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Specific heat and gap structure of a nematic superconductor: Application to FeSe
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We report the results of our in-depth analysis of spectroscopic and thermodynamic properties of a multiorbital
metal, like FeSe, which first develops a nematic order and then undergoes a transition into a superconducting
state, which coexists with nematicity. We analyze the angular dependence of the gap function and specific heat
Cv (T ) of such a nematic superconductor. We specifically address three issues: (i) the angular dependence of
the gap in light of the competition between the nematicity-induced s-d mixture and the orbital transmutation
of low-energy excitations in the nematic state, (ii) the effect of nematicity on the magnitude of the jump of the
specific heat Cv (T ) at Tc and the temperature dependence of Cv (T ) below Tc, and (iii) a potential transition at
Tc1 < Tc from an s + d state to an s + eiηd state that breaks time-reversal symmetry. We consider two scenarios
for a nematic order: scenario A, in which this order develops between dxz and dyz orbitals on hole and electron
pockets, and scenario B, in which there is an additional component of the nematic order for dxy fermions on the
two electron pockets.
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I. INTRODUCTION

Iron-based unconventional superconductors demonstrate
remarkable properties, which include multiorbital low-energy
electronic states and ubiquity of the nematic phase. A par-
ticularly interesting situation occurs when superconductivity
is preceded by the development of a nematic order that
breaks C4 lattice rotational symmetry down to C2. The most
prominent example of this so-called nematic superconductor
is FeSe, in which a nematic order develops at Tn ∼ 90 K
at ambient pressure, while superconductivity develops at a
much lower Tc ∼ 9 K, out of a nematic state [1,2]. Nematic
superconductivity has been observed also in other Fe-based
materials, but there the difference between Tn and Tc is much
smaller [3]. It has also been argued that in some cases a
nematic order does not exist in the normal state but is in-
duced by superconductivity. A candidate for such behavior
in the Fe-family is LiFeAs [4]; the same behavior has been
reported in twisted bilayer graphene [5] and in a doped
topological insulator RxBi2Se3 (R = Cu, Nb, and Sr) [6–9].
In this work, we focus on the theoretical analysis of the
spectroscopic and the thermodynamic properties of such a
nematic superconductor using the case of FeSe, where Tn is
substantially larger than Tc. The electronic structure of FeSe
in the tetragonal phase consists of two hole pockets, centered
around the � point (the inner one and the outer one), and
electron pockets, centered around the X and the Y points
of the Brillouin zone, respectively [Fig. 1(a)]. Here, we use
the notation of the 1-Fe unit cell. The hole pockets and the
corresponding bands are composed of fermions from dxz and
dyz orbitals, the X -pocket/band is a mixture of dyz and dxy
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orbitals, and the Y -pocket/band is a mixture of dxz and dxy or-
bitals. Angle-resolved photoemission spectroscopy (ARPES)
studies revealed that in FeSe the inner-hole pocket is quite
small in the tetragonal phase and disappears in the presence of
a nematic order when the corresponding band sinks below the
Fermi level [12] [Fig. 1(b)]. The inner-hole band then does not
affect system behavior at low energies, and we neglect it in our
analysis. For the outer-hole pocket, the orbital content in the
tetragonal phase is predominantly dxz along the ky-direction
and dyz along the kx-direction.

We consider two scenarios for the nematic order, �. In the
first (scenario A) we assume that � splits the occupations of
dxz and dyz orbitals:

�xz/yz = 〈d†
xzdxz − d†

yzdyz〉. (1)

Furthermore, we follow earlier theoretical and experimental
studies [13–17], which showed that such � changes sign be-
tween hole and electron pockets. We label � on the outer-hole
pocket as �h and the one on the Y and the X electron pockets
as �e (sgn �e = −sgn �h). In the second scenario (scenario
B), we assume that in addition to �h,e, nematicity gives rise to
a substantial difference between occupations of dxy fermions
on the Y and the X pockets [11,13,18,19]. The corresponding
nematic order parameter is then given by

�xy = 〈d†
xy,Y dxy,Y − d†

xy,X dxy,X 〉. (2)

Scenario B was recently advanced in Ref. [11] as a way to
explain the thermal evolution of the band structure across the
tetragonal to orthorhombic transition as well as the fact that
ARPES and quasiparticle interference (QPI) measurements in
the nematic phase detect a peanut-shaped X pocket, but do not
see the Y pocket [20–25]. The argument here is that for large
enough �xy, the Y pocket disappears, as its bottom moves
above the Fermi level [Fig. 1(d)]. A similar behavior has been
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FIG. 1. Fermi surface topology in 1-Fe unit cell of FeSe in the
tetragonal phase (a), (c) and the orthorhombic (nematic) phase (b),
(d). The Fermi surface evolution in (b) results from sign-changing
nematic order involving dxz and dyz orbitals; in (d) it additionally in-
volves sizable nonlocal dxy nematic order. We refer to panels (b) and
(d) as “scenario A” and “scenario B,” respectively. The color code
follows the major orbital content. Fitting parameters for (a), (b) are
taken from Refs. [3,10], and those for (c), (d) are from Ref. [11].

obtained in monoclinic systems by allowing a nonzero interor-
bital dxz-dxy and dyz-dxy nematicity [26]. Within scenario A, it
was argued [27] that the Y pocket is not observed, because
in the nematic phase it becomes predominantly dxy [the blue
ellipse in Fig. 1(b)], and these excitations are less coherent
than the ones for dxz and dyz fermions [28]. In this work, we
analyze the effect of nematicity on the superconducting state
within both scenarios. We discuss the angular dependence of
the superconducting gap, most notably on the hole pockets,
and the behavior on the specific heat C(T ) at and below Tc.

Multiorbital superconductivity in Fe-based materials in
the absence of a nematic order has been extensively stud-
ied by many groups [2,29–33]. A mixed orbital content of
low-energy excitations implies that the pairing interaction
necessarily has two orthogonal components: s-wave and d-
wave, even when the interaction is local in the orbital basis.
An s-wave interaction is attractive in the s+− subchannel (the
sign of the gap on the hole pocket is opposite to that on
electron X and Y pockets), a d-wave interaction is attractive
in the dx2−y2 subchannel (the gap on the hole pocket scales as
cos 2θ , where θ is the angle along the pocket, and it has four
nodes, while the gaps on the X and the Y pocket have opposite
sign). In both cases, the gaps on the X and Y pockets are sign-
preserving, but generally have minima at the points where
dxz (dyz) orbital content vanishes. These minima can become
nodes if dxy orbitals contribute to superconductivity [11].

The pairing interaction in the s-wave and the d-wave chan-
nels is expressed in terms of dressed interactions between
hole and electron pockets: intraorbital density-density inter-
action Uhe, and interorbital pair-hopping interactions Jhe and

Jee (see Sec. III below). The terms Uhe and Jhe are enhanced
by magnetic fluctuations with momenta near (0, π ) and (π, 0)
(the distances between the centers of the � and the X and
the Y pockets, respectively), and Jee is enhanced by magnetic
fluctuations with momentum (π, π ) (the distance between the
X and the Y pockets). We follow earlier works [34,35] and
assume that the dressed pairing interaction in the tetragonal
phase is somewhat stronger in the s+− channel. This implies
that the pairing state without nematic order would be s+−.

Superconductivity in the presence of a small nematic or-
der �h,e has been studied previously in Refs. [34–36]. The
expected outcome is that a nematic order mixes s-wave and d-
wave pairing channels, creating a mixed s + d state. A general
belief, coming from small �h,e analysis, is that in such a state
the gap along the hole pocket is �h(θ ) = �s + �d cos 2θ ,
where θ is the angle along the pocket. The magnitude of
�d increases with �, and if one would extend the small �

analysis to larger �, one would obtain that �h(θ ) develops a
deep minima and then accidental nodes. This reasoning has
been applied to explain ARPES and scanning tunneling mi-
croscopy (STM) data in FeSe [20,36,37]. We argue that this is
not necessarily the case because there is a second, competing
effect of nematicity. Namely, a nematic order changes the
orbital composition of the pockets (this phenomenon has been
termed orbital transmutation [17]). This leads to two effects.
First, the variable θ gets renormalized and becomes dependent
on �h. At large enough �h, the dressed θ (called φ later in the
paper) clusters near ±π/2, depending on the sign of �h, and
the gap loses its angle dependence. Second, the ratio �d/�s

becomes a nonlinear function of �h, and the ratio �h/�e.
Furthermore, in some intervals of �h/�e it remains below
1 even at large �h values. This prevents the appearance of
the nodes even if the angular variation of the d-wave gap
component is still a sizable one.

Our goal is to understand what happens at intermediate
values of �, relevant to FeSe, particularly whether there exists
the range of �h and �h/�e, where �h has nodes. We show
that this range exists, but is confined to near-equal interactions
in s-wave and d-wave channels. Nevertheless, even if the gap
does not have nodes, its angular variation follows the orbital
content of the hole pocket and undergoes a strong evolution
once the orbital content changes. For completeness, we also
consider the case when the d-wave interaction is stronger
than the one in the s+− channel. In this case, the gap has
four nodes at small �h,e and no nodes at large �h,e, due to
orbital transmutation. We show that the transformation of the
nodal structure at intermediate �h,e is rather involved, and for
some �e/�h there exists an intermediate gap configuration
with eight nodes.

We next consider the behavior of the specific heat Cv (T )
at and below Tc. We analyze how the jump of Cv (T ) varies
with the type of nematic order and whether the jump primarily
comes from fermions from dxz and dyz orbitals, or if there is
a sizable contribution from the dxy orbital. A similar issue has
been recently studied [38] for KFe2As2. There, the dxy orbital
gives the dominant contribution to Cv (T ) in the normal state
because of the large mass of dxy fermions, but contributes little
to the jump of Cv (T ) and also to the temperature dependence
of Cv (T ) in a wide temperature region below Tc, because a
superconducting gap on this orbital is inversely proportional
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to its mass and is much smaller than the ones on dxz and dyz

orbitals. We analyze whether the same holds for FeSe, using
the values of quasiparticle masses, extracted from ARPES.
We find that the jump of the specific heat at Tc is smaller
than in BCS theory for the same number of pockets. For
the same reason as in KFe2As2, dxy fermions substantially
contribute to Cv (T ) in the normal state but little to the jump
of Cv (T ) at Tc. We decompose �Cv into contributions from
different pockets and show that the largest contribution comes
from fermions on a hole pocket in scenario A and from an
electron pocket in scenario B. We analyze how �Cv evolves
with nematic order and again find a strong correlation with the
orbital transmutation.

