
PHYSICAL REVIEW B 104, 094524 (2021)

Phase diagram of the Hubbard model on a square lattice: A cluster slave-spin study
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The cluster slave-spin method is employed to investigate systematically the ground state properties of the
Hubbard model on a square lattice with doping δ and coupling strength U being its parameters. At half-filling,
a relation between the staggered magnetization M and the antiferromagnetic (AFM) gap �AFM is established
in the small U limit to compare with that from the Hartree-Fock theory, and a first-order metal-insulator Mott
transition in the paramagnetic state is substantiated, which is characterized by discontinuities and hystereses
at UMott = 10t . The interaction Uc for the crossover in the AFM state, separating the weak- and strong-coupling
regimes, is found to remain almost unchanged with large dopings, and smaller than UMott at half-filling because of
long range AFM correlations. Finally, an overall phase diagram in the U -δ plane is presented, which is composed
of four regimes: the AFM insulator at half-filling, the AFM metal with the compressibility κ > 0 or κ < 0, and
the paramagnetic metal, as well as three phase transitions: (i) From the AFM metal to the paramagnetic metal,
(ii) between the AFM metal phases with positive and negative κ , and (iii) separating the AFM insulating phase
at δ = 0 from the AFM metal phase for δ > 0.
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I. INTRODUCTION

Because of its intimate relation to the high-Tc uncon-
ventional superconductivity based on cuprate oxides, the
one-band Hubbard model [1] on a square lattice has been
extensively studied through many theoretical approaches—
Green’s function methods [1–4], slave-variable representa-
tions [5–10], variational methods for the wave functions and
spin configurations [11–15], renormalization-group methods
[16–19], and numerical methods such as the quantum Monte
Carlo (QMC) simulations [20–28], cluster dynamical mean-
field theory (CDMFT) [29–31], density matrix embedding
theory (DMET) [32,33], etc. Up till now, some consensuses
about this model have been reached, e.g., the first-order
metal-insulator Mott transition in the half-filled paramag-
netic (PM) state [19,29,34–38] and an infinitesimal critical
coupling strength for the antiferromagnetic (AFM) phase at
half-filling because of the nested Fermi surface in the square
lattice [2,3,5,20–23,32,39–44]. Even if the Mott transition
in the half-filled PM system transforms into a crossover in
the AFM state [21,22,26], the relationship between them has
not yet been understood thoroughly. There are two types of
phase separation: the one with hole-rich and hole-poor re-
gions [21,27,28] and that with incommensurate AFM [45] at
small and intermediate U . While the earlier works [46–48]
present the phase separation as a mixture of AFM and FM
states in the large U limit, we find that the phase separation
happens easier when doping the AFM Slatter insulator. It is
worthy of noticing that the theoretical and numerical results
cannot be compared with experiments on the cuprate ox-
ides directly because some crucial simplifications have been
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made in the Hubbard model by neglecting the long range
Coulomb interaction, the hopping matrix elements further
than the nearest neighbors, and the interlayer correlations,
which have made the phase diagram of the two-dimensional
(2D) Hubbard model [4,21] qualitatively different from that
of high-Tc cuprate superconductors [49]. However, recent ex-
perimental improvement on the ultracold atoms to lower the
local temperature of the optical lattice beyond the exchange
energy J make it possible to observe the spatial charge and
spin correlations even beyond the nearest neighbors [50–52].
Thus, the optical lattice platform could not only help us unveil
the phase diagram in the intriguing regime where the kinetic
energy and interaction potential become comparable, but also
examine the validity of various theoretical methods based on
different approximations. Meanwhile, more reliable results
of the model ought to be needed to provide guidelines for
experimental researches.

Although the QMC method have succeeded in coping with
the half-filled bipartite lattice, the sign problem for the doped
fermion systems and the finite size effect make its predic-
tions for non-half-filled systems at least questionable. In these
cases, some nonperturbative semianalytic methods based on
slave-variable representations have been introduced to throw
some light on the regime with modest coupling strengths,
where the conventional perturbative techniques fail to give rise
to correct solutions. Among all the slave-particle approaches,
slave-boson method has been applied to the single band [5]
and multiorbital systems successfully [6]. Earlier, Kotliar and
Rukenstein have proven that [5] the saddle point approxi-
mation within the slave-boson approach could reproduce the
Gutzwiller approximation’s results of the half-filled PM state,
and high-energy excitations can be taken into account by
the fluctuations around the saddle point. Nevertheless, as the
dimension of degrees of freedom increases, the exponentially
growing number of bosonic slave variables makes the slave
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boson approach particularly inapplicable to multiorbital sys-
tems and cluster mean-field theories. For the large U Hubbard
model, a fermion-spin transformation [10] has been developed
to implement the charge-spin separation in its equivalent t-J
model, where the charge degree of freedom is represented by
a spinless fermion while the spin degree of freedom by a hard-
core boson. Within this scheme and its development, both the
normal state properties and superconductivity mechanism of
doped cuprates has been investigated extensively [53].

