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Strong-coupling corrections to hard domain walls in superfluid 3He-B
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Domain walls in superfluid 3He-B have gained renewed interest in light of experimental progress on confining
helium in nanofabricated geometries. Here, we study the effect of strong-coupling corrections on domain wall
width and interfacial tension by determining self-consistent solutions to spatially-dependent Ginzburg-Landau
equations. We find that the formation of domain walls is generally energetically favored in strong coupling
over weak coupling. Calculations were performed over a wide range of temperatures and pressures, showing
decreasing interface energy with increasing temperature and pressure. This has implications for the observability
of such domain walls in 3He-B, which are of both fundamental interest and form the basis for spatially-modulated
pair-density wave states, when stabilized by strong confinement.
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I. INTRODUCTION

Superfluid 3He, due to its p-wave, spin triplet wave
function, possesses a rich landscape of spontaneously bro-
ken symmetries. In addition to the U(1)N gauge symmetry
breaking expected for off-diagonal long-range order in super-
fluids, broken spin and orbital rotation symmetries SO(3)S

× SO(3)L suggest numerous configurations of long-range
order in the superfluid system. In turn, this implies the ex-
istence of many possible superfluid phases of 3He. Despite
this, in isotropic, homogeneous (bulk) superfluid 3He only
two are observed: the A and B phases [1–7]. By introducing
anisotropies not seen in the bulk, it is possible to access
additional stable states of superfluid 3He [8–11]. Of particular
interest are the effects of spatial confinement of the fluid in ge-
ometries of scale D on the order of its temperature-dependent
pair coherence length ξ (T ) [12–14].

As we will see below, in a slab confined in z, scattering of
Cooper pairs at a surface parallel to the xy plane suppresses
the z component of the order parameter, leading to the ap-
pearance of a planar-distorted B phase in the phase diagram
[15]. This surface pair-breaking comes with an energy cost
incurred along the surface. This may be partially offset via
a periodic arrangement of 3He-B domains, whose formation
was predicted by Vorontsov and Sauls in Ref. [12]. Originally
conceived of as a stripe phase, one can generally consider a
pair density wave state (PDW) [16], where domains with al-
ternating order-parameter components are arranged such that
the pair-breaking cost is eliminated near the domain walls in
exchange for the (lower) energy cost of the wall between the
degenerate domains.

The prediction of a spatially-modulated phase sparked
significant experimental investigation of 3He under con-
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finement, using varied techniques including microfabricated
fourth sound resonators [16], nuclear magnetic resonance
[17,18], shear micromechanical resonators [19], and tor-
sional oscillators [20]. Significantly, two sequential first-order
phase transitions have been observed [16], and NMR studies
have observed simultaneous evidence of two different planar-
distorted B phases [18]. These results are indicative of the
existence of a PDW state, but are yet unable to determine its
spatial arrangement, with the authors of Ref. [18] proposing
an alternative of textural domain walls, also called soft domain
walls, and recent theoretical results concluding a triangular
PDW is preferred [21].

Importantly, the stripe phase was originally predicted in a
study of hard domain walls in 3He-B [22] using the weak-
coupling limit of Bardeen-Cooper-Schrieffer (BCS) theory.
This has led some to suggest that strong-coupling correc-
tions could decrease the stability of the stripe phase [18]. In
response, strong-coupling calculations have been performed,
which do show an increased stability of the A phase and a
suppression of the stripe phase, yet still predict stripe phase
formation at low pressure and achievable temperatures [14].
If an alternate PDW state with domain walls is realized, such
as the triangular PDW [21], there remains the question as to
what effect strong-coupling corrections have on these domain
walls. Furthermore, the observation of these domain walls is
of fundamental interest as the two-dimensional analog of a
quantum vortex [23], with parallels in cosmology [24–28].