Finally, we address the issue of a potential second transi-
tion to the new phase within the superconducting state. The
argument here is that in a situation when the attraction in
the dx2−y2 channel is comparable to that in the s+− channel,
a biquadratic coupling between s- and d-order parameters
may turn the s + d pairing state into an s + ieiηd state (the
analog of a mixed s + id state in the absence of nematicity).
Such a state breaks Z2 time-reversal symmetry, as the relative
factor can be either i or −i. Recent specific-heat measure-
ments, Cv (T ), of FeSe [39–44] found an anomaly at T ∼ 1 K,
which might indicate the emergence of s + eiηd order [35].
To verify the scenario, we vary the relative strength of the
pairing interactions in s-wave and d-wave channels, and we
analyze the Landau functional including both the bi-quadratic
couplings between s- and d-gap components and the effect
of orbital transmutation in the nematic phase. Although the
orbital transmutation shrinks the parameter range of the s +
eiηd state, a transition into an s + eiηd state below Tc is still
possible.

The structure of the paper is the following. In the next
section, we briefly discuss the electronic structure of FeSe. In
Sec. III A, we obtain the pairing interaction within scenario A,
convert it into the band basis, and solve for the pairing gaps on
hole and electron pockets. In Sec. III B we analyze the angular
dependence of the gap on the hole pocket at various �h and
�h/�e. In Sec. III C we study the temperature dependence
of the gap below Tc. In Sec. IV we compute the jump of
the specific heat at Tc within both scenarios and compare
them to the available experimental data. We decompose the
jump into contributions from different orbitals and study their
relative strength. We also compute specific heat at T < Tc. In
Sec. V we consider a putative transition into the s + eiηd state.
Finally, we present our conclusions in Sec. VI.

II. THE BAND HAMILTONIAN

As mentioned in the Introduction, we consider a two-
dimensional three-band/three-pocket model Hamiltonian
with a hole pocket, centered at the � point of the BZ,
and two electron pockets, centered at X = (0, π ) and Y =
(π, 0) points of the Brillouin zone, respectively. For sim-
plicity, we neglect the effect of spin-orbit coupling on
the band dispersion. The hole pocket and the correspond-
ing hole band are composed of dxz and dyz orbitals. The
X -pocket/band is composed of dyz and dxy orbitals, and
the Y -pocket/band is composed of dxz and dxy orbitals.
We introduce two-component spinors ψ� = (dxz, dyz )T and

TABLE I. Band parameters for the hole pocket.

μh (2mh )−1 b

13.6 473 529

ψX/Y = (dyz/xz, dxy)T , and we write the kinetic energy H0 as

H0 = H� + HX + HY , (3)

where each term is bilinear in spinors. For scenario A
we introduce the nematic order � as the difference in the
occupation of dxz and dyz orbitals; see Eq. (1). We define � on
the hole pocket as �h and on the electron pocket as �e. The
latter is the difference in the occupation of the dxz orbital on
the Y pocket and the dyz orbital on the X pocket. For scenario
B we additionally introduce a second component of a nematic
order as the difference between occupations of dxy orbitals on
the Y and X pockets; see Eq. (2).

A. Hole pocket

The band Hamiltonian for the hole pocket H�

is [17,34,45,46]

H� = ψ
†
�

[(
μh − k2

2mh

)
τ0 −

(
b

2
k2 cos 2θh − �h

)
τ3

−ck2 sin 2θhτ1

]
ψ�, (4)

where θh is the polar angle for momentum k, measured from
the kx-direction in the anticlockwise direction. We set c = − b

2 ,
which yields circular hole pockets in the tetragonal phase.
The parameters of Eq. (4) are listed in Table I, and they were
obtained in Refs. [3,10] from fitting to ARPES data for FeSe
at kz = π . Diagonalizing Eq. (4), we obtain two dispersions.
In the absence of nematicity, they give rise to the outer- and
the inner-hole pockets, Fig. 3(a). At a finite �h > μh, the
inner-hole pocket becomes very shallow and then disappears
as the corresponding dispersion sinks below the Fermi level.
For this reason, we neglect the inner-hole band in our analysis
of the low-energy physics.

The larger hole Fermi surface pocket survives at a finite �h

and becomes elliptical. The dispersion of the corresponding
band is

ξh(k) = μh − k2

2mh
+

√
�2

h + b2
k4

4
− bk2�h cos 2θh; (5)

see Fig. 3(b). The band operator h is a linear combination of
fermionic operators from dxz and dyz operators:

h = cos φhdyz + sin φhdxz, (6)

where the momentum label (k) is implicit, and φh is defined
via

cos 2φh = bk2

2 cos 2θh − �h√
�2

h + b2 k4

4 − bk2�h cos 2θh

. (7)

At �h = 0, φh = θh, and dyz and dxz fermions contribute to
h with weights |〈dyz|h〉|2 = cos2 θh and |〈dxz|h〉|2 = sin2 θh,
simply related by π/2 rotation. At a nonzero �h, φh becomes
different from θh, and the weight of the two orbitals is no
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(a) (b)

FIG. 2. (a) Angular variation of cos 2φh along the hole Fermi
pocket for selected values of �h, (b) the dxz orbital weight at θh = 0
as a function of �h.

longer equal. At large �h, cos 2φh = −sgn�h. Choosing for
definiteness �h > 0, we find that φh = π/2, hence the band
operator h in Eq. (6) becomes entirely dxz, i.e., the hole pocket
becomes mono-orbital. This effect has been dubbed “orbital
transmutation” [17,46]. The angular variation of cos 2φh on
the outer-hole pocket for intermediate values of �h is shown
in Fig. 2(a). At �h = �cr = bk2

F /2 = μhmhb, cos 2φh along
the kx-direction jumps discontinuously from +1 to −1 [orange
and green curves in Fig. 2(a)], and the orbital content jumps
from a pure dyz to a pure dxz [see Fig. 2(b)]. Because of that
jump, the angular average of cos 2φh and cos2 2φh along the
hole Fermi surface, viewed as a function of �h, becomes non-
analytic at �cr. In addition, at � � �cr, the number of nodes
of cos 2φh on the Fermi surface increases from 4 to 8 [the
green curve in Fig. 2(a)]. We will show later that both features
affect the structure of the superconducting gap function. For
band parameters from Table I, �cr ≈ 7.6 meV.

B. X and Y pockets

The electron pockets are described by the band Hamilto-
nian HX/Y [17,34,45,46]

HX/Y = ψ
†
X/Y

(
A(1)

X/Y −iVX/Y

iVX/Y A(2)
X/Y

)
ψX/Y . (8)

The diagonal elements are

A(1)
X/Y = k2

2m1
− μ1 − a1

2
k2 cos 2θX/Y ± �e, (9)

A(2)
X/Y = k2

2m3
− μ3 − a3

2
k2 cos 2θX/Y . (10)

Here, k is measured from X = (π, 0) for the X pocket and
from Y = (0, π ) for the Y pocket, and the upper (lower) sign
corresponds to the X (Y ) pocket. θX (θY ) is the polar angle,
measured with respect to the kx (y) direction for the X (Y ) elec-
tron pocket in the anticlockwise direction. �e is the electron
nematic order defined as �e = 〈d†

xz,Y dxz,Y − d†
yz,X dyz,X 〉. We

choose �e < 0 (opposite in sign to �h). The off-diagonal term
VX/Y is defined as

VX (k, θX ) =
√

2vk sin θX + p1√
2

k3 sin θX (sin2 θX + 3 cos2 θX )

− p2√
2

k3 sin θX cos 2θX , (11)

VY (k, θY ) = −VX (k, θY ). (12)

TABLE II. Band parameters for the electron pocket.

μ1 μ3 (2m1)−1 (2m3)−1 a1 a3 v p1 p2

19.9 39.4 1.4 186 136 −403 −122 −137 −11.7

The band parameters of Eq. (8) are listed in Table II. We bor-
rowed the numbers from Refs. [3,10], where these parameters
have been extracted from ARPES data.

Diagonalizing Eq. (8) near the X point, we find that there is
a single band that crosses the Fermi level in both the tetragonal
and the orthorhombic phase; see Figs. 3(c) and 3(d). The same
holds near Y ; see Figs. 3(e) and 3(f). We only consider these
bands and neglect the ones that are located fully below EF .
The dispersions of the two relevant bands are

ξX/Y = A(1)
X/Y + A(2)

X/Y

2
+

√√√√(
A(1)

X/Y − A(2)
X/Y

2

)2

+ V 2
X/Y ,

(13)
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FIG. 3. Scenario A: Calculated band dispersion of the 1-Fe unit
cell in tetragonal and orthorhombic phase, respectively, near (a), (b)
�, (c), (d) X , and (e), (f) Y points of the BZ, respectively. Fitting
parameters are taken from Refs. [3,10].
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FIG. 4. The angular variation of orbital content |〈dyz|eX 〉|2 =
cos2 φX on the X pocket (a) and |〈dxz|eY 〉|2 = cos2 φY on the Y pocket
(b) for a set of �e.

and the band operators eX and eY , in terms of which HX/Y =∑
k,σ ξX/Y (k)e†

X/Y,k,σ eX/Y,k,σ , are

eX = − i cos φX dyz + sin φX dxy, (14)

eY =i cos φY dxz + sin φY dxy, (15)

where

cos2(φX/Y ) = 1

2

⎡
⎢⎢⎣1 +

A(1)
X/Y −A(2)

X/Y

2√(A(1)
X/Y −A(2)

X/Y

2

)2 + V 2
X/Y

⎤
⎥⎥⎦. (16)

The angular variation of the orbital dyz/xz content,
|〈dyz/xz|eX/Y 〉|2 = cos2 φX/Y , on the Fermi surface is plotted
in Fig. 4. Because of C4 symmetry in the tetragonal phase,
X and Y pockets have the same amount of dyz and dxz orbital
content (blue lines in Fig. 4). With increasing �e, the X pocket
becomes more of dyz character and deforms into a peanut,
while the Y pocket becomes more of dxy character as its dxz

content decreases. For our band parameters, the X pocket
splits into two smaller pockets once |�e| � 19.9 meV (the
short axis of the peanut becomes zero). Below, we limit �e

to be smaller than this value.