Recently, the slave-spin approach [54–57] has been devised
to study the half-filled multiorbital Hubbard model, where the
slave spin is introduced to represent the charge sector of an
electron. The difficulty mentioned above has been overcome
because only one slave variable is needed for each degree of
freedom. After that, the slave-spin method was improved by
Hassan and de’ Medici [7] to deal with the non-half-filled sys-
tems, known as the Z2 slave-spin theory. However, it has been
proven that the Z2 slave-spin theory fails to reproduce the non-
interacting dispersion of the multiorbital Hamiltonian because
of the nonzero orbit-dependent Lagrange multipliers. Not only
can the U (1) slave-spin theory produce the same results as the
Z2 theorys when the on-site interaction is on, but also capture
the correct dispersion in the noninteracting limit by the extra
orbit-dependent effective chemical potential, which is identi-
cal to the Lagrange multiplier at U = 0 (see Appendix C for
details). A recently generalized cluster slave-spin method [9]
has succeeded in describing the crossover of the AFM gap
�AFM and obtaining the correct quasiparticle residue that is
consistent with the extended Gutzwiller factor [12]. However,
there remain some insufficiencies: (i) The solutions at U < 5t
are absent. (ii) They have not discussed the relationship be-
tween the crossover of the AFM gap and the Mott transition
in the half-filled PM state. (iii) The properties of the charge
component represented by the slave-spin variables have not
been studied on the same footing as the spin degree of free-
dom. (iv) The phase diagram in the U -δ plane has not been
given, which can provide us a holistic understanding of the
ground state properties. (v) No attention has been paid to the
half-filled system. By completing the missing parts mentioned
above, we offer an overall phase diagram in the U -δ plane
that consists of four regimes: AFM insulator, AFM metallic
phases with positive and negative compressibility, and the PM
metal. The first-order Mott transition occurs in the half-filled
PM state, characterized by discontinuities and hystereses at
U = 10t , which transforms into an extended crossover in the
AFM state because of nonlocal AFM correlations. Besides,
the phase separation, manifested by the negative compress-
ibility, has been observed in the regions with intermediate
dopings, indicating that the uniform AFM state is not the true
ground state of the model.

The rest of this paper is organized as follows. In Sec. II we
outline the cluster slave-spin mean-field theory of Ref. [9]. In
Sec. III A the results of hole-doped systems obtained by the
two/four-site cluster approximations are discussed compre-
hensively. In Sec. III B, for the half-filled system, we establish
an analytical relation between M and �AFM in the small U
limit, and observe the first-order Mott transition in the PM
state. In Sec. III C M, �AFM, and the compressibility κ as
functions of U and δ are studied thoroughly, and an overall
phase diagram in the U -δ plane is presented.

II. FORMALISM

We start from the standard single-band fermionic Hubbard
model [1] defined by

H = −t
∑
〈i, j〉σ

(c†
iσ c jσ + H.c.) + U

∑
i

ni↑ni↓ − μ
∑

iσ

niσ ,

(1)

where t , U , μ are the nearest hopping constant, the on-site
Coulomb repulsion energy, and the chemical potential, re-
spectively. 〈i, j〉 represents that the sum is over the nearest
neighbors, and ciσ (c†

iσ ) annihilates (creates) an electron at site
i with spin σ =↑, ↓, and the number operator niσ = c†

iσ ciσ .
In the slave-spin method, the electron operator cα is de-

composed into the product of a fermionic spinon and a slave
spin with S = 1

2 which represents the physical spin and charge
degrees of freedom, respectively,

c†
α = S†

α f †
α . (2)

With the constraint a†
αaα + b†

αbα = 1, the slave-spin operator
is rewritten in the Schewinger boson representation

S†
α = a†

αbα, Sz
α = 1

2 (a†
αaα − b†

αbα ), (3)

which has been utilized to describe the metal-insulator Mott
transition in the multiorbital Hubbard model [8]. In the slave-
spin formalism, the original Hillbert space of a single degree
of freedom with the basis {|nα〉} = {|0〉, |1〉} is enlarged to
{|n f

α, Sz
α〉} = {|0,− 1

2 〉, |1, 1
2 〉, |0, 1

2 〉, |1,− 1
2 〉}. Thus, the fol-

lowing constraint is enforced to project out the unphysical
states |0, 1

2 〉, |1,− 1
2 〉:

Sz
α = f †

α fα − 1
2 . (4)

However, according to Kotliar and Ruckenstein [5], the slave-
spin operators defined in Eq. (3) need to be dressed to ensure
the correct behavior in the noninteracting limit

S̃†
α = P†

α a†
αbαPα,

P±
α = 1√

1/2 ± Sz
α

. (5)

Then, in the slave-spin method, the Hamiltonian (1) can be
rewritten as

H = −t
∑
〈i, j〉σ

(S̃+
iσ f †

iσ S̃−
jσ f jσ + H.c.) − μ

∑
iσ

f †
iσ fiσ

−
∑

iσ

λiσ

(
f †
iσ fiσ − Sz

iσ − 1

2

)

+ U

2

∑
iσ

(
Sz

iσ + 1

2

)(
Sz

i−σ + 1

2

)
, (6)

where the constraint (4) is taken care of by introducing a
Lagrange multiplier λiσ . Under the two-site cluster approx-
imation sketched in Fig. 1(a), Eq. (6) can be decomposed
into a fermionic spinon Hamiltonian and a cluster slave-spin
Hamiltonian as

H f
MF =

∑
〈i, j〉σ

[−tZ − δi j (μ + λIσ − μ̃Iσ )] f †
iσ f jσ + H.c., (7)
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FIG. 1. Schematic illustration of the (a) two- and (b) four-site
cluster.

HS
2-site =

∑
σ

[
λ+

σ

(
Sz

Aσ + Sz
Bσ

) + λ−
σ

(
Sz

Aσ − Sz
Bσ

)]
+

∑
σ

{
εx
σ (z̃†

Aσ z̃Bσ + z̃†
Bσ z̃Aσ )

+ (
εx
σ + 2εy

σ

)
[z̃†

Aσ 〈z̃Bσ 〉 + z̃†
Bσ 〈z̃Aσ 〉 + H.c.]

}
+U

(
Sz

A↑ + 1

2

)(
Sz

A↓ + 1

2

)

+U

(
Sz

B↑ + 1

2

)(
Sz

B↓ + 1

2

)
, (8)

where I = A/B and

Z = 〈z̃†
Aσ 〉〈z̃Bσ 〉, λ±

σ = λAσ ± λBσ

2
,

μ̃Iσ = 4Z
〈
Sz

Iσ

〉(
εx
σ + ε

y
σ

)
(

1
2

)2 − 〈
Sz

Iσ

〉2 , εx/y
σ = −t〈 f †

iσ fi+x̂/ŷσ 〉. (9)

The spinon part is readily Fourier transformed into k space:

H f
MF =

∑
k,σ

(ξkσ f †
kσ

fkσ + �σ f †
kσ

fk+Qσ ), (10)

where

ξkσ = −4tZγk − μeff, γk = 1
2 (cos kx + cos ky),

μeff = μ − 1
2 (μ̃Aσ − λAσ + μ̃Bσ − λBσ ), (11)

�σ = 1
2 (μ̃Aσ − λAσ − μ̃Bσ + λBσ ).

