or more g−
irreps. One can use representation theory to work out which
irreps the components of d(k) must belong to in order to
obtain a pairing state of a certain symmetry. The condition
d(k) = 0 then gives the symmetry-imposed IP nodes. Nodal
gaps are thus less likely than for singlet pairing since they
must satisfy three scalar conditions.

We now turn to the nonstandard case sT = +1. According
to Appendix A, this allows an effective single-band model
with Hilbert-space dimension N = 1. Equation (9) then im-
plies that UT = 1 and thus �(k) = D(k). The only Hermitian
basis matrix is h0 = 1. Hence, for a single-band model, the
full symmetry information is carried by the form factor f0(k).
h0 belongs to the trivial irrep, which of course is a g+ irrep.
Table I then shows that for N = 1 only odd-parity pairing with
u− form factor f0(k) is possible. The analysis of possible
pairing states is analogous to the case with sT = −1 and even
parity, except that g+ irreps are replaced by u− irreps.

Even-parity pairing states for sT = +1 cannot be described
by an effective N = 1 model but are possible for N = 2. In
fact, there are multiple possibilities to implement this case
because Eq. (9) now allows UT to be any symmetric unitary
2 × 2 matrix, while UP can be any unitary 2 × 2 matrix that
squares to 1. The specific UT and UP and thus the symmetry
properties of the 2 × 2 basis matrices h1, h2, h3 (which are lin-
ear combinations of Pauli matrices) depend on the underlying
system. Universal properties are therefore unlikely and we do
not pursue this here.

APPENDIX C: EXISTENCE AND PROPERTIES OF
THE PFAFFIAN

In this Appendix, we review the main results for the Pfaf-
fian. A simpler proof than in [1,2] is presented. The BdG
Hamiltonian (1) satisfies the charge-conjugation symmetry
UCHT (−k)U†

C = −H(k), where UC = σ1 ⊗ 1. For it to also
satisfy inversion symmetry, there must exist a unitary matrix
UP such that

UP H(−k)U†
P = H(k), (C1)

where

UP =
(

UP 0
0 U ∗

P

)
. (C2)

This is a special case of Eqs. (4) and (5). The two symmetries
imply CP symmetry,

UCP HT (k)U†
CP = −H(k), (C3)

with UCP = UCU∗
P . We find that CP squares to the identity

since

(UCPK)2 = UCPU∗
CP =

(
U 2

P 0
0 (U ∗

P )2

)
=

(
1 0
0 1

)
. (C4)

This implies that UCP = (U∗
CP )−1 = (U∗

CP )† = UT
CP so that UCP

is symmetric. For any (complex) symmetric matrix UCP, there
exists a unitary matrix � such that � = �UCP�T (note the
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transpose) is a diagonal matrix with real non-negative compo-
nents (Autonne-Takagi factorization [47,48]). � is evidently
unitary. A diagonal unitary matrix with non-negative com-
ponents must be � = 1. We thus obtain UCP = �†�∗ and
Eq. (C3) becomes

�†�∗ HT (k) �T � = −H(k). (C5)

This implies that

�∗ HT (k) �T = −�H(k) �†. (C6)

Hence, H̃(k) ≡ �H(k) �† is antisymmetric:

H̃T (k) = −H̃(k). (C7)

This shows that for systems with inversion symmetry, the
BdG Hamiltonian can always be unitarily transformed into
antisymmetric form. For the antisymmetric matrix H̃(k), the
Pfaffian Pf H̃(k) is well defined. Note that � is independent
of k (and is in fact solely determined by UCP) so that the
components of H̃(k) are smooth functions of k. Hence, the
Pfaffian, which is a polynomial of these components, is an
smooth function of k. The sign of the Pfaffian is inverted under
simultaneous interchange of two rows and the corresponding
two columns. This is a unitary transformation, which can be
absorbed into �. Hence, the above derivation only determines
the Pfaffian up to a sign.

