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Critical current in thin flat superconductors with Bean-Livingston and geometrical barriers
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Dependence of the critical current /. on the applied magnetic field H, is theoretically studied for a thin
superconducting strip of a rectangular cross section, taking an interplay between the Bean-Livingston and the
geometric barriers in the sample into account. It is assumed that bulk vortex pinning is negligible, and the
London penetration depth X is essentially less than the thickness d of the strip. To investigate the effect of these
barriers on /. rigorously, a two-dimensional distribution of the current over the cross section of the sample is
derived, using the approach based on the methods of conformal mappings. With this distribution, the dependence
I.(H,) is calculated for the fields H, not exceeding the lower critical field. This calculation reveals that the
following two situations are possible: (i) The critical current I.(H,) is determined by the Bean-Livingston barrier
in the corners of the strip. (ii) The geometrical barrier prevails at low H,, but with increasing magnetic field,
the Bean-Livingston barrier begins to dominate. The realization of one or the other of these two situations is

determined by the ratio A/d.
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I. INTRODUCTION

The Bean-Livingston [1] and geometrical [2] barriers are
important for understanding many phenomena in type-II su-
perconductors. In particular, these barriers lead to a hysteretic
magnetic behavior of the superconductors even in absence
of any bulk pinning of vortices [1-9]. They also influence
the magnetic relaxation [10,11] and transport properties of
the superconductors [12—15]. Various manifestations of the
Bean-Livingston and geometrical barriers were experimen-
tally studied in numerous works [16—44]. However, it was
demonstrated in Ref. [45] that an interplay between these
barriers should have a pronounced effect on any phenomenon
associated with the vortex penetration into a superconductor.
Below we theoretically study how this interplay influences
the dependence of I, the critical current of a platelet-shaped
type-1I superconductor, on the applied magnetic field H, per-
pendicular to the plane of the sample. For simplicity, we
assume that flux-line pinning is negligible in the supercon-
ductor.

As is known, the Bean-Livingston barrier in bulk super-
conductors is due to the attraction of a penetrating vortex
to the sample surface at the distances of the order of the
London penetration depth A [1]. The geometrical barrier has
another origin, and it is due to the shape of the superconductor
[2,19]. This barrier appears only for the samples different
from an ellipsoid. In particular, in the platelet-shaped super-
conductors the position-dependent energy of a penetrating
vortex sharply increases near the edges due to the increase
of the vortex length from zero to the sample thickness d and
decreases toward the center of the platelet due to the work
of the Meissner currents. It is necessary to emphasize that
the interplay of these barriers occurs only in the bulk super-
conductors when A < d. In the case of thin superconducting
films for which their thickness d is essentially less than the
London penetration depth A, the attraction of a vortex to the
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film edges develops on the scale noticeably larger than the
effective penetration depth Aor = A2/d > A, d [46] whereas
the effect of the vortex-length variation (i.e., the geometrical
barrier) is not essential in this case. Hence, only one type
of the barrier exists in this situation, and it was named as
the extended Bean-Livingston barrier [45]. In this paper we
shall study the case A < d only. For simplicity, we consider
a thin superconducting strip of a rectangular cross section of
width 2w (—w < x < w) and thickness d (—d/2 <y < d/2;
d <« w) which infinitely extends in the z direction (Fig. 1).
The strip is subjected to a perpendicular applied magnetic field
H, = (0, H,, 0), and it carries a total current / in the positive
z direction.

In the familiar approach to the calculation of the criti-
cal current I.(H,) [12,14,15], the sample is considered as
an infinitely thin strip, and the barriers are modeled by the
condition that the Lorentz force near the appropriate edge of
the strip should reach a certain critical value for vortices to
penetrate into the sample. At d >> A, if only the geometrical
barrier is considered, this approach leads to the following
estimate of 1. at H, = 0 [14]:

1.(0) ~ t~/2wd H,1,

where H,| is the lower critical field. Within this approach,
the existence of the Bean-Livingston barrier is taken into
account by the replacement of H.; by some phenomenolog-
ical field H), lying in the interval H,; < H, < H, [14] where
H. = H. 2k /Ink is the thermodynamic critical field, and «
is the Ginzburg-Landau parameter. On the other hand, in the
case d < A, one has

1.(0) = 7 C/2wAest japd ~ m~2wd H,,

where the numerical factor C lies in the interval from /2/m
to +/2 [12,15,32,47-49], and Jap = (2/3)**H,/x is depairing
current density [50]. It is seen that the expressions for 7.(0)

©2021 American Physical Society
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FIG. 1. The rectangular cross section of the infinitely long su-
perconducting strip of the width 2w and of the thickness d. The
magnetic field H, is applied along the y axis, and the current / flows
in the positive direction of the z axis (in the direction Z = [X X ¥]
where X, § are the unit vectors along the x and y axes, respectively).
The points a, b, c, e, f on the surfaces of the strip correspond to
the following values of the parameter u: —1//1 —m, —1, 0, 1, and
1/4/1 — m, respectively.

derived in the regions d > A and d < A can agree at the
boundary of these regions, d ~ A, only if the relative role
of the Bean-Livingston barrier increases with decreasing d,
and H, reaches H, at this boundary. However, in order to
investigate if the decrease in d really enhances the role of
the Bean-Livingston barrier and how this interplay of the
barriers influences the critical current /., one cannot neglect
the thickness of the strip near its edges even in the case of thin
samples. In this paper, a two-dimensional distribution of the
current over the cross section of the strip is found that permits
one to answer these questions. In obtaining the distribution,
the approach of Refs. [45,51] is exploited which is based on
the methods of conformal mappings. For simplicity, we shall
imply below that the superconductor is isotropic and shall
restrict our consideration to the region of the applied magnetic
fields 0 < H, < H,1, in which the effect of the barriers on the
critical current is most pronounced.

The paper is structured as follows: In Sec. II we present
the two-dimensional distributions of the currents in the strip
with the rectangular cross section. The strip is either in the
Meissner state or in the state with a vortex dome. The re-
sults of this section are valid not only for the thin strips, but
also for samples with an arbitrary aspect ratio d/2w. Using
the distributions of the currents, in Sec. III we analyze the
Bean-Livingston and geometrical barriers in the thin strips,
and derive conditions of vortex entry into the sample and
vortex exit from it. Two scenarios of the vortex entry are also
discussed there. Using the vortex entry and exit conditions, the
critical current I.(H,) of the strips is calculated in Sec. IV. In
Sec. V we discuss the results of experiments [26-28,36] and
possibility to detect an unusual vortex state in the strip. The
obtained results are briefly summarized in the Conclusions,
and the Appendixes contain some mathematical details of the
calculations.

II. SURFACE CURRENTS IN THE STRIP
WITH RECTANGULAR CROSS SECTION

A. Strip in the Meissner state

For the strip in the Meissner state, the magnetic field
H(x, y) outside the sample can be found from the Maxwell
equations divH = 0 and rotH = 0, and hence the field can be
described both by the scalar potential ¢(x, y), H = —V¢, and

by the vector potential A = ZA(x, y), H = rotA, where Z is the
unit vector along the z axis. The complex potential ¢ — iA is
known to be an analytical function of x + iy [52]. For the strip
with the rectangular cross section and with nonzero H, and
1, this potential was obtained with a conformal mapping [51].
Calculating H = — V¢ with the use of the obtained potential
at the surface of the strip (H is tangential to the surface in the
Meissner state), one finds the Meissner sheet currents Jy;, = J,
flowing near this surface in the layer of the thickness ~A,

Ju =[x HJ, ey

where n is the outward normal to the surface of the sample at
the point of interest [52].

In the case H, # 0, I = 0, the above-mentioned mapping
was detailed in Ref. [45] and is presented in the Supplemental
Material [53], whereas in the case H, = 0, I # 0, the mapping
of the exterior of a circle to the exterior of a rectangle in
the x + iy plane reduces the problem for the strip to that of
a cylindrical wire. In the general case, H, £ 0 and I # 0,
the current Jjs is a superposition of the currents in these
two specific cases. To represent the obtained results, it is
convenient to parametrize the surface of the strip by a single
variable. Since at I =0, H, # 0 the Meissner currents are
symmetric about the x axis and antisymmetric about the y
axis, it is sufficient to deal with a quarter of the surface of
the strip (e.g., x > 0, y < 0) and to parametrize it with the
single variable ¢ changing from 0 to 1/./m [45]. Here m
is a constant parameter, 0 < m < 1, the value of which is
determined by the aspect ratio of the strip d /2w (see below).
However, in the general case when both I # 0 and H, # O,
only the reflection symmetry of the currents about the x axis
persists, and so in this paper we parametrize the upper half
of the surface of the strip (y > 0) by the single variable u.
This u changes from —1/+4/1 —mto 1/4/1 — m [54] (Fig. 1).
In particular, the upper surface of the strip (—w < x < w,
y = d/2) is parametrized as follows (—1 < u < 1):

w f(1,1—m)

where

' —m dv

o VT—mv?

= E(p. k) — (K')’F (¢, k), ?3)

k= m, k' =1 —m, ¢ = arcsin(u), F(p, k) and E(p, k)
are the incomplete elliptic integrals of the first and second
kinds, respectively. The points u = %1 correspond to the up-
per corners of the strip (£w, d/2). The constant parameter m
is found from the equation

d fm)  E(k) — (K)K(k)
2w f(,1—m)  EK)—kKE)’
where K (k) = F(r /2, k) and E(k) = E(;r /2, k) are the com-

plete elliptic integrals. The solution of this equation is
presented in Fig. 2. Atd < w, relation (4) leads to
2d

ma —. &)
Tw

fu,m)y=m

“
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FIG. 2. The dependences of d/2w on m at 0 <m < % and of
2w/d on m at % < m < 1 according to formula (4) (the solid line),
the dotted line depicts the function d/2w = wm/4 which corre-
sponds to Eq. (5). The dashed line shows the m dependence of the

ratio (1, m)/+/m that appears in Eq. (9).

