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We compute the phase diagram of a one-dimensional model of spinless fermions with pair hopping and
nearest-neighbor interaction, first introduced by Ruhman and Altman, using the density-matrix renormalization
group combined with various analytical approaches. Although the main phases are a Luttinger liquid of fermions
and a Luttinger liquid of pairs, we also find remarkable phases in which only a fraction of the fermions are paired.
In such a case, two situations arise: either fermions and pairs coexist spatially in a two-fluid mixture, or they are
spatially segregated leading to phase separation. These results are supported by several analytical models that
describe in an accurate way various relevant cuts of the phase diagram. Last, we identify relevant microscopic
observables that capture the presence of these two fluids: while originally introduced in a phenomenological
way, they support a wider application of two-fluid models for describing pairing phenomena.
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I. INTRODUCTION

Zero-energy Majorana modes characterize several topolog-
ical superconducting models [1] and play a pivotal role in
numerous scientific research fields and quantum-technology
applications. The appearance of zero-energy Majorana modes
in number-conserving condensed-matter models without im-
posing any mean-field treatment of the interactions, has
recently raised important attention [2–29]. Pairing, namely the
fact that two fermions bind together and behave as a unique
“molecular” object, is a key phenomenon to this goal, and
indeed Majorana modes are expected to appear at the physical
boundaries of inhomogeneous systems, in between paired and
unpaired fermionic phases [30,31].

Pairing phenomena have been identified in several one-
dimensional lattice models of spinless fermions [32–36]. A
paradigmatic way of inducing pairing is through density-
density interactions, which could be either short ranged or
with tails which decay algebraically (see, e.g., Refs. [37–44]).
Some of these models have a relevance for the description
of dipolar fermionic gases or of fermionic Rydberg-dressed
states [45]. More recently, a paired phase induced by a gain
in kinetic energy has been identified in a model proposed
by Ruhman and Altman [which we dub the Ruhman-Altman
(RA) model] featuring the competition between pair hopping
and single-particle hopping [31]. Although at first sight the
Hamiltonian is rather abstract, it bears similarities with several
electronic models [46–53], spin models [54–56], and cold-
atom models [57,58].

The fact that a paired phase and an unpaired phase should
be separated by a second-order phase transition with emergent
critical properties and a central charge c = 3/2 is crucial for
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linking pairing to Majorana modes [30,34]. This prediction
has been verified by several numerical analyses [32,33,35,36].
Yet, in a recent article, we have shown that this need not
always be the case [59]. Focusing on the RA model, we have
demonstrated the appearance of a phase that we dubbed coex-
istence phase, where a paired and an unpaired phases coexist
in the same spinless fermionic chain. Our result indicates that
an unpaired phase and a paired phase can share the same spa-
tial region without hybridizing, raising the question about the
reason for which the system did not feature phase separation.

This article expands on an earlier discussion [59] of that
problem and has a twofold goal. The first one concerns the
study of the effect of a nearest-neighbor interaction, which
enhances or decreases pairing depending on its sign. We show
that the coexistence phase is stable with respect to this term
and that unambiguous signatures of a two-fluid coexistence
are present for finite and nonperturbative values of the inter-
action, both in the attractive and in the repulsive case. The
onset of phase separation is observed only for even larger
interaction strengths, and has different features depending on
the sign of the interaction. When the interaction is attractive,
fermions cluster together in a small region of the lattice. When
the interaction is repulsive, the paired and fermionic phases
become immiscible and are spatially separated. Our study
demonstrates the thermodynamic stability of the coexistence
phase and proves that it is not a unphysical artifact of a fine-
tuned model.

Our second goal is to further elaborate on the usefulness
of a many-fluid theory in order to describe the competition
between phases of paired and of unpaired fermions [34]
(the other possible technique being the use of an emer-
gent mode [31,35]). We show that it is possible to give a
microscopic interpretation to the fluids that were originally in-
troduced in a purely phenomenological way. Our results open
the path to a wider use of this approach by also pinpointing
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that a field-theory version of the two-fluid model can describe
the entire phase diagram for moderate particle-particle inter-
action.

The article is organized as follows. In Sec. II we present
the model and we map out its zero-temperature phase dia-
gram with a numerical analysis based on the density-matrix
renormalization group; simulations characterizing all appear-
ing phases are presented. In Sec. III we focus on the first
goal and discuss the behavior of the system when unpaired
fermions acquire a large mass, and are almost immobile. We
show the appearance of a peculiar phase separation, with
paired and unpaired fermions occupying different regions of
the lattice. This phenomenology provides an excellent starting
point for a comparison with the coexistence phase, and we
report a description of how one phase evolves into the other
one. In Sec. IV we focus on the second goal and present
some novel numerical data that further support the use of
a many-fluid theory, by introducing microscopic numerical
observables that behave as the paired and unpaired fluids. Our
conclusions are drawn in Sec. V; the article is supplemented
by six Appendixes.

II. THE MODEL AND THE PHASE DIAGRAM

We consider a one-dimensional lattice of L sites populated
by N spinless fermions so that the lattice filling is n = N/L.
We introduce the fermionic creation and annihilation opera-
tors ĉ(†)

j that satisfy canonical anticommutation relations and

define the local density operators n̂ j = ĉ†
j ĉ j . The Hamiltonian

of the RA model [31] reads

Ĥ = − t
∑

j

ĉ†
j c j+1 + H.c. − t ′ ∑

j

ĉ†
j+1ĉ†

j ĉ j ĉ j−1 + H.c.

+ U1

∑
j

n̂ j n̂ j+1. (1)

The physical meaning of the three terms is the following: a
standard particle hopping t , a pair hopping t ′, and a nearest-
neighbor density-density interaction U1. The addition of a
simple form of fermionic interaction allows us to investigate
the stability of the coexistence phase found in a previous
work [59].

We investigate the zero-temperature phase diagram by
means of the density-matrix renormalization group (DMRG)
algorithm [60–62], which represents a state-of-the-art tech-
nique to tackle one-dimensional many-body quantum sys-
tems; we use one implementation based on the ITensor
library [63] and one based on the historical approach [60,61]
with a warmup procedure. We have performed numerical
simulations with both open boundary conditions (OBC) and
periodic boundary conditions (PBC) for a wide range of pa-
rameters, keeping up to m = 2600 states and reaching sizes
up to L = 200 and L = 56, respectively.

The phase diagram that we obtained for a density n = 1/4
is presented in Fig. 1. The nature of the phase and the es-
timated transition lines are based on the behavior of local
observables, correlations, and entanglement entropy in the

FIG. 1. Phase diagram of Hamiltonian (1) for fermionic density
n = 1/4, obtained with DMRG simulations. F is a Fermi Luttinger
liquid phase, P0,π are paired phases, C is the coexistence phase, and
PS stands for phase separation, which can be of different kinds (see
text). The crosses and labels (a)–(e) refer to the various panels of
Fig. 2.

system. We use the local density n j = 〈n̂ j〉, the local kinetic
energies of particles and pairs defined by

k(1)
j = −〈ĉ†

j c j+1 + H.c.〉, (2a)

k(2)
j = −〈ĉ†

j ĉ
†
j+1ĉ j+1ĉ j+2 + H.c.〉; (2b)

and the entropy profile SvN( j), which is the entanglement
entropy between the two subsystems cut at ( j, j + 1). The
central charge c is obtained by fitting the entanglement en-
tropy (see Method in Ref. [59]). Regarding correlators, we
consider the single-particle Green’s function G(r) = 〈ĉ†

j ĉ j+r〉,
the pair correlator P(r) = 〈ĉ†

j ĉ
†
j+1ĉ j+r ĉ j+r+1〉, and the den-

sity correlator N (r) = 〈n̂ j n̂ j+r〉 − 〈n̂ j〉〈n̂ j+r〉, with j taken in
the middle of the chain. These observables are sufficient to
discriminate the various phases of Fig. 1 and their typical
behavior in each phase is reported in Fig. 2.

Looking at Fig. 1, we see four main phases corresponding
to simple limiting cases. First, the fermionic phase (F ) is
a standard Luttinger liquid phase with quasi-long-range or-
ders. It is gapless with a central charge c = 1, and contains
the free fermions point t ′ = U1 = 0. The dominating fluctua-
tions depend on the Luttinger parameter, which continuously
varies across the phase. Qualitatively, positive U1 favors den-
sity fluctuations and configuration with nonadjacent fermions.
Negative U1 favors neighboring pairs and eventually drives the
system into phase separation. The t ′ term also favors pairing
through a gain in kinetic energy for paired configurations, as
readily seen in (1). Thus, one has regions in the F phase in
which the pairing correlations P(r) are the leading ones. Such
a situation is displayed in Fig. 2(a) where pairing is the leading
fluctuations. Yet, we do not call that a paired phase since there
is no single-particle gap.