Noticing that �σ = −�−σ in the AFM state, the PM state
can be reached by simply forcing the AFM gap �AFM =
|�σ | = 0.

Still, there are two key points needed to be cleared. First,
the fermionic spinon Hamiltonian (7) is very similar to that
in the Hartree-Fock (HF) approximation except the hopping
constant t is renormalized by the quasiparticle residue Z as
tZ . Second, the Hamiltonian (8) in the slave-spin sector is a
repulsively interacting Bose-Hubbard model for bosons aiσ

and biσ in the staggered external field λAσ and λBσ . When the
composite boson fields z̃iσ condensate, i.e., 〈z̃iσ 〉 �= 0 below
the critical coupling strength UMott for the metal-insulator
transition in the PM state, the system changes from the insu-
lating phase to a metallic one [8]. Moreover, when U is strong
enough to make λAσ �= λBσ , i.e., λ−

σ �= 0, the system will tran-
sit into the AFM state from the PM state. Thus, the Hamilto-

FIG. 2. (a) The quasiparticle weight Z and the generalized
Gutzwiller factor gt , (b) the AFM energy gap �AFM/t , (c) the stag-
gered magnetization M, (d) the holon-doublon correlator between
the nearest neighbors C12 and the next nearest neighbors C14, (e) the
expectation value of the cluster slave-spin Hamiltonian 〈HS

2-site〉 and
〈HS

4-site〉/2, and (f) the double occupancy 〈D〉 as functions of U at
δ = 0.02 in the AFM state obtained by the two-site (blue) and the
four-site (red) cluster. For comparison, the staggered magnetization
within the HF theory at δ = 0.02 is plotted in (c) as a black line.

nians (7) and (8) can describe both the Mott transition at U =
UMott in the PM phase and the PM-to-AFM transition at UM .

It has been proven that the four-site cluster approximation
makes a great improvement compared to the two-site one by
including more intersite fluctuations [9]. Thus, except Figs. 2
and 9, all our results are obtained in the four-site cluster
approximation as illustrated in Fig. 1(b), whose mean-field
fermionic spinon Hamiltonian remains the same as Eq. (7),
and the cluster slave-spin Hamiltonian reads

HS
4-site = HS

λ + HS
U + HS

K , (12)

where

HS
λ =

4∑
I=1σ

λIσ Sz
Iσ , (13)

HS
U =

∑
I

U

(
Sz

Iσ + 1

2

)(
Sz

I σ̄ + 1

2

)
, (14)

HS
K =

∑
σ

{
εx
σ (z̃†

1σ z̃2σ + z̃†
3σ z̃4σ ) + εy

σ (z̃†
1σ z̃3σ + z̃†

2σ z̃4σ )

+ εx
σ [z̃†

1σ 〈z̃2σ 〉 + z̃†
2σ 〈z̃1σ 〉 + z̃†

3σ 〈z̃4σ 〉 + z̃†
4σ 〈z̃3σ 〉]

+ εy
σ [z̃†

1σ 〈z̃3σ 〉 + z̃†
3σ 〈z̃1σ 〉 + z̃†

2σ 〈z̃4σ 〉 + z̃†
4σ 〈z̃2σ 〉]

+ H.c.
}
. (15)

In this work, we only investigate the ground state properties
of the system and will adopt the following density of states in
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all computations to avoid the finite size effect,

D(γ ) = 1

N

∑
k

δ(γ − γk) = 2

π2
K (

√
1 − γ 2), (16)

where K (x) is the complete elliptical function of the first kind.

III. RESULTS AND DISCUSSIONS

A. Systems with finite doping

We analyze the quasiparticle residue Z , the generalized
Gutzwiller factor gt [9,12,58], the AFM gap �AFM, the
staggered magnetization M, the holon-doublon correlators be-
tween the nearest neighbors C12 and the next nearest neighbors
C14 [cf. (A1) for definition], the ground state energy of the
slave-spin Hamiltonian 〈HS

2-site〉, 〈HS
4-site〉/2, and the double

occupancy 〈D〉 as functions of U at δ = 0.02 obtained from
the two- and four-site cluster approximations in Fig. 2.

The results are as follows: (i) In Fig. 2(a) we find that Z’s
behave similarly with gt in both the two- and four-site cluster
approximations, and it is suppressed drastically when extra
intersite fluctuations are taken into account as the cluster size
is enlarged from two to four. (ii) In Fig. 2(b) the crossover
Uc separating the weak- and strong-coupling regime in the
AFM state is defined by the peak position of �AFM, which
decreases from 12.9t (two site) to 8.9t (four site). Both �AFM

and M [Fig. 2(c)] are restrained appreciably by the intersite
fluctuations. One observes that M from the cluster slave-spin
approximation and the HF theory are consistent when U is
small. (iii) In Fig. 2(d) a maximum of C14 around U ∼ 20t can
be identified as one of the features of the strong correlation,
the reason for which has been analyzed in Appendix A. (iv) In
Fig. 2(e) 〈HS

n-site〉/(n/2) in the AFM states declines suddenly
at U ∼ UM ∼ t , which is caused by the decrease of the in-
teraction potential compared to the PM state in this region [cf.
Fig. 3(f)], and behaves as −1/U at large U , which is similar to
�AFM/t . (v) In Fig. 2(f), as U goes up, the double occupancy
decreases monotonically, which probably tends to zero as U
goes to infinity. Finally, we find that the difference between
the results from two approximations is much smaller in the
small and large U limit than those at intermediate U ’s, which
necessitates enlarging the cluster size to study the properties
of Hubbard model with moderate coupling strengths.