The upper parts of the lateral surfaces (x = +w, 0 <y <
d/2), have the following parametric representation (1 < |u| <

1//1 —m):
2y _ fltum) ©
f(1,m)
where
1 _ 2
sy = J L= L =mw )
m

The values u = +1/4/1 —m correspond to the equatorial
points of the strip (+w, 0). For the thin strip (when d/w < 1
and m < 1), formula (6) can be represented in the explicit
form [45]

i)_l ~ %[arcsin(s) +5v1 =21, ®)

Interestingly, inaccuracy of this formula does not exceed 8%
evenatm = % (i.e., atd/2w = 1) and decreases with decreas-
ing d/2w. The above functions x(«) and y(u) are shown in
Fig. 3.

The Meissner currents on the upper and lateral surfaces
of the strip (i.e., in the whole interval —1/+/1 —m < u <
1/4/1 — m) are described by the unified formula

| (H Lf(l,l—m)) o)
/1 — 2| " 2rw JS1—m /)

Formulas (2)—(9) provide the quantitative description (in the
parametric form) of the surface Meissner currents in the strip,
including its edge regions. These formulas also enable one to
calculate the fractions of the total current / that flow on the
upper (lower) and on the two lateral surfaces of the strip,

dH,\/m
fmy’

Jyu(u) =

1
Ir; = — arcsin(y/m) £
T
I (10)
Iupper = lower = ; arcsin(+/1 — m),

1.5

FIG. 3. The dependences of x/w and 2y/d on the parameter u
at m = 0.1 (the solid line) and m = 0.5 (the dashed line) according
to formulas (2), (3), (6), and (7). The parameter u runs from O to
1/+/T — m. The dotted line corresponds to Eqs. (7) and (8) at m = 1

3

where the signs plus and minus refer to the currents on the
right (Ig) and left (I;) lateral surfaces, respectively. Of course,
I + Iz + Iupper + Lower = 1.

Consider now the above formulas in several limiting cases.
In the case of the thin strip (m <« 1), for the points on its
upper surface (u?> < 1) when these points are not too close to
the corners (1 — u? >> m, i.e., at w — x >> d), one finds from
Egs. (2) and (3) that x/w & u. Then, with Eq. (9), we arrive
at the well-known result obtained in the limit of the infinitely
thin strip [2,47,55,56]:

1 1
Tu(x,d/2) ~ ﬁ(ﬂfu + E) (1)
where we have taken into account that the factor f(1,1 —
m)/+/1 —m =~ 1 at m < 1 (Fig 2). On the other hand, near
the corners of the thin strip (for 1 — u?> < m or, equivalently,
at w — |x| < d) formula (2) can be rewritten in the explicit
form [45]

w—Xx

z%nf—nW—gm@+%§fh (12)
w

where s(u) is still given by Eq. (7). Now Jy,(x, d/2) is not
described by simple formula (11). In the limit |1 — #?| < m,
ie, at [=w—|x| Kd, or at [ = (d/2) — |y| <€ d/2, the
surface current diverges like /~!'/3 near the corners of the strip

[45,51]. In this limiting case formulas (2)—(4) and (9) lead to
the expression

N in\( (1—md "’
(414 5) (g i)

which is valid for the strip of an arbitrary thickness. Here

13)

1 fai—m
", Jiom (1

and the signs £ correspond to the right and left corners,
respectively. For the thin strips, expression (13) is further sim-
plified since iy ~ I/mrwH, and f(1,m) ~ am/4 at m < 1.
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The divergence of the current in Eq. (13) should be cut off at
[ < A, and the current density j throughout the corner region
[w—A<x<w, (d/2)— A < |yl £d/2] is approximately
constant, jeqm(x,y) ~ Jy(x = w — X)/A. In particular, in the
case of the thin strip we obtain

Jemm ™ A?/E(il T ><3Zdl\> : (15)

Finally, consider the case of a narrow slab carrying the trans-
port current / in the magnetic field H, parallel to its surface.
This case corresponds to d > 2w (i.e, to 1 —m < 1). For this
slab, when the coordinate y of a point on a lateral surface is not
close to the corners [i.e., at |u| > 1 and 1 — s(u) > 1 — m],
one finds from Eqs. (3) and (6) that 2y/d =~ s(u), whereas
Egs. (9), (4), and (7) give

Iu(y) = £H, (16)

1
N
where the estimate f(1,m)/+/m ~ 1 has been taken into ac-
count again for m — 1, and the signs =+ refer to the right and
left lateral surfaces, respectively. Note that the distribution of
the current over the surfaces is not uniform. This result is due
to the fact that the distributions of the transport current are
identical in the Meissner states of the thin strip and of the
narrow slab with the same aspect ratio, and so the distribution
in Eq. (16) agrees with that in formula (11). On the other
hand, the applied magnetic field H, generates the well-known
uniform surface sheet currents +H,,.

B. Strip with vortex dome

Using the results of Appendix A, one can find the surface
sheet currents generated by a vortex dome B,(ug) located
between points u(l) and ugz), u(()l) Lug < u(()z), on the upper
(and lower) surface of the strip where —1 < (()1) < u(()z) <1,
and By(up) is the magnetic induction at the point u. These
currents on the upper surface (—1 < u < 1) have the follow-
ing form:

1w dugBy(ug)y/1 — u}
) =~ / .
’ TS0 po(ug — u)v/'1 — u?
whereas on the lateral surfaces (1 < |u| < 1/4/1 —m) they
look like
1 4 duoBy(ug)y/1 — uf
Jo(u) = / RNE
s uf)l) /.L()(uo — M)«/m

Note that similarly to Eq. (9), these currents are, in fact,
described by the unified formula in the whole interval
—1//1T—m<u<l/J/1—m

For the vortex dome to be immobile in the sample, the total
sheet current on the upper (lower) surface of the strip, Jys (1) +
J,(u), has to vanish inside the dome, i.e., at u(() ) <u< ug :

Iu () +Jy(u) = 0. 19)

With formulas (9) and (17), this condition is an integral
equation in By (up) that is solvable analytically [57] [see also
Appendix B where more general equation (B8) is solved

with the methods of Ref. [57]]. Its solution can be readily
written since this equation is formally close to that discussed
by Benkraouda and Clem [14] if one replaces our variable
u by the variable x of Ref. [14]. Eventually, we arrive at
the following distribution of the magnetic induction By (u)
describing the static vortex dome on the upper (lower) surface
of the sample:

8 — o) (o — )

,/l—u%

where the boundaries u ) and u(z) of the dome are not arbi-
trary. They satisfy the relatlonshlp that is the necessary for
this solution to exist [57],

. (20)

1 2
By(u(()) Sup < u(() )) = poH,

ul +u = —iy, 1)

where the parameter iy is deﬁned ?/ Eq. (14). Of course, this
static dome exists if —1 < ”0 ) < u;’ < 1. These inequalities
impose restrictions on possible Values of I and H,. In par-
ticular, if the parameter iy exceeds 2, the static vortex dome
cannot occur in the strip. Note also that there is an arbitrari-
ness in choosing a value of one of uél) and u(()z). This fact is
a reflection of the dependency of the vortex state on a history
of its creation in the sample. For example, if with increasing
H,, the vortex dome appears as a result of vortex penetration
into the strip, a certain condition on the sheet current should
be fulfilled at the right edge of the sample where the vortices
enter the strip (see Ref. [45] and also below). This condition
leads to an additional equation in uo1> and uf)z), and then these
parameters are determined unambiguously. On the other hand,
if the dome has already existed in the sample, and the field H,
begins to decrease, the dome expands, but its total magnetic
flux has to be constant until the vortex dome reaches one of
the edges. The constancy of the flux is another example of the
additional condition on «" and u(z)

With Egs. (9), (17), (18), and (20) one can calculate the net
surface sheet currents outside the vortex dome. Ultimately, we
find that the sheet currents flowing on the upper surface of the
strip in the regions u(() )<u<land —1<u< ”o are equal
to

= ) =)

Ju) = — (22)
and
2) (1)
Nwz_m/<o — ) (" — ) o

V1 —u? '

respectively [and J(u) =0 at u(l) <u< ugz) according to
Eq. (19)]. The currents flowing on the lateral surfaces of the
strip (1 < |u| < 1/4/1 —m) are

=) = )

J(u) = +H,
u?2 —1

where the signs plus and minus refer to the positive and nega-

tive u, respectively (i.e., to the right and left lateral surfaces).
The I dependence of J(u) in Egs. (22)— (24) 1s 1m([l)hcltly

contained in the parameters u(() ) and u(()z) ,and at ”0 —lUy —>

, (24)

094526-4



CRITICAL CURRENT IN THIN FLAT SUPERCONDUCTORS ...

PHYSICAL REVIEW B 104, 094526 (2021)

0.5 1

FIG. 4. The x dependences of the magnetic induction B, and of
the surface sheet current J on the upper surface of the strip [Eqgs. (2)
and (20)—(23)] at I /(wwH,) = 0.3, and a, = x(u"’)/w = 0.32. The
solid, dashed, and dashed-and-dotted lines correspond to m = 0.1
Qw/d =~ 10.65), to the infinitely thin strip (m and d/w — 0), and
tom= % (d/2w = 1), respectively. For this a,, formula (2) leads
to u(()z) =0.3 if m=0.1 and to u(()z) ~0.27 if m = % Inset: the y
dependences of the surface sheet current J on the left lateral surface
of the strip with m = 0.5 at the same values of I /(wwH, ) and a, as in
the main plot (the solid line) [Egs. (6) and (24)]. For comparison, the
dashed-and-dotted line depicts the Meissner currents on the left lat-
eral surface of this strip without the dome [Eq. (9)] at//(mwH,) = 4
(i.e.,when2 < iy ~ 2.4 <2/y/1 —m=2.83).

expressions (22) and (24) transform into Eq. (9). Indeed, the
numerator in these expressions can be rewritten as follows:

(=)= ") = (u+ %)

(2)
0

2 (AM)Z
4 )

where Au = u;,”’ — u(()l) is the width of the dome, and relation-

ship (21) has been used to express the position (u(()2) + u(()l)) /2
of its center in terms of iy. If the dome becomes small
(Au — 0), one can neglect (Au)?/4, and formulas (22) and
(24) reduce to Eq. (9). If the center of this dome tends to the
left edge of the strip (iy — 2), the vortex state crosses over to
the Meissner state.

