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Moving vortices in anisotropic superconductors
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The magnetic field of moving vortices in anisotropic superconductors is considered in the framework of the
time-dependent London approach. It is found that, at distances large relative to the core size, the field may change
sign that alludes to a nontrivial intervortex interaction which depends on the crystal anisotropy and on the speed
and direction of motion. These effects are caused by the electric fields and corresponding normal currents which
appear due to the moving vortex magnetic structure. We find that the motion related part of the magnetic field
attenuates at large distances as 1/r3 unlike the exponential decay of the static vortex field. The electric field
induced by the vortex motion decreases as 1/r2.
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I. INTRODUCTION

The problem of interaction of vortices in anisotropic su-
perconductors has been studied extensively in early 90s both
theoretically [1–3] and experimentally [4]. For vortices par-
allel to one of the principal crystal directions the problem is
solved just by rescaling the isotropic results. In particular, the
interaction is repulsive for any position of the second vortex
relative to the first. However, the force direction in general is
not along the vector R connecting the vortices, in other words,
for an arbitrary position of the pair there is a torque, unless R
is directed along principal directions [5].

The situation is different if parallel vortices are tilted out
of principal directions [1–3]. Then, at distances of the order
of London penetration depth λ, the magnetic field h(R) of a
single tilted vortex may change sign and approach zero for
R → ∞ being negative. In other words, the vortex-vortex in-
teraction being repulsive at short distances may turn attractive
at large distances. This leads to formation of chains of vortices
in tilted fields [4].

In this paper we consider the magnetic field and cur-
rent distributions of moving vortices in anisotropic materials.
Commonly, moving vortices are considered as static but dis-
placed as a whole. It was argued, however, that an out-of-core
moving vortex structure differs from the static case due to
out-of-core dissipation [6,7]. The moving vortex magnetic
field h(r, t ) generates the electric field and currents of normal
excitations, which in turn distort the field h. We show that,
at large distances, the distortion is not small and is even able
to change field sign. Unexpectedly, this distortion attenuates
with distance as a power law 1/R3, i.e., much slower than the
standard decay of undistorted field ∼e−R/λ.

At distances large in comparison with the core size of
interest in this work, one can use the time-dependent London
approach based on the assumption that the current consists of
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the normal and superconducting parts:

J = σE − 2e2|�|2
mc

(
A + φ0

2π
∇χ

)
, (1)

where A is the vector potential, � is the order parameter, χ is
the phase, φ0 is the flux quantum, E is the electric field, and σ

is the conductivity associated with normal excitations.
The conductivity σ approaches the normal-state value σn

when the temperature T approaches the critical one; in s-
wave superconductors it vanishes with decreasing temperature
along with the density of normal excitations. This is not
the case, however, for strong pair breaking when supercon-
ductivity is gapless while the density of states approaches
the normal-state value at all temperatures. Unfortunately, not
much experimental information about the T dependence of
σ is available. Theoretically, this question is still debated,
e.g., Ref. [8] discusses the possible enhancement of σ due to
inelastic scattering. Experimentally, the interpretation of the
microwave absorption data is not yet settled either [9].

At distances large in comparison with the vortex core size,
|�| is a constant �0 and Eq. (1) becomes

4π

c
J = 4πσ

c
E − 1

λ2

(
A + φ0

2π
∇χ

)
, (2)

where λ2 = mc2/8πe2|�0|2 is the London penetration depth.
Acting on this by curl one obtains

h − λ2∇2h + τ
∂h
∂t

= φ0ẑ
∑

ν

δ(r − rν ), (3)

where rν (t ) is the position of the νth vortex which may depend
on time t , ẑ is the direction of vortices, and the relaxation time

τ = 4πσλ2/c2. (4)

Equation (3) can be considered as a general form of the
time-dependent London equation (TDL). The anisotropic gen-
eralization of this equation was given in Ref. [10] and is
reproduced here in Sec. III.
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FIG. 1. The stream lines of the current for γ = λ2/λ1 = 3 or,
which is the same, contours of constant hz(x, y). λ1 is taken as the
unit length.