Interestingly, we observe in Fig. 2(a) that observables van-
ish at the edges of the fluid with OBC. This can be seen
as a precursor to phase separation. Indeed, for t ′ = 0, the
model maps onto the XXZ model, through Jordan-Wigner
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FIG. 2. Local observables nj , k(1)
j , k(2)

j , and SvN( j), together with absolute values of correlators G(r), P(r), and N (r) for the crosses with
labels of Fig. 1: (a) F phase, (b) C phase, (c) Pπ phase, (d) P0 phase, and (e) Ferro-PS phase.

transformation, which is known to have a transition to a fer-
romagnetic phase for U1 = −2t . For large negative U1, the
system naturally forms large domains that become degenerate.
Hence, we call this phase Ferro-PS since ferromagnetic do-
mains maps onto fermionic domains. Numerically, this phase
separated phase typically displays domains and unequally
distributed particles such as in Fig. 2(e), since DMRG is
a variational approach that cannot discriminate between the
many low-lying states of such a phase. Consequently, the
transition line is not easy to investigate resulting in relatively
large error bars on Fig. 1 for this transition. Yet, we observe
that it almost does not depend on t ′.

Focusing on the effect of t ′, a large value of t ′ naturally
favors pairs formation, whose nature depends on the sign of
t ′ [31,59]. Pairs condense at wave vector k = π for positive
t ′ in the Pπ phase, and at wave vector k = 0 for negative
t ′ in the P0 phase (see Sec. IV A for details). These phases
have a single-particle gap corresponding to the cost of break-
ing a neighboring pair. As seen in Figs. 2(c) and 2(d), G(r)
is exponentially suppressed while pairing fluctuations P(r)
are algebraic and dominating. These phases effectively cor-
respond to single-mode Luttinger liquid of pairs with central
charge c = 1. Pairs, which can be viewed as tightly bound
neighboring fermions, are directly visible on local observ-

ables in Fig. 2(c) where each local maximum qualitatively
corresponds to a pair (N/2 = 25 on total for this system
size).

It was predicted early that the transition between P0 and F
is direct and second order [31]; the critical point has central-
charge c = 3/2. Indeed, at the phase transition the gapless
mode c = 1 is accompanied by the appearance of an emerging
Ising mode with c = 1/2. This physics has been naturally
linked to that of a Kitaev chain and to the emergence of
Majorana modes in appropriate situations. Numerically the
transition line displayed in Fig. 1 is obtained by searching for
the maximum of the central charge along fixed-U1 cuts for
a L = 200 size system. We did not systematically check the
c = 3/2 expectation but the findings are compatible with the
results of Ref. [31].

The most remarkable feature of the phase diagram is the
existence of an intervening phase between the F and Pπ phase,
the so-called coexistence phase C found in Ref. [59] on the
U1 = 0 line. We show that it actually expands to a wide
region of the diagram both for attractive and repulsive U1.
The physical picture for the C phase emerging from the local
observables of Fig. 2(b) is that part of the fermions are paired
(local maxima of the long wavelength modulation in the local
density) while other lie unpaired in between pairs (smaller
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FIG. 3. Cut along the U1/t = 1 line showing the C phase with
L = 104 and OBC. (a) Total kinetic energies K1, K2 and overlap O
as a function of t ′/t , see definitions in Eqs. (3) and (4). (b) Local
particle and pair kinetic energy profiles k(1)

j and k(2)
j , for t ′/t = 2.31.

oscillations). It is thus a miscible phase of the Pπ and F phase
whose fractions are determined by energy minimization, as
we will see later. The two miscible fluids are two intertwined
Luttinger liquids that do not hybridize. Consequently, all cor-
relators of Fig. 2(b) capture both contributions from each
fluid, with all algebraically decaying fluctuations. Note that
the behavior is qualitatively different from that of the F phase:
Although in both situations they show an algebraic decay,
G(r) and P(r) share a similar power law in the C phase.
Last, the central charge clearly supports a c = 2 “two-fluid”
phase [59].

One characteristic signature of the C phase is that the
number of paired fermions continuously evolves from 0 (in
the F phase) to N/2 (entering the Pπ phase) across the region.
This has a direct consequence in the magnitude of the particle
and pair kinetic terms in Eqs. (2). Numerically we track the
total one-particle and pair kinetic energies defined as

K1 = 1

L

∑
j

k(1)
j , K2 = 1

L

∑
j

k(2)
j . (3)

to infer with precision the boundaries of the C phase, extend-
ing over the interval 2.11 < t ′/t < 2.43 in the case U1/t =
1.0. Figure 3(a) shows that one can easily discriminate be-
tween the F , C, and Pπ phase from these simple observables,
since K1 and K2 are constant in the F and Pπ phases. The little
jumps observed signal the creation of one pair and the dis-
appearance of two unpaired fermions, and are thus finite-size
effects. As expected, the local profiles k(1)

j and k(2)
j displayed

in Fig. 3(b) are delocalized over the whole lattice, with oppo-
site maxima, in agreement with the physical picture of the C
phase. Last, we mention that clear signatures of the C phase
are also obtained by looking at the density structure factor (see
Appendix A for more details).

Last, we have denoted two extra phases in Fig. 1 with
arrows: Pπ F -PS and P0F -PS. They occur for a value of U1 that
is so large that it cannot be represented on the same diagram
for sake of readability. The PπF -PS realizes the possibility
that, in the presence of paired and unpaired fermions, the
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FIG. 4. Cut showing the Pπ F -PS phase for a chain with L = 56
and PBC. In this small t limit we fix t/t ′ = 1

2000

√
1 + (U1/t ′)2.

(a) Kinetic energies K1, K2 and overlap O as a function of U1/t ′.
(b) Local kinetic energy profiles k(1)

j and k(2)
j for U1/t ′ = 1.891646,

indirectly showing a CDW fermionic domain. (c) Same for U1/t ′ =
1.912426, without CDW domain.

two fluids separate spatially into two domains separated by
an interface. Thus, we call it a phase separation regime but
it is quite different in nature from the Ferro-PS phase. This
phase occurs in the low-t limit and is scanned by varying
U1/t ′ for a small t . The behavior of the particle and pair
kinetic energies along such a cut is displayed in Fig. 4(a). We
see a qualitatively similar behavior as in Fig. 3(a), with the
difference that the F phase is now on the right-hand side and
the Pπ on the left. These observables simply show that there is
an intervening phase that comprises both pairs and unpaired
fermions, whose numbers are continuously varying. In order
to distinguish this phase from the C phase, one has to look
at local observables, as reported in Figs. 4(b) and 4(c). There
we clearly observe two domains separated by domain walls.
Numerically, this state is best reached for PBC since OBC
add two edges to the chain that interfere with domain for-
mation. Furthermore, we observe two different behaviors for
the fermionic domains: In Fig. 4(b), the local kinetic energy
k(1)

j vanishes while it fluctuates significantly in Fig. 4(c). The
reason is that in this large U1/t limit, fermions are strongly
repulsive and the highest density domain that can be formed
is a charge-density wave (CDW) state |• ◦ • ◦ • ◦ · · ·〉 that
has almost no residual kinetic energy. Local density profile
(not shown) is in full agreement with this interpretation for
Fig. 4(b).

We understand that total kinetic energies K1,2 are not space
resolved and do not help distinguish the C phase from the
Pπ F -PS phase. For this reason, we introduce the ”overlap”

O = 1

L

∑
j

∣∣k(1)
j

∣∣ × ∣∣k(2)
j

∣∣. (4)

It captures the spatial correlations between the two kinetic
energy profiles. Intuitively, in the C phase it should be nonzero
because pairs and unpaired fermions delocalize over the same
regions. On the contrary, it should be zero in the Pπ F -PS. Fig-
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FIG. 5. Phases of the system for t � t ′,U1 as a function of U1/t ′.

ures 3(a) and 4(a) show that, across each intervening phase,
the values of O are perfectly consistent with this interpre-
tation. In short, following the behavior of both K1,2 and O
allows us to clearly discriminate between the four phases F ,
Pπ , C, and PπF -PS. Last, we mention that for negative t ′,
large-U1 DMRG calculations also demonstrate the existence
of a P0F -PS intervening phase, which shares the same phe-
nomenology as the Pπ F -PS phase, but with P0 pairs instead.

The rest of the paper provides more details and an ex-
panded discussion about the main features of this phase
diagram.

III. PAIRS-FERMIONS PHASE SEPARATION
VS COEXISTENCE PHASE

The goal of this section is to discuss the PπF -PS phase,
and to characterize its differences with respect to the C phase.
We start in Sec. III A with an overview of the phase dia-
gram in the limit t � t ′,U1 as a function of U1/t ′, thereby
introducing the encountered phases to be described in the
remainder of the section. The treatment continues in Sec. III B
with the characterization of the low U1/t ′ part of the phase
diagram, featuring the phases driven by attractive correlations,
namely the Pπ phase and the Ferro-PS phase. Subsequently,
we describe in Sec. III C the large U1/t ′ limit represented by
the F phase, where on the other hand repulsive interactions
determine the ground-state properties. The core of the section
follows then in Sec. III D, where we investigate the features of
the Pπ F -PS phase through a combination of effective analyt-
ical models and numerical data. Finally, in Sec. III E we are
able to identify some aspects of the crossover to the C phase
by performing simulations with nonzero values of t .