Although Eq. (20) for the magnetic induction and Egs. (22)
and (23) for the currents look like the appropriate expres-
sions for the infinitely thin strip (d/w — 0) [2], formulas
(2), (6), and (20)—(24) describe (in the parametric form) the
sheet currents flowing on all the surfaces of the strip with
an arbitrary aspect ratio 2w/d. These formulas reveal that
the difference in the magnetic inductions and the currents for
the thin (d/w < 1) and infinitely thin (d/w — 0) strips can
be small everywhere except the regions near the edges of the
sample. Near the edges, these sheet currents are essentially
different since they are characterized by the distinct types of
their divergence at x — £w; compare Eqgs. (11) and (13).
Figures 4 and 5 demonstrate the profiles of the magnetic
induction and of the sheet current on the upper surfaces of
the strips with various aspect ratios. The profiles are plotted
at fixed values of I/(wwH,) and one of the vortex-dome

0
1 ‘ ‘ 2y/d
-1 -0.5 0 0.5 1
x/w

FIG. 5. The x dependences of the magnetic induction B, and of
the surface sheet current J on the upper surface of the strip [Eqgs. (2)
and (20)-(23)] at I/(mwH,) = 1.2, and a; = x(u’)/w ~ —0.97
(this a, corresponds to uf)” = —0.95 if m = 0.1). The solid and
dashed lines depict the cases of m = 0.1 and of the infinitely thin
strip (m — 0), respectively. Inset: the y dependences of the surface
sheet current J on the left (the solid line) and the right (the dashed
line) lateral surfaces of the strip with m = 0.1 [Egs. (6) and (24)]; the
parameters //(wrwH,) and a, are the same as in the main plot.

boundaries. Interestingly, the differences between the profiles
calculated at m — 0 and at finite m are not large even if m
approaches % (Fig. 4), and these differences depend on the
position of the vortex dome (compare Figs. 4 and 5). The
inset in Fig. 4 shows the change of the sheet current on the
left lateral surface of the strip when the Meissner state in
the sample transforms into the state with the vortex dome on
its upper surface. Note also that the sheet-current profile on
this lateral surface becomes flat when the left boundary of
the dome tends to the left corner of the sample (the inset in
Fig. 5).

It was implied in the above formulas that the vortices filling
the dome are straight lines. However, simple considerations
(Appendix B) show that these vortices should be slightly
curved in thin samples. Nevertheless, the analysis presented
in Appendixes B and C reveals that the vortex-line curvature
has a small effect on the distributions of the currents and the
magnetic induction in thin strips at H, < H,|, and we neglect
this curvature below.

Using Eqgs. (21)—(24), one can calculate the total currents
flowing on each of the surfaces of the sample. (They are
expressible in terms of the elliptic integral.) We present the
appropriate formulas only for the thin strips (in the leading
order in m < 1) and when uél) = -1,

iH IL nm iH
L ~—-Hd,l——, =~—-—[1-——=, (25
g NI T 2iy @

2i 1 2i
IR~Hadd><—lH>, _uiq><_lﬂ>, (26)
m m
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FIG. 6. Dependences of the fractions /I, I, /I (the upper and
lower solid lines, respectively) and of (I + 1)/ (the dashed line) on
the parameter iy given by formula (14); m = 0.3, i.e., 2w/d ~ 2.5.
At iy < 2 when the vortex dome exists in the sample, these fractions
are calculated with formulas (6), (7), (21), and (24), assuming u{"’ =
—1. At iy > 2 when the vortex dome is absent, these fractions are
found with formulas (10). Inset: the part of the plot in the enlarged
scale.

where iy ~ I/mwH,,

d(x) = d )arcsin< !
)=~
T A/ 1 +x

and I and I;, are the total currents flowing on the right and
left lateral surfaces of the sample, respectively. Interestingly,
according to these formulas, at iy = m/2 one has I} /I ~ —
I/l =14 (2/7),and (Iy + Ig)/I = 2 /7, i.e, more than half
of the applied current / flows on the lateral surfaces of the
strip at this iy. In the case when m is not small, the fractions
I/I and Ir/I of the total current I versus the parameter iy
are shown in Fig. 6. Note that these fractions are continuous
functions of iy at the point iy = 2 below which the vortex
dome exists in the sample.

In the next section we shall need the current density in the
immediate vicinity of the corners of the thin strips je,. With
Egs. (22)—(24), the appropriate expression is obtained much
as Eq. (15),

. H, 2d
Jern ~ m\/(u(gz)il)( <1>il)(3 )\) , 27

where the signs + and — correspond to the left and right cor-
ners of the strip, respectively. With Eq. (21), it is not difficult
to show that the current density j., at the right corners is
always larger than j.,, at the left corners if iy > 0.

’

)2

T

III. CONDITIONS DETERMINING
THE CRITICAL CURRENT

When the current / reaches its critical value 1., vortices
begin to cross the sample, entering the strip at its right edge
and leaving it at the left lateral surface. The two types of this
process are possible. If the ratio iy < 2, the vortex dome exists

in the sample. In this case, a vortex penetrating into the sample
arrives at the right edge of the dome, whereas the left edge of
the dome emits another vortex that leaves the strip. The re-
quirements of the entrance and exit of the vortices impose two
additional conditions on the parameters of the dome. One of
the conditions together with Eq. (21) unambiguously specify
the boundaries u{,’ and ”o ) of the vortex dome, and the second
one gives the value of I. at a given H,. If iy > 2, the dome is
absent, and the vortex crosses the Meissner state of the strip.
In this case, the distribution of the surface currents, Eq. (9),
does not contain undefined parameters, and the critical current
I. is found from the vortex-entry condition at the right edge
of the strip. We now discuss the vortex-entry and vortex-exit
conditions, and in the next section we find the dependence
1.(Hy).

A. Vortex-entry condition

For the case of the Meissner state in the strip with I =
0 and H, # 0, the vortex-entry condition was analyzed in
Ref. [45]. Consider now this condition in the general case
when both I and H, are different from zero and when the
vortex dome can exist in the sample.

1. Bean-Livingston barrier

Since the currents are maximum at the corners of the
sample, it is favorable for a vortex to penetrate into the strip
through these points. A small circular vortex arc appearing in
one of the corners overcomes the Bean-Livingston barrier and
begins to expand when the current density in the right corners
reaches the value jj [45],

. 0.92H, 1k

o S e 28)
where H.; = ®¢In« /(4 por?) is the lower critical field, ®
is the flux quantum, and « is the Ginzburg-Landau parameter.
This jo is of the order of the depairing current density jqp,
whereas jopA, the local surface field near the corner, reaches
the value of the thermodynamic critical field in the agreement
with the results of Refs. [58-61]. Equating this j, with the
current density j., defined by Egs. (15) or (27), we find the
vortex-entry condition at which the Bean-Livingston barrier
disappears for the vortex penetrating through a corner of the
sample.

In the case of the Meissner state, Eq. (15) and the require-
ment j., = jo give the following vortex-entry condition at the
right edge of the strip:

0.92kH,; (32 \ 3
ittt sttt I (29)

(1+5) =
Jm 2/ Ink 2d
When the vortex dome exists in the sample, Eqgs. (27) and the

equality j.n = Jjo lead to the condition on u(()l) and u02 which
is additional to Eq. (21),

H, N _ 0.92cH, <371_)»)”3
ﬁ\/(l uy ) (1 —uy’) = e\ 2g . (30)

2. Geometrical barrier

Consider now the vortex-entry condition caused exclu-
sively by the geometric barrier in the strip, neglecting the
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FIG. 7. Two scenarios of the vortex penetration into the strip.
Top: p > p., the Bean-Livingston barrier prevails over the geomet-
rical one. Bottom: p < p., the penetration of vortices is mainly
determined by the geometrical barrier. The parameter p is defined
by Eq. (44), p. =~ 0.52. The dashed lines schematically show mobile
vortices in the strip, whereas the solid lines inside the strip designate
the immobile vortices that are in the equilibrium. These inclined
vortices form the flux-line domes on the right lateral surface of the
strip.

attraction of vortices to the surfaces of the strip. In this case
a penetrating vortex can move towards the left edge of the
sample only when its two inclined rectilinear segments meet at
the right equatorial point (x = w, y = 0) (see Fig. 7). Consider
a vortex which ends at the point xy of the upper plane of the
strip and at the point yg = O of its lateral surface. The balance
between the line tension of the vortex and the forces generated
by the surface currents leads to the following equations for xg
and 60 [45]:

®oJ (xo, d/2) = ey sinb, 31)

DpJ(w, 0) = egcosb, (32)

where the sheet currents J(x, y) are determined by the for-
mulas of the preceding section, ey = ®3 Ink /(47 j1oA?) is the

J

line energy of a vortex in an isotropic superconductor, and
6 < /2 is the tilt angle of the vortex relative to the lateral
surface of the strip. There is also a geometrical relationship
between xy and 0, which is evident from Fig. 7:

d
w—x():ztane. (33)
The three equations (31)—(33) completely determine the two
quantities 6 and xj and also give the vortex-entry condition in
the case of the geometrical barrier.
Let us rewrite these equations using formulas of Sec. II. In

the case of the Meissner state (iy > 2), Egs. (31) and (32) can
be transformed with formulas (9) and (7) into the form

N

L(,/l — ms2 + %\/1 —m), (35)
1

Hclﬂ S(z) -

cosf =

sinf =

where the parameter sy corresponds to the point xy according
to Eq. (12). With the use of formulas (12), the geometrical
relationship (33) looks like

W;—w[so,/s(z) —1—In(so+2—1)]. 36

In the case of the vortex dome in the strip (iy < 2),
Egs. (31) and (32) are rewritten as follows:

tanf =

H,
cosf = u\/_\/( T — mu (0))(1 _ mugm)’
(37)
. H,
sinf = — F, (38)
Hcl\/ﬁ S(z) —

where we have introduced the notation

\/ [1 = ms2 — VT —ml®)(

As to the geometrical relationship (36), it remains unchan%ed
in this case. Note that at iy = 2 when only the values ”1

ul) = —1 are admissible [see Eq. (21)], Egs. (37) and (38)
cross over to Eqs. (34) and (35), respectively.