To understand how the quantities discussed in Fig. 2
evolve with the increase of U at different doping levels,
their dependence on U at a set of dopings δP = 0.02, δA =
0.02, 0.05, 0.1, 0.2 are plotted in Fig. 3, where A and P de-
note the AFM or PM state, respectively. First, in Fig. 3(a), we
find that Z in the PM state is larger than its counterpart in the
AFM state when U < 6t , or otherwise when U > 6t , and the
quasiparticle weight in the PM state decreases more dramat-
ically than that in the AFM state around U ∼ UMott = 10t at
δ = 0.02. Moreover, the increase of Z with doping in the AFM
state is observed at all U ’s, signifying the system’s tendency
towards a correlated metal. Second, the �AFM at all dopings
present a crossover behavior at Uc and then reaches a finite
value except for δ = 0.2 whose �AFM vanishes at U = 26t in
Fig. 3(b). The reason for this unusual behavior may be that at
δ = 0.2, the system is an AFM metal, whereas the increased
U makes the system more localized which is unfavorable to

FIG. 3. (a) The quasiparticle weight Z , (b) the AFM energy gap
�AFM/t , (c) the staggered magnetization M, (d) the holon-doublon
correlator between the nearest neighbors C12, (e) the double occu-
pancy per site, and (f) the expectation value of the cluster slave-spin
Hamiltonian as functions of U at a set of doping concentrations
δ = 0.02 (red), 0.05 (green), 0.1 (blue), 0.2 (violet) in the AFM state
and δ = 0.02 (black) in the PM state obtained by the four-site cluster.

the itinerant AFM. It is worth mentioning that �AFM shows
a nonmonotonic behavior with the increase of doping when
U > UMott. Third, as shown in Fig. 3(c), M decreases mono-
tonically with doping and like �AFM at δ = 0.2, the staggered
magnetization also vanishes after reaching its maximum at
Uc. The same picture has been observed in the recent DMET
calculation [32] and some earlier work by Kotliar and Ruck-
enstein [5]. The holon-doublon correlator C12 and double
occupancy 〈D〉 as functions of U are depicted in Figs. 3(d) and
3(e), respectively, both of which decrease monotonically with
δ. C12 in the PM state is smaller than that in the AFM state
when U < Uc (8.9t for δ = 0.02), or otherwise in the case
of U > Uc, while the opposite is true for 〈D〉. Furthermore,
the ground state energy of the cluster slave-spin Hamiltonian
(12) 〈HS

4-site〉/2 is plotted in Fig. 3(f). There are three key
points needed to be addressed: (i) According to Fig. 3(e),
compared to the PM state, it is the decrease of the interaction
potential that makes 〈HS

4-site〉/2 decline rapidly upon entering
the AFM state. (ii) For U � UMott = 10t , 〈HS

4-site〉/2 increases
monotonically with doping, while it presents a nonmonotonic
behavior when U � UMott. (iii) In contrast to the PM state,
〈D〉 and 〈HS

4-site〉/2 diminish drastically as the AFM emerges,
which can be understood through 〈Di〉 = (1 − δ)/2 − 2〈M2

i 〉
with Mi = (ni↑ − ni↓)/2.

We now discuss the difference of the energetics of the
slave-spin Hamiltonian (12) between the AFM and PM
states, as well as the electron momentum distribution and
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FIG. 4. The difference of the kinetic energy, interaction potential,
and the total energy of the cluster slave-spin Hamiltonian between
the AFM and PM state as functions of U at δ = 0.02 obtained by the
four-site cluster.

the hopping probability between the nearest and next nearest
neighbors.

The differences of the kinetic energy EK , interaction
potential EU , and their summation ETotal of the approxi-
mate Hamiltonian (12) between the AFM and PM states
(�E = E (A) − E (P)) as functions of U are plotted in Fig. 4.
We observe a region around 6.5t < U < 8.94t separating
the weak- and strong-coupling regimes in the AFM state
[21,22,26,29,59]. When U < 6.5t or U > 8.94t , the AFM
state in the system is governed by the interaction potential
gain supporting the Slater mechanism or the kinetic energy
gain that favors the superexchange mechanism, respectively
[21,30,59]. However, a sharp crossover is observed at UMott

in the recent CDMFT calculation of the half-filed Hubbard
model [30].

The electron momentum distribution nd (k) calculated in
Appendix B are plotted in Figs. 5(a) and 5(b). The overall
feature is that the on-site interaction transfers the electrons
within the Fermi surface outside and the tendency is strength-
ened by the stronger interaction, which is consistent with the
result of QMC simulation [23]. However, we fail to reproduce
the standard Fermi surface even in the noninteracting limit,
and nd (k) is larger than unity at k = (0, 0) and negative at
k = (π, π ) in both two- and four-site cluster approximations,
whereas an improvement can be seen when the cluster size is
enlarged. This kind of failure reflects an intrinsic flaw in all
slave-variables approaches [60].

The hopping probability between the nearest neighbor
|〈c†

iσ ci+δσ 〉|2 ≈ Z2|〈 fiσ fi+δσ 〉|2 and its derivative are plotted in
Figs. 6(a) and 6(b).|〈c†

iσ ci+δσ 〉|2 is smaller in the AFM state
than in the PM state when UM < U < Uc, because the AFM
state is driven by the interaction potential gain at small U
(see Fig. 4) that suppresses the double occupancy, leading
to the same effect on |〈c†

iσ ci+δσ 〉|2 [compare Figs. 3(e) and
6(a)]. However, the opposite is true when U > Uc because
the AFM state is stabilized by the superexchange mechanism
at large U . Accordingly, the gradient of |〈c†

iσ ci+δσ 〉|2 with
respect to U has a minimum at U = 3.0t, 7.4t in the AFM

FIG. 5. (a) and (b) The electron momentum distribution nd (k)
versus U at δ = 0.02 obtained by the two- and four-site cluster,
respectively.

and PM states, respectively, signifying that the long range
AFM order suppresses the hopping probability between the
nearest neighbors noticeably for small U .