Note that the results of this section have an interest that
goes beyond this work because the t = 0 limit is relevant
for discussing flat-band models, where indeed single-particle
hopping is zero or negligible, and density-assisted hopping
competes with density-density interaction, see for instance
Refs. [64–66]. We expect that the elementary interpretation
that we develop here could shed light also on these physical
systems.

A. Overview on the limit t � t ′,U1

Looking at the phase diagram reported in Fig. 1, the limit
of immobile fermions corresponds to a study along a circum-
ference at large distance from the center: U1/t ′ determines the
angle along which one takes the limit t → 0+. Varying U1/t ′
with positive t ′, one encounters four different phases along
such parametrization, as summarized in Fig. 5. For weak in-
teractions, −2 < U1/t ′ � 1.86, the system is in a paired phase
Pπ . For strong attractive interactions, U1/t ′ < −2, the system
enters the Ferro-PS phase. For strong repulsive interactions,
1.86 � U1/t ′ < 2, the system first enters the PπF -PS phase.

For more repulsive interactions, U1/t ′ > 2, all pairs are bro-
ken and the system enters the F phase, which is adiabatically
connected to the noninteracting limit.

In the following three subsections we present details on
each of these phases and discuss several effective models that
capture the main features of these parts of the phase diagram.
We then study how the PπF -PS phase makes a transition to
the C phase.

B. The paired phase and the ferromagnetic phase separation

1. Reminder on the case U1 = 0

It has already been shown that the Hamiltonian in Eq. (1)
at t = U1 = 0 can be diagonalized exactly by mapping the
model to an effective XX spin chain [36,55,58] and can be
interpreted as a paired phase Pπ . We now briefly review
the argument. We first introduce the subspace HP, where
all fermions are paired, which is defined as follows. We
consider all Fock (product) states that span the Hilbert space
of the one-dimensional setup and retain only those where
fermions form clusters of even length. For example, the state
|ψ1〉 = |• • ◦ • • • • ◦ ◦〉 belongs to HP, whereas the state
|ψ2〉 = |• • ◦ • ◦ ◦ • ◦ ◦〉 does not. Since the pair-hopping
term enhances the kinetic energy of pairs, we assume that the
ground state lies in the subspace HP; we retain only the states
with N fermions, and thus with Nb = N/2 nearest-neighbor
pairs. The Hilbert space HP can be mapped onto the Hilbert
space of a spin-1/2 chain of length Lb = L − Nb with Pauli
operators σ̂ α

j , with α = x, y, z. The mapping is defined by the
following local rules: |••〉 → |↑〉, |◦〉 → |↓〉; thus, a spin up
stands for a pair while a spin down stands for an empty site.
For example, the state |ψ1〉 introduced above gets mapped to
the spin state |↑↓↑↑↓↓〉. According to this mapping, the Nb

term that appears in the definition of Lb is understood as an
excluded volume.

The action of the Hamiltonian in Eq. (1) over the sub-
space HP is unitarily equivalent to that of an effective XX
spin-1/2 Hamiltonian Ĥeff = t ′ ∑Lb

j=1[σ+
j σ−

j+1 + H.c.] that is
diagonalized by means of a Jordan-Wigner transformation.
Written in terms of fermionic Fourier modes, we have Ĥeff =∑

k εp(k) n̂k , with the pair band dispersion relation εp(k) =
2t ′ cos(k). The ground-state energy per site takes the form

eeff = 1

L

∑
|k|<π

Nb
Lb

εp(k) = −2|t ′|
π

(
1 − n

2

)
sin

( πn

2 − n

)
, (5)

where we use n = 2Nb/L. The obtained result for the ground-
state energy does not depend on the sign of t ′. This is
understood from the fact that the unitary transformation
Û = ei π

2

∑
j jn̂ j , which implements the local transformation

rule c j → e−i π
2 jc j , connects the two Hamiltonian with oppo-

site signs through the relation Û Ĥ (t = 0, t ′,U1)Û † = Ĥ (t =
0,−t ′,U1).

2. Pairing and ferromagnetic phase separation for U1 �= 0

As soon as one considers nearest-neighbor interactions,
keeping t = 0, the problem becomes nontrivial and is not
amenable to a direct exact diagonalization of the Hamiltonian.
As a first approximation we assume that the ground state of
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FIG. 6. Comparison of the ground-state energy EGS,RA of Hamil-
tonian (1) with that of the effective models. (a) For t = 0, with
L = 40, N = 10, and PBC for Hamiltonian (1), with L = 35, N = 5,
and PBC for Hamiltonian (6). (b) For small t/t ′ with L = 104,
N = 26, U1/t ′ = 4, and OBC for Hamiltonian (1). The line EGS,S is
the ground-state energy of Hamiltonian (7) with the same parameters.

the system lies in HP and write the effective Hamiltonian
restricted to this subspace, which takes the form of an XXZ
spin model written in terms of the σ̂ α

j Pauli matrices:

Ĥ = t ′
Lb∑
j=1

[σ̂+
j σ̂−

j+1 + H.c.]

+ U1

4

Lb∑
j=1

(
1 + σ̂ z

j

)(
1 + σ̂ z

j+1

) + U1
N

2
. (6)

The assumption that the ground state lies in HP will certainly
be even more valid when U1 < 0, since attractive interactions
further enhance pairing. The Hamiltonian in Eq. (6) thus
represents a good model for studying the case of attractive
interactions. In the spin language, the XXZ model displays
phase separation to a ferromagnetic phase that here corre-
sponds to U1/t ′ = −2. Thus, this model predicts a transition
from the paired phase Pπ to the Ferro-PS at U1/t ′ = −2.
This transition extends up to lower values of t ′/t,U1/t as
the transition line separating the Pπ phase from the Ferro-PS
phase in Fig. 1.

We now focus on the more interesting case of repulsive
U1. Here we expect that the actual ground state will not only
contain pairs, but also unpaired fermions. Simple energetic
arguments allow us to estimate the transition point to the F
phase. From Eq. (6) we see that the cost of breaking a pair
is given by U1. On the other hand, the kinetic term creates
a Fermi sea of pairs with energies ranging from the bottom
of the band −2t ′ to the Fermi energy −2t ′ cos[πn/(2 − n)],
which for n = 1/4 is approximately ∼ − 1.8t ′. Considering
that one can place unpaired fermions at distances larger than
one at zero energetic cost, we estimate that the F phase should
appear for U1/t ′ > 2 and that the paired phase should not
be destroyed for U1/t ′ � 1.8. We tested this scenario with
a numerical simulation of the model for t = 0. In Fig. 6(a)
we plot the ground-state energy as a function of U1/t ′ and
we observe the appearance of a zero-energy ground state for
U1/t ′ ∼ 2. The plot shows that our effective model in Eq. (6)
describes in a very good way the exact numerical results for
t = 0 and U1/t ′ < 2.

C. The fermionic phase

An inspection of the density profile of the ground state
obtained for U1/t ′ > 2 shows that it is characterized by the
presence of unpaired fermions at a distance larger than one
(not shown); it is easy to show that all these states are zero-
energy eigenstates of the Hamiltonian and span a subspace
of fully unpaired fermions that we dub HS . The Fock states
that span HS are efficiently described by observing that they
comprise two building blocks, |•◦〉 and |◦〉, repeated and
alternated in different order.

The subspace HS is expected to be adiabatically connected
to the F phase once the single-particle hopping is reintro-
duced in the model. In order to show it, we consider the limit
t � t ′,U1, and we derive an effective Hamiltonian restricted
to HS using a standard perturbative approach. We take as
unperturbed Hamiltonian the t = 0 limit of model (1) and take
the term proportional to t as the small perturbation. Defining
P̂S the projector onto HS , the effective Hamiltonian to first
order in t reads ĤS = P̂S (−t

∑
j ĉ†

j ĉ j+1 + H.c.)P̂S . This is the
Hamiltonian of mobile fermions which never get to a distance
smaller than two.

We now show that HS can be mapped back to spin-1/2
model defined over a spin chain of length L − N with Pauli
operators �̂α

j , with α = x, y, z. To do so, we use the follow-
ing rules: |•◦〉 → |↑〉 and |◦〉 → |↓〉. In particular, we work
with N spin-up states. The single-particle hopping implements
a simple exchange dynamics, leading to the following XX
model:

ĤS = −t
L−N∑
j=1

[
�̂+

j �̂−
j+1 + H.c.