Equations (34)—(38) can be solved as follows: Equating
the ratio of formulas (35) and (34) to the right-hand side
of the geometrical condition (36), one arrives at the equa-
tion determining so as a function of iy > 2 and of m. Then,
formula (36) gives 0 (iy, m), and Eq. (34) becomes the vortex-
entry condition which relates H, to iy (i.e., to the current)
in the case of the Meissner state. Analogously, equating
the ratio of formulas (38) and (37) to the right-hand side
of expression (36), one arrives at the e%uatlon determining

so as functions of uio), u(20) = ”1 , and m. The an-

gle 6 is obtained from Eq. (36) and so(u(lo), ugo),m). Then,

mso \/ (0)).

(

Eq. (37) together with relationship (21) leads to the fol-
lowing vortex-entry condition for the strip with the vortex
dome:

H, iy uéo)—uﬁo)
ﬁ\/1+ F) —(1—m)< >

= H_.| cos0. 39)

As it will be clear below, only the case ”(1)) —1 is im-

portant for the critical-current calculations. In this case, the
dependences of sy and 6 on uz) (i.e., on ig) are shown in
Fig. 8 for two small values of m. Interestingly, this figure also
demonstrates that at small m, the angle 6 (i, m) can be well
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Sy 0, cos(0)

v formula (40) for m=0.1 \ |

1 1.5 2

i 1,0
|H_1—u2

FIG. 8. Dependences of s, (the dashed lines), 6 (the dotted-and-
dashed lines), and cos @ (the solid lines) on the position of the right
boundary of the vortex dome u) at u'” = —1 for m = 0.1 (the
lines without circles) and m = 0.04 (the lines with the circles). The
dependences are calculated with Egs. (36)—(38) and (21). The dotted
lines depict the values sy = 1.68, 6 ~ 36.5°, cos 6 =~ 0.80 obtained
in the limit m — O (see the text). The triangles mark 6 (iy, m = 0.1)
calculated with formula (40).

approximated by the function

0 ~ (0.637 — 0.5m) tanh ( (40)

Sy
m+0.3iy )
This approximation of 6 enables one to avoid solving the set
of Egs. (36)—(38) when the vortex-entry condition (39) is used
to calculate the critical current.

It should be emphasized that although we deal with the thin
strips here, Eqs. (34)—(38) have been written without recourse
to the condition m < 1. Let us now simplify these equations
using the smallness of the parameter m. In this case we may

put /1 — ms(z) ~ 1 since 5o ~ 1. Then, the ratio of Eqgs. (35)
and (34) or Egs. (38) and (37) yields
1
tan 6 ~
s(z) -1

Inserting this formula into Eq. (36), we arrive at the equation
in 5o which is independent of iy, ugo) - uﬁo), and of the param-
eter m since mw/d ~ 2/mw according to Eq. (5). The solution
of this equation gives sy &~ 1.68 and hence 6 ~ 0.637 (36.5°),
cos 6 ~ 0.80 [45]. Then, the vortex-entry condition in the case

of the Meissner state, Eq. (34), reduces to
1

Jm

where we have omitted the factor f(1,1 —m)~ 1 in the

definition (14) of iy. Similarly, the vortex-entry condition in
the case of the vortex dome, Eq. (39), takes the form

H,

Jm

(Ha n ﬁ) ~ 0.80H,, (41)

\/ (1—u$”)(1 — ul”) ~ 0.80H,;. (42)

However, it is necessary to keep in mind that condition (42)
becomes inaccurate if the boundary of the vortex dome M;O)
is close to the right edge of the strip, 1 — uéo) < m,i.e., if this
boundary is at a distance of the order of or less than d from the
right lateral surface of the strip. This situation occurs at H, ~

H,. In this case one cannot use the approximation /1 — m =~

J1—= ms% ~ 1 everywhere in Eqgs. (37) and (38). The fail of

this approximation is also seen from the dependence of the
0) . .
angle 6 on u, ' shown in Fig. 8. At small m, the vortex-entry

condition that is valid for all ug)) takes the form

H i 2 u® — 4 ON\?
\/% <1+E> —(1—m)<%> = H.cos0,
(43)

where 0 is given by formula (40) when u§0) =—1.

3. Two scenarios of the vortex penetration

A comparison of formulas (29) and (41) or (30) and (42)
shows that for the case of thin strips (m < 1), the formulas
differ in their right-hand sides only. The ratio of these right-
hand sides can be written as p/p. where the parameter p is

defined as follows:
© [3\3
= —| — , 44

P Ink (d) “)

and p. = (0.80/0.92)[2/(37)]'/3 ~ 0.52. Since the parame-
ter p can be greater or less than its critical value p., two
scenarios of the vortex penetration into the sample are pos-
sible. In Ref. [45] these scenarios were described for the
case when the transport current is absent, / = 0. In this case,
conditions (29) and (41) give the vortex penetration fields H ,‘?L
and HI?B determined by the Bean-Livingston and geometrical
barriers, respectively. If p > p,, one has H}™ > H®, and the
true penetration field H,, coincides with H 1173L:

HP" ~ 0.80H,/m 2. (45)
c

In this case, small vortex segments appearing at the corners
of the strip at H, = H}" immediately expand, merge at the
equatorial point (x = w, y = 0), and the created vortex moves
towards the center of the sample (Fig. 7). This type of the pen-
etration occurs because at p > p, and H, = H)", when the
current density in the corner region is close to the depairing
current density, the surface current at the equatorial point is
larger than 0.8H,;, and the vortex segment cannot be in the
equilibrium at this point.

If the parameter p is less than the critical value p., one has
HPY < HP®, and the vortex penetration is a two-stage pro-
cess. The current density in the vicinity of the corners reaches
the depairing value at H, = H)™. At this field a penetrating
vortex enters the sample through the corner, but it cannot
reach the equatorial point since J(x = w,y = 0) is less than
0.8H,1, and so this vortex line will “hang” between the corner
and the equatorial point (x = w, y = 0). With increasing H,,
two domes filled by these inclined vortex lines will expand
in the lateral surface of the strip. The penetration field H,
is determined by the condition that the boundaries of these
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domes meet at the equatorial point, and this field H,, can be
estimated from Eq. (41),

H,,GB ~ 0.80H, /m. (46)

However, formula (41) has been derived, considering a single
inclined vortex. Since the vortex domes on the lateral surface
of the strip modify the current distribution in the sample,
the H), has to be calculated, taking into account the currents
generated by the domes of the inclined vortices. Nevertheless,
as was shown in Ref. [45], the maximal decrease of H,, asso-
ciated with these domes does not exceed 20% as compared to
Eq. (46), and we shall neglect this decrease in our subsequent
analysis.

Of course, the two described scenarios of the vortex pen-
etration also take place both in the Meissner state with I £ 0
and in the state with the vortex dome inside the strip if the
vortex-entry condition can be described by Eq. (42). How-
ever, as was mentioned above, condition (42) fails if H,
approaches H,;. In this situation, the interplay between the
Bean-Livingston and geometrical barriers will be discussed in
the Sec. IV.

B. Vortex-exit condition

Consider now the vortex-exit condition. If the parameter
iy defined by Eq. (14) exceeds 2/4/1 — m, the vortex dome
cannot exist in the sample, and the Meissner currents, Eq. (9),
are positive on all the surfaces of the strip. Then, if a vortex
enters the strip, it crosses the sample and is expelled from it by
the currents on the left lateral surface. If 2 < iy < 2/4/1 — m,
the vortex dome on the upper surface of the strip is still
absent, but the Meissner current, Eq. (9), changes its sign on
the left lateral surface (see the inset in Fig. 4). In this case,
if a vortex enters the sample, it is displaced by the positive
currents on the upper and lower planes of the strip to the
left lateral surface. However, only the ends of this vortex
leave the sample in the regions near the planes where the
currents are positive. A behavior of a vortex segment near
the equatorial point (x = —w, y = 0) depends on the relation
between the Lorentz force F, = ®¢y|J(—w, y)| generated by
the negative currents on the left lateral surface of the strip and
the force that contracts the vortex and that is equal to its line
energy ey = Cb% In « /(47 po)?) (Fig. 9). The vortex leaves the
sample if this ey exceeds the maximal value ®¢|J(—w, 0)| of
the Lorentz force which stretches the vortex. This condition
together with Eq. (9) leads to the restriction on H,,

H, | igd/1—m
S 2

where H,; = ®¢lnk/(4n wo)?) is the low critical field. This
restriction has a simple physical meaning. The left-hand side
of Eq. (47) is the magnetic field H, at the equatorial point
(—w, 0) outside the strip, and hence this restriction means
that a vortex can be expelled from the superconductor when
the local external magnetic field near its surface is less than
H,,. If the applied magnetic field H, is less than or of the
order of H,.{, this condition is always fulfilled. However, in
samples with perfect surfaces, the Meissner state can occur at
H, exceeding H, since a vortex cannot enter the strip through
its surface because of the Bean-Livingston barrier. In this case,

) < He, (47)

@ F

(b) y

FIG. 9. (a) A vortex leaving the left lateral surface of the strip at
2 < iy < 2/+/1 —m; Fy is the Lorentz force, and ¢ is the force that
contracts the vortex. These forces are applied to the vortex segment
inside the surface layer of the thickness A. (b) The unusual vortex
state on the left lateral surface of the strip. The state appears if
condition (47) fails.

an unusual vortex state can, in principle, appear on the left
lateral surface of the strip (Fig. 9). We return to a discussion
of this issue in Sec. V.

If iy <2 (and vortices penetrate into the sample), the
vortex dome described in the precedin]% section appears on
the upper surface of the strip. When u(() > —1, the negative
currents flow on the upper (lower) surface in the interval
—-l<u< ug]) [see Eq. (23) and Figs. 4 and 5]. These currents
prevent vortices of the dome from leaving the sample. Thus,
the necessary condition of the vortex exit is

ul) = —1. (48)

Under this condition, the left boundary of the dome touches
the left lateral surface of the strip. In this case, according to
Eq. (24), the sheet currents on the left lateral surface J(—w, y)
are approximately equal to —H,+/1 — 0.5y, and one may
expect that the vortices will easily leave the sample at least
for H, < H,y; see also Appendix C.