III. SUPERCONDUCTIVITY

A. Pairing interaction

The pairing interaction for the model with local fermion-
fermion interaction in the band basis has been discussed
previously [34,35]. We include the following components of
the interaction Hamiltonian, relevant to the pairing: intraor-
bital density-density interaction between fermions on the hole
and electron pockets, Uhe, and interorbital pair-hopping inter-
action between fermions on hole and electron pockets, Jhe, and
between the two electron pockets, Jee. There are other pairing
interactions, i.e., a repulsion within each pocket, but we re-
strict our consideration to these three as they are enhanced
by magnetic fluctuations with momenta (0, π ), (π, 0), and
(π, π ). The interaction Hamiltonian reads

Hint = Uhe

∑
k,k′,μ

d†
μ,k,↑d†

μ,−k,↓dμ,−k′+Qμ,↓dμ,k′+Qμ,↑

+ Jhe

∑
k,k′,μ 
=ν

d†
μ,k,↑d†

μ,−k,↓dν,−k′+Qν ,↓dν,k′+Qν ,↑

+ Jee

∑
k,k′,μ 
=ν

d†
μ,k+Qμ,↑d†

μ,−k+Qμ,↓dν,−k′+Qν ,↓dν,k′+Qν ,↑

+ H.c. (17)

We consider only the pairing interaction involving dxz and
dyz fermions, i.e., we assume that μ, ν ∈ {xz, yz}, and Qxz =
(0, π ), Qyz = (π, 0). The restriction to dxz and dyz orbitals is
justified as dxy-fermions have a larger mass [38]. To convert
the interaction Hamiltonian, Eq. (17), from the orbital to the
band basis, we use

dxz,k = sin φh(k)hk, dxz,k+Qxz = cos φY (k)eY,k, (18)

dyz,k = cos φh(k)hk, dyz,k+Qyz = cos φX (k)eX,k. (19)

Substituting these into Eq. (17), we obtain the pairing interac-
tion in the band basis,

Hpair =
∑
k,p

h†
k,↑h†

−k,↓ × [Us(eX,−p,↓eX,p,↑ cos2 φX + eY,−p,↓eY,p,↑ cos2 φY ) + Ud cos 2φh(eX,−p,↓eX,p,↑ cos2 φX

− eY,−p,↓eY,p,↑ cos2 φY )] + Jee cos2 φX cos2 φY e†
X,k,↑e†

X,−k,↓eY,−p,↓eY,p,↑ + H.c., (20)

where Us = Uhe+Jhe
2 and Ud = Uhe−Jhe

2 are s- and d-wave components of the pairing interaction between the hole and the electron
pockets. We use α = Ud

Us
to measure the relative strength of this part of the interaction in the s-wave and the d-wave channels.

B. Gap equation

We introduce the gap functions �h on the hole pocket and �X and �Y on the electron pockets. The equations for �h, �X ,
and �Y are obtained by solving a 3 × 3 matrix equation. We present the BCS gap equations in Appendix B, Eqs. (B1)–(B3).
The solutions of these gap equations are

�h = �1 + �2 cos 2φh, (21)

�X = �3 cos2 φX , (22)

�Y = �4 cos2 φY . (23)
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At T ≈ Tc, �i (i = 1, . . . , 4) are the solutions of the matrix equation:⎡
⎢⎣

�1

�2

�3

�4

⎤
⎥⎦ = 1

λ

⎡
⎢⎢⎣

0 0 −NX 〈cos4 φX 〉 −NY 〈cos4 φY 〉
0 0 −NX α〈cos4 φX 〉 NY α〈cos4 φY 〉

−Nh〈1 + α cos 2φh〉 −Nh〈cos 2φh + α cos2 2φh〉 0 − Jee
Us

NY 〈cos4 φY 〉
−Nh〈1 − α cos 2φh〉 −Nh〈cos 2φh − α cos2 2φh〉 − Jee

Us
NX 〈cos4 φX 〉 0

⎤
⎥⎥⎦
⎡
⎢⎣

�1

�2

�3

�4

⎤
⎥⎦. (24)

Here λ is the eigenvalue of the gap matrix defined as 1
λ

=
Us ln( �

T ), 〈A〉 defines the angular average of A over the cor-
responding Fermi surface pocket, and NX , NY , and Nh are
the densities of states for the X , Y , and � pocket, respec-
tively. In Figs. 5(a)–5(c), we show the variation of 〈cos 2φh〉,
〈cos2 2φh〉, 〈cos4 φX 〉, and 〈cos4 φY 〉 as a function of the ne-
matic order �h,e. We find that 〈cos 2φh〉 and 〈cos2 2φh〉 exhibit
a kink like nonanalyticity near �h = �cr. In the Appendix A
we show that the singularities (nonanalyticities) are x ln(x)
and x2 ln(x), where x = �h/�cr − 1. The densities of states
also depend on �h,e, as we show in Fig. 5(d).

We numerically solve Eq. (24) and obtain Tc and find the
gap structure � = (�1,�2,�3,�4) for the leading supercon-
ducting instability. In the tetragonal phase, NX = NY = Ne and
〈cos 2φh〉 = 〈cos 2θh〉 = 0. Then s±-wave and d-wave pairing
channels are decoupled. The eigenvalues of the gap matrix,
Eq. (24), are

λs = λ0

⎡
⎣− Jee

Us
+

√(
Jee

Us

)2

+ 8
Nh

Ne〈cos4 φX 〉

⎤
⎦, (25)

λd = λ0

⎡
⎣ Jee

Us
+

√(
Jee

Us

)2

+ 4
Nh

Ne〈cos4 φX 〉α
2

⎤
⎦, (26)

S
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FIG. 5. Variation of the angular average of (a) 〈cos 2φh〉,
(b) 〈cos2 2φh〉, and (c) 〈cos2 φX 〉 and 〈cos2 φY 〉 on the hole and the
electron pockets with the nematic order �h,e. The inset in (b) shows
the zoom-in view of 〈cos2 2φh〉 near �cr. The nonanalyticity is at
�cr ≈ 7.6 meV. (d) Variations of the density of state (DOS) on
different pockets with �h.

where λ0 = Ne〈cos4 φX 〉
2 . For Jee = 0, the gap function is either

s-wave, for α <
√

2, or d-wave, for α >
√

2. For Jee 
= 0,
superconductivity is s-wave when

Jee

Us
<

√
Nh

2Ne〈cos4 φX 〉
(2 − α2)√

α2 + 2
. (27)

The phase diagram for Eq. (27) is shown in Fig. 6. We next
move to the nematic phase. Now 〈cos 2φh〉 
= 0, and both �1

and �2 are nonzero for any α and Jee.
To simplify the presentation, we neglect Jee. Without ne-

maticity, superconducting order is s-wave for α <
√

2 and
�h = �1. At small � (i.e., small �h and �e), φh ≈ θh and
�2 ∝ �. This gives rise to � cos 2θh angular variation of �h.
If this was the only effect of nematicity, the angle variation
would grow with �, and �h would necessarily develop a deep
minima and then gap nodes. However, as � increases, φh

deviates from θh due to orbital transmutation, and at large �

it becomes π/2 almost everywhere on the hole pocket. Then
the �2 cos 2φh term becomes angle-independent, and the gap
function on the hole pocket recovers a pure s-wave form. Be-
sides, due to the same orbital transmutation, the magnitude �2

becomes a nonlinear function of � and does not necessarily
exceed �1 even at large �.

A similar situation holds if α >
√

2, when the supercon-
ducting order without nematicity is d-wave, �h = �2 cos 2θh.
At a small �, the key effect of nematicity is an admixture of
�1. At large �, θh → φh ≈ π/2, and the nodes disappear.

The questions, which we address below, are (i) whether
for α <

√
2 the nodes in �h develop at intermediate �h,

and (ii) how the nodes in �h disappear for α >
√

2 as �h

increases. To address these issues, we solve the gap equations
for different α at various �h and �h/�e. We show the results
in Figs. 7–11. Before we discuss these results, several general
observations are in order. According to Eq. (22), �h has a

2

0

-2

-3 32- 20

d-wave

s-wave

FIG. 6. Regions of s-wave and d-wave superconductivity accord-
ing to the solution of Eq. (27) for different α and Jee in the absence
of nematicity.
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FIG. 7. Variations of the gap amplitudes � = (�1, �2, �3,�4)
with the nematic order �e,h and interaction ratio α for (a) α = 0.5,
�h = −�e; (b) α = 2.5, �h = −�e; (c) α = 0.5, �e = −19 meV;
and (d) α = 2.5, �e = −19 meV.

node at an angle θ0 if

cos 2φh(θ0,�h) = −�1

�2
. (28)

The ratio �2/�1 depends on �h, �e, and α. Obviously, the
nodes are possible only if |�2/�1| > 1. Shrinking the angular
variation of cos 2φh at �h > �cr puts additional restriction
on �2/�1 for the nodes to appear. Further, the number of
possible nodes changes between �h < �cr and �h > �cr. In
the first case, the gap functions at θ = 0 and π

2 are �1 + �2

and �1 − �2, respectively. When |�2/�1| > 1, the two have
opposite signs, hence there have to be an odd number of
nodes between 0 and π

2 ; the total number of nodes is then
4, 12, 20, . . . . For �h > �cr, �h(θ ) at θ = 0 and π/2 be-
come the same �1 − �2 due to orbital transmutation. Then,
there have to be an even number of nodes between 0 and π/2,
hence the total number of nodes is 0, 8, 16, . . . .

1.5
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FIG. 8. The variation of �2/�1 with �h for different interaction
ratios α for a fixed electron nematic order (a) �e = 0 meV, (b) �e =
−8 meV, and (c) �e = −19 meV. In (d) we fix α = 1.2 and plot
�2/�1 with �h for different values of electron nematic order �e.

200 5 01 51
0

5

15

10

20

FIG. 9. The variation of �2/�1 as a function of �h and �e. We
set α = 1.2 in this plot.

In our case, we find (see the Appendix C for details)

�2

�1
= 2α

g + α〈cos 2φh〉
(1 − α2〈cos2 2φh〉) + D

, (29)

where

g = g(�e) = NX 〈cos4 φX 〉 − NY 〈cos4 φY 〉
NX 〈cos4 φX 〉 + NY 〈cos4 φY 〉 (30)

and

D = [4α2(〈cos 2φh〉2 − 〈cos2 2φh〉)(1 − g2)

+ (1 + 2gα〈cos 2φh〉 + α2〈cos2 2φh〉)2]1/2. (31)

The function g(�e) measures the asymmetry between X and
Y pockets at a nonzero �e. We find that it increases roughly
linearly with |�e|.

We now discuss the results. In Figs. 7(a) and 7(c) we
show �i for α = 0.5, and in Figs. 7(b) and 7(d) we show �i

for α = 2.5 when the primary order is s-wave and d-wave,
respectively. We see that for α = 0.5, the magnitude of the
s-wave component �1 far exceeds �2 of the d-wave compo-
nent, i.e., the gap remains an s-wave with a small admixture
of a d-wave. For α = 2.5, the situation is opposite—the gap

2 23 20

2 23 20

2 23 20

2 23 20

0 4 8 0 1 4 10

4 5 7 10 0 8 10

0.6

0.4

0.2

0

0.6

0.4

0.2

0

0.8

0.4

0.2

0

0.6

1.5

0.5

0

1

(a) (b)

(c) (d)

FIG. 10. The angular variation of �h(θh ) with θh for various val-
ues of �h at (a) �e = 0 meV, (b) �e = −1 meV, (c) �e = −7 meV,
and (d) �e = −19 meV. We set α = 1.4.
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FIG. 11. Angular variation of �h(θh ) at selected values of �h for
(a) α = 1.45 and (b) α = 2.5. We set �e = −5 meV.

remains predominantly d-wave with a small admixture of an
s-wave. In both cases, therefore, the effect of nematicity is
rather weak, even when �h is large.