II. VORTEX AT REST IN ANISOTROPIC CASE

For an arbitrary oriented vortex in anisotropic material this
problem has been considered in Refs. [1,11]. In general, the
results are cumbersome, so here we consider a simple situa-
tion of an orthorhombic superconductor in a field along the c
axis. The London equation in this case is

hz(x, y) − λ2
1

∂2hz

∂y2
− λ2

2
∂2hz

∂x2
= φ0δ(r). (5)

Here, the frame x, y, z is chosen to coincide with a, b, c of the
crystal, r = (x, y), and λ2

xx = λ2
1 and λ2

yy = λ2
2 are the diagonal

components of the tensor (λ2)ik . The solution of this equation
is

hz(x, y) = φ0

2πλ1λ2
K0(ρ), ρ2 = x2

λ2
2

+ y2

λ2
1

. (6)

Current densities follow

Jx = − cφ0

8π2λ3
1λ2

y K1(ρ)

ρ
, Jy = cφ0

8π2λ1λ
3
2

x K1(ρ)

ρ
, (7)

where K0 and K1 are modified Bessel functions.
It is easy to see that the contours hz(x, y) = const. coin-

cide with the stream lines of the current; an example is shown
in Fig. 1. The current lines have the expected ellipse-like
shape.

This is, however, not the case for the distribution of the
current values J (x, y) = (J2

x + J2
y )1/2. An example is shown

in Fig. 2. Hence, the geometry of the streamlines of the vector
J differs from that of contours |J (x, y)| = const., unlike the
isotropic case where they are in fact the same.
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FIG. 2. The contours of constant current values J (x, y) =
(J2

x + J2
y )1/2 for λ2/λ1 = 3. x and y are in units of λ1.

III. MOVING VORTEX

The anisotropic generalization of the isotropic Eq. (2) for
the current is straightforward:

Jk = σklEl − c

4π
(λ−2)kl

(
Al + φ0

2π

∂χ

∂xl

)
. (8)

Here, σkl and (λ−2)kl are tensors of the conductivity due to
normal excitations and of the inverse square of the penetration
depth.

Having in mind to derive an equation for the magnetic field
h we first have to get rid of the vector potential. To this end,
multiply both sides by 4π (λ2)kμ/c where (λ2)kμ is the tensor
inverse to (λ−2)kμ and sum up over k. Then apply the curl to
both sides and use the relation

curl(A + φ0∇χ/2π ) = h − φ0ẑδ(r − rν ), (9)

where rν are vortex cores positions.
It is convenient to use in the following the notation

curlνV = ενsμ∂Vμ/∂xs where ενsμ is Levi-Civita unit antisym-
metric tensor: εxyz = 1 and so do all components with even
number of transpositions of indices, it is −1 for odd numbers,
and zero otherwise.

Hence, applying ενsμ∂/∂xs to

4π

c
λ2

kμJk = 4π

c
λ2

kμσklEl −
(

Aμ + φ0

2π

∂χ

∂xμ

)
, (10)

one obtains the anisotropic version of the TDL [10]:

hν + 4π

c
ενsμλ2

kμ

∂Jk

∂xs
− 4π

c
ενsμλ2

kμσkl
∂El

∂xs

= φ0ẑνδ(r − vt ). (11)
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In this form, the equation is valid for an arbitrary oriented
vortex and any crystal anisotropy.