IV. CRITICAL CURRENT OF THIN STRIPS

A. Zero magnetic field

Using the results of the preceding section, we now calcu-
late the critical current I.(H,) of the thin strips. Let us begin
with the case of zero applied magnetic field H,. In this case,
one has iy ~ I/mrwH, — 00, and the vortex dome is absent
on the upper surface of the sample. Then, the vortex-entry
conditions (29) and (41) give the following expressions for
1.(0) in the cases of the Bean-Livingston and geometrical
barriers, respectively:

PL(0) ~ 1.60mwvm L H.,, (49)
Pe
19%(0) ~ 1.60mw/mH,, (50)

where we have used formula (44). Inserting formula (5) for m
into Eq. (50), we arrive at the expression

198(0) ~ 1.60vV 2w dwH,.;.
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Note that the appropriate result of Ref. [14] (see the Introduc-
tion) differs from this expression only by the factor which is
close to unity. However, the true critical current 1.(0) coin-
cides with the largest value of /52(0) and 1"(0).

If ICGB 0) > ICBL(O) (i.e., p < p. =~ 0.52), and if the current
I in an experiment increases from zero value, the segments
of vortices begin to enter the strip through its corners at I =
IB(0), but they cannot reach the equatorial points. Hence,
the domes of the inclined vortices appear on the lateral sur-
faces of the strip. The situation is similar to that described in
Sec. IIT A 3, but the inclined vortices on the left and right
lateral surfaces now have opposite vorticities. The critical
value of [ is reached only when the domes touch each other at
the equatorial points (Fig. 7). These domes, as was mentioned
in Sec. IIT A 3, generate additional surface currents and reduce
the critical current 1.(0) as compared to ISB (0) given above.
Although the reduction increases with decreasing p/p., it
does not exceed 20% according to the results of Ref. [45], and
hence the above ICGB (0) can be a reasonable estimate of the
critical current. In the opposite case, when I98(0) < IB-(0)
(i.e., p > p.), the domes of the inclined vortices do not ap-
pear in the strip, and 1.(0) = I2“(0) [Eq. (49)]. Note that this
IBL(0) for the thin samples (m < 1) can be also rewritten as
follows:

1/3

2\ 13 N
121 0) ~ 2.18nwﬂHc<E> A 2,18«/271de6(3> )
(51)

where H. = +/2kH.;/Ink is thermodynamic critical field,
and we have used formulas (5), (44), and the value p. ~ 0.52
in obtaining Eq. (51).

We are now in position to trace the increasing role of
the Bean-Livingston barrier with decreasing d (see the In-
troduction). If a sample is so thick (as compared to A) that
P < D¢, the geometrical barrier determines 1.(0). In this case
1.(0) = ICGB 0) x Jd according to Eq. (50). With decreasing
d, at do; = Ak /(0.52 Inx)]? > A, the crossover in the d de-
pendence of 1.(0) occurs since at d < d, one has p > p,, the
Bean-Livingston barrier begins to govern the critical current,
and 1.(0) is determined by expression (51). When d — A, this
expression agrees with formulas of Refs.[12,15,32,47-49] for
1.(0) within a factor of the order of unity.

Interestingly, the simple relation between the critical cur-
rent /.(0) and the vortex-penetration field H, measured at
zero 1,

1.(0) = 2 wH,, (52)

follows both from Egs. (45) and (49) in the case of the
Bean-Livingston barrier and from formulas (46) and (50) for
the case of the geometrical barrier. However, for the samples
with p < p., the domes of the inclined vortices on the lateral
surfaces of the strip, in principle, can modify this relation.
When the critical current is measured in such samples at
H, = 0, the vortex domes on the right and left lateral sur-
faces have opposite vorticities, whereas at the measurement of
the vortex-penetration field at zero current, the domes are of
the same vorticity on both these surfaces. Nevertheless, since
the vortex domes located on one of the lateral surfaces of
a thin strip generate relatively weak currents on its other

5 0.61

| /(mwH

© 0.4

FIG. 10. Dependences IEX(H,) [the upper solid line, Egs. (49)
and (52)—(54)] and ICGB (H,) [the lower line, Egs. (55)—(57) and (40)]
plotted for m = 0.1 and p/p. = 1.5. The dotted line corresponds
to the condition iy = 2; the circles show ISB(H,) calculated with
Egs. (55)—(57) and with the solution of Egs. (34)—(38) for 6 instead
of Eq. (40). The true critical current /. coincides with IB-. The
straight dashed line is the continuation of 1.(H,) shown in the region
iy > 2; the intercept produced by this line in the H, axis gives the
vortex-penetration field H, = H)".

surface, relation (52) is likely to remain true at least approxi-
mately.

B. Critical current and the Bean-Livingston barrier

If p > p. and hence if I.(0) is determined by the Bean-
Livingston barrier, the vortex-entry condition (29) enables one
to find the H, dependence of the critical current /. in the
Meissner state (i.e, at iy > 2) of the thin strips,

H,
IPY(H,) = IfL(o)<1 - 2HBL>, H, <HPL,  (53)
*

where HBL = HfL /2, and the penetration field H;L is de-

termined by formula (45). At H, = HBL the ratio iy reaches
the value 2, and the vortex dome appears in the sample. Tak-
ing into account the vortex-exit condition (48) and inserting
ué D=1 - iy into the vortex-entry relationship (30), we arrive
at the equations in iy for the case of the strip with the vortex
dome

Ho/2iy = 0.8/mHa 2, H, > HPL.
pe

This equation with the definition iy =~ I /mwH, and formulas
(45) and (49) gives
HBL
IPH(H) = 1PM(0) 55—, H, > H (54)
2H,
Thus, at p > p. when the Bean-Livingston barrier governs the
critical current, the H, dependence of this current is deter-
mined by formulas (53) and (54) (Fig. 10). This dependence
is similar to that obtained in Ref. [14], but /.(0) and H, are
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now defined by the other formulas which are characteristic of
the Bean-Livingston barrier.

Since the critical current /B (H,,) for thin strips is described
by simple explicit formulas (53) and (54), we can easily trace
its dependence on the aspect ratio d /2w < 1 at unchangeable
other parameters. In particular, we may assume that the width
2w increases at a fixed thickness d, which defines the param-
eter p in Eq. (44). According to formulas (51) and (52), we
have IB4(0) oc w!/?, HEY oc w=!/2, and the coefficient before
H, in formula (53) is equal to 27 w. On the other hand, the
critical current IB-(H,) described by Eq. (54) is independent
of w.

We now describe the evolution of the vortex state in the
sample in the process of the critical-current measurements
when at given H, the current / gradually increases in the
strip with p > p.. If H, < HP" = H}"“/2, vortices begin to
penetrate into the sample through its right lateral surface only
at the critical current I.(H,) = IP“(H,). They cross the strip,
and the stationary vortex dome does not appear on its upper
(lower) surface. If HP" < H, < H}", the sample is still in the
Meissner state at I = 0. When [ increases, the vortex penetra-
tion into the sample starts when I reaches the dashed line in
Fig. 10, and a vortex dome like that in Fig. 4 appears inside
the sample. This dome does not touch the left lateral surface,
and the penetrating vortices do not cross the sample. With
increasing I, they accumulate in the dome, which gradually
expands and shifts to the left until its boundary touches the
left lateral surface of the strip at I = IPL(H,). The situation
just before the touching is illustrated by Fig. 5. If H, > HEL,
the vortex dome exists in the sample at / = 0, and it looks
like the dome in Fig. 4 (with its center being at x = 0). With
increasing /, the dome shifts to the left and expands, much as
in the case HP- < H, < HI]?L. Note that for p > p., the line

1= IfB (H,) does not manifest itself experimentally.

C. Critical current and the geometrical barrier

For the thin strips, the H, dependence of 1 fB can be readily
obtained, using vortex-exit condition (48) and representing
Egs. (34) and (43), and definition (14) in the parametric form

_ /mH,1 cos 0
H, = = = (55)
\/(1+7) —(1=m)(1-%)
/mH, cos 0
a = Wv (56)
198 ~ mwH,iy, (57)

where the angle 0 = 6(iy) can be well approximated by
the explicit formula (40), and iy plays the role of the
parameter which runs the intervals 0 < iy <2 and 2 <
ig < oo for Egs. (55) and (56), respectively. (In other
words, Eq. (56) gives H,(iy) when H, is below the field
0.5./mH,; cos[0(iy = 2)], whereas for H, lying above this
field, the function H,(ig) is specified by Eq. (55).) The de-
pendence /B (H,) thus obtained is shown in Figs. 10 and 11.
For comparison, in these figures, we also depict the depen-
dence ICGB (H,) calculated with angle 6 found from the set of
Egs. (34)-(38).

FIG. 11. Dependences I2“(H,) (the lower solid line) and 1°® (H,)
(the upper solid line) for m = 0.1 and p/p. = 0.6. The figure is
similar to Fig. 10 [in particular, the circles show /98 (H,) calculated
with Egs. (5§5)-(57) and with the solution of Egs. (34)—(38) for 9].
However, there is a crossing point (marked by the square) of /B“(H,)
and I®B(H,) at which the crossover in I.(H,) occurs. At H, below
this point, I.(H,) = I°8(H,), whereas I.(H,) = I®~(H,) above this
point. The dotted-and-dashed line depicts the function described by
formula (59) [14]. The intercepts produced by straight dashed lines
in the H, axis give H}" and H, = HPGB. Inset: dependences 1°8 (H,)
for different aspect ratios of the strip (m = 0.05, 0.1, 0.2) at the
fixed value of p/p. = 0.6. The squares mark the crossing points of
I88(H,) and IB-(H,) for m = 0.05 and 0.2.