In this paper, we use numerical methods to determine self-
consistent solutions of the superfluid order parameter near
interfaces of degenerate regions of bulk superfluid 3He-B.
These B-B hard domain walls have been previously treated
by Salomaa and Volovik [24], as well as Vorontsov and
Sauls [22], and numerically by Silveri et al. [29], with the
latter using a perturbation method to determine that there
is only one possible B-B interface stable in the bulk. Here,
we closely follow the work of Ref. [29], but now with the
addition of experimental strong-coupling corrections to the

2469-9950/2021/104(9)/094520(9) 094520-1 ©2021 American Physical Society

https://orcid.org/0000-0002-5504-8138
https://orcid.org/0000-0002-5031-4695
https://orcid.org/0000-0001-5936-3250
https://orcid.org/0000-0002-6946-1492
https://orcid.org/0000-0002-3798-0976
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.094520&domain=pdf&date_stamp=2021-09-22
https://doi.org/10.1103/PhysRevB.104.094520


RUDD, YAPA, SHOOK, MACIEJKO, AND DAVIS PHYSICAL REVIEW B 104, 094520 (2021)

Ginzburg-Landau parameters, and obtain self-consistent so-
lutions for the spatially-modified order parameter. For each of
the domain configurations computed in Ref. [29], we examine
the width of the domain wall, as well as the energy of domain
wall formation. We determine that strong-coupling correc-
tions result in an enlargement of the width of the domain wall
structure along with a reduction in its energy. These changes
are consistent across the phase diagram with the exception of
a small region near saturated vapor pressure.

The rest of the paper proceeds as follows. In Sec. II, we
begin by reviewing the origin and classification of domain
walls in 3He-B. This is followed in Sec. III by a review
of Ginzburg-Landau theory and the incorporation of strong-
coupling corrections. We also discuss the definition of the
interfacial tension, and the stability of the domain wall so-
lutions. In Sec. IV, we discuss the calculation results for the
domain wall widths, and in Sec. V our results for the interfa-
cial tension. In Sec. VI, we discuss how the one-dimensional
solutions found here are applicable to domain walls in a PDW
and finally, in Sec. VII, we conclude that the physically rele-
vant strong-coupling corrections do not inhibit the formation
of domain walls in 3He-B and hence the formation of PDW
states.

II. DOMAIN WALLS IN BULK 3He

Weak-coupling BCS theory extended to p-wave, spin-
triplet pairing posits that the state that is isotropic in k space
will be energetically favored [4], indicating that the B phase,
with its uniform energy gap, should be the dominant super-
fluid phase. Experimental data reveals that near Tc and at high
pressures, a region of A phase forms, implying the necessity of
corrections to weak-coupling at higher pressures. The k-space
isotropy of the B phase gives an order parameter of the form

Aμi = �eiφRμi(n̂, θ ), (1)

where � is a real, positive amplitude, φ a real-valued phase,
and Rμi a proper rotation matrix [29,30]. This state is degen-
erate with respect to multiplication by a constant phase factor,
and by rotating spin relative to position space [29,30]. Thus
we may conceive of many possible degenerate B phases in
isolation.

We consider the characteristics of a domain wall between
two degenerate, semi-infinite bulk volumes of superfluid
3He-B. We expect there to be a transition zone between these
domains. Given appropriate boundary conditions, if a self-
consistent solution of finite extent can be found, we define this
as a domain wall. The width l of this domain wall is defined
as the solution domain with nonzero gradient [31] and is on
the order of ξ�(T ). We contrast this with a texture, where
we fail to obtain a converged solution even when arbitrarily
expanding the size of the calculation domain.

Following the method of Ref. [30], we use symmetry
to determine and name the realizable B-B interfaces. All
external factors being equal, any observable characteristic
of an interface should result from the configuration of the
domains, which may be described in terms of invariant
parameters. For our system symmetries, these invariants are

φ = φR − φL, ψ⊥ = RL
μzR

R
μz, (2)

TABLE I. Summary of domain wall configurations. The second
column gives the boundary conditions imposed on the scaled order
parameter Aμi/�B on the right-hand side of the interface. In all cases,
the left-hand side is represented by the identity matrix. All numerical
values are for weak-coupling calculations.