For an orthorhombic crystal in which the vortex and its
field are along one of the principal directions (call it z), this
cumbersome equation takes the form

hz − 4π

c

(
λ2

xx

∂Jx

∂y
− λ2

yy

∂Jy

∂x

)
+ 4πσ

c

(
λ2

xx

∂Ex

∂y
− λ2

yy

∂Ey

∂x

)
= φ0δ(r − vt ). (12)

Here we further simplified the problem assuming isotropic
conductivity of normal excitations σxx = σyy = σ . This
should be solved together with quasistationary Maxwell equa-
tions curlE = −∂t h/c and divE = 0 [12,13], which can be
done in two-dimensional (2D) Fourier space:

Ekx = −ky

kx
Eky = − iky

ck2

∂hkz

∂t
, (13)

so that we obtain the 2D Fourier transform of Eq. (12):

hk
(
1+k2

x λ
2
yy+k2

y λ
2
xx

)+4πσ

c2

λ2
yyk2

x + λ2
xxk2

y

k2

∂hk

∂t
= φ0e−ikvt ,

(14)

where hk is the Fourier transform of hz(r). In the isotropic case
we obtain the equation studied in Ref. [7]. We further denote
λ2

yy = λ2
2, λ2

xx = λ2
1, and λ = √

λ1λ2:

hk
(
1 + k2

x λ
2
2 + k2

y λ
2
1

) + τ
λ2

2k2
x + λ2

1k2
y

λ2k2

∂hk

∂t
= φ0e−ikvt ,

(15)

with τ = 4πσλ2/c2. This is a linear differential equation for
hk(t ) with the solution

hk = φ0e−ikvt

C − iDk · s
, s = vτ,

C = 1 + k2
x λ

2
2 + k2

y λ
2
1, D = λ2

2k2
x + λ2

1k2
y

λ2k2
. (16)

Since we are interested in stationary motion with a constant
velocity, we can set here t = 0.

The dimensionless parameter

S = s

λ
= 4πvσλ

c2
(17)

is small even for vortex velocities exceeding the speed of
sound presently attainable [14,15]. Although in principle S
can take larger values, we restrict this discussion by small S
and call this case a “slow motion.”

IV. SLOW MOTION

For s → 0 one can expand h(k, s) in powers of small s up
to O(s):

hk = φ0

C
+ i

φ0D

C2
k · s. (18)

The first term corresponds to the static solution discussed
above:

h0(x, y) = φ0

2πλ2
K0(ρ), ρ2 = x2

λ2
2

+ y2

λ2
1

. (19)

The correction due to motion is given by

δhkλ
2

φ0
= i

(
λ2

2k2
x + λ2

1k2
y

)
k · s

k2
(
1 + λ2

2k2
x + λ2

1k2
y

)2 . (20)

To separate the part that does not disappear when λ1 = λ2, one
can use the identity

λ2
2k2

x + λ2
1k2

y

k2
x + k2

y

= λ2
2 + k2

y

(
λ2

1 − λ2
2

)
k2

x + k2
y

(21)

to obtain

4π2λ2δh(r)

iφ0
= λ2

2

∫
d2k(k · s)eikr(

1 + λ2
2k2

x + λ2
1k2

y

)2 + (
λ2

1 − λ2
2

)

×
∫ d2kk2

y (k · s)eikr

k2
(
1 + λ2

2k2
x + λ2

1k2
y

)2 . (22)

Evaluation of the first contribution is outlined in Ap-
pendix A:

h1 = − φ0

2πλ2

SxX + SyY γ 2

2
K0

(√
X 2

γ
+ Y 2γ

)
. (23)

Here,

S = s
λ

, X = x

λ
, Y = y

λ
, λ =

√
λ1λ2, γ = λ2

λ1
,

(24)

so that λ2
2 = λ2γ and λ2

1 = λ2/γ .
It is shown in Ref. [16] that, in the isotropic case for a

vortex moving along x,

h(r) = φ0

2πλ2
e−sx/2λ2

K0

(
r

2λ

√
4 + s2/λ2

)
(25)

in common units. Expanding this in small s one obtains for a
slow motion:

δh(r) = − φ0

4πλ4
sxK0

(
r

λ

)
. (26)

Hence, h1 of Eq. (23) has the correct isotropic limit.
The second integral over two components of k in Eq. (22)

can be reduced to integrals over a single variable which are
easy to deal with numerically, see Appendix B:

2πλ2

φ0
h2 = (γ 2 − 1)