At the limiting value iy = 0, expressions (55) and (40) give
H, = H.1. If H, is noticeably less than H.; and hence if iy >
m, the formulas for / fB (H,) can be further simplified. In this
case,onecanset | —m =~ 1 and cos 6 ~ 0.8 in Eq. (55). Then,
we arrive at the simple dependence 198 (H, ) that is similar to
that given by Eqgs. (53) and (54):

H,

I8 (H,) ~ ISB(O)(l - W) H, <HZ®, (58
HGB *

198 (H,) ~ IE'B<0)ﬁ, H, > HS®,  (59)

where HEB = H[?B/ 2 [see Eq. (46)]. In fact, this dependence
coincides with that obtained in Ref. [14], and we show it
in Fig. 11. It is seen that when H, approaches H,;, the de-
pendence ICGB(Ha) obtained with Egs. (55)—(57) essentially
deviates from that derived by Benkraouda and Clem [14].
The true critical current I.(H,) is determined by the largest
function of I°B(H,) and IBL(H,). If p < p., 1.(0) is deter-
mined by the geometrical barrier. The dependence ISB(H,)
presented in Fig. 11 shows that although at p < p. the
geometrical barrier prevails over the Bean-Livingston one
in the region of the weak magnetic fields, the crossover
magnetic field H,; necessarily exists above which the Bean-
Livingston barrier begins to govern the critical current. This
crossover field corresponds to the crossing point of the func-
tions 7°B(H,) and IB-(H,) that is visible in Fig. 11. Note that
the crossing point would be absent if Eq. (59) were used for
the description of ISB(H,). It is also worth noting that at the
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FIG. 12. Dependences IPU(H,) (the lower solid line) and
ISB(H,) (the upper solid line) for m = 0.1 and p/p. = 0.8. The
figure is similar to Fig. 11. The intercepts produced by straight
dashed lines in the H, axis give HI‘?L and H, = H®®. The numbers
from 1 to 5 mark the regions in the H,-I plane (at p/p. < 0.5, the
region 3 is absent). In these regions, different vortex states occur in
the strip when the current increases from zero to /. at a fixed H,,.
These states are schematically shown in the figure (in particular, 1
denotes the Meissner state). Note that each dome of the inclined
vortices on the lateral surfaces of the strip is depicted as a single
inclined line.

crossing point each dome of the inclined vortices on the right
lateral surface of strip reduces to a single vortex line, and so
the effect of these domes on the /°B that was mentioned in
Sec. IV A is negligible near this point.

According to formulas (50), (52) and (58), (59), the critical
current /SB(H,) depends on w for a fixed value of d in the
same way as [PL(H,) if H, is not close to H,. The inset in
Fig. 11 shows I°B(H,,) for different aspect ratios d /2w of the
strip in the whole field range 0 < H, < H,;.

In the case p < p., an evolution of the vortex states in
the strip in the process of measuring the critical current can
be considered similarly to the case p > p.. Let the current
gradually increase at given H,. In the initial state (at = 0),
the strip is either in the Meissner state if 0 < H, < HBL, or the
domes of the inclined vortices exist on both lateral surfaces of
the strip when HP < H, < HS®, or both the inclined vortices
and the dome on the upper surface are present in the sample
if H;’B < H,. As an example, consider the situation when

in the initial state the field H, is less than H}" (state 1 in

Fig. 12). When [ crosses the line I2“(H,) for H, < HP" or
its continuation (the lower dashed line) for H < H, < HBL,
the inclined vortices appear on the right lateral surface of the
strip (state 2), and the domes of these vortices expand with
increasing I. When I reaches the critical current ICGB (H,) in
the region H, < HS® or the upper dashed line in the interval
HJ® < H, < HP", the vortices located on the lateral surface
become able to penetrate into the bulk of the strip. They either
cross the sample without creation of a dome on the upper
plane of the strip in the first case or accumulate in such a dome
(state 3) if HOB < H, < HPM. In the latter case the dome

does not touch the left lateral surface of the strip, and this
touch occurs at the critical current I.(H,) = IS®(H,). Note
that at p < p. and I < I.(H,), the vortex state in the strip
depends not only on the geometrical barrier, but also on the
Bean-Livingston one even if H, < H,;.

V. DISCUSSION

Let us first discuss the constraints that have been assumed
in the preceding sections. In this paper we have completely
disregarded the bulk vortex pinning. A combined effect of the
edge barrier and of the bulk pinning on the critical current
of the thin strips with d < A was analyzed by Elistratov et al.
[15], considering these strips as infinitely thin. Under the same
approximation d/w — 0, the results obtained in Ref. [15]
can be readily extended to the case w > d > A. Then, one
arrives at the following qualitative conclusions: At H, =0
the bulk pinning is inessential if j.,d < 2H, ~ /mH,, where
Jep 1s the critical current density characterizing the pinning
forces in the bulk of the strip, and H,, is the penetration field,
Eq. (52). With increasing H,, the effect of the bulk pinning on
1. generally enhances, but in the interval of the interest, 0 <
H, < H,y, this pinning remains negligible if j.,d <« mH,;.
At jep,d ~ mH,,, the vortex state in the strip is still qualita-
tively similar to that without the bulk pinning, i.e., there are
vortex-free regions and a vortex dome in the sample. In other
words, in this case a nonzero j., leads solely to a quantitative
change in the H, dependence of the critical current. Only at
Jepd 2 H.i may one expect that the distributions of the current
and of the magnetic induction in the strip take on the usual
Bean critical-state forms. It is clear that if with increasing
temperature T, the critical current density j.,(T) decreases
steeper than H. (T) (see, e.g., Appendix in Ref. [62]), there
is a region near the temperature 7, of the superconducting
transition where the bulk pinning can be neglected. This
region can be a sufficiently wide in the high-7, supercon-
ductors in which the thermal fluctuations lead to the thermal
depinning [50].

So far, we have considered the case of the isotropic su-
perconducting strips. An anisotropy of the superconducting
material is inessential for the states with straight vertical vor-
tices. For the inclined vortices, which are important for the
analysis of the geometrical barrier, the anisotropy can be taken
into account in the same way as in Ref. [45], and Fig. 7 of that
paper demonstrates that the anisotropy does not noticeably
change the results obtained for the isotropic case. However,
the anisotropy should be generally taken into account for the
curved vortices that are analyzed in Appendixes B and C.

In Sec. III, the vortex-entry conditions (29), (30), and
(41)—(43) were derived under the assumption that a vor-
tex can penetrate into the strip only if the Bean-Livingston
and geometrical barriers vanish. Strictly speaking, the condi-
tions thus obtained are valid at sufficiently low temperatures
since at T > 0, a thermally activated vortex can overcome
these barriers even if they are finite. It is clear that this
effect is most pronounced for high-7, superconductors; see,
e.g., Ref. [16]. The thermal activation decreases the critical
current /. specified by the Bean-Livingston or the geomet-
rical barrier, and this decrease of I. can be estimated using
ideas of Ref. [11] (see also Ref. [50]). With the activation,
the additional factor [1 + (7 /UgL) In(t /t5)] ! appears in the
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right-hand sides of Egs. (29) and (30) where ¢ is the char-
acteristic time of the appropriate experiment, #; is a certain
microscopic time [11,50], and the characteristic value Ug}, of
the Bean-Livingston barrier is of the order of ¢p&. The simi-
lar factor [1 + (T /Ugg) In(z /z‘o)]’1 appears in the right-hand
sides of Egs. (41)—(43), but the characteristic magnitude of
the geometrical barrier Ugg ~ epd essentially exceeds Ugy.
Therefore, the temperature primarily suppresses the Bean-
Livingston barrier at the corners of the strip. Note that the
modification of the right-hand sides of Eqs. (29), (30) and
of Egs. (41), (42) leads to the appearance of the ratio of the
above-mentioned two factors in the definition of the parameter
p. Hence, if at sufficiently low temperatures when both the
factors are close to unity, one has p > p., anincrease in T will
decrease the modified parameter p(7T'), and a crossover from
I. = IB" to I, = ISB will take place at a certain temperature.
In other words, one may expect a relative enhancement of
the role of the geometrical barrier in the origin of I, with
increasing temperature.

Let us now discuss the possibility of appearing the un-
usual vortex state on the left lateral surface of the strip
(see Sec. IIIB). This state can occur when 2//1 —m >
ig > 2, i.e., when there is no vortex dome on the upper
surface of the strip, and if inequality (47) fails. A failure
of Eq. (47) can take place only when the Bean-Livingston
barrier prevails over the geometrical one (p > p.). Assum-
ing the following values of the applied magnetic field H, ~
HPY/2 = \/m cos 0H,1p/2p, and of the applied current / ~
1.(0)/2 (i.e., iy ~ 2), one finds that the unusual state can
appear if

i (k)m - (60)
P=Te\a >(1—M)cos9’
where cos ~ 0.8 and p. & 0.52. This condition leads to a
restriction on the parameters of the supeconducting material
of the strip. For example, for A = 0.2 um, d = 10 um, 2w =
110 um (m ~ 0.1), one obtains the severe restriction on «:
k > 600, which mainly results from the small value of m.
However, using formulas (4), (9), (13), and (28), condition
(60) can be written not only for the thin strips with small
values of m, but also for a slab with an arbitrary value of this
parameter. This enables one to search for the unusual vortex
state on the upper plane of the thin strips when the applied
field H, is parallel to the x axis in Fig. 1. Then, 2w plays
the role of the thickness of the slab, whereas d is its width,
and the new parameter m coinciding with former 1 —m is
close to unity. Eventually, we obtain that at H, near the field
HPY/2 ~ cosOH,1p/2p. and at [ ~ 1.(0)/2 (i.e., at iy ~ 2),
the condition for the existence of the unusual vortex state
looks like

kK (A" 2pc m(l —m)m 173
=—| = >
P=e\a (1 — Jmycos6 \ 4f(1, m)
~ 2p.
(1 — /m)cosf’
where m, cosf, and p. are the same as in Eq. (60), and we
have used the formula f(1,m < 1) & 7m/4. With the same

values of A, d, and 2w as in Eq. (60), inequality (61) leads
to k > 22. Moreover, if one takes into account that due to the

(61)

anisotropy of superconducting material, the lower critical field
in the plane of the strip, ¢H,|, can be less than the field H |
for the direction perpendicular to this plane, the right-hand
side of formula (61) has to be multiplied by the anisotropy
factor ¢ < 1. In this case the requirement p > p. may be
sufficient for the fulfillment of condition (61). It is also worth
noting that according to formula (61), the applied field H, ~
cosOH,. p/2p. exceeds H.1/(1 — /m) 2 H.i. Therefore, in
order to observe the unusual vortex state, it is necessary to
exclude the thermally activated penetration of vortices into
the sample through its surfaces; the penetration should occur
only through its corners. This implies the high quality of
the surfaces of the strip and fairly low temperatures of the
measurements, i.e., low-7, superconductors seem to be most
suitable for such experiments.