]
. (7)

Again, the ground-state energy is evaluated by mapping it to a
fermionic problem with a Jordan-Wigner transformation. The
energy density in the thermodynamic limit takes the form

εGS,S = −2t (1 − n)

π
sin

( πn

1 − n

)
. (8)

A comparison between a finite size and OBC version of
formula (8) and the corresponding exact DMRG simulation
for t/t ′ < 0.02 and U1/t ′ = 4 is presented in Fig. 6(b). The
result displays a remarkable agreement.

D. Pairs-fermion phase separation

The numerical study of the model for t = 0 is complicated
by the existence of conserved quantities. Indeed, the total
numbers of fermions on even and odd sites, N̂e = ∑

j n̂2 j and
No = ∑

j n̂2 j+1, respectively, commute with the Hamiltonian.
During the matrix product state variational optimization, the
values of these conserved quantities will be determined by
the initial state. If the latter has not the same numbers as the
ground state, the ground state is not reached. In order to tackle
the t → 0 limit, we allow for a small t �= 0 in the Hamiltonian
to help the variational state tunnel towards the ground state.
The obtained results are then continuously connected to the
analytical interpretation of the t = 0 limit.

In order to study the phase diagram in this limit, we
use the following parametrization of the plane of Fig. 1:

We fix a large radius r =
√

(U1
t )2 + ( t ′

t )2 and vary the angle
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θ = arctan(U1/t ′). As already anticipated, the results pre-
sented in Fig. 4 for r = 2000 show clear evidence of the
existence of an intermediate phase separation regime between
the F phase and the Pπ phase, the PπF -PS phase. In order
to better interpret it, we introduce several effective models
that reproduce the ground-state phenomenology found numer-
ically.

1. An effective model for t = 0

In order to understand this transition region, we formulate
an effective model that describes the three main phases that
are encountered at t = 0 namely, the paired phase Pπ , the un-
paired F phase, and the phase separation Pπ F -PS regime. As
it will become clear later, setting t = 0 considerably simplifies
the development of an analytical model, which still describes
the numerical data obtained for finite r. Indeed, letting t → 0
is equivalent to let r → ∞, thus leaving θ as the only free
parameter of the problem. The model is based on an ansatz
for the energy of generic phase-separated configurations of Nf

unpaired fermions and N−Nf

2 pairs. We characterize a generic
variational configuration with Nf unpaired fermions as fol-
lows. On one side, unpaired fermions are immobile, since t =
0, and form a zero energy CDW domain of length 2Nf (with
unit cell |•◦〉). On the other side, pairs delocalize on the rest
of the lattice, a domain of length L − 2Nf . Their kinetic con-
tribution to the energy density of the configuration is derived
analogously to Eq. (5), provided that Nb equals the number of
pairs in the given configuration, namely N−Nf

2 , and Lb takes

the form L − 2Nf − N−Nf

2 , as it equals the size of the lattice
region available to pairs L − 2Nf , minus the number of pairs
N−Nf

2 . Finally, the U1 interaction energy density contribution
is taken into account in the low density limit by only consider-
ing the potential energy density cost U1

N−Nf

2L associated with

the formation of N−Nf

2 pairs. After introducing the unpaired
fermionic density n f = Nf /L, the ansatz for the ground-state
energy density in units of t ′ as a function of n f reads

E (n f , θ ) = − 2

π

(
1 − 2n f − n − n f

2

)

× sin

[
π

n − n f

2
(
1 − 2n f − n−n f

2

)
]

+ n − n f

2
tan θ,

(9)

where the relation U1/t ′ = tan θ has been used.
For each θ , we find numerically the optimal value of n f that

minimizes E . The behavior of the resulting n f as a function of
U1/t ′ is shown in Fig. 7(a). For U1/t ′ � 1.86, the ground state
is fully paired and thus n f = 0. When n f = n, pairing is ener-
getically unfavorable because of the strong nearest-neighbor
repulsion. Thus, the system occupies one of the zero-energy
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U

1
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n f,U
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(a) (b)

FIG. 7. (a) Optimal fermionic density nf (θ ) as a function of
tan θ = U1/t ′ according to the effective phase separation model (9).
(b) Second derivative of the energy density E (nf (θ ), θ ) in Eq. (9) as
a function of tan θ = U1/t ′.

configurations consisting of isolated localized fermions. An
intermediate value 0 < n f < n signals the onset of phase sep-
aration: The system is partitioned into a region of immobile
fermions and a region with a liquid of pairs. We identify this
behavior with the previously introduced Pπ F -PS phase.

Remarkably, the simple structure of Eq. (9) allows us to
obtain analytical results (i) on the position of the critical
points, and (ii) on the singular behavior of the ground-state
energy-density close to the critical points. Specifically, the
Pπ → Pπ F -PS critical point is given by(U1

t ′
)

c1
= 6

π
sin

( πn

2 − n

)
− 4(2n − 1)

2 − n
cos

( πn

2 − n

)
. (10)

For n = 0.25, this formula gives (U1
t ′ )c1 ≈ 1.858. Similarly,

the critical point PπF − PS → F is located at (U1
t ′ )c2 = 2.

Both values match very well with those obtained numerically
in Fig. 4(a).

We also derive analytically the singular behavior of the
energy density at the critical points: the second derivative of
the energy density with respect to U1/t ′ shows a finite jump
discontinuity for the P0,π → Pπ F -PS transition at (U1/t ′)c1

and a square root singularity for the Pπ F -PS → F transition
at (U1/t ′)c2. The overall behavior of this second derivative as
a function of U1/t ′ is presented in Fig. 7(b).

2. An effective model for t �= 0

We now test the robustness of the PπF -PS phase when
t �= 0. The addition of single-particle hopping allows the sys-
tem to lower its energy through delocalization of unpaired
fermions. We generalize the model in Eq. (9) to the case of
finite t by introducing an energy gain due to the fermionic
delocalization.

Since we do not know a priori the size of the unpaired fermions domain, we introduce an effective fermionic length l f = L f /L
as a variable. With this notation, the ansatz for the ground-state energy density (in units of rt) reads

E2(n f , l f , r, θ ) =

⎧⎪⎨
⎪⎩

− cos θ
π

(2 − n) sin
(

πn
2−n

) + sin θ n
2 , if (n f , l f ) = (0, 0),

− 2
πr (1 − n) sin

(
πn

1−n

)
, if (n f , l f ) = (n, 1),

− 2
πr (l f − n f ) sin

(
πn f

l f −n f

)
− cos θ

π
[2(1 − l f ) − n + n f ] sin

[
π (n−n f )

2(1−l f )−n+n f

]
+ sin θ

n−n f

2 , otherwise.
(11)
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FIG. 8. Phase diagram in the t/t ′ → 0 limit. Black lines are
the boundaries of the Pπ F -PS phase obtained from model (11) for
several radius r. Violet lines are DMRG estimates of the phase
boundaries for r = 100, 1000, 2000. The green line sketches the
boundary between the phase separation regime with a fermionic
CDW domain (below the line) or with a fermionic liquid domain
(above the line).

The expression corresponding to the fully paired configuration
with n f = l f = 0 is nothing but Eq. (5) enriched with the
U1 interaction energy density contribution arising from the
formation of tight pairs only. Similarly, the energy density
expression corresponding to the fully unpaired configuration
with n f = 1, l f = 0 coincides with Eq. (8): Indeed, since the
model aims at describing the onset of the PπF -PS phase for
large values of r, the kinetic energy contribution of unpaired
fermions is estimated by restricting the ground-state energy
search in the subspace HS of forbidden nearest-neighbor oc-
cupancy, where the interaction energy term proportional to U1

evaluates to zero. Finally, the formula given for a properly
phase-separated configuration is given by the sum of the two
preceding expressions, after they have been straightforwardly
generalized to the case where the unpaired fermions occupy
an arbitrary fraction l f of the lattice.

Note that the parameters n f and l f are constrained by
n f ∈ [0, n] and l f ∈ [2n f , n f + 1 − n]. The latter range is
an excluded-volume effect: l f � 2n f because of forbidden
nearest-neighbor occupancy on unpaired fermions; n − n f �
1 − l f because k pairs occupy a region with at least 2k lattice
sites.

The optimization of the energy ansatz E2(n f , l f , r, θ ) in
Eq. (11) leads to the phase diagram presented in Fig. 8, where
we have plot the boundaries of the PπF -PS phase (black
lines) and compared them to the boundaries obtained for
r = 100, 1000, 2000 with DMRG simulations (violet lines).
We find that the PπF -PS phase is stable to the addition of a
weak single particle hopping, which is in agreement with the
DMRG numerical data. Although the diagram is given here
for positive t ′, the effective model is also valid for t ′ < 0 and
a few DMRG results (not shown) support the existence of a
P0F -PS regime in this case too.