4γ

{
SxX

∫ ∞

0

dζ

(ζ + γ )3/2(ζ + 1/γ )3/2

×
[

K0(Rζ ) − Y 2

(ζ + 1/γ )Rζ

K1(Rζ )

]

+ SyY
∫ ∞

0

dζ

(ζ + γ )1/2(ζ + 1/γ )5/2

×
[

3K0(Rζ ) − Y 2

(ζ + 1/γ )Rζ

K1(Rζ )

]}
,

Rζ =
√

X 2

ζ + γ
+ Y 2

ζ + 1/γ
. (27)
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FIG. 3. Contours h(x, y) = const. for the vortex moving along x
axis (Sx = 0.1, Sy = 0) and λ2/λ1 = 3. The motion is directed to
+x. x and y are in units of λ = √

λ1λ2.

Thus, the vortex field can be calculated as h = h0 + h1 +
h2 with h0 given in Eq. (19), h1 in Eq. (23), and h2 in Eq. (27).
The results obtained with the help of Wolfram Mathematica
package are shown below.

One can see in Fig. 3 that the current streamlines [or, what
is the same, contours h(x, y) = const.] in the vicinity of the
moving vortex core are only weakly distorted relative to the
static elliptic shape. The most interesting feature of this distri-
bution is that, at large distances, h(x, y) changes sign in some
parts of the (x, y) plane. Since the interaction energy of the
vortex at the origin with another one at (x, y) is proportional
to h(x, y), the presence of domains with h < 0 means that, for
the second vortex in these domains, the intervortex interaction
is attractive.

The field distribution is different for the motion along y
axis shown in Fig. 4. It is seen that the flux in front of the
moving vortex is depleted whereas behind it is enhanced, the
feature discussed in Ref. [17] for the isotropic case. This
feature remains also for a general direction of motion; an
example of motion along the line x = y is shown in Fig. 5.
Moreover, Figs. 3–5 show that this depletion may even change
sign of the field. It is worth mentioning here that the London
theory is reliable in the region r � ξ , ξ being the core size,
and so are our predictions of a nontrivial behavior of h(x, y)
at large distances.

It is instructive to see how the interaction changes along
certain directions. For example, Fig. 6 shows that for Sx = 0,
Sy = 0.1, the motion along the y axis, h(0,Y ) is positive if
0 < Y � 2.5 [so that the second vortex at (0,Y ) in this region
is repelled by the vortex at the origin]. If the second vortex is
at 2.5 � Y < ∞ the interaction is attractive.

The profiles hz(X,Y ) shown in Figs. 3–5 are quite un-
usual and were obtained as a result of a lengthy analytical
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FIG. 4. Contours h(x, y) = const. for the vortex moving along y
axis (Sx = 0, Sy = 0.1) and λ2/λ1 = 3. The motion is directed to +y.
x and y are in units of λ = √

λ1λ2.

procedure. To be confident in the result, we applied the 2D
Fast Fourier Transform (FFT) using the original Fourier com-
ponents of Eq. (18) to obtain h(r). As is seen from Fig. 6,
the two methods give practically identical results. Although
the FFT calculation is convenient and efficient, the analytical
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FIG. 5. Contours h(x, y) = const. for the vortex moving along
the diagonal x = y (Sx = Sy = 0.1) and λ2/λ1 = 3. x and y are in
units of λ = √

λ1λ2.
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FIG. 6. The field hz(0,Y ) for the vortex moving along Y (Sx =
0, Sy = 0.1); λ2/λ1 = 3. Y is in units of λ = √

λ1λ2. The solid line
is according to hz = h0 + h1 + h2 with h0 given in Eq. (19), h1 in
Eq. (23), and h2 obtained by numerical integration of Eq. (27). Open
triangles are results of FFT of Eq. (18).

formula has an advantage of ensuring numerical accuracy for
calculating the far-field behavior of interest.