The hopping probability between the next nearest
neighbors |〈c†

iσ ci+δ′σ 〉|2 (i ∈ A) ≈ |〈z̃Aσ 〉|4〈 fiσ fi+δ′σ 〉|2 and its
derivative are shown in Figs. 7(a) and 7(b). In the AFM
state, |〈c†

iσ ci+δ′σ 〉|2 depends either on site i or on spin σ , and
varies nonmonotonically—remaining small when U < UM ,
then zooming up at U = UM , and vanishing when U > UMott

FIG. 6. (a) The hopping probability between the nearest neigh-
bors |〈c†

iσ ci+δσ 〉|2 and (b) its derivative as functions of U at δ = 0.02
in the AFM (red) and PM (black) states obtained by four-site cluster.
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FIG. 7. (a) The hopping probability between the next nearest
neighbors |〈c†

iσ ci+δ′σ 〉|2 and (b) its derivative as functions of U at
δ = 0.02 in the AFM (red and violet) and PM (black) states obtained
by four-site cluster.

after reaching its maximum at U ∼ 3t . However, in the PM
state, it decreases to zero monotonically as U increases.

B. Half-filled system

By diagonalizing the spinon Hamitonian (10), the self-
consistent parameters n f

A/Bσ ≡ 〈 f †
A/Bσ fA/Bσ 〉 and εδ

σ can be
obtained:

εδ
σ = ε = 1

2N

∑
k

4t2Zγ 2
k√

(4tZγk)2 + �2
σ

[θ (−E+
k ) − θ (−E−

k )],

(17)

n f
A/Bσ = 1

2N

∑
k

[
θ (−E+

k ) + θ (−E−
k )

∓ �σ√
(4tZγk)2 + �2

σ

[θ (−E+
k ) − θ (−E−

k )]

]
, (18)

where

E±
k = −μeff ±

√
(4tZγk)2 + �2

σ . (19)

At half-filling, the particle-hole symmetry ensures that μeff =
0 and E+

k > 0. With the density of state (16), Eqs. (17) and

(18) can be rewritten as

ε = −tλ
∫ 1

0
dγ D(γ ) γ 2 1√

(λγ )2 + 1

= −tλIε (λ), (20)

n f
A/Bσ = 1

2
∓ sgn(�σ )

∫ 1

0
dγ D(γ )

1√
(λγ )2 + 1

= 1

2
∓ sgn(�σ ) I f (λ) = 1

2
+ 〈

Sz
A/Bσ

〉
, (21)

with λ = 4tZ/�AFM.
To establish the relation between M and �AFM in the small

U limit, we expand asymptotically the integrals Iε (λ) and
I f (λ) as λ → ∞ [61]:

ε ∼ −t

[
2

π2
− �̃3(ln �̃)2

2π2
−

(
1

2π2
− 3 ln 2

π2

)
�̃2 ln �̃

+
(

1

4π2
+ 3 ln 2

2π2
− 9(ln 2)2

2π2

)
�̃2

]
, (22)

〈
Sz

A/Bσ

〉 ∼ (−/+) sgn(�σ )

[
1

π2
�̃(ln �̃)2

− 6 ln 2

π2
�̃ ln �̃ + 9(ln 2)2

π2
�̃

]
, (23)

with �̃ = λ−1 = �AFM/(4tZ ), resulting in

M = 1

2

∣∣〈Sz
Aσ

〉 − 〈
Sz

Bσ

〉∣∣
∼ 1

π2
�̃(ln �̃)2 − 6 ln 2

π2
�̃ ln �̃ + 9(ln 2)2

π2
�̃. (24)

Therefore, the simple HF relation of �AFM = UM [20] needs
to be corrected. By adopting the U dependent form of the
AFM gap

�AFM = A
√

Ue−B
√

1
U , (25)

which has been verified by the QMC method [20], we fit our
self-consistent data to obtain

A = 0.02086 ± 0.00418,

B = 1.90604 ± 0.06189, (26)

as shown in Fig. 8(a). Then, the result is substituted into
Eq. (24) to recover perfectly the data of M shown Fig. 8(b).

Moreover, the AFM gap �AFM, starting from an infinites-
imal U , should also present in the spectrum function of the
electron [22]. In the slave-spin method, the spectrum function
of the electron Green’s function can be expressed as [62]

A(q, ω) =
∫

k

∫ ω

0
d�As-spin(q − k, ω − �)Afermion(k,�).

(27)
Assuming a gap �AFM in the fermionic spinon sector of
Hamiltonian (1), Afermion(k,� < �AFM) = 0, it is easy to
understand that the electron spectrum function A(q, ω) will
vanish when ω is smaller than �AFM.
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FIG. 8. (a) The AFM energy gap �AFM/t where the inset shows
the same data at small U together with the fitting data (black line) and
(b) the staggered magnetization M where the inset shows the same
data at small U together with that calculated by Eq. (24) (black line).

Additionally, Z , C12/14, 〈HS
4-site〉/2, and 〈D〉 as functions

of U are plotted in Fig. 9. The overall features are similar
to those with δ = 0.02 (cf. Fig. 2 for comparison) except
for two critical distinctions. First, in the PM state, the first-
order Mott transition occurs at UMott = 10t , characterized by
the discontinuity and hysteresis behavior of these quantities
[29,34,38,63]. Compared to the AFM’s Uc = 8.2t shown in
Fig. 8(a), we find that the AFM correlations significantly
reduce the coupling strength which separates the weak- and
strong-coupling regimes. This is consistent with the CDMFT
calculation [29]. Second, both the AFM solutions at large U
obtained from the two/four-site cluster approximations are
absent, and the quasiparticle residue drops abruptly when
U approaches the critical coupling strength where the AFM
solution happens to disappear, which may imply a transi-
tion between the Hubbard model with Z �= 0 and Heisenberg
model with �AFM = 0, i.e., Z = 0. To justify this argument,
notice the contribution to �AFM comes from two parts [see
Eq. (11)]: the differences of the effective chemical poten-
tials [�μ

AFM = 1
2 (μ̃Aσ − μ̃Bσ )] and the lagrange multipliers

[�λ
AFM = 1

2 (λAσ − λBσ )] between sublattice A and B, i.e.,

�AFM = �
μ−λ

AFM = �
μ

AFM − �λ
AFM, all of which as functions of

U are plotted in Fig. 10. For comparison, those at δ = 0.02
are presented too. One finds the main contribution to �AFM is
from �

μ

AFM [9], which is proportional to Z . From Fig. 10(a),
both �

μ

AFM and �λ
AFM approach zero as Z vanishes, resulting

in the disappearance of �AFM at U ∼ 13.6t , which may be
connected to the gapless magnetic excitation of the Heisen-
berg model.