Name AR
μi/�B l (ξ�) σ

(
f B
c ξ�

)
σG/σ

BB12

⎡
⎣+1 0 0

0 +1 0
0 0 +1

⎤
⎦ N/A 0 N/A

BB10

⎡
⎣−1 0 0

0 +1 0
0 0 +1

⎤
⎦ 25.16 0.9006 0.4999

BB12

⎡
⎣+1 0 0

0 +1 0
0 0 −1

⎤
⎦ 32.90 1.5547 0.5000

BB12

⎡
⎣−1 0 0

0 −1 0
0 0 +1

⎤
⎦ 27.80 2.1018 0.5001

BB10

⎡
⎣−1 0 0

0 +1 0
0 0 −1

⎤
⎦ 32.54 2.7853 0.5000

BB12

⎡
⎣−1 0 0

0 −1 0
0 0 −1

⎤
⎦ 32.12 4.5754 0.5000

ψ‖ = RL
μxRR

μx + RL
μyRR

μy,

where we have used the superscripts L, R to indicate order
parameter values on the left and right sides of the interface, re-
spectively. φ reflects the invariance under global phase shifts,
and ψ⊥, ψ‖ arise from the invariance under global spin rota-
tion combined with rotational symmetry about the interface
normal [30]. These invariants can be condensed further into
dependence on two complex numbers:

a = eiφψ⊥, b = eiφψ‖, (3)

which fully define the B-B domain wall configuration. We
are concerned only with domain walls that are stable under
static conditions, therefore we eliminate any values of a and
b that result in spin or mass currents across the interface,
although it would be interesting in future work to determine
whether domain walls exist that are stabilized by flow in a
dynamic system [16,32]. From the restriction on zero mass
current, we see that a and b must be real, with the spin
current also vanishing in the cases a = ±1, b = 0, b = ±2.
By cycling over these a and b values we determine which
interfaces may be realizable in the bulk, in the absence of
external fields or currents [29]. We performed calculations for
each of the possible six domain wall configurations, which
are listed in Table I. For consistency, we continue to use the
naming system proposed in Ref. [29] in which the interfaces
are named as BBab, with negative values denoted by a bar over
the number. We note that these configurations are equivalent
to all possible permutations of the B-phase order parameter
differing by a change of sign in one or more components, due
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to the equivalence between the Axx and Ayy components of the
order parameter demonstrated in (2) and (3).

An important consideration for each of these domain wall
structures and their energetics is which components of the
order parameter change sign. In this paper, we use the nomen-
clature employed by Vorontsov [15] and denote the structures
as type-x or type-z. Mixed combinations are theoretically pos-
sible for more complex domain walls. The type-z domain wall
structure is defined by ∇iAμi �= 0. For our solutions with vari-
ation in ẑ, this means that Aμz components change sign (hence
type-z), with the type-z interface the BB12 domain wall. The
type-x domain wall is defined by ∇iAμ j �= 0, i �= j, with the
simplest such interface the BB10 domain wall. As will be
shown in Sec. III, a rotation of the axes for 1D solutions is
possible, provided the indices of Aμi are changed accordingly.
Therefore, although Table I shows the BB10 domain wall
having a sign change in Axx when ẑ is the solution direction,
an equivalent arrangement can have order parameter compo-
nent Azz change sign so long as the solution is changing in
x̂ or ŷ (∇x,yAμi �= 0). As mentioned above, the calculations
described in Sec. III were performed for all domain wall con-
figurations listed in Table I. For conciseness, we have elected
to present primarily the results of calculations on the BB10
and BB12 domain walls, as these are the simplest examples
of the type-x and type-z domain walls, respectively. However,
we would like to emphasize that the conclusions drawn from
these results are consistent for all domain walls examined.

III. GINZBURG-LANDAU THEORY AND CALCULATIONS

We find self-consistent solutions for the order parameter
using Ginzburg-Landau theory, modifying the weak coupling
model for use at P ∈ [0, 34] bar and temperatures below the
critical temperature Tc. The free energy functional of 3He, as
a function of the order parameter Aμi, is F = Fb + Fg with Fb

the bulk energy

Fb =
∫

d3r
{

f B
c − αTr(AA†) + β1|Tr(AAT )|2

+ β2[Tr(AA†)]2 + β3Tr(AAT A∗A†)

+ β4Tr(AA†AA†) + β5Tr(AA†A∗AT )
}
, (4)

where we denote the condensation energy density of the
isotropic bulk B phase f B

c , and Fg the gradient energy:

Fg = K
∫

d3r[(γ − 1)∇iA
∗
μi∇ jAμ j + ∇iA

∗
μ j∇iAμ j]. (5)

Near Tc and at low pressure, the input parameters α, βi, γ , K ,
may be calculated using weak-coupling theory as