A. Asymptotic behavior of h(0,Y ) for Y → ∞
For X = 0, Eq. (27) yields

2πλ2

φ0
h2 = γ 2 − 1

4γ
SyY

∫ ∞

0

dζ [3K0(η) − ηK1(η)]

(ζ + γ )1/2(ζ + 1/γ )5/2 ,

η = |Y |√
ζ + 1/γ

. (28)

Going to the integration variable η, we get

2πλ2

φ0
h2 = γ 2 − 1

2γ

Sy

Y 2

∫ Y
√

γ

0

dη η3[3K0(η) − ηK1(η)]√
Y 2 + η2(γ − 1/γ )

.

(29)

FIG. 7. The integrand of Eq. (29) for Y = 10 and γ = 3.

Figure 7 shows that the integrand here is substantial only in
a finite region 0 < η � 10. Therefore, being interested in the
asymptotic behavior for |Y | → ∞, one can replace the inte-
grand denominator by |Y | and the upper limit of integration
by ∞:

2πλ2

φ0
h2(0,Y ) = γ 2 − 1

2γ

Sy

Y 3

∫ ∞

0
dη η3[3K0 − ηK1]η

= −γ 2 − 1

γ

2Sy

Y 3
. (30)

Thus, h2(0,Y ) is negative when Y → ∞ and positive for Y →
−∞. It decays as 1/Y 3, therefore, the total field h0 + h1 + h2

attenuates as a power law as well, since h0 and h1 decay expo-
nentially and at large distances can be disregarded. Hence, h2

can be replaced with h in this region. This conclusion agrees
with direct numerical evaluation of h(0,Y ) shown in Fig. 6.

In the same manner one can obtain the leading term in the
asymptotic behavior if Y = Sy = 0 for the motion along the x
axis:

h(X, 0) ∼ φ0

2πλ2

γ 2 − 1

2γ

2Sx

X 3
. (31)

For the sake of brevity we do not provide other terms in the
asymptotic series.

The power-law decay of the field h(x, y) for vortices mov-
ing in anisotropic superconductors is a surprising feature.
Clearly, this feature disappears for vortices at rest as well
as for vortices moving in isotropic materials. Formally, the
power-law behavior in real space originates in the factor 1/k2

in Fourier transforms, see, e.g., Eq. (22), which, however,
cancels out for γ = 1.

V. ELECTRIC FIELD FOR SLOW MOTION

In the approximation linear in velocity, we have according
to Eq. (16)

∂hk

∂t
= −i

φ0(k · v)

C
, C = 1 + k2

x λ
2
2 + k2

y λ
2
1. (32)

According to Eqs. (13) the electric field is

Ekx = −ky

kx
Eky = −φ0

cτ

ky(k · s)

k2C
, s = vτ. (33)

Hence, we have in real space

Ex = − φ0

4π2cτ

∫
d2k ky(k · s)

k2C
eikr, (34)

or, using λ = √
λ1λ2 as the unit length,

Ex = − φ0

4π2cτλ

∫
d2q qy(q · S)

q2C
eiqR. (35)

Here, q = kλ, R = (X,Y ) = r/λ, and

C = 1 + q2
xγ + q2

y/γ , γ = λ2/λ1. (36)

In the same way we obtain

Ey = φ0

4π2cτλ

∫
d2q qx(q · S)

q2C
eiqR. (37)

The integrals in Eqs. (35) and (37) are dimensionless.
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FIG. 8. Streamlines of the field E (or of the normal current Jn)
for the vortex moving along X (Sx = 0.1, Sy = 0). γ = λ2/λ1 = 3.
X , Y are in units of λ = √

λ1λ2. Positive constants by the contours
correspond to the clockwise current direction, negative otherwise.