FIG. 9. (a) The quasiparticle weight Z and the generalized Gutzwiller factor gt , (b) the holon-doublon correlators between the nearest
neighbors C12 and the next nearest neighbors C14, (c) the expectation value of the cluster slave-spin Hamiltonian, and (d) the double occupancy
〈D〉 in the AFM state as functions of U obtained by the two/four-site clusters (blue, red), respectively, and those in the PM state obtained by
the four-site cluster (black).
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FIG. 10. The AFM gap �AFM/t (black), �
μ

AFM/t (red), �λ
AFM/t

(blue) as functions of U obtained from the four-site cluster at (a) δ =
0.0 and (b) δ = 0.02.

C. Phase diagram

In the following we combine the results of the staggered
magnetization M (Fig. 11), the AFM gap �AFM (Fig. 12),
and the compressibility κ (Fig. 13) to present an overall phase
diagram for the Hubbard model (Fig. 15).

The staggered magnetization M with δ and U being its
parameters is plotted in Fig. 11, where the phase bound-
ary between the AFM and PM states is denoted by δM (U ).
First, the staggered magnetization always saturates at a certain
value when U > UMott, while decreases monotonically with
δ. Second, marked by the dense contours around δM (U ), the
staggered magnetization decreases continuously to zero as
δ approaches δM (U ), signifying the second-order transition
between the AFM and the PM phases. Third, δM (U ) shows a
nonmonotonic behavior with U [31], which is consistent with
the reentrance of M with U at δ = 0.2, as shown in Fig. 3(c).

The AFM gap �AFM in the same parameter space is plotted
in Fig. 12, where the previous boundary δM (U ) still holds for

FIG. 11. The staggered magnetization M as functions of U and δ

in the AFM states obtained by the four-site cluster.

FIG. 12. The AFM gap �AFM as functions of U and δ in the AFM
states obtained by the four-site cluster.

�AFM. When U > UMott, the maximum of �AFM occurs at δ ≈
0.05, leading to the interesting vertical reentrance behavior as
δ increases, which reflects that the AFM gap at half-filling
vanishes in the large U limit.

Figure 13 shows the results for the compressibility κ =
n−2∂n/∂μ. The staircase in this figure obviously is an artifact
because of discrete U ’s adopted to calculate κ , i.e., �U = t
when U � 12t and �U = 2t when 12t < U � 20t , which
can only be eliminated in the �U → 0 limit. As shown in
Fig. 13, there exist two phase boundaries delineated by the
midpoints of these steps: (i) δ1

κ (U ), between the regions with
positive (red) and negative (blue) compressibility. (ii) δ2

κ (U ),
from the region with κ < −0.5 (blue) to 0.2 < κ < 0.5 (yel-
low). As shown in Fig. 14, κ = 0 at half-filling is disconnected
from that at an infinitesimal doping [31], signifying that the
half-filled system in the AFM state is an insulator while the
doped one a metal. By Figs. 11 and 13, the systems with
δ1
κ (U ) < δ < δ2

κ (U ) are AFM metals with negative compress-
ibility, meaning the uniform AFM configuration is not the

FIG. 13. The compressibility κ as functions of U and δ in the
AFM states obtained by the four-site cluster. κ in the red and blue
region are greater than 0.5 and less than −0.5, respectively.
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FIG. 14. The compressibility κ as functions of δ in the AFM
state at U = 5t , 10t , and 18t obtained by four-site cluster. Red lines
are the extrapolated curves from the corresponding self-consistent
data using κ0 + αδ2 + βδ4. The red circles at δ = 0 denotes the
discontinuity of κ = 0 at δ = 0.

actual ground state, whereas an inhomogeneous phase with
M �= 0 could be the alternative [4,21,27,28,32]. In addition,
the space between δ1

κ (U ) and δ2
κ (U ) shows a broadening-

narrowing feature as U increases, and they may merge into
one as U � 20t , implying that this kind of phase separation
cannot be observed in the large U limit [21,27,28]. Moreover,
δ2
κ (U ) is identical to δM (U ), thus, δM (U ) is the boundary

separating the AFM metal phase with κ < 0 and the PM metal
phase.

By aggregating Figs. 11, 12, and 13, we acquire an overall
phase diagram, Fig. 15, of the Hubbard model in the U -

FIG. 15. The phase diagram of the Hubbard model in the U -δ
plane obtained by the four-site cluster, where exist the crossover Uc

(red dashed line) dividing the weak- and strong-coupling regimes,
at which the �AFM is maximized, and the AFM for U < Uc and
U > Uc is advocated by the interaction potential and kinetic energy
gain, respectively. The UMott for the Mott transition in the PM state is
marked by the red triangle. The half-filling case is highlighted by the
heavy blue line, in which the system is an AFM insulator with κ = 0.
Here the black dashed line represents the boundary δMF(U ) between
the AFM and PM phases within the HF method.