α(T, P) = N (0)(1 − T/Tc(P))/3, (6)

β0(P) = 7ζ (3)

240π2

N (0)

(kBTc(P))2 , (7)

βi(P) = niβ0(P), ni = (−1, 2, 2, 2,−2), (8)

K (P) = 7ζ (3)

60
N (0)

(
h̄vF

2πkBTc(P)

)2

, (9)

K (P) ≡ α(T, P) ξ 2
GL, (10)

ξGL(T, P) = ξ0√
1 − T/Tc

(
7ζ (3)

20

)1/2

, (11)

ξ0(P) = h̄vF

2πkBTc(P)
, (12)

γ = 3, (13)

where N (0) is the single-spin density of states at the Fermi
energy in the normal state, vF is the Fermi velocity, ξGL is
the Ginzburg-Landau coherence length, and ξ0 is the zero-
temperature coherence length. These coherence lengths serve
as the characteristic distance increment for the system at a
given temperature and pressure. To determine the equilibrium
states of the system we find the Euler-Lagrange equations
of the functional varying about a spatially-dependent order
parameter Aμi(z) of the form

Aμi(z) =
⎡
⎣�xx(z) 0 0

0 �yy(z) 0
0 0 �zz(z)

⎤
⎦, (14)

where, for consistency with confinement nomenclature, we
have chosen our order parameter to be varying in ẑ. We
consider the order parameter in x̂ and ŷ to be spatially homo-
geneous and infinite (∇x,yAμi ≡ 0). By applying the boundary
conditions in Table I, we can solve for any domain wall
configuration, provided the spatial variation is along only
one axis. Equation (5) shows that the solutions for Aμz with
∇z �= 0 are mathematically equivalent to solutions for Aμx

with ∇x �= 0. Therefore, it is possible to rotate the solution
axes by switching order parameter component.

To facilitate the numerical work, we employ a scaled order
parameter aμi = Aμi/�B proposed in Ref. [33], where �B is
the equilibrium B-phase order parameter in the bulk super-
fluid. From weak-coupling theory, we compute the bulk order
parameter and scaling coefficients:

�B =
[

α

2(3β12 + β345)

]1/2

, (15)

∂i ≡ ξGL ∇i, (16)

ζi ≡ βi

3β12 + β345
, (17)

where we have used the convention βi j··· ≡ βi + β j + . . .

Defining a dimensionless free energy density f ≡ f /(α �2
B),

we obtain expressions for the bulk and gradient contributions:

fB = 3
2 − Tr(aa†) + 1

2ζ1|Tr(aaT )|2 + 1
2ζ2[Tr(aa†)]2

+ 1
2ζ3Tr(aaT a∗a†) + 1

2ζ4Tr(aa†aa†)

+ 1
2ζ5Tr(aa†a∗aT ), (18)

fG = (γ − 1)∂ jaμ j∂ia
∗
μi + ∂ jaμi∂ ja

∗
μi, (19)

and a total dimensionless free energy F = ∫
(fB + fG).

A. Strong-coupling corrections

The weak-coupling values of the parameters α, βi, γ , K ,
are only expected to give valid results in the low-pressure
regime, as the pairing interaction itself is a functional of the
order parameter [36]. To expand our results to the pressure
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FIG. 1. �βSC
i values from [34,35], with polynomial fits used in

this paper.

range P ∈ [0, 34] bar, we implement experimentally-obtained
corrections. Employing the Doniach-Engelsberg exchange-
enhancement model [37], we do not expect there to be
corrections to the second-order terms K , α, γ and we continue
to use values calculated using weak-coupling theory. These
corrections give strong-coupling parameters

βi(T, P) = βWC
i (P, Tc(P)) + T

Tc
�βSC

i (P), (20)

which allow us to extend our calculations over the
experimentally-measured pressure domain. To increase the
resolution of our calculations, we apply polynomial fits. Ex-
perimental data from Refs. [34,35], along with polynomial
fits, may be seen in Fig. 1.