3. Two different kinds of PπF-PS phase separations

As already mentioned in Fig. 4, we find two kinds of
P0F -PS regimes, as the intrinsic features of the PπF -PS
phase evolve when t/t ′ is increased. For t = 0, the un-

FIG. 9. Density profiles for the same parameters as in Fig. 4 (r =
2000) (a) for a Pπ F -PS phase with a CDW domain, (b) for a Pπ F -PS
phase with a liquid fermionic domain. (c) Absolute value of S(k) as a
function of U1/t ′. (d) Predictions from the minimization of Eq. (11)
for the fermionic density nf /l f and the pair density nb/lb as a function
of U1/t ′.

paired fermions are regularly arranged in a regular CDW
pattern | · · · • ◦ • ◦ · · · 〉. When t �= 0, they either arrange in
the aforementioned CDW crystal, or they delocalize and form
a Luttinger liquid. In the former case, the phase separation ex-
hibits spatial segregation of a gapless (pairs) and of a gapped
(fermions) phase; in the latter case, a spontaneous demixing of
two gapless Luttinger liquid phases takes place. The boundary
between these two phase separation regimes is obtained with
the effective model in Eq. (11) by locating the parameter
values at which n f /l f deviates from the CDW value of 1/2.
The result is shown in Fig. 8 as a green line.

These qualitative differences are recovered in the numer-
ical DMRG simulations performed at r = 2000. This result
strengthens the general predictive power of the effective
model (11). We provide direct evidence for the two forms of
phase separation in Figs. 9(a) and 9(b), where the local density
profiles are shown. For the parameters of Fig. 9(a), a clear
CDW domain is observed, while in Fig. 9(b), the local den-
sities are compatible with a fluid domain [see also Figs. 4(b)
and 4(c) for the corresponding local kinetic energies]. In order
to follow the evolution from a CDW to a fluid domain, we find
it useful to compute the Fourier transform S(k) of the density
fluctuations in open boundary conditions:

S(k) =
∑

j

e−ik j (〈n̂ j〉 − n). (12)

This Fourier signal displays peaks corresponding to the main
wave vectors of the fluctuations. For instance, the CDW pat-
tern gives rise to a sharp peak at k/(2π ) = 0.5. The domains
of pairs display a smooth peak at low k corresponding to
the low pair density. In Fig. 9(c) one can follow both the
transitions Pπ → Pπ F -PS and Pπ F -PS → F (left to right)
and, also, with the Pπ F -PS phase, the transition from a CDW
domain to a liquid one in the fermion region. Note that such
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calculations are not easy numerically. One needs PBC to
remove edge effects, which are not optimal in DMRG and
allow us to address smaller systems than with OBC. Further-
more, since the domains are just a fraction of the total lattice,
it is hard to reach large domain sizes. The k discretization
associated with small domain is clearly visible in Fig. 9(c).
Remarkably, these DMRG data are almost quantitatively cap-
tured by the effective model, as one can see in Fig. 9(d). There
we plot the fluctuations peak expected from the local densities
of the pair and fermionic domains. Such k-space patterns of
the PπF -PS phase are strongly different from those obtained
in the C phase and which are recalled in Appendix A. Note
that, due to the use of PBC, the Pπ phase has a perfectly con-
stant density leading to S(k) = 0 while, although one should
expect the same for the F phase, a flat density profile is hard
to achieve for unpaired fermions with such small values of t .
This is why we observe a nonzero signal in the F phase. Yet,
we observe that the profile is essentially unchanged in the F
while increasing U1/t ′.

E. Phase separation vs coexistence phase

In the previous section we have shown that in the large-r
limit the phase intervening between the F and the Pπ phases
is characterized by phase separation. On the other hand, the
phase diagram in Fig. 1 shows that for small r, the interme-
diate phase is the coexistence phase C. It is thus natural to
investigate in which way the C phase evolves into the PπF -PS
phase.

In order to discuss this point, we focus on the observable
O defined in Eq. (4), which measures the overlap between
the kinetic energy profiles of the unpaired fermions and of
the pairs. We have already seen in Figs. 3(a) and 4(c) that
this quantity should be different from zero in the coexistence
phase and equal to zero in the phase-separated phase. We now
perform a systematic analysis of its behavior for increasing
radius r. In Fig. 10(a) we plot the maximum value of the
overlap

Omax(U1/t ) = max
t ′/t

O(t ′/t,U1/t ), (13)

along a cut at constant U1/t , ranging from the F to the Pπ

phase. It measures the degree of spatial segregation of paired
and unpaired fermions and therefore highlights qualitatively
the crossover from one phase to the other. The maximum is
always reached in the intermediate phase in between the F and
the Pπ phase. The finite size numerical data show that Omax

remains stable with respect to its U1 = 0 value up to U1/t = 6.
This further supports the aforementioned stability of the C
phase against nearest-neighbor density-density interactions.
The value of Omax drops for U1/t > 6, which provides evi-
dence for the progressive onset of phase separation observed
at t � t ′,U1.

When U1/t � 14, the region separating the F and Pπ

phases is shrinking so much that it makes the DMRG simu-
lations particularly demanding. This shrinking is illustrated
on the phase diagram of Fig. 10(b), in which the abscissa
has been rescaled to follow the main diagonal line of Fig. 1
along which this phase develops. The DMRG red lines are
compared to the results of the effective large-r model (11)
pushed towards smaller values of U1/t . We observe that the

FIG. 10. (a) Maximum value Omax along a cut at constant U1/t
as a function of U1/t . (b) Lines connecting crosses indicate the
boundaries of the Pπ F -PS phase as predicted by model (11). Lines
connecting bars are DMRG estimates for the boundaries of the inter-
mediate phase between F and Pπ .

latter model also predicts a shrinking of the PπF -PS phase,
until the two phase boundaries touch at U1/t ∼ 20. A possible
scenario is that of a critical point taking place when the two
boundaries touch which separates it from the C phase. Alter-
natively, the two phases might smoothly evolve one into the
other, through a continuous crossover. We leave as an open
question the study of the onset of phase separation from the
C phase and the determination of whether it occurs through
a direct transition or a smooth crossover. Our results already
provide essential guidelines for investigating this phase dia-
gram.

IV. THE TWO-FLUID MODEL

In this section we elaborate on the two-fluid model that
we introduced in Ref. [59] and that was shown to provide a
satisfactory description of the phase diagram for U1 = 0 and
t ′/t � 0. The framework is inspired from Ref. [34], where a
phenomenological description of pairing in one-dimensional
setups of spinless fermions was first proposed via the inter-
action of a bosonic fluid of pairs and a fermionic fluid of
unpaired fermions. We begin in Sec. IV A by recalling the
key properties of the model and by presenting some novel
numerical data that motivate the description in terms of two
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FIG. 11. Effective occupation factors for unpaired fermions nf (k) and for pairs nP(k), see definitions in (16). The numerical parameters
are L = 104, N = 26, U1 = 0. Different panels refer to different points of the phase diagram: (a) t ′/t = −2.2 in the P0 phase; (b) t ′/t = 1.2 in
the F phase; (c) t ′/t = 1.85 in the C phase; and (d) t ′/t = 2.2 in the Pπ phase. Simulations are performed with OBC.

fluids. In Sec. IV B we discuss an effective field theory that
incorporates quantum fluctuations into the two-fluid model
and that describes satisfactorily the whole line U1 = 0, and,
with some minor modifications, the region with small |U1/t |.

A. Fermionic and bosonic degrees of freedom

The two-fluid model is based on the assumption that the
system is populated by two species of particles, the unpaired
fermions and the paired ones, which are hard-core bosons. We
introduce the Hamiltonians Ĥf and Ĥb, which describe the
fermionic and the bosonic species, respectively:

Ĥf = −t
∑

j

d̂†
j d̂ j+1 + H.c., (14a)

Ĥb = +t ′ ∑
j

σ̂+
j σ̂−

j+1 + H.c. (14b)

The two species interact through a density constraint: n =
n f + 2nb, that is, through the fact that the bosons are com-
posed of two fermions. As we discuss in the next section, other
forms of interactions must be included in order to describe the
whole phase diagram.

The success of the two-fluid model motivates the search
for a microscopic numerical characterization of the emerging
degrees of freedom described by the d̂ j and σ̂−

j operators
appearing in the Hamiltonians (14). Indeed, they are two ef-
fective models and the fermionic d̂ j operators do not match
the original fermions of the system ĉ j ; similarly, the spin
operators describe the pairs, and should not be simply seen
as a product ĉ j ĉ j+1. To better understand these statements,
let us observe that the operator ĉ j detects also fermions that
are paired; analogously the product ĉ j ĉ j+1 could detect two
noninteracting fermions that are close by because of quantum
delocalization without any underlying pairing physics.