In Fig. 8, we plot �2/�1 as a function of �h for various
�e and α <

√
2. We see that when α is not close to

√
2, then

|�2/�1| < 1 for any �h and �e. As a consequence, there
are no nodes in the gap function. This agrees with Fig. 7.
However, for α �

√
2, we find intervals of �h < �cr, where

|�2/�1| > 1. This holds, e.g., for α = 1.4 and �e = 0 [dark
red curve in Fig. 8(a)]. By our generic reasoning, there must be
four nodes. The same holds for the same α and sizable �e [see
Figs. 8(b) and 8(c)]. The only difference is that for �e = 0, the
four nodes are near the kx-direction, while for sizable �e they
are near the ky-direction.

Next, we see from Fig. 8 that the ratio |�2/�1| evolves
around �h = �cr and even changes sign for sizable �e. For
larger �h we again have |�2/�1| > 1 for α �

√
2. However,

this no longer guarantees the existence of the nodes as by our
general reasoning above their number can be zero. We will see
that this is what happens—the nodes do not develop despite
|�2/�1| > 1 because φh clusters around π/2.

In Fig. 9 we mark the boundaries of |�2/�1| on the
(�h,�e) plane at a fixed α = 1.2. The area of the “corner”
regions, where |�2/�1| > 1, increases when α approaches√

2. As we mentioned, the nodes only develop in the left upper
grayish colored corner, where �h < �cr. In Fig. 10 we plot
the gap function �h(θh). We find four different scenarios in
which nodes can appear/disappear when one varies �h at a
fixed value of �e and α slightly below critical

√
2. Here, we

further set α = 1.4.
(i) In Fig. 10(a) we set �e = 0. There are no nodes at �h =

0, in agreement with Fig. 8(a). At �h ≈ 1 meV, four nodes
appear near the kx-direction. They exist up to �h � �cr and
disappear at larger �h. In the node count, the number of nodes
changes with �h as 0 → 4 → 0.

(ii) In Fig. 10(b) we set �e = −1 meV. In this case, there
are four nodes near the ky-direction already for �h = 0. As
�h increases, the four nodes disappear at �h ∼ 1 meV due to
nonmonotonic behavior of �2/�1, as in Figs. 8(b) and 8(c).
As �h increases further, four nodes reappear, now near the
kx-direction, at �h ∼ 3 meV. These nodes then disappear at
�h � �cr. In this case, the number of nodes changes with �h

as 4 → 0 → 4 → 0.
(iii) In Fig. 10(c) we set �e = −7 meV. In this case, at

small �h there are four nodes near the ky-direction. These
nodes disappear at some �h � �cr. In this case, the number
of nodes changes with �h as 4 → 0.

(iv) In Fig. 10(d) we set �e = −19 meV. In this case,
there are four nodes near the ky-direction for all �h � �cr.
For �h > �cr, the number of nodes first increases from four
to eight, because the gap function along the kx- and the ky-
direction becomes nearly the same and has to cross zero twice.
As �h increases further, the eight nodes disappear due to
the clustering of φh near π/2. In this case, the number of
nodes changes with �h as 4 → 8 → 0. For α >

√
2, super-

conducting order in the tetragonal phase is d-wave with four
nodes on the hole pocket. With increasing nematic order, the
nodes disappear due to orbital transmutation either because
�1 becomes larger than �2 or �2 remains larger than �1,
but φh clusters around π/2. In Fig. 11 we show the results
for �h at two values of α >

√
2. For α = 1.45, the nodes �h

disappear because �1 becomes larger than �2. This happens
at �h < �cr, i.e., well before φh starts clustering near π/2. In
this case, the number of nodes changes with �h as 4 → 0. For
α = 2.5, �2 remains larger than �1, and the nodes disappear
at �h > �cr due to clustering of φh. We see from the figure
that in this case the number of nodes changes with �h as 4 →
8 → 0 (4 on a blue line, 8 on an orange line, and 0 on green
and red lines). A nodeless gap deep in the orthorhombic phase
for α >

√
2 is consistent with RPA calculations of Ref. [11].

Note that the results for a nonzero Jee are quite similar;
only the value of α near which the system develops nodes
coming out of an s-wave superconductor at � = 0 shifts from
α = √

2.

C. Temperature dependence of the gap

In this section, we obtain the temperature dependence
of �i(T ) near the superconducting transition. We will use
the result for �i(T ) in the next section, where we compute
the jump of the specific heat at Tc. We assume that the
ratios �i/� j do not change substantially with temperature.
This relies on the assumption that the dimensional coupling
constants (the products of the interband/intraband interac-
tion and the corresponding densities of states in the normal
state) are temperature-independent at T � Tc. Accordingly,
we parametrize four gap functions as

�(T ) = �0(T )(�1,�2,�3,�4) = �0(T )�, (32)

where � = (�1,�2,�3,�4) are the same (up to an overall
factor) as we obtained in Sec. III B by solving the linearized
gap equations (24). We normalize � by setting its largest
component equal to 1. To simplify the presentation, we
again first assume Jee = 0 and then present the results for a
nonzero Jee.

The nonlinear equation for the gap on the hole pocket is

�1 + �2 cos 2φh

= −
[
�3(Us + Ud cos 2φh)

∫
p

tanh
(EX

2T

)
2EX

cos4 φX

+�4(Us − Ud cos 2φh)
∫

p

tanh
( EY

2T

)
2EY

cos4 φY

]
, (33)

where EX =
√

ξ 2
x + �2

3�
2
0(T ) and EY =

√
ξ 2

y + �2
4�

2
0(T ).

Multiplying Eq. (33) by �1 + �2 cos 2φh, averaging over the
hole Fermi surface pocket, and expanding the right-hand side
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to order �2
0(T ) as∫

p

tanh( EX/Y

2T )

2EX/Y
cos4 φX/Y (p)

= NX/Y

(
ln

�

T
〈cos4 φX/Y 〉− K�2

3
�2

0

T 2
c

〈cos8 φX/Y 〉
)

+ O
(
�4

0

)
, (34)

where K = 7ζ (3)
8π2 , we obtain

Nh ln
�

Tc
〈(�1 + �2 cos 2φh)2〉

= ln
�

T

[
Nx�

2
3〈cos4 φX 〉 + NY �2

4〈cos4 φY 〉]
− K

�0(T )2

T 2
c

[
Nx�

4
3〈cos8 φX 〉 + NY �4

4〈cos8 φY 〉]. (35)

Multiplying Eq. (B4) by �1 + �2 cos 2φh, averaging over the
hole Fermi surface pocket, and using Eqs. (B5) and (B6), we
obtain the relation

Nh〈(�1 + �2 cos 2φh)2〉
= (

NX �2
3〈cos4 φX 〉 + NY �2

4〈cos4 φY 〉). (36)

Approximating ln �
T ≈ ln �

Tc
+ Tc−T

Tc
and using Eq. (36), we

obtain from (35)

�0(T )2 = Tc(Tc − T )

K

NX �2
3〈cos4 φX 〉 + NY �2

4〈cos4 φY 〉
NX �4

3〈cos8 φX 〉 + NY �4
4〈cos8 φY 〉 .

(37)

We recall that �3 and �4 are functions of �h, �e, and α.
For Jee 
= 0, the same procedure yields

�0(T )2 = Tc(Tc − T )

K

NX �2
3〈cos4 φX 〉 + NY �2

4〈cos4 φY 〉 + 2 Jee
λ

NX NY �3�4〈cos4 φX 〉〈cos4 φY 〉
NX �4

3〈cos8 φX 〉 + NY �4
4〈cos8 φY 〉 + Jee

λ
NX NY �3�4(�2

3〈cos8 φX 〉〈cos4 φY 〉 + �2
4〈cos8 φY 〉〈cos4 φX 〉)

,

(38)

where λ is the largest eigenvalue of Eq. (24). We note in
passing that the temperature variation of the gaps ratio is
generally stronger if the pairing is mediated by dynamical
collective excitations, e.g., spin fluctuations, as in this case
the couplings are renormalized below Tc due to the feedback
from superconductivity.

IV. SPECIFIC HEAT

In this section, we examine the specific heat jump at Tc

and its band-resolved compositions as a function of nematicity
for scenarios A and B. In the mean-field approximation, the
specific heat is the sum of contributions from �, X , and Y
pockets:

Cv =
∑

i=h,X,Y

∫
k

(
E2

i (k)

2T 2
− 1

4T

∂|�i(k)|2
∂T

)
1

cosh2
(Ei (k)

2T

) .
(39)

The first term on the right-hand side of Eq. (39) is the
normal state contribution at T = Tc + 0+. Evaluating the k-
integral, we obtain

Cv = 2

3
π2Tc(Nh + NX + NY ). (40)

The second term on the right-hand side of Eq. (39) accounts
for the jump of �Cv at Tc. It is equal to

�Cv = − 1

4Tc

∑
i=h,X,Y

∫
k

1

cosh
(

ξi (k)
2Tc

)2

d

dT
�i(θ )2

= −
∑

i=h,X,Y

Ni

∫ 2π

0

dθ

2π

d

dT
�i(θ )2. (41)

Substituting the results for the gap functions, we find that

�Cv = − d

dT
�0(T )2

[
Nh〈(�1 + �2 cos 2φh)2〉

+ NX �2
3〈cos4 φX 〉 + NY �2

4〈cos4 φY 〉]
= �Ch

v + �CX
v + �CY

v . (42)

Setting Jee = 0 and using Eq. (36), we find that �Ch
v =

�CX
v + �CY

v . Using Eqs. (36), (37), and (42), we find

�Cv

Cv

= 1.43
2N2

h 〈�h(θ )2〉2

N
(
NX �4

3〈cos8 φX 〉 + NY �4
4〈cos8 φY 〉) , (43)

where 1.43 is the BCS result for a single band superconductor,
and N = Nh + NX + NY . Without a nematic order, the ratio
would be (

�Cv

Cv

)
�=0

= 1.43
2

1 + Nh
2Ne

〈cos4 φX 〉2

〈cos8 φX 〉 . (44)

If the electron pockets would consist solely of dxz and
dyz fermions, we would obtain �Cv/Cv|�=0 = 2.86/[1 +
Nh/(2Ne)]. For the parameters from Tables I and II, this yields
�Cv/Cv|�=0 = 1.42. In the presence of the dxy orbital, how-
ever, �Cv/Cv|�=0 ≈ 1.09. The smallness comes from the fact
that the relatively heavy dxy band contributes to Cv (T ) in the
normal state, but not to �Cv . This is similar to the case of
KFe2As2 (Ref. [38]).