If the dimension N of the local Hilbert space is even the
Pfaffian is real: The dimension 2N of the BdG Hamiltonian
H̃(k) is a multiple of four and thus the Pfaffian is a polynomial
of even degree of its the components. Since H̃(k) is Hermitian
and antisymmetric these components are purely imaginary.
Conversely, for odd N , the Pfaffian is purely imaginary. We
define

P(k) ≡
{

Pf H̃(k) for N even,

i Pf H̃(k) for N odd
(C8)

so that P(k) is always real.
Due to CP symmetry, the spectrum of the BdG Hamiltonian

is symmetric. We thus have

det H(k) = (−1)N
N∏

j=1

E2
j (k), (C9)

where ±Ej (k) are the quasiparticle energies. We assume
Ej (k) � 0 without loss of generality. The determinant equals
the square of the Pfaffian. This implies that

P(k) = ±
N∏

j=1

Ej (k). (C10)

At any momentum k not on a node, P(k) is strictly positive or
negative. We now choose � in such a way that in the normal
state P(k∞) is positive at some momentum k∞ far from the
normal-state Fermi surface. Then for not too large supercon-
ducting energy scale, the energies Ej (k∞) do not change sign
when superconductivity is switched on and P(k∞) remains
positive. Hence, at k∞, the sign in Eq. (C10) is +.

Since the Pfaffian and thus P(k) are smooth functions of
momentum P(k) can only change sign at nodes. Conversely,
if P(k) is negative somewhere in the Brillouin zone there must

be a surface of zeros, i.e., a BFS, separating the regions of
positive and negative P(k).

To determine under what conditions P(k) can actually
become negative, we need to analyze Eq. (C10). The eigenen-
ergies Ej (k) are continuous functions and are smooth, except
at zeros and potentially at crossing points. If a single Ej (k)
approaches zero linearly the smoothness of P(k) and the
choice Ej (k) � 0 requires the explicit sign in Eq. (C10) to
flip. Hence, P(k) changes sign and there must be a closed
BFS.

On the other hand, if two eigenenergies approach zero
linearly and simultaneously, for example because they are
degenerate, the explicit sign does not flip. In this case, P(k)
does not change sign at the zero but has a second-order zero
there. The same applies if a single eigenenergy approaches
zero quadratically. If the Pfaffian does not change sign the Z2

topological invariant, which is the relative sign of P(k) [1,2],
exists but is trivial. This makes BFSs unstable since for any
low-symmetry momentum k with P(k) = 0, an infinitesimal
change of parameters can make P(k) strictly positive.

For sT = −1, which implies even N , and preserved TRS,
Kramers’ theorem [24,34,49] shows that the spectrum has
twofold degeneracy for all k. Then, the latter case applies,
P(k) does not change sign, and BFSs are not stable. On the
other hand, for sT = +1 or broken TRS, there is no mecha-
nism that leads to twofold degeneracy everywhere, the P(k)
generically changes sign, and BFSs are stable.

APPENDIX D: THE ALGEBRA OF BASIS MATRICES

As shown in Appendix A, for N = 4 and (PT )2 = −1, six
basis matrices h0, ..., h5 appear in the normal-state Hamilto-
nian. One of them is (proportional to) the identity matrix, as
discussed in Sec. II. We choose h0 = 1. In this Appendix, we
show that the basis matrices can always be chosen in such a
way that they satisfy the generalized commutation relations

h0hn = hnh0 (D1)

for n = 1, 2, 3, 4, 5 and

hmhn = −hnhm (D2)

for m, n = 1, 2, 3, 4, 5 and m �= n. It is well known that (sev-
eral sets of) six 4 × 4 matrices with these properties exist
[33,34]. The point here is that the basis matrices always realize
this structure.