GL theory is based on an expansion of the free energy
about a small order parameter and is only expected to be valid
for temperatures near Tc. To allow the order parameter to satu-
rate at lower temperatures, we follow the example of Ref. [14]
and replace the Ginzburg-Landau coherence length ξGL in (10)
by the characteristic length scale from weak-coupling BCS
theory:

ξ�(T ) = h̄vF√
10 �BCS

B (T )
, (21)

which is consistent with ξGL in the regime T ≈ Tc. Using the
approximation [38],

�(T )

�(0)
≈

{√
1 − T/Tc (0.9663 + 0.7733T/Tc), t � 0.3

1, t < 0.3
,

(22)

for the reduced temperature t = T/Tc, and �(0) ≈ 1.76 kBT
in 3He-B [39], we can set up a relationship between these
lengths, which will allow for an accurate determination of
the spatial variation of the order parameter for temperatures
T < Tc.

B. Interfacial tension

To determine the relative cost of the different structures
examined, we exploit the fact that our system is translationally
invariant in two dimensions and define the tension, following
Ref. [29]:

σ = F

A
, (23)

where A is the area of the interface. Thus two of the dimen-
sions in the spatial integral cancel exactly and we need only
integrate Eqs. (18) and (19) in one dimension. This integration
will introduce a factor of the characteristic length scale and
therefore suggests scaling by a factor of f B

c ξ�, which in our
scaled energy functional (18) is exactly –1.5, in agreement
with Ref. [29]. Numerical integration of the condensation
energy in this manner returns –1.5 to better than one part in
3 × 1015. We use the theoretical value in these calculations to
avoid singularities when determining the gradient contribution
alone. The integrations were performed numerically using the
converged solutions for the order parameter and a standard
Python library quadrature integration routine. Weak-coupling
values for the interface tension are given in Table I.

C. Stability and decay

Multiple self-consistent solutions to the minimization of
the Ginzburg-Landau free-energy functional [Eqs. (18), (19)],
are possible. We employ a relaxation method, wherein an
initial solution guess is iterated upon until the residuals from
the Euler-Lagrange equations converge within a specified
tolerance. Each iteration approaches the final solution more
closely, and this process may be seen to be analogous to itera-
tion towards lower-energy states of the system [40]. It follows
that the obtained solution is highly dependent on the shape of
the initial mesh and it is possible that the solutions we find
do not represent global energy minima. Alternative solutions
to the boundary value problem may represent lower-energy,
physically realizable systems [29]. To access these lower-
energy states, we follow the example of Ref. [29] and apply
a series of perturbations to the converged solution. These
perturbations were added to a converged solution and used as
a new initial guess for the solver. The primary perturbations
we employed were of the form

δAμi(z) =
N∑

k=0

C(k)
μi

cosh [(z − zk )/s]
, (24)

with parameters C, zk , N , and s. The most important parameter
for our analysis is the perturbation amplitude C:

C = max
μ,i

δAμi(z). (25)

The other parameters zk the spatial shift of the perturbation,
N the number of simultaneous perturbations, and s the width
parameter of the perturbation were changed in a situation-
dependent manner, with a variety of combinations applied
to each interface. Perturbations were applied to (up to) all
nine real components of the converged order parameter to
provoke varying decays. To test the dependence of the con-
verged solution on the type of perturbation applied, alternative
trigonometric perturbations were tested. When applied with
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comparable amplitude, spatial shift, and widths, these were
found to return solutions consistent with the inverse hyper-
bolic perturbations in Eq. (24).

Our stability analysis comprised of finding the lowest-
amplitude perturbation that could cause an alternative solution
to converge in weak coupling, then establishing whether
this alternative solution would still be formed in the strong-
coupling regime. For all decay schemes explored, we found
no difference in this critical perturbation amplitude between
weak and strong coupling, with the same alternative solutions
being formed in each case. We are able to access many of
the same decay schemes reported in Ref. [29], although we
note that the accessible solutions as well as the exact perturba-
tion required to obtain differing solutions necessarily vary by
solver algorithm. Our analysis gives no evidence contradicting
the stability conclusions of Ref. [29], namely that BB10 is
stable against real perturbation, while all other interfaces ex-
amined decay more easily to alternative domain wall/texture
solutions. Notably, we confirm that BB12 remains susceptible
to decay into either a double interface or a texture, dependent
on the form of the perturbation. This lack of stability in the
bulk, however, does not preclude the type-z domain wall’s
characteristic suppression of Azz as it transits from 1 to –1.
As such it remains a good choice for modeling the surface
pair breaking at a confinement boundary, as discussed later in
Sec. VI. These calculations allow us to conclude that domain
wall stability is not affected by strong-coupling corrections.