A. Specific heat jump at Tc for scenario A

The effect of nematicity on the specific heat jump is in-
volved because Ni, ci, and the coherence factors cos φi all
vary with it. In Fig. 12, we plot �Cv/Cv as a function of
�h for various values of �e and representative α = 0.5 and
2.5, chosen to be smaller and larger than

√
2. For α = 0.5, we
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FIG. 12. The variation of the scaled specific heat jump �Cv

Cv
with

hole nematic order �h for (a), (c) α = 0.5 and (b), (d) α = 2.5. We
set �e = −�h in (a) and (b). In (c) and (d), we choose a set of values
for �e = {−4, −7, −10, −19} meV.

expect from Eq. (43) that �Cv/Cv ≈ �4
1, and we verified that

the behavior of �Cv/Cv matches the behavior of �4
1 with �1

from Fig. 7(a).
For α = 2.5, we expect �Cv/Cv ∼ �4

2, and the behavior of
�Cv/Cv matches the behavior of �4

2 with �2 from Fig. 7(b).
In both cases, we see that �Cv/Cv is generally around 1, but
it increases with �h. Viewed as a function of �h, �Cv/Cv

displays a kink like nonanalyticity at �h = �cr and, moreover,
is nonmonotonic at α = 2.5. The nonmonotonic behavior for
this α is clearly visible in Fig. 12(d), where we plot �Cv/Cv

versus �h for various �e. Figure 12(c) shows that it also holds
at α = 0.5 for large enough |�e|. At large |�e| and even larger
�h, �Cv/Cv saturates. The reason is that for such �, the Y
pocket is mostly of dxy character and the X pocket is mostly of
dyz character, hence 〈cosa φY 〉 � 1 and 〈cosa φX 〉 ≈ 1, where
a = 4, 8. Then �Cv/Cv ∼ NX /(Nh + NX + NX ), and NX is the
largest; see Fig. 5(d). Note that for large |�e| = 19 meV,
�Cv/Cv is 1.5–1.6.

For α ≈ √
2, the behavior of �Cv/Cv versus �h is inter-

mediate between the ones at α = 0.5 and 2.5.
We also plot in Figs. 12(a) and 12(b) the band-resolved

contributions from hole and electron pockets. We see that the
largest contribution to the jump comes from the hole pocket.
�Ch

v /Cv is nonanalytic at �cr and gives rise to nonanalyticity
in the full �Cv/Cv .

B. Specific heat jump at Tc for scenario B

Below we present the results for the specific heat jump and
its decomposition into contributions from different bands for
scenario B, when there is additional contribution �xy, Eq. (2).
This contribution splits the dispersions of dxy fermions on
the X and Y pockets. We choose the sign and magnitude of
�xy such that the bottom of the Y band moves above the
chemical potential, i.e., the Y pocket disappears in the nematic
phase. To simplify calculations, we adopt the “antisymmetric
approach” of Ref. [11] and introduce �xy nematic order only
for dxy fermions on the Y pocket, as 2�Y �xy�Y with �Y

from Eq. (8). Appropriate parameters to fit the band structure,
available from ARPES experiments, in this scenario are given
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FIG. 13. Scenario B: Calculated band dispersion of the 1-Fe unit

cell in tetragonal and orthorhombic phase, respectively, near (a), (b)
�, (c), (d) X , and (e), (f) Y point. Fitting parameters are taken from
Ref. [11]. Note that the dxy dominated Y -band is fully located above
the Fermi level in (f).

in the supplementary material of Ref. [11], and they yield the
Fermi surface shown in Fig. 1(d) and in the right inset in
Fig. 14(c). The corresponding band dispersions at the �, X ,
and Y points are shown in Fig. 13.

We solve the full nonlinear gap equations (B1)–(B3), sub-
stitute the results into Eq. (39), and obtain the specific heat.

In Fig. 14(a) we show the total specific heat CV (solid-blue)
as well as the band-resolved contributions from the �, X , and
Y pockets (solid yellow, green, and orange, respectively). For
definiteness we set �xy = 45 meV, α = 0.5, and Jeh = Jee

(=Ueh/3). We adjusted Ueh to match experimental Tc ∼ 10 K.
Observe that both the � and X pockets contribute substantially
to the specific heat jump, with the contribution from the Y
pocket almost vanishing. The largest contribution comes from
the X pocket. This differs from the result for scenario A, but
the difference is largely due to different parameters, as we
verified.

A more substantial difference is actually for the specific
heat in the normal state. In scenario A, dxy fermions from both
X and Y pockets contribute to Cv (T ) above Tc. In scenario B,
dxy fermions from Y are gapped, and only dxy fermions from
X contribute. As a result, the normal state Cv (T ) is reduced
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(a)

(c)

(b)

FIG. 14. The total and band-resolved specific heat calculated
for (a) scenario A (�xy = 0) and (b) scenario B (�xy = 45 meV);
(c) �Cv/Cv as a function of �xy. For the small (large) �xy scenario,
A (B) is valid. Left inset: Fermi surface for �xy = 0. Right inset:
Fermi surface for �xy = 45 meV.

in scenario B compared to A, while �Cv at Tc remains the
same as only dxz and dyz fermions contribute to the jump.
As a consequence, �Cv/Cv is larger in scenario B than in
scenario A. We show this explicitly where we plot �Cv/Cv as
a function of �xy, which drives the system between scenario
A and scenario B. We see that �Cv/Cv is roughly a constant at
small �xy when scenario A is valid. It then rapidly increases
and saturates at a larger value at large �xy when scenario B is
valid.

C. Comparison between scenarios A and B and experiments

Specific heat measurements in FeSe [39–43,47–51] con-
sistently reveal that �Cv/Cv ≈ 1.65. This is larger than the
BCS result for a single band superconductor, �Cv/Cv ≈ 1.43.
A larger �Cv/Cv is often associated with the effects beyond
BCS [52,53]. However, earlier works [54–59] have found that
in a multiband system, �Cv/Cv can be either larger or smaller
than the BCS value already within BCS approximation. In
our analysis, we obtain �Cv/Cv around 1 in scenario A for
small �e and �h, but larger �Cv/Cv ∼ 1.5–1.6 for larger
�h ∼ |�e| � 20 meV. Within scenario B, �Cv/Cv is always
larger than in scenario A because the normal state contribu-
tion is smaller. Then the experimental �Cv/Cv ∼ 1.65 can be
reproduced already at smaller �h,e. In summary, the specific
heat jump can be reproduced within both scenarios, but the pa-
rameter space is somewhat larger in scenario B. We also note
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FIG. 15. Regions of the mixed s + eiηd order in the tetragonal
and orthohombic phases in the (T, α) plane. In (a) we set Jee = 0 and
Jeh < 0 to bring α = (Ueh − Jeh )/(Ueh + Jeh ) close to

√
2. In (b) we

set Jee = Jeh > 0. A d-wave order develops when Jeh/Ueh is larger
than a certain number. For our parameter, the mixed phase is located
near α ∼ −0.7. The shrinking of the range of s + eiηd order with
nematicity is stronger in (b) than in (a).

that the pocket sizes in scenario B are somewhat smaller com-
pared to those in scenario A, which leads to some quantitative
differences in the phase diagram in Fig. 6, mainly affecting the
terms in the square root in Eq. (27). More specifically, both
scenarios predict similar results for the angular dependence
of the gap at the outer hole pocket, shown in Fig. 9, but they
differ in their predictions for the electron pockets. This has
been discussed previously in Refs. [25,34].

V. SPECIFIC HEAT NEAR A POSSIBLE TRANSITION
INTO AN s + eiηd STATE

In this section, we consider the possibility of a second su-
perconducting transition in FeSe, caused by a transformation
of the s + d state into the s + eiηd state. Such an instabil-
ity may arise near the point where the pairing interaction is
attractive in both s-wave and d-wave channels, with compa-
rable magnitudes. The parameter range of s + eiηd has been
previously analyzed in Ref. [35], assuming that the nematic
order is weak. Here we do not keep � small and include into
consideration orbital transmutation in the nematic phase. We
identify the parameter range, where s + eiηd order emerges.

To analyze the transition to the (s + eiηd)-wave state, we
numerically solve the full nonlinear gap equations (B1)–(B3),
including both s-wave and d-wave harmonics. We show our
results in Fig. 15. In panel (a), we assume Jee = 0 and vary
the parameter α, which drives the system from s- to d-wave
symmetry at α ≈ √

2. In panel (b) we set Jee = Jeh; in this
case, the transition from s- to d-wave is at negative α ∼ −0.7.
The black curves in Fig. 15 are the results for � = 0. In both
panels, there is a sizable range of s + id order, sandwiched
between pure s-wave and d-wave states. This is consistent
with Ref. [35]. For a finite nematic order, the gap function in
the mixed state is s + eiηd , where 0 � η � π

2 . The results for
� 
= 0 show that nematicity generally suppresses the width
of the s + eiηd region, but the suppression is far stronger for
Jee = Jeh [panel (b)] than for Jee = 0 [panel (a)]. The reason
why a nematic order is unfavorable for the s + eiηd state
is again orbital transmutation: as we said, a nematic order
makes pockets “mono-orbital” and therefore favors s-wave
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FIG. 16. The size of the s + eiηd region (black) and the percent-
age of dxz and dyz orbital content at the hole pocket (red and green),
vs �h. The black-dashed line is for �e = 0, while the gray-dashed
one is for �e = −�h.

pairing. Consequently, the region where s- and d-wave pairing
channels are nearly degenerate gets suppressed. We illustrate
this in Fig. 16, where we plot the area of the s + eiηd region,
normalized to its value in the tetragonal state, and the differ-
ence in the orbital content on the hole pocket, both versus �h.
We see that the area of the mixed range shrinks and vanishes
when �h reaches �cr.

Specific heat measurements on FeSe in Refs. [39–42] re-
ported two jumps at Tc = 8 K and T ∗ ∼ 1 K. The jump
at Tc clearly indicates the transition to the superconducting
phase. In Ref. [35] it was argued that the jump at T ∗ =
1 K might be explained by the transition into the s + eiηd
phase. Our results show that this is possible, but unlikely as
the parameter range when s + eiηd order develops is quite
narrow.

We also note in passing that in panel (b) of Fig. 15, Tc goes
up at a nonzero �, despite the fact that a nematic order is
generally believed to be a competitor to superconductivity.
This happens because Jeh is the dominant component of the
pairing interaction, and Jeh couples dxz fermions on the �

pocket to dyz fermions on the X pocket. The spectral weight
of both fermions gets enhanced by sign-changing dxz/yz ne-
maticity, and this enhances Tc. For the case in panel (a), the
dominant interaction is Ueh, which couples dxz (dyz) orbitals
at � with dxz (dyz) orbitals at Y (X ). In the nematic phase,
dxz (dyz) weight is enhanced (reduced) at � but reduced (en-
hanced) at Y (X ). As a consequence, Tc is weakly affected by
nematicity.

VI. CONCLUSIONS

In this paper, we presented an in-depth analysis of the
superconducting gap function and the specific heat of a multi-
orbital metal, like FeSe, which first develops a nematic order
and then undergoes a transition into a superconducting state,
which coexists with nematicity. We considered two scenarios:
scenario A, in which nematic order develops between dxz

and dyz orbitals on hole and electron pockets (�h and �e),
and scenario B, in which there is an additional component
of the nematic order for dxy fermions on the two electron
pockets (�xy).