We introduce the following operators, which are expected
to capture the main features of unpaired and paired fermions,
respectively:

f̂ †
j = (1 − n̂ j−1)ĉ†

j (1 − n̂ j+1), (15a)

P̂†
j = (1 − n̂ j−1)ĉ†

j ĉ
†
j+1(1 − n̂ j+2), (15b)

The projectors 1 − n̂ j play a key role because they enforce
that the fermion f̂ j does not have any neighbor, and thus

is truly unpaired. For the P̂j , the two projectors allow us to
identify only paired fermions. In Appendix B we establish a
mathematical link between the ĉ j operators and the two-fluid
operators d̂ j and σ̂−

j ; the operators (15) are a truncated version
of the exact ones, and reproduce their properties with an
accuracy that increases with the diluteness of the system.

We study the effective occupation factors:

n f (k) = 1

L

∑
j,l

eik( j−l )〈 f̂ †
j f̂l〉, (16a)

nP(k) = 1

L

∑
j,l

eik( j−l )〈P̂†
j P̂l〉. (16b)

The numerical results are presented in Fig. 11. The F phase
displays a fermionic occupation around k ∼ 0; the P0,π phases
display a quasicondensate of pairs around the momenta 0
and π , hence their names (see Ref. [59] for some effective
models). On the other hand, the C phase displays the simulta-
neous presence of unpaired fermions around k ∼ 0 and paired
fermions around k ∼ π .

As a concluding remark, it is worth mentioning that the
standard occupation factor n(k) = 1

L

∑
j, j′ eik( j− j′ )〈ĉ†

j ĉ j′ 〉 dis-
plays different properties. In Fig. 11 we superimpose it to the
curves n f (k) and nP(k). In the F phase, it is almost identical to
n f (k), as expected. In the C phase, it displays a non-negligible
occupation of momenta close to k ∼ 0 and k ∼ π , thus re-
vealing its sensitivity both to unpaired fermions and to pairs.
The sinusoidal form in the Pπ phase has been interpreted in
Ref. [59] in terms of tightly bound pairs whose size is not
affected by the single-particle hopping, as it can be verified
by simple perturbative arguments. The same reasoning is not
valid in the P0 phase: it shows instead that a perturbative value
of t increases the spatial extent of the pairs. As a consequence,
n(k) is not sinusoidal. Moreover, n f (k) does not vanish iden-
tically because the fermions constituting a single pair can be
found at a finite distance from each other in the ground state.

B. Quantum fluctuations and criticality in the two-fluid model

The standard two-fluid model has been shown to describe
the phases appearing for t ′/t > 0 enforcing only the constraint
n = n f + 2nb and without any other direct form of interaction
between the unpaired fermions and the pairs. For t ′/t < 0
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we observe a qualitatively different phase diagram which, as
a consequence, must be shaped by interactions between the
two species. In the following we show that for t ′/t < 0 the
interactions between the fluids correctly induce the critical
point c = 3/2 between F and P0 phases. The effective field
theory that we are proposing thus provides a solid ground
for describing the physics at U1 = 0 and follows closely the
treatments developed in Refs. [34,67]. Simple modifications
allow us to take into account the presence of interparticle
interactions U1 �= 0, for which the qualitative features of the
phase diagram do not change.

We introduce the effective Hamiltonian Ĥ = Ĥf + Ĥb +
Ĥint, where Ĥb is a Luttinger liquid Hamiltonian describing
a partially filled band of pairs and Ĥf describes a quadratic
fermionic band of unpaired fermions:

Ĥf =
∫

dxψ†

(
ε0 − ∂2

x

2m
− μ

)
ψ, (17a)

Ĥb = v

2π

∫
dx

[
K (∂xφ)2 + 1

K
(∂xθ )2 − 2μ

(
∂xθ

2π
+ ρb

)]
,

(17b)

where the chemical potential μ couples to the density of
paired and unpaired fermions and [φ(x), θ (x′)] = iπ(x −
x′) and ρb is the average pair density. The Hamiltonian
Hint describes the interaction between unpaired fermions and
pairs, which takes the form of a process that transforms two
fermions into a pair (and vice versa):

Hint =
∫

dx u(x)(ei2φψ∂xψ + H.c.). (18)

This field theory should thus contains all the relevant in-
formation for describing the system when the fermionic mode
is unoccupied or starts to be occupied. The key quantity is
the function u(x) that appears in Eq. (18). When t ′/t < 0,
the coupling is nonoscillating, u(x) = u, because the pairs
and the fermions are located around k ∼ 0 and during the
exchange process there is no momentum transfer. In this limit,
the model has been studied in Ref. [34] where it is shown
that a bosonic phase with a gap to single particle excitations
and a fermionic phase coinciding with a standard Luttinger
liquid are separated by a critical point with central charge
c = 3/2.

On the other hand, when t ′/t > 0, the paired states lie in
reciprocal space around ±π , thus implying that whenever two
fermions get converted into a pair, a net momentum transfer
of ∼π takes place. The function u(x) inherits this spatial
modulation u(x) ∼ eiπx/a ∼ (−1)x/a and is then averaged out
by the integral. This process requires a momentum exchange
and thus is strongly suppressed, while the next leading con-
tribution involves the conversion of four fermions into two
pairs and can be neglected. The resulting phenomenology has
been studied in Ref. [68] and is known to exhibit a Lifschitz
transition to a coexistence phase with a pair of gapless modes,
consistently with the behavior found in such a parameter
regime.

We conclude this section by noting that an alternative
approach for dealing with pairing phenomena in charge-
conserving spinless systems exists, and it is based on the use
of an emergent mode [31,35]. In Appendixes D, C, E, and F

we discuss a bosonization approach to our model and present
some considerations on how the use of an emergent mode
could describe the physics of the coexistence phase (for the
c = 3/2 transition see Ref. [31]).

V. CONCLUSIONS

In this article we have discussed the phase diagram
of the RA model [31], which proved extremely rich, and
have presented numerical simulations for all encountered
phases.

Specifically, we have focused on two questions. The first
one is related to the understanding of the difference of the
coexistence phase [59] from a phase-separated phase. A phase
separation occurs in various parts of the phase diagram and
we have indeed shown that the coexistence phase can evolve
into a phase-separated phase. It is important to stress that
this transition takes place at nonperturbative values of the
interaction, so that the stability of the coexistence phase is
well established. The precise characterization of the nature of
the transition from coexistence to phase separation is left for
future work.

The second question we have addressed is related to
the discussion of pairing physics in one-dimensional sys-
tems of spinless fermions, which is known to elude standard
bosonization approaches and to require the ad-hoc introduc-
tion of either an emergent mode [31,35] or of a two-fluid
model [34,59]. This article demonstrates that employing a
many-fluid approach can be extremely fruitful when applied
to pairing physics, since it can describe ample parts of the
phase diagram with a simple and intuitive picture. This work
opens the path to further studies and to the application of
this many-fluid approach to other situations where pairing
or generalization thereof have been invoked for the appear-
ance of symmetry-enriched Majorana fermions or nonlocal
parafermions [69–71].
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APPENDIX A: STRUCTURE FACTOR
IN THE COEXISTENCE PHASE

We briefly recall the behavior of the Fourier transform
of the density fluctuations (12) for the coexistence phase C
in Fig. 12, computed with OBC and to be compared with
Fig. 9(c) that was computed with PBC. The robustness of the
features of the C phase against the U1 term is striking in the
behavior of the peaks in the Fourier transform of the density
fluctuations shown in Fig. 12. The F and Pπ phases are charac-
terized, respectively, by peaks at k = 2πn and k = 2π (n/2),
as expected from a standard Luttinger liquid and a Luttinger
liquid of pairs. In the intermediate C phase, the behavior of
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FIG. 12. Map of the absolute value of the Fourier transform S(k)
as a function of t ′/t for U1/t = 1 and L = 104 in OBC.

the peaks has been interpreted in Ref. [59] as a signature of
a mixture pairs and unpaired fermions fluids. By denoting the
effective densities of unpaired fermions as n f and the effective
pair density as nb, the resulting unconventional peaks are to
be found at k = 2π (n f + nb), k = 2πnb, and k = 2πn f , the
latter being a subleading contribution.

APPENDIX B: DESCRIPTION OF THE HILBERT SPACE
IN TERMS OF PAIRED AND UNPAIRED FERMIONS

Ideally, it would be desirable to find a set of creation and
annihilation operators associated with the paired and unpaired
degrees of freedom in the system and obtain an explicit for-
mulation of the Hamiltonian in terms of them. To proceed in
this direction, we start by observing that fermions in a generic
Fock position basis state will occur in l-particle clusters: If l
is even, we interpret it as l/2 contiguous pairs; if l is odd, we
view the cluster as (l − 1)/2 consecutive pairs followed by
an unpaired fermion. As an example, let us consider the state
|• • • ◦ • • ◦〉 = ĉ†

1ĉ†
2ĉ†

3ĉ†
5ĉ†

6 |0〉; then, the first cluster of size
3 is reinterpreted as a pair followed by an unpaired fermion,
while the second cluster of size 2 is considered as a pair.
After achieving a description of the Hilbert space in terms of
paired and unpaired fermions, we are now able to write down
the mathematical expression of their corresponding creation
operators. In particular, a pair is created on sites j, j + 1 if and
only if the number of fermions preceding those sites is even,
whereas an unpaired fermion is created at site j if and only if
it is preceded by an even number of fermions and followed
by none. More precisely, the expressions for the unpaired
fermion creation operator f̂ †

j and the paired fermions creation

operator P̂†
j read

f̂ †
j =

[
1 − n̂ j−1 + (1 − n̂ j−2l−1)

∑
l�1

(
2l∏

m=1

n̂ j−m

)]

× ĉ†
j (1 − n̂ j+1), (B1a)

P̂†
j =

[
1 − n̂ j−1 + (1 − n̂ j−2l−1)

∑
l�1

(
2l∏

m=1

n̂ j−m

)]
ĉ†

j ĉ
†
j+1.