IV. SPATIAL VARIATIONS OF THE ORDER PARAMETER

We have performed simulations of the order parameter’s
variation across an arbitrary domain of D = 140 ξ�, following
Ref. [29], with Dirichlet boundary conditions and the final
form of the order parameter detailed in Table I. Simulations
were performed using both weak and strong-coupling pa-
rameters in the parameter space T ∈ [0, Tc(P)], P ∈ [0, 34]
bar. Solutions were obtained using standard Python libraries
for boundary-value problems, using either unity or Fermi
functions as the initial mesh, depending on the boundary con-
ditions. We find that our weak-coupling results are consistent
with those reported in Ref. [29], confirming the validity of our
computational method.

Figure 2 shows the change in order parameter for the
BB10 and BB12 domain walls at 15 bar and T = 0.85 Tc. We
see that in both types, the domain wall with strong-coupling
corrections is thicker, and that the components of the order
parameter with unchanged sign grow—as shown in the insets.
The increase in domain-wall thickness is observed over the
majority of the phase diagram as shown in Fig. 3. We also
observe an increase in domain-wall width with increasing
temperature, with a larger change in the BB10 interface than
in the BB12 interface. This trend is seen at all pressures except
a small region near saturated vapor pressure, which shows the
opposite trend, Fig. 2. Note that the weak-coupling solutions
are necessarily uniform throughout the parameter space and
are reported in Table I.

In Fig. 3(c) we compare the type-x and type-z solutions.
We observe that the width of the BB12 wall is always greater
than that of the BB10 wall, with the solutions approaching
one another at increased temperature and pressure. We also
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FIG. 2. Converged strong-coupling solution to the three nonzero
components of the order parameter for domain walls at T =
0.85 Tc(15 bar), P = 15 bar. Interfaces presented are (a) type-x
(BB10), and (b) type-z (BB12). Weak-coupling solutions are un-
derlaid in grey. Insets show an enlarged area of Axx , Ayy near the
domain wall. Note the separation between components in (a) due to
the higher gradient energy contribution of Axx causing suppression in
the hard axis. This separation is not present in the type-z interface as
both components have equally weighted gradient energies.

note that the ratio between the BB12 wall and the BB10 wall
is always greater than that between the weak and strong-
coupling solutions. While this result may follow naturally in
weak coupling from (5) and (13), its persistence in the pres-
ence of strong-coupling corrections indicates that, spatially,
the effect of changing domain wall types is more significant
than changing from weak to strong-coupling β parameters. In
light of these results, we do not expect the characteristic length
scales of physically-implementable systems to be significantly
altered by strong-coupling corrections.

V. INTERFACIAL TENSION

We gauge the relative likelihood of domain wall formation
by computing the interface tension σ across the same phase
diagram that we used for our analysis of the spatial deforma-
tion. This value serves as an indicator of the energy cost of
the hard domain wall as compared to the bulk condensation
energy. For these calculations, the bulk B phase has σ = 0.
As in Sec. IV, we use Ref. [29] as a comparison to confirm
the validity of our calculations [41]. As observed for the
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FIG. 3. Domain wall widths l (ξ�) for the BB10 (type-x) and BB12 (type-z) interfaces, showing that strong-coupling corrections increase
the domain wall width over most of the phase diagram. Grey dashes in (a), (b), and their color-bar mark the boundary of the region in the
phase diagram where the weak-coupling approximation applies. Temperatures below the dashed line agree with the weak-coupling result
within ±1%. (a) Ratio of strong-coupling to weak-coupling domain size for the BB10 interface. (b) Ratio of strong-coupling to weak-coupling
domain size for the BB12 interface. We see that the thickness of this domain wall is not increased with strong coupling as much as for the BB10
interface. Though not plotted here, this trend is consistent across all interfaces examined. (c) Ratio of strong-coupling values BB12/BB10. The
type-z interface is universally wider than the type-x interface. This is the case for all interfaces, with BB10 universally the narrowest domain
wall.

spatial deformation, weak-coupling results are necessarily P,
T independent and are reported in Table I.