We specifically addressed three questions. The first one
is the angular dependence of the gap. Here we analyzed the
competition between the two effects. One is the nematicity-
induced s-d mixture, which necessarily induces angular
variation of the gap function even if the superconducting state
is an s-wave without nematicity. Another one is orbital trans-
mutation of low-energy excitations in the nematic state. This
effect tends to make Fermi surface pockets mono-orbital and
thus favors an angle-independent gap function. We analyzed
the crossover from initial s-d mixing to the eventual angle-
independent gap, and we argued that the most likely scenario
for stronger s-wave attraction in the tetragonal phase is a gap
function with no nodes, while for stronger d-wave attraction
the four nodes from d-wave order disappear once nematic
order exceeds a certain threshold. However, in a parameter
range where s-wave and d-wave interactions have comparable
strength, we find more involved crossovers in which, e.g., the
number of nodal points goes from zero to a finite number and
then back to zero, or when the number of nodal points goes
from four to eight and then to zero.

The second question that we addressed is the behavior of a
specific heat in a nematic superconductor. For this, we solved
the nonlinear gap equation, obtained the forms of the gaps
below Tc, and used them to compute the specific heat Cv (T ).
We analyzed the evolution of Cv (T ) with the nematic order
in both scenario A and scenario B. Here our key result is the
specific heat jump at Tc: �Cv/Cv . We found that �Cv/Cv is
around 1 in the tetragonal phase for parameters appropriate for
FeSe. The magnitude of �Cv/Cv increases with the nematic
order and saturates at �Cv/Cv ∼ 1.5–1.6. This is quite con-
sistent with the experimental result for FeSe, �Cv/Cv ∼ 1.65
(Refs. [39–43,47–51]). The values of �h,e required to reach
saturation are smaller in scenario B as in this scenario the
normal state Cv (T ) is smaller as it assumes that the Y pocket
disappears because of sizable �xy.

The third question that we addressed is a potential tran-
sition at Tc1 < Tc from an s + d state to an s + eiηd state
that breaks time-reversal symmetry. Such a transition was
suggested [35] as a possible explanation of the experi-
ments [39–43], which observed a second jump of Cv (T ) at
T ∗ ∼ 1 K, well below Tc ∼ 8.5 K. At small �h,e, previous
study found [35] that the parameter range where the s + eiηd
state develops at T → 0 is quite sizable. We analyzed larger
�h,e and found that the range shrinks due to orbital transmuta-
tion, which acts against competition between s- and d-pairing.
We expect that the measurements of the gap function and
specific heat in doped FeSe1−xSx or FeSe1−xTex, where the
amount of nematic order varies with x, could verify the pres-
ence of the s + eiηd state.
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APPENDIX A: SINGULARITIES IN THE HOLE
COHERENCE FACTOR

In this Appendix, we compute 〈cos 2φh〉 and 〈cos2 2φh〉 as
a function of �h, and we show, respectively, that they exhibit
an x ln |x|- and x2 ln |x|-type nonanalyticity near the critical
nematic strength �cr(defined below). Using Eqs. (5) and (7),

we write cos 2φh on the Fermi surface as

cos 2φh = bkF (θ )2

2 cos(2θh) − �h

kF (θ )2

2mh
− μh

. (A1)

Here, kF (θ ) is the Fermi radius at an angle θ . We define k2
F
2 =

x f (θ ) for convenience, and we write

cos 2φh = bx f (θ ) cos(2θh) − �h
x f (θ )

mh
− μh

= mhb
bx f (θ ) cos(2θh) − �h

bx f (θ ) − �cr
, (A2)

where �cr = μhmhb is the critical nematic strength where the orbital order in the kx-direction changes from dyz to dxz on the
hole pocket. We set mhb = t for convenience, and for our model parameters from Table I, t ≈ 0.5. We find the functional form
of bx f (θ ) from the band dispersion Eq. (5) as

bx f (θ ) =
�cr − t2�h cos 2θ +

√
(�cr − t2�h cos 2θ )2 − (1 − t2)

(
�2

cr − �2
ht2

)
1 − t2

. (A3)

In the limit where nematic order is small, i.e., �h � �cr,
we can expand Eqs. (A3) and (A1) in �h

�cr
� 1, which yields

〈cos 2φh〉FS = −1 − t

2

(
�h

�cr

)
− 1 − t2

16

(
�h

�cr

)3

+ O
(
�5

h

)
,

(A4)

〈cos2 2φh〉FS = 1

2
− t

1 − t

4

(
�h

�cr

)2

+ O
(
�4

h

)
. (A5)

In the limit when �h ≈ �cr, we find from Eq. (A3) pre-
cisely at �h = �cr

bxcr
f (θ,�cr) = �cr + �cr f (θ ), (A6)

where

f (θ ) = 2t2 sin(θ )2 + 2t | sin(θ )|
√

1 − t2 cos(θ )2

1 − t2
. (A7)

Then,

cos 2φh = t
[�cr + �cr f (θ )] cos(2θ ) − �cr

�cr + �cr f (θ ) − �cr

= t

[
− 1

f (θ )
+ cos(2θ )

(
1 + 1

f (θ )

)]

= t

[
cos(2θ ) − 2

sin(θ )2

f (θ )

]
. (A8)

From Eq. (A8), we find that near the kx-axis, cos 2φh ap-
proaches the value t , while it is undefined in the kx-direction.
We will show later cos 2φh(0) = sgn(�cr − �h),

lim
θ→0

cos 2φh(θ )�cr = t . (A9)

Averaging cos 2φh and cos2 2φh over the angle θ , we get

〈cos 2φh〉 = t〈cos(2θ )〉 − 2t

〈
sin(θ )2

f (θ )

〉

= t

2
−

√
1 − t2

π
− arcsin(t )

πt
= ≈ −0.32, (A10)

〈cos2 2φh〉 = t2

〈
cos2 2θ + 4

sin4 θ

f (θ )2
− 4

cos 2θ sin2 θ

f (θ )

〉

= t[2(2 − 2t2)
√

1 − t2 + πt (2 + t2)] − 2 arcsin t

4πt2

= ≈ 0.36. (A11)

Next we assume �h = �cr + δ and show how 〈cos 2φh〉
and 〈cos2 2φh〉 depend on δ. Using Eq. (A3), we show

bx f (θ, δ) = �cr[1 − t2 cos(2θ )] − δt2 cos(2θ ) + √
B

1 − t2
,

(A12)
where

B = 4�2
crt

2[1 − t2 cos(θ )2] sin(θ )2 + δ2t2

−4δ2t4 sin(θ )2 cos(θ )2

+ 4δt2�cr sin(θ )2[1 − 2t2 cos(θ )2]. (A13)
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FIG. 17. bx f (0, δ) as function of δ.
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FIG. 18. We plot both of the integrands of Eq. (A16) as a func-
tion of θ for δ = 0.1 and 1.

At θ = 0, π , bx f (0, δ) has a |δ|-type nonanalyticity as we find
from Eq. (A12)

bx f (0, δ) = �cr + t |δ|
1 + t sgn(δ)

(A14)

and plot in Fig. 17. As a result, we find

cos 2φh(0) = t
bx f (0, δ) − �cr − δ

bx f (0, δ) − �cr

= t

(
1 − δ

bx f (0, δ) − �cr

)

= t

(
1 − δ(1 − t2)

|δ|t − δt2

)
= −sgn(δ). (A15)

Next, we move to calculate 〈cos 2φh〉,

〈cos 2φh〉 = t

〈
bx f (θ, δ) cos(2θ ) − �h

bx f (θ, δ) − �cr

〉

= t

〈
bx f (θ, δ) cos(2θ ) − �cr − δ

bx f (θ, δ) − �cr

〉

= t

〈
bx f (θ, δ) cos(2θ ) − �cr

bx f (θ, δ) − �cr

〉
︸ ︷︷ ︸

Term 1

− δt

〈
1

bx f (θ, δ) − �cr

〉
︸ ︷︷ ︸

Term 2

. (A16)

We claim that the second blue underbraced term in
Eq. (A16) contains the nonanalytic behavior of 〈cos 2φh〉,

Term 1

Term 2

15

10

5

0

-0.4 -0.2 0 0.2 0.4

FIG. 19. Terms 1 and 2 according to Eq. (A21) as a function of
x = δ/�cr.

because, as δ → 0, the denominator diverges at θ = 0 and
π ; see Fig. 18(b). The first underbraced term in Eq. (A16)
is almost independent of variations in δ, as can be seen in
Fig. 18(a). Hence, we approximate the first term of Eq. (A16)
by setting δ = 0, and we recover the result of Eq. (A10).

To calculate the second term, we rewrite the denominator
to separate the singular from the regular part,

bx f (θ, δ) − �cr = bx f (θ, δ) − bx f (0, δ) + bx f (0, δ) − �cr

= t |δ|
1 + t sgn(δ)

+ [bx f (θ, δ) − bx f (0, δ)].

(A17)

We again approximate that [bx f (θ, δ) − bx f (0, δ)] does not
change much with δ. So we write it as

bx f (θ, δ) − bx f (0, δ) ≈ bx f (θ, 0) − bx f (0, 0) = φcr f (θ ).
(A18)

Then, the nonanalytic contribution of 〈cos 2φh〉 is

〈cos 2φh〉 = −δ

〈
1

�cr f (θ ) + t |δ|
1+t sgn(δ)

〉

= −x

〈
1

f (θ ) + A(x)

〉
, (A19)

where x = δ
�cr

, and

A(x) = t
|x|

1 + t sgn(x)
. (A20)

We perform the integration over θ in Eq. (A19), and we obtain

〈cos 2φh〉 = −2x

⎡
⎢⎢⎢⎣arccos(t )

A(x) − 1︸ ︷︷ ︸
Term1

+ 2 − A(x)

1 − A(x)

√
1 − t2√

[2 − A(x)]2t2 − A(x)2
tanh−1

(√
[2 − A(x)]2t2 − A(x)2

[2 − A(x)]t

)
︸ ︷︷ ︸

Term2

⎤
⎥⎥⎥⎦. (A21)

As δ → 0, the first term of Eq. (A21) inside the parentheses approaches a finite value [− arccos(t )], while the second term blows
up because of the tanh−1 function (see Fig. 19). We neglect the regular part, and we expand the second term around x = 0 to find
the nonanalytic component, which is of |x| ln(|x|) form,

〈cos 2φh〉 ∝ −2x

(
2 + t

|x|
1 + t sgn(x)

)(
1

2t
+ |x|

4[1 + t sgn(x)]

)
[c − ln(|x|)] ∝ |x| ln(|x|). (A22)
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Next, we compute 〈cos2 2φh〉 in the following way:

〈cos2 2φh〉 = t2

〈
bx f (θ, δ) cos(2θ ) − �h

bx f (θ, δ) − �cr

〉2

= t2

[〈
[bx f (θ, δ) cos(2θ ) − �cr]

2

[bx f (θ, δ) − �cr]
2

〉
+ δ2

〈
1

[bx f (θ, δ) − �cr]
2

〉
−2δ

〈
[bx f (θ, δ) cos(2θ ) − �cr]

[bx f (θ, δ) − �cr]
2

〉]
. (A23)

The first term of Eq. (A23) contains no singularity and gives the δ = 0 contribution to 〈cos2 2φh〉. To calculate the singularity
present in the second term, we approximate the denominator as we did in Eq. (A17). We further approximate the function f (θ )
near θ = 0, where the nonanalyticity is located, and we find

f (θ ) = 2t√
1 − t2

(θ + A2θ
2 + O(θ3)), (A24)

where A2 = t√
1−t2 . Using Eq. (A24), we calculate the second term of Eq. (A23) as

t2δ2

〈
1

[bx f (θ, δ) − �cr]
2

〉
= (1 − t2)x2

∫ π/2

0

1

[θ + A2θ2 + A0(x)]2 . (A25)

We define A0(x) =
√

1−t2

2 A(x). Equation (A25) can be computed exactly, and it is equal to

x2

{
π

A0(x)[4A0(x) + π (2 + A2π )]
− π (1 + A2π )

A0(x)V (x)2[4A0(x) + π (2 + A2π )]
− 4

A2

V (x)3

[
arctan

(
1

V (x)

)
− arctan

(
1 + A2π

V (x)

)]}
.