δ plane. The boundary δHF(U ) between the AFM and PM
phases within the HF theory is plotted as the dashed line.
As expected, the consistency between δHF(U ) and δM (U )
only lies in the small U region, which is also the case of
M in Fig. 2(c). There exists one crossover [9,21,26,30] Uc,
separating the weak- and strong-coupling regions, and three
transitions in the U -δ plane: (i) between the AFM insulator at
δ = 0, marked by the heavy blue line, and the AFM metal
for δ > 0; (ii) δ1

κ (U ), separating the AFM phases with the
positive and negative compressibility, which may not exist
after considering the inhomogeneous phases; and (iii) δ2

κ (U ),
from the AFM metal with negative compressibility to the
PM metal. Thus, we find phase separation at small and in-
termediate coupling strengths, which is in agreement with
the auxiliary-field QMC [27,28] and variational [21] studies.
However, the phase separation occurs at intermediate doping
levels in our work but at small dopings in these QMC studies.
This discrepancy most likely results from the fact that the
cluster slave-spin mean-field theory exaggerates the system’s
tendency towards a uniform AFM state, which may be reme-
died by enlarging the cluster size and strictly dealing with the
constraint Sz

α = f †
α fα − 1

2 locally within the cluster. It should
be mentioned that Uc’s at all dopings are close to the UMott of
δ = 0, manifesting that the physics in the AFM state are gov-
erned by the underlying Mott transition in the half-filled PM
state [21,30,31]. The reason for the close relationship between
the crossover mentioned above and the Mott transition in the
PM state is that both phenomena are driven by the competition
between the kinetic energy and interaction potential of the
Hubbard model.

IV. CONCLUSION

In summary, the cluster slave-spin method has been
employed to investigate systematically the ground state prop-
erties of the single-band 2D Hubbard model on a square lattice
in the parameter space of U and δ. We substantiated that the
system presents a broad crossover between the weak- and
strong-coupling regimes: (i) The �AFM increases monotoni-
cally with U in the weak-coupling regime, while decreases
for large couplings [9]. (ii) The AFM in the weak-coupling
regime is stabilized by the interaction potential gain, while
that for large U is supported by the kinetic energy gain
[21,30,59]. In Fig. 15 the Uc marked by the red dashed line
is close to UMott = 10t , signifying that the underlying Mott
transition in the half-filled PM state dominates the properties
of the AFM states by changing into a crossover [21,30,31]
between the weak- and strong-coupling regimes. It is worthy
mentioning that Uc at half-filling is smaller than UMott because
of long range AFM correlations [29].

For the half-filled system, we analytically calculated in
Eq. (24) the relation between M and �AFM in the small U
limit, implying that the one from the HF method needs to
be improved to include quantum fluctuations. After fitting the
AFM gap of the cluster slave-spin data using the formula from
the QMC simulation [20], and calculating the dependence
of M upon U by Eq. (24), we find the result is in a good
agreement with the numerical data as shown in Fig. 8.

The U -δ phase diagram was discussed in Sec. III C, from
which we extracted four regimes: AFM insulator at δ = 0,
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AFM metal with κ > 0 and κ < 0, and the PM metal. The
second-order transition occurs when the system transits from
the AFM metal with κ < 0 to the PM metal phase, whereas
the existence of the transition from the AFM metal phase
with κ > 0 to that with κ < 0 needs to be proven further
by taking the inhomogeneous states into account. Moreover,
as shown in Figs. 12 and 15, the crossover, separating the
weak- and strong- coupling regimes in the AFM state, always
locates around UMott, and whether this property is specifically
associated with the geometry of the square lattice is worthy of
subsequent investigations.

According to Figs. 2 and 9, the difference between the
two- and four-site cluster results is rather quantitative than
qualitative. We believe that the four-site cluster approximation
is sufficient to capture the physics because its geometry obeys
the same lattice symmetry as the original square lattice, which
is very important to extract the reasonable solutions of the
system. This conclusion can be reached in our ongoing studies
on the honeycomb lattice [64].
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APPENDIX A: RELATIONSHIP BETWEEN THE
HOLON-DOUBLON CORRELATOR AND THE MOTT

TRANSITION

The holon-doublon correlator [9] is defined as

Ci j = 〈NiDj〉 − 〈Ni〉〈Dj〉
〈Ni〉〈Dj〉 , (A1)

where

Ni = (1 − c†
iσ ciσ )(1 − c†

iσ̄ ciσ̄ ), Dj = c†
jσ c jσ c†

jσ̄ c jσ̄ , (A2)

which can be approximately factorized as

〈c†
1c2c†

3c4〉 ≈ 〈c†
1c2〉〈c†

3c4〉 + 〈c†
1c4〉〈c2c†

3〉, (A3)

leading to

〈Di〉 ≈ 〈ni↑〉〈ni↓〉 = ni↑ni↓ (A4)

〈NiDj〉 ≈ n jσ n jσ̄ (δ + niσ niσ̄ ) +
∑

σ

|〈c†
iσ c jσ 〉|2

×
[

1

2
|〈C†

iσ̄ c jσ̄ 〉|2 + n jσ̄ (1 − niσ̄ )

]
. (A5)

Noticing that there is a simple relation between 〈Ni〉 and 〈Di〉:
〈Ni〉 = 〈(1 − c†

iσ ciσ )(1 − c†
iσ̄ ciσ̄ )〉

= 1 −
∑

σ

〈c†
iσ ciσ 〉 + 〈c†

iσ ciσ c†
iσ̄ ciσ̄ 〉

= δ + 〈Di〉, (A6)

the holon-doublon correlator Ci j can thus be rewritten as

Ci j ≈
∑

σ |〈c†
iσ c jσ 〉|2[ 1

2 |〈c†
iσ̄ c jσ̄ 〉|2 + n jσ̄ (1 − niσ̄ )

]
(δ + 〈Di〉)〈Dj〉 . (A7)

We find from Eq. (A7) that when U ∼ UMott, the decrease
of the double occupancy will enhance Ci j dramatically. In
the case of U � UMott, the double occupancy decreases at
the same rate as the nearest neighbor hopping probability
and more mildly than the next nearest one. Thus, the near-
est neighbor holon-doublon correlator will saturate eventually
and the next nearest one decrease after reaching its maximum.