Selected results for the interface tension are presented in
Fig. 4. Taking the ratio of the tensions σSC/σWC , we see
that including the strong-coupling corrections reduces the in-
terface tension across most of the phase diagram with the
exception of the anomalous low-pressure region also observed
in Fig. 3. The relative energy cost of the domain wall is
reduced as T → Tc with the lowest tensions calculated in the
region where the domain wall is thickest. Even for the most
energetically costly BB12 interfaces, which have σWC over
an order of magnitude greater than BB10, the ratio σSC/σWC

remains consistently ∈ [0.85, 1.15] with a near-identical dis-

tribution, providing further evidence that the shift between
domain wall types is much more significant than the shift
between weak and strong coupling. When we examine the
tension ratio between domain wall types as in Fig. 4(c), we see
that temperature and pressure have negligible effects on this
value. That is, strong-coupling corrections affect all domain
walls similarly.

Two areas of the phase diagram are of particular interest.
Close examination of the region near saturated vapor pressure
reveals that the trend of increasing interfacial tension with
decreasing pressure continues past unity (the weak-coupling
approximation) and gives an increased domain wall tension
for pressures below 0.7 bar. This region of increased energy
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FIG. 4. Interfacial tension σ ( f B
c ξ�) for the BB10 (type-x) and BB12 (type-z) interfaces, showing that the strong-coupling corrections

lower the interface tension across most of the phase diagram. Only the two simplest interfaces are plotted here, however the trend observed in
(a) and (b) is consistent for all domain walls studied. Grey dashes in (a), (b), and their colorbar mark the boundary of the region in the phase
diagram where the weak-coupling approximation applies. Temperatures below the dashed line agree with the weak-coupling result within
±1%. (a) Ratio of strong-coupling to weak-coupling tension for the BB10 interface. (b) Ratio of strong-coupling to weak-coupling tension
for the BB12 interface. (c) Ratio of strong-coupling values σz/σx showing that the BB10 interface is universally lower energy than the BB12
interface. This is consistent for all domain wall configurations with BB10 always seen to be lower energy.
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of the BB10 domain wall, in particular, suggests that searches
for the PDW state should not be focused on the low-pressure
region of the phase diagram. Additionally, examining Fig. 4,
we note that the high-temperature region where the interfacial
tension is lowest in panels (a), (b), coincides with the region
in panel (c) where the tension ratio is lowest. This suggests to
us that the strong-coupling corrections contribute differently
between domain wall types and spurred further investigation
into the energetics of domain walls.

To investigate these differences, we recall definitions of F
and σ from Eqs. (18), (19), and (23) we perform the separa-
tion:

σ = σB + σG, (26)

which allows us to examine the relative contributions of the
gradient and bulk components of the interfacial tension. Tak-
ing the ratio of σG/σ , we note that the gradient contribution
to the interfacial tension of the domain wall is relatively con-
stant across the phase diagram, with variations on the order
of the variation in Fig. 4(c). Additionally, the changes from
weak to strong-coupling gradient ratios are negligible, on the
order of 0.01%. We also confirm, as detailed in Table I, the
gradient contributions are almost exactly one-half of the total
interface tension regardless of domain wall type, as originally
calculated in [24]. Since the gradient energy is not affected by
strong-coupling corrections in our model, changes in the bulk
free-energy calculation (4) due to strong-coupling corrected
β parameters must be perfectly matched by concomitant
changes to the spatial solution in order to preserve this energy
balance. The equality between gradient and bulk contributions
can be explained by energy-conservation arguments [24], and
thus is not expected to be altered in strong coupling. The gra-
dient contribution may be affected by any confinement effects
for the type-z domain walls, and it would be interesting to
further investigate the implications of this energy breakdown
for the formation of PDW states in confined geometry.

The general decrease in interfacial tension across the phase
diagram, combined with our results showing that strong-
coupling corrections contribute less to domain wall energetics
than the domain wall’s type, strongly suggest that the mech-
anisms for the formation of hard domain walls, and therefore
PDW states, will not be suppressed in strong coupling.

VI. DOMAIN WALLS IN A PDW

The original prediction of the stripe phase comprised
of broken gauge and translational symmetry, with hard do-
main walls separating a periodic arrangement of degenerate
domains of 3He-B [12,22]. Since this translational symmetry-
breaking occurs in the plane of the confined slab, it is
necessarily a two-dimensional system. However, the proposed
pair-breaking interactions are well-described by domain walls
in 1D, the subject of this paper.