It is of interest to see the streamlines of E (or, which
is the same, of the normal current Jn = σE). To this end,
we calculate the stream function G(x, y) such that Ex = ∂yG
and Ey = −∂xG; the streamlines then are given by contours
G(x, y) = const. In Fourier space we have Exk = ikyGk so that

Gk = iφ0

cτ

(k · s)

k2C
, G(r) = iφ0

4π2cτ

∫
d2q(q · S)eiqR

q2C
. (38)

The formal procedure of reducing the double to a single
integration is similar to that used for h(r) and is outlined in
Appendix C. The result is

G(r) = − φ0

4πcτ

∫ ∞

0

dη K0(R√
η)√

μν

(
SxX

μ
+ SyY

ν

)
,

μ = 1 + ηγ , ν = 1 + η/γ , R =
√

X 2

μ
+ Y 2

ν
. (39)

Figures 8 and 9 show two examples of Jn streamlines [or
contours G(X,Y ) = const.] obtained by numerical integration
of Eq. (39).

The electric field is now readily obtained by differentiation
of G. We will not write down these cumbersome expressions.
Instead we consider the asymptotic behavior of electric fields
at large distances in two simple cases using the method em-
ployed above for asymptotic behavior of h(0, y) and h(x, 0).
Omitting formalities, we give the results:

G(X, 0) ∼ − φ0

2πcτ

Sx

X
, |X | → ∞, (40)

that yields in common units

Ex(X, 0) = 0, Ey(X, 0) ∼ φ0

2πcτλ

Sx

X 2
= φ0v

2πc x2
. (41)
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FIG. 9. Streamlines of the normal current for the vortex moving
along the line X = Y (Sx = Sy = 0.1), γ = λ2/λ1 = 3. X , Y are in
units of λ = √

λ1λ2. Positive constants by the contours correspond
to the clockwise current direction, negative otherwise.

Similarly, for the motion along Y axis,

Ey(0,Y ) = 0, Ex(0,Y ) ∼ φ0v

2πc y2
. (42)

It is worth noting that the relaxation time τ does not enter
the electric-field asymptotic formulas for slow motion. Since
τ is the only parameter in Eq. (3) responsible for distortions
of the field h by motion, the electric field is present even if the
vortex is displaced as a whole with no h distortions. This is,
of course, how it should be.

Also, the material anisotropy does not enter these results
as well. This means that the power-law decay of the electric
field exists also in the isotropic case. In fact, for γ = 1 one
has from Eq. (38)

G(X, 0) = iφ0Sx

4π2cτ

∫
d2q qxeiqX

q2(1 + q2)
, (43)

which is readily done integrating first over the angle between
q and X . We obtain

G(X, 0) = φ0Sx

2πcτ

[
K1(X ) − 1

X

]
, (44)

which gives

Ey(X, 0) = − φ0v

2πcλ2

[
K ′

1(X ) + 1

X 2

]
. (45)

Figure 10 shows that the field Ey(X, 0) changes sign at
x/λ ≈ 1, reaches maximum near 2, and slowly decays as a
power law λ2/x2. This is quite surprising since the electric
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FIG. 10. The solid line is the square brackets in Eq. (45) for
Ey(X, 0) when the vortex moves along the X axis (Sy = 0), γ = 1.
The dashed line shows the power-law term 1/X 2. X is in units of λ.

field power-law decay means that no Meissner-type screening
of E is involved.

VI. DISCUSSION

We have studied effects of vortex motion within time-
dependent London theory, which is based on the assumption
that, in time-dependent phenomena, the current in supercon-
ductors consists of the persistent and normal components,
Eq. (2). This approach differs from the common assumption
that the vortex magnetic structure moves as a whole, so that
in the frame bound to the moving vortex the magnetic field
distribution is the same as for a vortex at rest, see, e.g., [18] or
multitude of papers describing the flux flow.

Within the TDL approach the field distribution of the
moving vortex differs from that of vortex at rest even in the
frame moving with the vortex. The physical reason for this
is simple: the moving magnetic structure h(x, y) induces the
electric field and currents of normal excitations, while the
latter distort the moving static field distribution h0(x, y). This
is a general feature of systems with singularities (vortices)
moving in dissipative media [6,7].