Consider now results of the experimental investigations of
the surface barrier in thin NbSe, [26] and Bi,Sr,CaCu,0Og
[27,28,36] superconducting strips. In these investigations,
distributions of the magnetic field H°(x) induced by the al-
ternating transport current of the magnitude I, were measured
at different temperatures 7' on the upper surfaces of supercon-
ducting strips placed in a relatively large dc magnetic fields
H¥* = H)‘,jc > |H*(x)|. The obtained profiles H3*(x) permit-
ted the authors of the above-mentioned papers to analyze the
distributions of the current ,. across the width of the strips
and hence to obtain information on the role of the surface
barrier in the vortex dynamics for different temperatures. It
was found that in the close vicinity of 7, the current flows
uniformly across the sample, and the barrier is negligible in
this situation. However, with cooling, a noticeable fraction of
the current concentrates near the edges of the strip, which is
the characteristic feature of the surface barrier [27], and this
fraction increases with decreasing 7. When the decreasing T
reaches a temperature 7, (H ), the currents flow only near the
edges, and the vortices shift from one side of the sample to
the other and back during the ac cycle, but they do not enter
and leave the sample, i.e., they become trapped in the strip
[36]. It is essential that the bulk vortex pinning begins to play
an important role only at a lower temperature 7;(H de) than
T(H®).

Taking into account the results of the previous section,
the above-mentioned experimental findings can be interpreted
as follows: With decreasing temperature, the lower critical
field H,, increases, and the point corresponding to (H%,
I,.) on the H-I diagram like Fig. 10 (p > p. for samples
in Refs. [26-28,36]) shifts along the straight line, I/H, =
Ie/H% = const, towards the origin. On the other hand, the
line I.(H,) in the diagram gradually shifts due to the T de-
pendence of the parameter p [see Egs. (44), (45), (49), (53),
and (54)]. When the point in the diagram is above the line
I.(H,), the flux flow occurs in the sample during a part of
the ac cycle when the current exceeds the critical one. In the
other part of the cycle, when the current is less than its critical
value, it flows near the edges (outside the vortex dome). The
closer the point to the line I.(H,), the larger is the duration of
the subcritical vortex states for which the current concentrates
near the edges. At T < T (H%) one has I, < I.(H%, T), and
so the vortices do not cross the sample, i.e., they are trapped
in the strip. If the critical current is described by Eq. (54), we
obtain the relationship between the 7, and H de which follows
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from Eqs. (44), (45), (49), (54),
_ IPHO)HP"
B 2l

T2 n/2
o<<1—T—X2) , 62)

HY< o¢ (He1 p)? o< [M(T)]™"

where p oc A!/3 and n =1 if the flux creep is neglected,
and for definiteness, we have assumed here that [A(7)]~?
1 — (T/T.)*. With the thermal activation of vortices, which
is essential for Bi,Sr,CaCu,0Og, one should also take into
account the above-mentioned dependence of the parameter p
on T associated with the creep. Moreover, in the experiments,
the field H% noticeably exceeds H, (7). As explained in
Appendix C, for a magnetic field H, of the order of H,j,
the curved vortex at the right boundary of the dome touches
the right lateral surface of the strip. Then, at larger values
of H, the inclined vortices will exist on this surface even
though the Bean-Livingston barrier prevails over the geomet-
rical one. These inclined vortices may modify the dependence
I.(H,) given by Eq. (54) since they, in general, change the
vortex-entry condition (30). Thus, the experimental results of
Refs. [26-28,36] actually probe the H, dependence of the
critical current in the range H, > H,; which has not been
considered here.

VI. CONCLUSIONS

The critical current I, of a thin superconducting strip of the
rectangular cross section is calculated in absence of flux-line
pinning. The width 2w and the thickness d of the strip are
assumed to be much larger than the London penetration depth.
It is shown that the critical current depends on the parameter
p [Eq. (44)] characterizing the interplay between the Bean-
Livingston and geometrical barriers. If this parameter exceeds
the critical value p., the Bean-Livingston barrier in the cor-
ners of the strip determines the critical current /.(0) at zero
applied magnetic field H,. Otherwise, at p < p,, the critical
current 1.(0) is determined by the geometrical barrier. Since
the parameter p increases with decreasing d, the crossover in
the d dependence of 1.(0) occurs. This crossover explains the
increasing role of the Bean-Livingston barrier in 1.(0) with
decreasing the thickness d of the sample and answers the
question raised in the Introduction.

With increasing magnetic field H,, the critical current
I.(H,) decreases, and the strip with this current is either in the
Meissner state or in the state with a stationary vortex dome on
its upper (lower) surface. In the latter case, and if p < p, i.e.,
if the geometrical barrier prevails over the Bean-Livingston
one at zero H,, a crossover in the dependence I.(H,) occurs at
a magnetic field that is less than H,; (Fig. 11). This crossover
is due to fact that the increase in the applied magnetic field
enhances the role of Bean-Livingston barrier, and ultimately
this barrier prevails over the geometrical one. At p > p,, the
Bean-Livingston barrier dominates for all the magnetic fields
H, < H, (Fig. 10). For the magnetic fields H, exceeding
H_1, the vortices fill the whole bulk of the strip, and a dome
of the inclined vortices is expected to appear on the lateral
surface of the sample where the vortex penetration occurs
(Appendix C). This dome may change the H, dependence

Y4 A=A, A=0
< Y X+ iy

di2 —_

xow)=(

@-iA

¥e

-A,

FIG. 13. Top: The strip with the thin layer of vertical vortices
piercing its upper and lower planes at the point with the coordinate
Xo. The boundaries of the layer carrying the flux d ® are shown by the
dashed lines. Arrows indicate directions of the magnetic-field lines
A =0and d®/uy = Ao that leave and enter the layer and that adjoin
the surface of the strip. Bottom: the rectangle in the complex plane
¢ — iA. The conformal mapping mentioned in the text transforms the
exterior of the strip in the complex plane x + iy onto the interior of
this rectangle.

of the critical current, and this dependence remains to
be studied theoretically. Interestingly, experiments like in
Refs. [26-28,36] can shed light on the critical current in this
range of the magnetic fields.

The analysis of the vortex exit from the strip shows that the
unusual vortex state can appear on the surface of the sample
where vortices leave the strip (see Fig. 9). This state may
occur if the applied magnetic field H, is approximately half
the vortex-penetration field H, measured at / = 0 and if the
applied current [ is equal to the appropriate critical current
1.(H,). It is most favorable to observe this state if the magnetic
field H, lies in the plane of the strip (across its width) since
in this case its upper (or lower) plane plays the role of the
vortex-exit surface.

APPENDIX A: CURRENTS GENERATED BY A “LAYER”
OF VERTICAL VORTICES IN THE STRIP

Consider a thin “layer” of the vertical vortices in the strip
[Fig. 13 (top)]. In the z direction, this layer extends to infinity.
Let the position of the layer in the x axis be xg, and let this
xo correspond to the parameter uy (—1 < up < 1) [Eq. (2)].
The width of the layer is determined by the small interval du
or by the appropriate dxy, and the layer carries the magnetic
flux d® = By(xo)dxo where B,(xo) = B,(uo) is the magnetic
induction at the upper surface of the strip at the point x¢(u).

The surface currents generated by the layer can be found
using results of Sec. II and a conformal mapping [63] which
transforms the exterior of the strip in the complex plane x + iy
onto the interior of the rectangle shown in Fig. 13 (bottom).
The lower and upper sides of this rectangle correspond to the
magnetic-field lines A = 0 and d @/ that adjoin the surface
of the strip and that are shown in Fig. 13 (top), whereas the
lateral sides of the rectangle correspond to the infinitesimal
intervals dxy carrying the flux d® on the upper and lower
planes of the strip. Ultimately, we find that at a point u, the
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surface current generated by the layer is given by

J(u) = By (ug)dug (1 _ M%)l/z’

o (up —u) \ 1 — u? (AD

if —1 < u < 1 (the point u lies on the upper surface of the
strip), and by

7 mo7 (up — u)
if 1 < Ju|l < 1/4/1 — m (the point is on the lateral surfaces).

The currents generated by fwo vertical vortex layers
located symmetrically relative to the y axis were found pre-
viously [45]. The expression that follows from Egs. (A1) and
(A2) in the case of the two layers reproduces formula (34) in
Ref. [45].

By (ug)duy (1 - “5>1/2 (A2)

u? —1

APPENDIX B: CURVATURE OF FLUX
LINES IN THE STRIPS

It follows from Eq. (20) that the derivative of the magnetic
induction 0B, /dx differs from zero inside the strip in the
region of the vortex dome. However, for this dome to be
immobile, the Lorentz force and hence the current density
J. = (0B, /0x — 0B, /0y)/ 110 have to be equal to zero in this
region. This means that 0B, /dy also differs from zero inside
the dome, i.e., the vortices are curved. The curvature of the
vortices generates elastic forces applied to the vortex lattice
in addition to the Lorentz forces generated by a current. It
is known [64] that the effect of the elasticity of the curved
lattice on the balance of the forces can be taken into account
if the current density in the condition j = O is considered as
j = rotH rather than j = (1/u0) rotB where H is the thermo-
dynamic magnetic field H = 9F /9B, and F is the free-energy
density of the superconductor. In isotropic superconductors,
the field H is parallel to B, and for definiteness, we take the
function H(B) in the form

H = \/H} + (B/ro)?,

which models well the real dependence of H on B at suffi-
ciently low B < woH. [5,65,66]. Note that at B < poH,1,
one has H ~ H,;. In this case the elasticity of the vortices
plays an important role, their small curvature is able to “com-
pensate” the nonzero 9B, /dx in the strip, and the vortices in
the dome are practically straight lines in the approximation
H ~ H_, [45]. Below we consider the situation when the cur-
vature of the flux lines in a strip is small but is not negligible.
As it will be clear from subsequent formulas, this situation
really occurs in the thin strips d < w. Under the assumption
of the small curvature, we obtain the following expression
describing the shape of the vortex line x(y) in the thin strips:

2H(B)d(B?) ox’
where x(0) is a position of this line in the x axis, i.e., at y =
0, and 833 /0x is determined by Egs. (2) and (20). Thus, the
deflection of the line Ax = x(d/2) — x(0) is equal to
2Ax  d dH 9B;
d 4H(B)d(B?) dx’

B

x(y) ~ x(0) + (B2)

(B3)

and it is generally small for the thin strips, Ax/d ~
(d/w)H?/H?. In this estimate of Ax/d, we have used
Eq. (B1) and the expression for BB}Z, /dx that results from
formulas (2) and (20):

a

1 335 _ Iiz | mu? |:u(()1) -I-u(()z)

,u_%g_ w 1 —u?| (1—u)?
(1+ul")(1+ui”)
—2u e , (B4)

where we have neglected the factor [f(1, 1 —m)/(1 —m)] =
1. It also follows from Eq. (B2) that the angle 6 ~ dx(y)/dy
of the deviation of vortex line from the y axis is small in
agreement with the above assumption. This angle can become
of the order of unity only for the vortices near the boundaries
of the dome and only if H, ~ H,,.