The matrices hn can be written as kn = Q†hnQ, with Q
unitary, where the kn satisfy Eq. (A16) with the upper sign and
κ

†
11 = κ11 and κT

12 = −κ12. For N = 4, κ11 and κ12 are 2 × 2
matrices. Then, κ11 has to be a linear combination of σ0, σ1,
σ2, σ3 with real coefficients and κ12 can be σ2 with an arbitrary
complex prefactor. A maximal set of linearly independent
matrices is then

k0 =
(

σ0 0
0 σ0

)
= σ0 ⊗ σ0, (D3)

k1 =
(

σ1 0
0 σ1

)
= σ0 ⊗ σ1, (D4)

k2 =
(

σ2 0
0 −σ2

)
= σ3 ⊗ σ2, (D5)
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k3 =
(

σ3 0
0 σ3

)
= σ0 ⊗ σ3, (D6)

k4 =
(

0 σ2

σ2 0

)
= σ1 ⊗ σ2, (D7)

k5 =
(

0 −iσ2

iσ2 0

)
= σ2 ⊗ σ2. (D8)

These matrices satisfy k0kn = knk0 for n = 1, 2, 3, 4, 5 and
kmkn = −knkm for m, n = 1, 2, 3, 4, 5 and m �= n. Moreover,
they are orthonormal with respect to the scalar product
Tr kmkn. The basis matrices hn, n = 0, . . . , 5, are related to
the kn by a unitary transformation. Since the kn satisfy the
generalized commutation relations so do the hn. The upshot is
that while the specific form of the basis matrices hn depends
on the model, their algebra does not. This result extends to
general Hilbert-space dimension N but the algebraic proper-
ties are more complicated for N > 4.

APPENDIX E: PFAFFIAN FOR THE
FOUR-DIMENSIONAL CASE

Here, we briefly discuss the analytical expression for the
Pfaffian P(k) of the transformed BdG Hamiltonian H̃(k) for
the case of sT = −1, N = 4, and even-parity pairing. The
Pfaffian exists and can be chosen to be a smooth function of
momentum k, as shown in Appendix C. Then the property
P2(k) = det H(k) fixes P(k) up to an overall sign. As dis-
cussed in Appendix C, we choose this sign so that P(k) > 0
far from the normal-state Fermi surface.

If the superconducting energy scale is not too large, the
Pfaffian is given in terms of the coefficients in Eq. (25) as

P(k) = 〈c, c〉2 + 〈 f 1, f 1〉2 + 〈 f 2, f 2〉2

+ 4 (〈c, f 1〉2 + 〈 f 1, f 2〉2 + 〈 f 2, c〉2)

− 2 (〈c, c〉 〈 f 1, f 1〉 + 〈 f 1, f 1〉 〈 f 2, f 2〉
+ 〈 f 2, f 2〉 〈c, c〉), (E1)

with the Minkowski-type scalar product

〈A, B〉 ≡ A0B0 −
5∑

n=1

AnBn. (E2)

This proposition is proved by evaluating P2(k) and show-
ing that it agrees with the determinant of the BdG Hamil-
tonian. This cumbersome calculation can be simplified by
realizing that the Pfaffian is invariant under simultaneous ro-
tations of the five-vectors

�c = (c1, c2, c3, c4, c5), (E3)

�f 1 = (
f 1
1 , f 1

2 , f 1
3 , f 1

4 , f 1
5

)
, (E4)

�f 2 = (
f 2
1 , f 2

2 , f 2
3 , f 2

4 , f 2
5

)
. (E5)

The sign of P(k) is also correct: The assumption of not too
large superconducting energy scale means that the f 1

n and f 2
n

for n = 0, . . . , 5 are small compared to the cn far from the
normal-state Fermi energy. Then, at such momenta we get
P(k) ∼= 〈c, c〉2 > 0.

For large superconducting energy scale, the whole Bril-
louin zone is affected by superconductivity and we cannot
choose the sign of P(k) by continuity from the normal state.
This simply means that there is no useful distinction between
the inside and the outside of the BFS. The conclusions of this
paper remain valid, though.
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