(A26)

We define V (x) = √−1 + 4A2A0(x). When x → 0, V (x) → i. The first and second terms of Eq. (A26) are regular. To identify
the nonanalytic behavior of the third term, we use the following identity, and we expand V (x) up to linear order in x:

arctan(z) = − i

2
ln

(
1 + iz

1 − iz

)
, (A27)

V (x) = i

(
1 − t2 |x|

1 + t sgn(x)

)
= iṼ (x), (A28)

where Ṽ (x) = 1 − t2 |x|
1+t sgn(x) . Using Eqs. (A27) and (A28), we find that

arctan

(
1

V (x)

)
= − i

2
ln

(
Ṽ (x) + 1

Ṽ (x) − 1

)
∝ ln

(
t2|x|

1 + t sgn(x)

)
. (A29)

Equation (A29) shows that the most singular correction of Eq. (A26) is of the form x2 ln(|x|). Finally, we write the last term of
Eq. (A23) in the following way to show that it is also singular of the form x ln(x):

δ

〈
[bx f (θ, δ) cos(2θ ) − �cr]

[bx f (θ, δ) − �cr]2

〉
= δ

〈
[bx f (θ, δ)

(
1 − 2 sin2 θ

) − �cr]

[bx f (θ, δ) − �cr]2

〉
= δ

〈
1

[bx f (θ, δ) − �cr]

〉
− 2δ

〈
[bx f (θ, δ) sin2 θ ]

[bx f (θ, δ) − �cr]2

〉
.

(A30)

We show that the first term is singular of the form x ln(|x|). We assume that the second term is not singular because of the sin2 θ

term in the numerator.

APPENDIX B: BCS-GAP EQUATIONS

We treat Eq. (20) in the mean-field approximation and obtain the BCS-gap equations for the band-space gaps as

−�h(k) = [Us + Ud cos 2φh(k)]
∫

p

tanh EX (p)
2T

2EX (p)
cos2 φX (p)�X (p) + [Us − Ud cos 2φh(k)]

∫
p

tanh EY (p)
2T

2EY (p)
cos2 φY (p)�Y (p),

(B1)

−�X (k) = cos2 φX (k)

[∫
p

tanh Eh (p)
2T

2Eh(p)
[Us + Ud cos 2φh(p)]�h(p) + Jee

∫
p

tanh EY (p)
2T

2EY (p)
cos2 φY (p)�Y (p)

]
, (B2)
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−�Y (k) = cos2 φY (k)

[∫
p

tanh Eh (p)
2T

2Eh(p)
[Us − Ud cos 2φh(p)]�h(p) + Jee

∫
p

tanh EX (p)
2T

2EX (p)
cos2 φX (p)�X (p)

]
, (B3)

where Ei(p) = [ξ 2
i (p) + |�i((p))|2]1/2 is the typical Bogoliubov quasiparticle spectrum, and momentum integration is confined

to an energy interval [−�,�] around the Fermi surface. Near Tc the linearized gap equations are

�1 + �2 cos 2φh = − ln
�

Tc
[NX �3(Us + Ud cos 2φh)〈cos4 φX 〉 + NY �4(Us − Ud cos 2φh)〈cos4 φY 〉], (B4)

�3 = − ln
�

Tc
[Nh〈(Us + Ud cos 2φh)(�1 + �2 cos 2φh)〉 + NY �4Jee〈cos4 φY 〉], (B5)

�4 = − ln
�

Tc
[Nh〈(Us − Ud cos 2φh)(�1 + �2 cos 2φh)〉 + NX �3Jee〈cos4 φX 〉]. (B6)

APPENDIX C: DEPENDENCE OF �2
�1

ON THE NEMATIC ORDER

We set Jee = 0 in this Appendix, and we compute the ratio �2
�1

analytically. The largest eigenvalue λ of the matrix equation (24)
corresponding to the leading superconducting instability turns out to be

λ =
[

Nh

2

[
g0 + 2α〈cos 2φh〉g1 + α2〈cos2 2φh〉g0

+
√

4α2(〈cos 2φh〉2 − 〈cos2 2φh〉)
(
g2

0 − g2
1

) + (g0 + 2α〈cos 2φh〉g1 + α2〈cos2 2φh〉g0)
2
]]1/2

, (C1)

where

g0 = NX 〈cos4 φX 〉 + NY 〈cos4 φY 〉 (C2)

and

g1 = NX 〈cos4 φX 〉 − NY 〈cos4 φY 〉. (C3)

In the tetragonal phase, g1 = 0 and g0 = 2NX 〈cos4 φX 〉 (for our band parameters, g0 ≈ 0.1). With increasing electron nematic
order �e, 〈cos4 φY 〉 decreases since the Y pocket becomes mostly of dxy nature. As a result, g0 − g1 decreases with �e.

To calculate the ratio �2
�1

, we rewrite Eq. (B4),

�2 = −α

λ
[NX �3〈cos4 φX 〉 − NY �4〈cos4 φY 〉], (C4)

which can be computed from Eqs. (B5) and (B6), and we get the following relation:

�2 = Nhα

λ2
[�1(g1 + α〈cos 2φh〉g0) + �2(g1〈cos 2φh〉 + α〈cos2 2φh〉g0)]. (C5)

One rearranges Eq. (C5) to find the ratio

�2

�1
= αNh

g1 + α〈cos 2φh〉g0

λ2 − αNh(g1〈cos 2φh〉 + α〈cos2 2φh〉g0)
= 2α

g + α〈cos 2φh〉
(1 − α2〈cos2 2φh〉) + D

, (C6)

where

D =
√

4α2(〈cos 2φh〉2 − 〈cos2 2φh〉)(1 − g2) + (1 + 2α〈cos 2φh〉g + α2〈cos2 2φh〉)
2

(C7)

and

g(�e) = g1

g0
= NX 〈cos4 φX 〉 − NY 〈cos4 φY 〉

NX 〈cos4 φX 〉 − NY 〈cos4 φY 〉 . (C8)

Even though nematic order couples s- and d-wave symmetry and brings angular dependence to the superconducting gap function
in the primary s-wave state, one finds that �2

�1
= 0 when the numerator of Eq. (C6) vanishes,

(NX 〈cos4 φX 〉 − NY 〈cos4 φY 〉) + α〈cos 2φh〉(NX 〈cos4 φX 〉 + NY 〈cos4 φY ) = 0. (C9)

For this case, the gap function on the hole pocket becomes purely s-wave, despite the presence of nematic order.

094522-16



SPECIFIC HEAT AND GAP STRUCTURE OF A NEMATIC … PHYSICAL REVIEW B 104, 094522 (2021)

[1] A. I. Coldea and M. D. Watson, Annu. Rev. Condens. Matter
Phys. 9, 125 (2018).

[2] A. E. Böhmer and A. Kreisel, J. Phys. Condens. Matter 30,
023001 (2017).

[3] R. M. Fernandes and A. V. Chubukov, Rep. Prog. Phys. 80,
014503 (2016).

[4] Y. S. Kushnirenko, D. V. Evtushinsky, T. K. Kim, I. Morozov,
L. Harnagea, S. Wurmehl, S. Aswartham, B. Büchner, A. V.
Chubukov, and S. V. Borisenko, Phys. Rev. B 102, 184502
(2020).

[5] Y. Cao, D. Rodan-Legrain, J. M. Park, N. F. Q. Yuan, K.
Watanabe, T. Taniguchi, R. M. Fernandes, L. Fu, and P. Jarillo-
Herrero, Science 372, 264 (2021).

[6] K. Matano, M. Kriener, K. Segawa, Y. Ando, and G.-q. Zheng,
Nat. Phys. 12, 852 (2016).

[7] S. Yonezawa, K. Tajiri, S. Nakata, Y. Nagai, Z. Wang, K.
Segawa, Y. Ando, and Y. Maeno, Nat. Phys. 13, 123 (2017).

[8] Y. Pan, A. M. Nikitin, G. K. Araizi, Y. K. Huang, Y. Matsushita,
T. Naka, and A. de Visser, Sci. Rep. 6, 28632 (2016).

[9] T. Asaba, B. J. Lawson, C. Tinsman, L. Chen, P. Corbae, G. Li,
Y. Qiu, Y. S. Hor, L. Fu, and L. Li, Phys. Rev. X 7, 011009
(2017).

[10] R. M. Fernandes and O. Vafek, Phys. Rev. B 90, 214514
(2014).

[11] L. C. Rhodes, J. Böker, M. A. Müller, M. Eschrig, and I. M.
Eremin, npj Quantum Mater. 6, 45 (2021).

[12] M. D. Watson, T. K. Kim, A. A. Haghighirad, N. R. Davies,
A. McCollam, A. Narayanan, S. F. Blake, Y. L. Chen, S.
Ghannadzadeh, A. J. Schofield, M. Hoesch, C. Meingast, T.
Wolf, and A. I. Coldea, Phys. Rev. B 91, 155106 (2015).

[13] A. V. Chubukov, M. Khodas, and R. M. Fernandes, Phys. Rev.
X 6, 041045 (2016).

[14] S. Onari, Y. Yamakawa, and H. Kontani, Phys. Rev. Lett. 116,
227001 (2016).

[15] L. Fanfarillo, J. Mansart, P. Toulemonde, H. Cercellier, P. Le
Fevre, F. Bertran, B. Valenzuela, L. Benfatto, and V. Brouet,
Phys. Rev. B 94, 155138 (2016).

[16] L. Benfatto, B. Valenzuela, and L. Fanfarillo, npj Quantum
Mater. 3, 1 (2018).

[17] M. Udina, M. Grilli, L. Benfatto, and A. V. Chubukov, Phys.
Rev. Lett. 124, 197602 (2020).

[18] X. Wu, Y. Liang, H. Fan, and J. Hu, arXiv:1603.02055 v1.
[19] R.-Q. Xing, L. Classen, M. Khodas, and A. V. Chubukov, Phys.