The curvature of the vortex lines produces the components
H, and B, near the upper surface of the thin strip in the region
of the vortex dome:

H, ~ g . d_dH 0B (BS)
* dy |y_gp 2d(B?) ox’
B, szdx(y ) 4 _dH 9B B,. (B6)
dy |,_yp 2HB)AB) 0x

Since H,(y) is continuous at y = d /2 [52], formulas (BS)
and (B6) reveal the jump in the tangential component of the
magnetic induction, AB, = uoH, — By, at the upper surface
of the sample. This jump generates [52] the surface sheet
current —J; where

AB, d dH 9B} B,
Jy = NS —1- - (B
o 2d(B*) ox noH (B)

Strictly speaking, the vortex dome has to be found self-
consistently from the equation

Iu () +Jy () = —Js(u), (B8)

which generalizes Eq. (19). However, for the thin strips con-
sidered here, it is sufficient to insert formulas (20) and (B4)
into the right-hand side of expression (B7) and to solve
Eq. (B8) with the J; thus obtained. In this approximation, the
solution for the vortex dome on the upper surface of the strip
can be obtained with the methods of Ref. [57]. Ultimately, we
arrive at

—B,(ul” <up <uf)) = H, R 114 ), (B9)
1— u%
where R(u) = \/ s — u)(u — ul), and
1% Ju)1 = i2du
U0 =2H, f w—wkw OV

It is necessary to emphasize that R(ug)f(up) — 0 when uy,
[Oae

lying inside the interval (u,’, u )) tends to one of its bound-
aries u(()l) or ugz). The boundaries of the vortex dome u(()l) and
u(()z) are related to each other with the equation generalizing
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x/w

FIG. 14. The x dependences of the magnetic induction B, and
of the surface sheet current J on the upper surface of the strip
with m = 0.1. The dashed lines reproduce the vortex dome and the
sheet current from Fig. 5 [u(()l) = —0.95, I/mrwH, = 1.2; according
to Eq. (30), this vortex state is realized at H,/H,; ~ 0.2566if p/p. =
1.5]. The solid lines show the dome and the sheet current calculated
with Egs. (B1), (B4), and (B7)~(B12) for the same values of u'’
and uéz) as in Fig. 5. According to Eq. (B11), these values of ug) are
realized at H,/H,.; ~ 0.2566 and [ /(m wH,) ~ 1.1975if p/p. = 1.5.
Left inset: The surface sheet current near the left edge of the strip in
the enlarged scale. Right inset: outline of the curved vortices in the
strip.

formula (21):
(2)
. 2 (% J(u)V1 —utdu
() (2) S
— —— =0. (Bl1
uy’ + u, +1H+n/;gl> H.RG) 0. (BI11)

The sheet currents outside the vortex dome, —1/+4/1 —m <
u < u(()l) and uéz) < u < —1/+/1 — m, are given by the expres-

sion
H, )
)
=2V 2

& By(ug)y/1 — ug dug
)

J(u) =

oo — u)

1 U,
ol
71— u?| Juf

V=) =)
VIT—u?|
where relationship (B11) has been used in obtaining the last
line; B, (uo) is described by Eq. (B9); the signs & correspond
tou > u(()z) é]), respectively, and the function f(u)

1 @2

with u lying outside the interval (g, u, )y is still defined by

= +H,

I+ f@w), B12)

and u < u

Eq. (B10). However, at u approaching u(()l) from below or at
u approaching ugz) from above, the function f(u) diverges so
that J(u) — —]S(u(()l)) or J(u) — —Js(u((f)), respectively. In
other words, the sheet current J () is a continuous function of
u, but in the vicinities of the points u(()l) and ugz), it changes
sharply (see Fig. 14). At J; = 0, formulas (B9)—(B12) repro-
duce Egs. (20)-(24).

It is clear that the anisotropy of the superconducting mate-
rial is important for the curved vortices. Let us briefly outline
how the anisotropy can be taken into account in the formulas
of this Appendix, assuming that a relation between H and B
is known. The anisotropy leads to that the direction of the
local magnetic induction B(x, y) (i.e., of the vortices inside
the strip) defined by the angle 6(x, y) does not generally co-
incide with the local magnetic-field direction which we shall
describe by the angle 6y (x, y). Under the assumption of the
small angles 0y in the sample, one obtains that the dy/dx
calculated with Eq. (B2) still gives the angle 6y, dy/dx ~
Oy (x,y). The angle 6(x, y) of the magnetic induction can be
found from the relation between H and B, using

[B x H]
BH

and this angle is not necessarily small if the anisotropy is
strong. Knowing 6y and 6 near the upper surface of the strip
(y = d/2), one can find the current J;,

sin(f@ — 6y) =

B,
Jo~ (HOy — =2 tan6 (B13)

Mo

y=d/2

As to formulas (B8)—(B12), they remain unchanged.

APPENDIX C: CURVATURE OF VORTEX LINES AND THE
VORTEX-EXIT AND VORTEX-ENTRY CONDITIONS

In the case of the thin strips (m < 1), if u is near the left
boundary of the dome, and if this boundary is close to the left
lateral surface of the strip (u — u(()l) ~ —1), expression (B4)
for 9B} /dx takes the form

muy)” (2u + i)
= () 1= ()’

JH [ i) <
2w 2(1+ uél)) (1+ u(()l)).

On the other hand, when 1 — (u(()l))2 < m <K 1, i.e.,, when

w 4 a; <K d where the x coordinate a; corresponds to u(()l),

formulas (5), (7), and (12) yield

3m'2(w +ay)
” .

2
1= () 12 ~ (€2)
With formulas (B3), (C1), and (C2), we arrive at the following
deflection of the vortex lying at left boundary of the dome:

A 2—ig)pudH? dH  d

ax ~ ( in)oH, ) (C3)

d 24H61 d(Bz) w + ay

When Ax = w + ay, the vortex at the left boundary of the
dome touches the left equatorial point of the strip. This touch
occurs at a; determined by the expression

w+a _ H, [(2— inuiHs dH
d H., 2% d(BY)

~ Ha /M (C4)
H, 48
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where, in the last equality, we have used dH/d(B*) =
1/(2u¢H,1) that follows from (B1) at u = u{" (i.e., at B, —
0). At this a;, the parameter uf)l) is equal to

W 9722 — ig)H2\ '
uy ~—|l—-ml———— .
192H2

It is clear that for thin strips (m < 1) and at H, < H,{, formula
(C5) practically coincides with condition (48).

When the curved vortex touches the left equatorial point, a
further infinitesimal increase in the applied current seems to
trigger the following process: The curved vortex breaks into
two segments (one end of each segment is on the left lateral
surface of the strip, and the other end is on the upper or lower
plane). The line tension contracts these segments since the
sheet currents on the lateral surface are approximately equal
to —H,+/1 — 0.5iy and are less than H.; at H, < H.y; see
Sec. III B. However, under condition (C5), the sheet current
formally diverges in the immediate vicinity of the left corners,
and the shrinking segments can get stuck there. Then, small
domes of the inclined vortices should appear near the left
corners in order to suppress the divergence of the current and,
thereby, allow the vortices to leave the sample. We have ig-
nored these inclined vortices in our analysis since they hardly
change condition (C5) and have a little effect on the currents
flowing at u > ugo) (the dome of the inclined vortices is small
as compared to the main vortex dome on the upper surface of
the strip). The existence of the inclined vortices also does not

(C5)

disturb the vortex-entry condition imposed on the currents on
the opposite lateral surface [the current density near the right
corners, Eq. (27), remains practically unchanged at a small
variation of u(lo) if u(lo) ~ —1]. However, the inclined vortices
can modify the current 7y flowing on the left lateral surface,
and at H, ~ H;, [when |I| ~ I according to Eq. (25)], they
generally have to be taken into account in the calculation of
the critical current.

A similar estimate can be carried out in the case when the
curved vortex at the right boundary of the dome touches the
right equatorial point. This touch occurs at H, = Hy, ~ H,,
and therefore one may expect that in the range H, > Hi,
the inclined vortices exist on the right lateral surface of the
strip since there is no free room in the bulk of the strip for
the penetrating vortices. These inclined vortices are likely
to affect the vortex-entry condition imposed on the currents
flowing on the same lateral surface [ jr, near the right corners,
Eq. (27), is sensitive to u(zo) if ug)) — 1], and in fact, a new
scenario of the vortex penetration occurs in this magnetic-field
range. Therefore, the H, dependence of the critical current at
H, > H, requires an additional study. It is also worth noting
that for p/p. < 1, the crossing point H. of the functions
ISB(H,) and IP"(H,) (Fig. 11) approaches H,; with decreas-
ing the ratio p/p., and H,; can exceed the field at which the
right boundary of the dome touches the right equatorial point.
For such values of p, the geometrical barrier prevails over the
Bean-Livingston one up to H, and the crossover in 1.(H,)
discussed in Sec. IV C does not occur.
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