(B1b)

The expressions (B1) imply that the creation and annihi-
lation operators for these effective degrees of freedom have a
nonlocal character, as the bare lattice creation and annihilation
operators get dressed by projectors with increasingly large
support. Referencing the concrete example presented above,
the definition of the operators f̂ †

j and P̂†
j implies in particular

that |• • • ◦ • • ◦〉 = P̂†
1 f̂ †

3 P̂†
5 |0〉.

As a result, it is more convenient to resort to numerical
estimates of the appropriately truncated versions of the above
nonlocal operators. Indeed, in the dilute limit, the expression
for the operators f̂ †

j and P̂†
j can be truncated by keeping

only the first term in parentheses, obtaining as a result the
operators defined in (15) and concretely analyzed in numerical
simulations. As we are working in the dilute limit, the addi-
tion of the factor 1 − n̂ j+2 to the right of the term ĉ†

j ĉ
†
j+1 in

the numerically studied observable is not expected to modify
qualitatively the results.

APPENDIX C: BOSONIZATION FOR t ′ � t

In this Appendix we develop a bosonization treatment of
the system around the free-fermion point in the weak coupling
regime t ′ � t . Following standard recipes [72], we expand the
lattice operators around two Fermi points ±kF in terms of
two long wavelength fermionic field operators ψR(x), ψL(x)
as c j ∼ √

a[ψR( ja)eikF ja + ψL( ja)e−ikF ja], a being the lattice
spacing. By reexpressing the fermionic fields in terms of a
canonically conjugated pair of bosonic fields φ(x), ∂xθ (x) sat-
isfying [φ(x), ∂x′θ (x′)] = iδ(x − x′), it is possible to rewrite
the Hamiltonian as an effective bosonic field theory describing
the low energy physics of the system.

We rewrite the number operator appearing in the pair ki-
netic energy as n j = n+ : n j :, which amounts to explicitly
decouple the average and fluctuation contributions to the local
density. Therefore, the effective low energy Hamiltonian takes
the quadratic form:

H = v

2

∫
dx

[
K (∂xθ )2 + 1

K
(∂xφ)2

]
, (C1)

where v is the velocity of the acoustic mode and K is the
Luttinger parameter, given by

K = 1√
1 − 4t ′ cos (2kF a)

π[t sin(kF a)+2nt ′ sin(2kF a)]

. (C2)

The repulsive U1 term in the Hamiltonian can also be
included in the treatment, as it amounts to the quadratic term
U1a
π

[1 − cos(2kF a)]
∫

dx(∂xφ)2 and simply contributes to a
renormalization of the effective parameters u and K .

As expected, the weak-coupling bosonization approach
predicts a single bosonic mode for all parameter values and
hence is inadequate to capture the transition either to the
coexistence phase or to any of the P0,π phases. Indeed, the
latter implies a nonperturbative reshaping of the ground-state
Fermi surface associated with the emergence of the gapless
excitation mode associated with the liquid of pairs. The sin-
gle mode Luttinger liquid approach does not allow us to
explore such a phenomenology and thus requires us to be
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complemented by a more refined treatment. This is what we
do next.

APPENDIX D: A BOSONIZATION DESCRIPTION
OF THE U1 = 0 LINE

In this Appendix we present an analytical approach to the
description of the properties of the phase diagram along the
line U1 = 0 that is based on a bosonization model that takes
as a starting point the paired phases.

1. An unconventional noninteracting starting point

In order to make progress towards the low-energy descrip-
tion of the C phase in bosonization language, we partition the
lattice operators ĉ j into two groups, corresponding to even and
to odd sites. Introducing the notation c j,1 = c2 j, c j,2 = c2 j−1,
the Hamiltonian can be rewritten as

Ĥ = − t
∑

j

[ĉ†
j,1(ĉ j,2 + ĉ j+1,2) + H.c.]

− t ′ ∑
j

[n̂ j,1ĉ†
j,2ĉ j+1,2 + n̂ j,2ĉ†

j−1,1ĉ j,1 + H.c.], (D1)

and it can be interpreted as the model of a zigzag ladder. We
rewrite the operators n̂ j,α as the sum of the average density and
of the density fluctuations via the relation n̂ j,α = n+ : n̂ j,α :,
the Hamiltonian becomes the sum of a quadratic term:

Ĥ0 = − t
∑

j

[ĉ†
j,1(ĉ j,2 + ĉ j+1,2) + H.c.]

− nt ′ ∑
j

[ĉ†
j,2ĉ j+1,2 + ĉ†

j−1,1ĉ j,1 + H.c.] (D2)

and of a quartic term V̂ that we do not need to specify for the
moment.

The Hamiltonian Ĥ0 can be diagonalized with a Fourier
transform followed by a Bogoliubov rotation and can be writ-
ten as

Ĥ0 =
∑

k

∑
α=±

εα (k)γ̂ †
k,α

γ̂k,α, (D3a)

ε±(k) = −2nt ′ cos(k) ± 2t cos

(
k

2

)
, (D3b)

where the operators γ̂k are related to the original ĉ j operators.
As shown in Fig. 13, the above dispersion relations introduce
an additional pair of Fermi points at n = 1/4 when t ′/t >

2
√

2(1 + √
2), thus realizing a more promising starting point

for the derivation of an effective low-energy field theory that
captures the properties of the C phase. The above value of t ′/t
is obtained by asking that ε+(0) = ε−(2πn) for t, t ′ > 0 and
in general it yields

t ′

t
= 1

n

1 + cos(πn)

1 − cos(2πn)
. (D4)

It is important to observe that the dispersion relations that
we have found are identical to those presented in Ref. [31],
apart from a folding into a halved Brillouin zone due to the
rewriting of the Hamiltonian in terms of two coupled chains

-1 -0.5 0 0.5 1
k/π

-1

-0.5

0

0.5 ε
+
(k)/t’

ε
-
(k)/t’

 ε
F
/t’

-1 -0.5 0 0.5 1
k/π

-1 -0.5 0 0.5 1
k/π

(a) (b) (c)

FIG. 13. Dispersion relations (D3b) of the quadratic Hamiltonian
Ĥ0 in Eq. (D2) and corresponding Fermi energy εF for n = 0.25 and
(a) t ′/t = 20, (b) t ′/t = 2

√
2(1 + √

2), and (c) t ′/t = 4.

with an effective doubled lattice spacing. In fact, the bosoniza-
tion approach that we are going to describe can be regarded as
an extension of the method presented in Ref. [31] to the case
of t ′/t > 0.

2. Bosonization description of interactions

We introduce a pair of canonically conjugated bosonic field
operators φα (x) and ∂xθα (x) for the two pairs of gapless points
±kF,α appearing on the curves εα (k) in (D3b). The nonin-
teracting Hamiltonian becomes Ĥ0 = ∑

α
vF,α

2

∫
dx[(∂xφα )2 +

(∂xθα )2], where vF,α is the Fermi velocity of the band α.
Concerning the interaction term:

V̂ = − t ′ ∑
j

[: n̂ j,1 : (ĉ†
j,2ĉ j+1,2 + H.c.)

+ : n̂ j,2 : (ĉ†
j−1,1ĉ j,1 + H.c.)], (D5)

its bosonized form is derived in an effective way con-
sidering all allowed momentum-conserving two-particle
processes around the Fermi points. We first consider
density-density forward scattering, which produces a term∑

α,β gαβ

∫
dx 1

π
∂xφα∂xφβ and that eventually only renormal-

izes the Luttinger parameter of the bosonic field Hamiltonian
Ĥ0. An additional family of momentum conserving processes
is represented by the terms transferring particles between the
two bands, proportional to

∫
dx(ψ†

R,+ψ
†
L,+ψR,−ψL,− + H.c.),

which translates to −g1
∫

dx cos[2
√

π (θ+ − θ−)].
After performing the canonical transformation φ0 = φ+ +

φ−, θ0 = θ−, φ1 = φ+, θ1 = θ+ − θ−, the Hamiltonian takes
the general form

Hbos =
∑

α=0,1

vα

2

∫
dx

[
Kα (∂xθα )2 + 1

Kα

(∂xφα )2

]

+ l1

∫
dx∂xφ1∂xφ0 + l2

∫
dx∂xθ1∂xθ0

− g1

∫
dx cos[2

√
πθ1]. (D6)

The terms proportional to l1 and l2 are a consequence of the
final canonical transformation and do not alter the nature of
the low energy excitations; the effective Luttinger-liquid pa-
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rameters v0,1, K0,1 have been introduced to take into account
nonlinearities.