APPENDIX B: ELECTRON-MOMENTUM DISTRIBUTION

Within the cluster slave-spin scheme, the electron mo-
mentum distribution n(2/4)

d (k) = 〈d†
kσ

dkσ 〉 with respect to
two/four-site cluster approximation are as follows. For the
former,

n(2)
d (k) ≈ 1

N

∑
j

〈 f †
jσ f jσ 〉 + 〈S+

j+δσ 〉〈S−
jσ 〉

N

∑
j,δ

eik·δ〈 f †
j+δσ f jσ 〉

= 1 − δ

2
− 4Zε

t
γk, (B1)

and for the latter,

n(4)
d (k) ≈ 1

N

∑
j

〈 f †
jσ f jσ 〉 + 〈S+

j+δσ 〉〈S−
jσ 〉

N

∑
j,δ

eik·δ〈 f †
j+δσ f jσ 〉

+ 〈S+
j+ησ 〉〈S−

jσ 〉
N

∑
j,η

eik·η〈 f †
j+ησ f jσ 〉

= 1 − δ

2
− 4Zε

t
γk

+ 4γ ′
k

N

∑
k′∈RBZ

γ ′
k′

{
Zave[θ (−E+

k′ ) + θ (−E−
k′ )]

+ Z�√
(4tZγk′ )2 + �2

[θ (−E+
k′ ) − θ (−E−

k′ )]

}
,

(B2)

where

γ ′
k = cos kx cos ky, E±

k = −μeff ±
√

(4tZγk)2 + �2
σ ,

Zave = |〈z̃Aσ 〉|2 + |〈z̃Bσ 〉|2
2

, Z� = |〈z̃Aσ 〉|2 − |〈z̃Bσ 〉|2
2

.

To understand our present results concerning the negative and
beyond unity part of this quantity around M and � point,
we refer to the previous work on slave-particle formalism
[60], where a “no-go” theorem states that the correct electron
momentum distribution cannot be obtained based merely on a
simple decoupling procedure for different degrees of freedom.
In the work, the electron momentum distribution is expressed
as

nc(k, σ ) = 1 − δ

2
+ 1

N

∑
q

n f σ (k + q)nb(q). (B3)
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The common feature between Eqs. (B1)–(B3) is that all of
them are corrected from an average occupancy nσ = 1−δ

2 , and
it is easy to check that our results ensure the sum rule of
N−1 ∑

k nd (k) = 1−δ
2 .

APPENDIX C: U (1) SLAVE-SPIN FORMALISM
IN THE NONINTERACTING LIMIT

In this Appendix we prove analytically that in the U (1)
slave-spin theory [8] and within the single-site approximation,
the condition Z = 1 at U = 0 recovers the correct noninteract-
ing spinon dispersion.

Starting from the approximate Hamiltonian of a multior-
bital system in the single-site approximation (Eqs. (15) and
(16) in Yu and Si’s work [8])

HMF
f =

∑
kαβ

[
ε

αβ

k 〈z̃†
α〉〈z̃β〉

+ δαβ (�α + μ̃α − λα − μ)
]

f †
kα

fkβ, (C1)

HMF
S =

∑
αβ

[
εαβ (〈z̃†

α〉z̃β + 〈z̃β〉z̃†
α ) + δαβ

λα

2

(
n̂a

α − n̂b
α

)]

+ HS
int, (C2)

where

z̃†
α = 〈P+

α 〉a†
αbα〈P−

α 〉, 〈P±
α 〉 = 1√

1/2 ± (
n f

α − 1
2

) ,

εαβ =
∑
i jσ

tαβ
i j 〈 f †

iασ f jβσ 〉, ε
αβ

k = 1

N

∑
i j

tαβ
i j eik·(ri−r j ),

μ̃α = 2εαηα, ηα = 2n f
α − 1

4n f
α

(
1 − n f

α

) ,

εα =
∑

β

(εαβ〈z̃†
α〉〈z̃β〉 + c.c.). (C3)

Equation (C2) can be rewritten as

HMF
S =

∑
α

[
kα z̃α + k∗

α z̃†
α + λα

2

(
n̂a

α − n̂b
α

)] + HS
int, (C4)

where kα = ∑
β εβα〈z̃†

β〉. In the noninteracting limit, because
of the decoupling of the orbits, we can keep only one degree of

freedom in Eq. (C4). After dropping the crystal-field splitting
�α and the interaction term, the above Hamiltonians become

HMF
f =

∑
k

[εk〈z̃†〉〈z̃〉 + (λ + μ̃ − μ)] f †
k fk, (C5)

HMF
S = ε(〈z̃†〉z̃ + 〈z̃〉z̃†) + λ

2
(n̂a − n̂b), (C6)

where ε = 2ε〈z̃†〉〈z̃〉 and μ̃ = 4εη〈z̃†〉〈z̃〉.
Under the hard-core boson constraint: a†a + b†b = 1, the

restricted Hillbert space is spanned by {|a = 1, b = 0〉, |a =
0, b = 1〉}, in which the slave-spin Hamiltonian (C6) has the
form

HMF
S = ε(〈z̃†〉z̃ + 〈z̃〉z̃†) + λ

2
(n̂a − n̂b)

=
(

λ
2 εR〈z̃〉

εR〈z̃†〉 − λ
2

)
, (C7)

with R = 〈P+
α 〉〈P−

α 〉, which has the ground state and energy as

|�−〉 =
(

−εR〈z̃〉
N

,
λ/2 + R0

N

)
, (C8)

E− = −
√

λ2

2
+ ε2R2|〈z̃†〉|2, (C9)

where R0 =
√

λ2

4 + ε2R2, N =
√

2R0( λ
2 + R0). Accordingly,

the expectation value of n̂a − n̂b and z̃ can be calculated as

〈n̂a − n̂b〉 = − λ

2R0
, 〈z̃〉 = −εR2〈z̃〉

2R0
. (C10)

Because of the constraints na − nb = 2n f − 1 and |〈z̃〉|2 =
1 in the noninteracting case, we have

|〈z̃〉|2 = ε2R4

4R2
0

= 1, (C11)

with R = 1√
n f (1−n f )

. Then we finally arrive at

λ = −2R0(2n f − 1) = ε
2n f − 1

n f (1 − n f )
, (C12)

μ̃ = 4εη = 4ε(2n f − 1)

4n f (1 − n f )
= ε

(2n f − 1)

n f (1 − n f )
, (C13)

where ε is negative. Thus, λ = μ̃ in the noninteracting case
(Z = 1) for the single orbital system, and it is straightforward
to generalize the conclusion to the multiorbital systems.
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