The equations describing these time-dependent phenomena
are diffusion-like, so that solutions hk are obtained in the
2D Fourier space: to recover h(r) one has to evaluate double
integrals

∫
d2k · · · , a heavy numerical procedure. We offer a

way to reduce double integrals to a single
∫ ∞

0 dη · · · which
can be evaluated within the Wolfram Mathematica package
efficiently and fast, which is relevant especially for generating
plots of various 2D distributions.

We have investigated the field distribution of moving vor-
tices away of the vortex core whether the time-dependent
London theory is reliable. As in the isotropic case [17], the
magnetic field hz of moving vortices in anisotropic materials
is distorted relative to the static case, the magnetic flux is
redistributed so that it is depleted in front of the moving vortex
and enhanced behind it. The depletion could be strong enough
to change the sign of hz in some parts of the xy plane. This
suggests that the interaction of two vortices, one at the origin

at some moment and another at (x, y), being repulsive at short
intervortex distances may turn attractive at large ones.

The physical reason for this change is the induced elec-
tric field E (and along with it the currents of normal
excitations σE). This field is obtained by solving quasista-
tionary Maxwell equations curlE = −∂t h/c, the condition of
quasineutrality divE = 0, coupled with the time-dependent
London equation (basically, the same procedure as in de-
riving time-dependent Ginzburg-Landau equations [13]). We
find that in anisotropic case the magnetic field of moving
vortex has a power-law dependence on distances r � λ: h ∝
(γ 2 − 1)v/r3 (γ is the anisotropy parameter, v is the vortex
velocity). The exponentially decaying part of h is still present,
but at large distances it is irrelevant in comparison with the
power-law part. In isotropic case, the power law gives way
to the standard exponential decay. The electric field, however,
goes as 1/r2 in both cases.

We note that TDL differs from other approaches to moving
vortices. In particular it differs from TDGL which holds only
near Tc, which, however, is able to describe also the vortex
core. This is of course impossible within TDL, which still has
an advantage of applicability at all T s. It would be of interest
to study asymptotic behavior of fields related to moving vor-
tices within TDGL since both TDGL and TDL work near Tc;
we are not aware of such studies. Also, TDL differs from the
approach of Coffey and Hao [19] who used electrostatics to
describe the electric field of moving vortices. Although their
approach yields the stream-line pictures reminiscent of our
Figs. 8 and 9, we doubt that the electrostatics can be used for
description of electric fields in superconductors.

Most of our calculations were done for orthorhombic ma-
terials with the in-plane anisotropy parameter γ = 3 and the
vortex along c. Such materials in fact exist; examples are NiBi
films [20], or Ta4Pd3Te16 [21].
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APPENDIX A

Consider the integral

∫
d2keikr

(1 + k2)2 =
∫ ∞

0

k dk

(1 + k2)2

∫ 2π

0
dϕeikr cos (α−ϕ)

= 2π

∫ ∞

0

k dk

(1 + k2)2 J0(kr) = πrK1(r). (A1)

k and r are at angles ϕ and α relative to x. Apply ∂x to both
sides:

∫
d2kkxeikr

(1 + k2)2 = iπxK0(r), (A2)
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The evaluation of the first integral in Eq. (22) is now straight-
forward.

APPENDIX B

The second contribution in Eq. (22) consists of parts related
to x and y projections of the velocity. With the help of the
identities

1

f
=

∫ ∞

0
du e− f u,

1

f 2
=

∫ ∞

0
du u e− f u, (B1)

one recasts the x part:

Ix = Sx(1 − γ 2)

γ

∫ d2q q2
y qxeiqR

q2
(
1 + γ q2

x + q2
y/γ

)2

=
∫ ∞

0
dξ

∫ ∞

0
du ue−u

∫
d2q q2

y qxeiqR−(ξ+uγ )q2
x −(ξ+u/γ )q2

y .