When g1 is relevant, the field θ1 is pinned to a minimum
of the cosine term and the model describes a paired phase.
Indeed, in Appendix E we show that this phase features
quasi-long-range order in pair correlations and exponentially
decaying single-particle correlation functions, due to the gap
in the single-particle spectrum, as it was originally shown
in Ref. [31]. The question now is to understand whether the
inclusion of physically motivated perturbations to (D6) allows
us to describe (i) the direct c = 3/2 transition to the F phase,
and (ii) the transition to the F phase separated by the C phase.

Concerning point (i), in Ref. [31], it was shown how to
capture the critical behavior of the model for t ′/t < 0: The
idea is to add to the low-energy field theory (D6) the most
relevant and general term giving a mass to the emergent
mode, i.e., a term proportional to

∫
dx[(ψ†

R,+ψL,+) + H.c.] ∝∫
dx cos(2

√
πφ1). The resulting field theory implies a direct

transition from a standard Luttinger liquid phase, correspond-
ing to the pinning of the field φ1, to a Luttinger liquid of
pairs, when the pinned field is θ1, where the single-particle
excitations have become gapped, while the pair excitations
remain gapless (see details in Appendix E). The critical point
separating the two phases belongs to the Ising universality
class and is characterized by a central charge c = 3/2, as it has
been numerically verified by fitting the entanglement entropy
profile of the ground state [31].

Concerning point (ii), in order to have a nondirect transi-
tion to the F phase, as it happens for t ′/t > 0, we find that we
need to introduce terms that describe the interaction between
the two bands at higher order. In particular, we consider this
m-particle term proportional to

∫
dx[(ψ†

R,+ψL,+)m + H.c.],
which has the following bosonized form:

Ĥm = −g̃m

∫
dx cos(2m

√
πφ1). (D7)

In Appendix F we show that when m > 2, the model Hbos +
Hm features three different phases as a function of K1. For
low values of K1, g̃m is relevant and g1 is irrelevant: With
arguments similar to those mentioned above, this phase can be
identified with the F phase. For large values of K1, g̃m is irrel-
evant and g1 is relevant: As above, this phase is identified with
a paired phase. The novelty is constituted by the fact that there
is an intermediate phase for intermediate values of K1, where
both g̃m and g1 are irrelevant. This phase is characterized by a
central charge c = 2 and it is tempting to identify it with the
C phase. However, at this stage, we have not been able to pro-
duce a direct bosonization characterization of this phase that
allows a more precise identification beyond the central charge.
We interpret this phase as a mean-field precursor of the C
phase adiabatically connected to the latter. Indeed, the pairing
term has been approximated by an average-density-assisted
hopping term in constructing the unconventional starting point
for the treatment of interactions, thus trading a genuine pairing
term with single-particle processes.

We conclude with a speculation concerning the difference
between the P0 and Pπ phases. If this analysis is correct, it
implies that the difference between the two phases consists of
the way interactions are included in bosonization. For the P0

phase, one can directly include Ĥm=1 while for the Pπ phase,
one needs Ĥm>2.

APPENDIX E: BEHAVIOR OF THE CORRELATORS

We show that the behavior of the single particle correlator
predicted by the effective field theory in Eq. (D6) is consistent
with the phases appearing in the phase diagram of the model
for positive values of t ′/t . First of all, it can be shown from the
diagonalization of the Hamiltonian in Eq. (D2) that the lattice
operators c j,α, α = 1, 2 can be expressed as

ĉ j,1 = 1√
2

(
ĉ j+ 1

4 ,− − iĉ j+ 1
4 ,+

)
, (E1a)

ĉ j,2 = 1√
2

(
ĉ j− 1

4 ,− + iĉ j− 1
4 ,+

)
, (E1b)

where ĉ j± 1
4 ,β = 1√

L
2

∑
k eik( j± 1

4 )ĉk,β , β = ±, indicating as L

the length of the starting lattice. Expressing the lattice op-
erators ĉ j,± in terms of the long-wavelength bosonic fields
describing excitations around the Fermi points of the disper-
sion relation in Eq. (D3b), one obtains for example:

ĉ j,1 = 1√
4πα

[
eikF,−(x+ a

4 )e−i
√

π[θ0(x+ a
4 )−φ0(x+ a

4 )+φ1(x+ a
4 )]

+ e−ikF,−(x+ a
4 )e−i

√
π [θ0(x+ a

4 )+φ0(x+ a
4 )−φ1(x+ a

4 )]

− ieikF,+(x+ a
4 )e−i

√
π [θ0(x+ a

4 )+θ1(x+ a
4 )−φ1(x+ a

4 )]

− ie−ikF,+(x+ a
4 )e−i

√
π[θ0(x+ a

4 )+θ1(x+ a
4 )+φ1(x+ a

4 )]
]
. (E2)

Here α is a regularization cutoff and a is the lattice spacing
along each one of the two subchains that the original lattice
has been divided into and thus equals twice the lattice spacing
between sites in the latter. An analogous expression holds for
ĉ j,2.

When the field θ1 is pinned, the field φ1 is completely
disordered and has exponentially decaying correlations. As
the latter appears in each term of the expression of ĉ j,1 and
ĉ j,2, every single particle correlator of the form Gα,α′ (r) =
〈ĉ†

j,α ĉ j+r,α′ 〉 with α = 1, 2 decays exponentially with distance.
Therefore, it is natural to interpret this phase as a pairing
phase with a gap to single particle excitations. In particular,
in the main text we interpreted the phase characterized by the
pinning of the field θ1 as the Pπ phase.

On the other hand, when the field φ1 is pinned, the field
θ1 is disordered. As a result, the field φ1 can be replaced by
its expectation value. The last two terms in Eq. (E2) contain
explicitly the field θ1, allowing one to disregard their con-
tribution. As a result, the leading contribution to the lattice
operators is given by the first two terms of Eq. (E2) (as
in a single mode Luttinger liquid), thus certifying that the
leading contribution to Gα,α′ (r) is algebraic in r, as expected
for a standard Luttinger liquid at weak coupling. In the main
text we argue that the inclusion of a term proportional to∫

dx cos(2
√

πnφ1) allows us to reintroduce the F phase to
the low energy description (D6).
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APPENDIX F: PHENOMENOLOGICAL INCLUSION
OF THE F PHASE

Let us consider a general field theory of the form

H = HLL(φ0, θ0; v0, K0) + HLL(φ1, θ1; v1, K1)

− g1

∫
dx cos(β1θ1) − g2

∫
dx cos(β2φ1), (F1)

where HLL(φ, θ ; v, K ) = v
2π

∫
dx[K (∂xθ )2 + 1

K (∂xφ)2] and
the fields satisfy [φα (x), ∂x′θα′ (x′)] = iπδα,α′δ(x − x′). The
first-order RG equations for the couplings read

dg1

dl
=

(
2 − β2

1

4K1

)
g1, (F2)

dg2

dl
=

(
2 − β2

2

4
K1

)
g2, (F3)

which implies that the simultaneous irrelevance condition for
the cosine terms takes the form

2 − β2
1

4K1
< 0, (F4)

2 − β2
2

4
K1 < 0, (F5)

which in turn means that, for both cosines to be irrelevant, the
Luttinger parameter must satisfy 8

β2
2

< K1 <
β2

1
8 . In order for

such a parameter regime to exist, one has to impose 8
β2

2
<

β2
1

8 ,
which forces β1β2 > 8, assuming β1 and β2 to be positive, as
the cosine is an even function.

After the rescaling θ ′
α = √

πθα, φ′
α = √

πφα (leading
to [φ′

α (x), ∂x′θ ′
α′ (x′)] = iπδα,α′δ(x − x′)), the effective the-

ory (D6) has the general structure

H = HLL(φ′
0, θ

′
0; v0, K0) + HLL(φ′

1, θ
′
1; v1, K1)

− g1

∫
dx cos(2θ ′

1), (F6)

i.e., β1 = 2. If we generalize the class of mass terms which
gap the emergent mode to general nth-order processes, we
need to consider terms of the form∫

dx[(ψ†
R,+ψL,+)n + H.c.] ∼

∫
dx cos(2nφ′

1), (F7)

which means that β2 = 2n. As a result, the condition β1β2 > 8
turns into n > 2, i.e., one needs to add phenomenologically
processes of order 3 or higher as the most relevant contribu-
tion to the Hamiltonian such that the weak coupling Luttinger
liquid phase is reintroduced to the theory and, at the same
time, a c = 2 coexistence phase is stabilized.
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