Rev. B 95, 085108 (2017); L. Classen, R.-Q. Xing, M. Khodas,
and A. V. Chubukov, Phys. Rev. Lett. 118, 037001 (2017); S.
Baek, D. Efremov, J. M. Ok, J. S. Kim, J. van den Brink, and B.
Büchner, Nat. Mater. 14, 210 (2014); R.-Q. Xing, L. Classen,
and A. V. Chubukov, Phys. Rev. B 98, 041108(R) (2018).

[20] M. D. Watson, A. A. Haghighirad, L. C. Rhodes, M. Hoesch,
and T. K. Kim, New J. Phys. 19, 103021 (2017).

[21] M. Yi, H. Pfau, Y. Zhang, Y. He, H. Wu, T. Chen, Z. R. Ye, M.
Hashimoto, R. Yu, Q. Si, D.-H. Lee, P. Dai, Z.-X. Shen, D. H.
Lu, and R. J. Birgeneau, Phys. Rev. X 9, 041049 (2019).

[22] S. S. Huh, J. J. Seo, B. S. Kim, S. H. Cho, J. K. Jung, S. Kim,
Y. Y. Koh, C. I. Kwon, J. S. Kim, W. S. Kyung, J. D. Denlinger,
Y. H. Kim, B. N. Chae, N. D. Kim, Y. K. Kim, and C. Kim,
Commun. Phys. 3, 52 (2020).

[23] C. Cai, T. T. Han, Z. G. Wang, L. Chen, Y. D. Wang, Z. M. Xin,
M. W. Ma, Y. Li, and Y. Zhang, Phys. Rev. B 101, 180501(R)
(2020).

[24] C. Cai, T. T. Han, Z. G. Wang, L. Chen, Y. D. Wang, Z. M.
Xin, M. W. Ma, Y. Li, and Y. Zhang, Chin. Phys. B 29, 077401
(2020).

[25] L. C. Rhodes, M. D. Watson, A. A. Haghighirad, D. V.
Evtushinsky, and T. K. Kim, Phys. Rev. B 101, 235128
(2020).

[26] D. Steffensen, A. Kreisel, P. J. Hirschfeld, and B. M. Andersen,
Phys. Rev. B 103, 054505 (2021).

[27] N. Lanata, H. U. R. Strand, G. Giovannetti, B. Hellsing,
L. de’Medici, and M. Capone, Phys. Rev. B 87, 045122
(2013).

[28] L. de’ Medici, Weak and Strong Correlations in Fe Superconduc-
tors, Springer Series in Materials Science Vol. 211 (Springer,
Cham, Heidelberg, New York, Dordrecht, London, 2015).

[29] A. Chubukov, Annu. Rev. Condens. Matter Phys. 3, 57 (2012).
[30] P. Hirschfeld, C. R. Phys. 17, 197 (2016).
[31] J. K. Glasbrenner, I. I. Mazin, H. O. Jeschke, P. J. Hirschfeld,

R. M. Fernandes, and R. Valenti, Nat. Phys. 11, 953 (2015).
[32] E. Bascones, B. Valenzuela, and M. J. Calderón, C. R. Phys. 17,

36 (2016).
[33] S. Graser, T. Maier, P. Hirschfeld, and D. Scalapino, New J.

Phys. 11, 025016 (2009).
[34] J. Kang, R. M. Fernandes, and A. Chubukov, Phys. Rev. Lett.

120, 267001 (2018).
[35] J. Kang, A. V. Chubukov, and R. M. Fernandes, Phys. Rev. B

98, 064508 (2018).
[36] P. Sprau, A. Kostin, A. Kreisel, A. E. Böhmer, T. V., P. C.

Canfield, S. Mukherjee, P. J. Hirschfeld, B. M. Andersen, and
J. C. S. Davis, Science 357, 75 (2017); A. Kreisel, B. M.
Andersen, P. O. Sprau, A. Kostin, J. C. Seamus Davis, and P. J.
Hirschfeld, Phys. Rev. B 95, 174504 (2017).

[37] A. Fedorov, A. Yaresko, T. K. Kim, Y. Kushnirenko, E.
Haubold, T. Wolf, M. Hoesch, A. Gruneis, B. Buechner, and
S. V. Borisenko, Sci. Rep. 6, 36834 (2017).

[38] D. V. Chichinadze and A. V. Chubukov, Phys. Rev. B 99,
024509 (2019).

[39] G.-Y. Chen, X. Zhu, H. Yang, and H.-H. Wen, Phys. Rev. B 96,
064524 (2017).

[40] Y. Sun, S. Kittaka, S. Nakamura, T. Sakakibara, K. Irie, T.
Nomoto, K. Machida, J. Chen, and T. Tamegai, Phys. Rev. B
96, 220505(R) (2017).

[41] Y. Sun, S. Kittaka, S. Nakamura, T. Sakakibara, P. Zhang, S.
Shin, K. Irie, T. Nomoto, K. Machida, J. Chen, and T. Tamegai,
Phys. Rev. B 98, 064505 (2018).

[42] L. Jiao, C.-L. Huang, S. Rößler, C. Koz, U. K. Rößler, U.
Schwarz, and S. Wirth, Sci. Rep. 7, 44024 (2017).

[43] H. Cercellier, P. Rodière, P. Toulemonde, C. Marcenat, and T.
Klein, Phys. Rev. B 100, 104516 (2019).

[44] T. Klein et al. (private communication).
[45] V. Cvetkovic and O. Vafek, Phys. Rev. B 88, 134510 (2013).
[46] M. H. Christensen, R. M. Fernandes, and A. V. Chubukov, Phys.

Rev. Research 2, 013015 (2020).
[47] J.-Y. Lin, Y. S. Hsieh, D. A. Chareev, A. N. Vasiliev, Y. Parsons,

and H. D. Yang, Phys. Rev. B 84, 220507(R) (2011).
[48] F. Hardy, M. He, L. Wang, T. Wolf, P. Schweiss, M. Merz,

M. Barth, P. Adelmann, R. Eder, A.-A. Haghighirad, and C.
Meingast, Phys. Rev. B 99, 035157 (2019).

[49] Y. Mizukami, M. Haze, O. Tanaka, K. Matsuura, D. Sano, J.
Böker, I. Eremin, S. Kasahara, Y. Matsuda, and T. Shibauchi,
arXiv:2105.00739.

094522-17

https://doi.org/10.1146/annurev-conmatphys-033117-054137
https://doi.org/10.1088/1361-648X/aa9caa
https://doi.org/10.1088/1361-6633/80/1/014503
https://doi.org/10.1103/PhysRevB.102.184502
https://doi.org/10.1126/science.abc2836
https://doi.org/10.1038/nphys3781
https://doi.org/10.1038/nphys3907
https://doi.org/10.1038/srep28632
https://doi.org/10.1103/PhysRevX.7.011009
https://doi.org/10.1103/PhysRevB.90.214514
https://doi.org/10.1038/s41535-021-00341-6
https://doi.org/10.1103/PhysRevB.91.155106
https://doi.org/10.1103/PhysRevX.6.041045
https://doi.org/10.1103/PhysRevLett.116.227001
https://doi.org/10.1103/PhysRevB.94.155138
https://doi.org/10.1038/s41535-018-0129-9
https://doi.org/10.1103/PhysRevLett.124.197602
http://arxiv.org/abs/arXiv:1603.02055
https://doi.org/10.1103/PhysRevB.95.085108
https://doi.org/10.1103/PhysRevLett.118.037001
https://doi.org/10.1038/nmat4138
https://doi.org/10.1103/PhysRevB.98.041108
https://doi.org/10.1088/1367-2630/aa8a04
https://doi.org/10.1103/PhysRevX.9.041049
https://doi.org/10.1038/s42005-020-0319-1
https://doi.org/10.1103/PhysRevB.101.180501
https://doi.org/10.1088/1674-1056/ab90ec
https://doi.org/10.1103/PhysRevB.101.235128
https://doi.org/10.1103/PhysRevB.103.054505
https://doi.org/10.1103/PhysRevB.87.045122
https://doi.org/10.1146/annurev-conmatphys-020911-125055
https://doi.org/10.1016/j.crhy.2015.10.002
https://doi.org/10.1038/nphys3434
https://doi.org/10.1016/j.crhy.2015.05.004
https://doi.org/10.1088/1367-2630/11/2/025016
https://doi.org/10.1103/PhysRevLett.120.267001
https://doi.org/10.1103/PhysRevB.98.064508
https://doi.org/10.1126/science.aal1575
https://doi.org/10.1103/PhysRevB.95.174504
https://doi.org/10.1038/srep36834
https://doi.org/10.1103/PhysRevB.99.024509
https://doi.org/10.1103/PhysRevB.96.064524
https://doi.org/10.1103/PhysRevB.96.220505
https://doi.org/10.1103/PhysRevB.98.064505
https://doi.org/10.1038/srep44024
https://doi.org/10.1103/PhysRevB.100.104516
https://doi.org/10.1103/PhysRevB.88.134510
https://doi.org/10.1103/PhysRevResearch.2.013015
https://doi.org/10.1103/PhysRevB.84.220507
https://doi.org/10.1103/PhysRevB.99.035157
http://arxiv.org/abs/arXiv:2105.00739


ISLAM, BÖKER, EREMIN, AND CHUBUKOV PHYSICAL REVIEW B 104, 094522 (2021)

[50] S. Karlsson, P. Strobel, A. Sulpice, C. Marcenat, M. Legendre,
F. Gay, S. Pairis, O. Leynaud, and P. Toulemonde, Supercond.
Sci. Technol. 28, 105009 (2015).

[51] S. Rößler, C.-L. Huang, L. Jiao, C. Koz, U. Schwarz, and S.
Wirth, Phys. Rev. B 97, 094503 (2018).

[52] F. Marsiglio and J. P. Carbotte, Phys. Rev. B 33, 6141 (1986).
[53] J. P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990).
[54] T. M. Mishonov, S. I. Klenov, and E. S. Penev, Phys. Rev. B 71,

024520 (2005).

[55] T. M. Mishonov, V. L. Pokrovsky, and H. Wei, Phys. Rev. B 71,
012514 (2005).

[56] E. J. Nicol and J. P. Carbotte, Phys. Rev. B 71, 054501
(2005).

[57] M. Zehetmayer, H. W. Weber, and E. Schachinger, J. Low
Temp. Phys. 133, 407 (2003).

[58] M. Zehetmayer, Supercond. Sci. Technol. 26, 043001
(2013).

[59] S. Maiti and A. V. Chubukov, Phys. Rev. B 82, 214515 (2010).

094522-18

https://doi.org/10.1088/0953-2048/28/10/105009
https://doi.org/10.1103/PhysRevB.97.094503
https://doi.org/10.1103/PhysRevB.33.6141
https://doi.org/10.1103/RevModPhys.62.1027
https://doi.org/10.1103/PhysRevB.71.024520
https://doi.org/10.1103/PhysRevB.71.012514
https://doi.org/10.1103/PhysRevB.71.054501
https://doi.org/10.1023/A:1026204026704
https://doi.org/10.1088/0953-2048/26/4/043001
https://doi.org/10.1103/PhysRevB.82.214515