(B2)

Here we use λ as a unit length: q = kλ, R = r/λ, λ2
2 = λ2γ ,

λ2
1 = λ2/γ , and S = s/λ. The anisotropy parameter is γ =

λ2/λ1. We now introduce a new integration variable ζ via
ξ = ζu:

Ix = Sx(1 − γ 2)

γ

∫ ∞

0
dζ

∫ ∞

0
du u2e−u

×
∫

d2q q2
y qxeiqR−u(ζ+γ )q2

x −u(ζ+1/γ )q2
y . (B3)

Integrals over qx, qy are evaluated with the help of the known
Fourier transform of a Gaussian:∫ ∞

−∞
dqx eiqxx−aq2

x =
√

π

a
e−x2/4a. (B4)

Integration over u can be done utilizing relations∫ ∞

0

du

u
exp

(
−u − w2

4u

)
= 2 K0(w),

∫ ∞

0

du

u2
exp

(
−u − w2

4u

)
= 4

w
K1(w). (B5)

We obtain after straightforward algebra:

Ix = iπ (1 − γ 2)

2γ
SxX

∫ ∞

0

dζ

(ζ + γ )3/2(ζ + 1/γ )3/2

×
[

K0(Rζ ) − Y 2

(ζ + 1/γ )Rζ

K1(Rζ )

]
,

R2
ζ = X 2

ζ + γ
+ Y 2

ζ + 1/γ
. (B6)

In a similar fashion one obtains the part proportional to Sy and
Eq. (27).

APPENDIX C: ELECTRIC FIELD AND NORMAL
CURRENTS

We evaluate here the stream function of Eq. (38):

G = iφ0

4π2cτ
Ĝ, Ĝ =

∫
d2q(q · S)

q2C
eiqR. (C1)

The following manipulation is similar to that outlined in Ap-
pendix B for h(X,Y ):

Ĝ =
∫

d2q(q · S)eiqR
∫ ∞

0
due−uq2

∫ ∞

0
dξe−ξC

=
∫ ∞

0
du

∫ ∞

0
dξe−ξ

∫
d2q(q · S)eiqR−uq2−ξ (q2

x γ+q2
y /γ ).

(C2)

Furthermore, we write the last integral as
∫

d2q · · · = SxIx +
SyIy with

Ix =
∫ ∞

−∞
dqxqxeiqxX−q2

x (u+ξγ )
∫ ∞

−∞
dqyeiqyY −q2

y (u+ξ/γ ),

(C3)

and Iy which is obtained from Ix by replacing x ↔ y and γ ↔
1/γ . The integral over qx and qy are done using Eq. (B4):

Ix = iπX

2(u + ξγ )3/2(u + ξ/γ )1/2

× exp

(
− X 2

4(u + ξγ )
− Y 2

4(u + ξ/γ )

)
, (C4)

and the part Ĝ proportional to Sx takes the form

Ĝx = iπXSx

2

∫ ∞

0
du

∫ ∞

0

dξ e−ξ

(u + ξγ )3/2(u + ξ/γ )1/2

× exp

(
− X 2

4(u + ξγ )
− Y 2

4(u + ξ/γ )

)
, (C5)

To integrate over u we can use Eq. (B5). To this end we
introduce a new integration variable η instead of ξ via ξ = uη.
Then the integral over ξ becomes

1

u

∫ ∞

0
dη

e−ηu

(1 + ηγ )3/2(1 + η/γ )1/2 exp

(
−R2

η

4u

)
,

R2
η = X 2

1 + ηγ
+ Y 2

1 + η/γ
. (C6)

Now, the integration over u is done with the help of Eq. (B5)
and we obtain

Ĝx = iπSxX
∫ ∞

0

dη

(1 + ηγ )1/2(1 + η/γ )3/2 K0(Rη

√
η).

(C7)

The part Gy follows immediately after the replacements x ↔ y
and (1 + ηγ ) ↔ (1 + η/γ ):

Ĝy = iπSyY
∫ ∞

0

dη

(1 + ηγ )3/2(1 + η/γ )1/2 K0(Rη

√
η).

(C8)
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