The pair-breaking suppression of Aμz at a confinement
boundary may be modeled using the BB12 domain wall. The
order parameter Azz goes to zero at the node of the solution,
and rearrangement of this curve as shown in Fig. 5(a) shows
this surface scattering effect. This is not just a qualitative
similarity, as the rearranged type-z domain wall conforms
exactly to solutions of the planar-distorted B phase in specular

(c) (d)
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FIG. 5. Schematic representation of hard domain walls in con-
fined geometry. (a) 1D type-z solution projected onto 2D geometry
confined in ẑ. The maximal pair-breaking trajectory is indicated by
the grey arrow, with the order parameter component Azz suppressed
at the domain walls. (b) 1D type-x solution projected onto 2D ge-
ometry confined in ẑ. We perform this projection by rotating axes as
described in Sec. VI, presenting the results as varying in x̂ to facilitate
the visualization of pair breaking in a PDW. The pair-breaking tra-
jectory in (a) is compensated for by the sign change in Azz across the
domain wall. This domain wall creates an additional pair-breaking
trajectory across the wall, indicated by the grey arrow. (c) Type-z
solutions (open circles) overlaid with a direct solution for confined
geometry and specular boundary conditions (solid line), as calculated
in Ref. [33], confirming the validity of mapping a type-z solution
onto this geometry. (d) 3D representation of the superposition of
these domain walls into a PDW-like state. Each dashed arrowhead
represents one-half of a domain wall solution, with the head pointing
towards the node in Azz.

boundary conditions, computed using the method of Ref. [33].
We show these solutions superimposed in Fig. 5(c). It is pro-
posed that alternating BB10 domain walls across the direction
of confinement would reduce the pair-breaking cost in regions
near the domain wall by forcing the sign change across the
entire domain wall [12–15,21]. This type-x pair-breaking tra-
jectory is contrasted with the surface interaction in Fig. 5(b).
The PDW state may be considered to be a combination of
these domain walls. In Fig. 5(d), we take the product of the
type-x and type-z solutions to give an approximate represen-
tation of Azz in such a two-dimensional configuration.

VII. CONCLUSION

We have applied experimental strong-coupling corrections
to Ginzburg-Landau free-energy calculations of hard domain
walls in superfluid 3He-B. The self-consistent solutions to
the order parameter were found to have increased domain-
wall thickness and variation in amplitude when compared to
weak-coupling solutions. Interface tensions were computed
for each domain wall configuration and were found in all
cases to lower the interfacial tension across the majority of
the phase diagram. We note that variation across the phase
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FIG. 6. Differences between calculations of σz/σx in strong cou-
pling, performed using Wiman �βi parameters [42,43] vs Choi �βi

parameters [34], as described in the Appendix. Here, the Choi cal-
culations have been subtracted from the Wiman calculations. This
phase diagram is representative of these differences for all the cal-
culations performed in our manuscript, with only the magnitude of
the differences changing. The extrema of these differences for each
calculation are presented in Table II.

diagram for a single domain wall is near-universally smaller
than variation caused by changing interface configuration
and thus that domain wall type is the greatest determiner
of interface energetics, exceeding the effects of temperature,
pressure, and thus strong-coupling corrections. We exam-
ine the relative contributions of gradient and bulk interfacial
tension and find that the gradient contribution is constantly
one-half of the total tension in all domain wall types. From
these results, we conclude that domain wall formation, and
the PDW state, should not be adversely affected by strong
coupling.
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APPENDIX: ALTERNATIVE CORRECTION PARAMETERS

During the review process, we were made aware of new
calculations of �βi [44], performed by J.J. Wiman in his PhD

TABLE II. Summary of differences between use of �βi param-
eters from Ref. [42,43] vs from Ref. [34]. The first column is the
mathematical operation performed, with the second column denoting
the figure in which this calculation is presented in the main body
of this paper. The third column gives the extrema of the differences
between each set of calculations, with the Choi calculations having
been subtracted from the Wiman calculations.

Calculation Equiv. Fig. Difference Extrema

lSC/lWC (BB10) 3(a) −3.01 × 10−3, 2.00 × 10−3

lSC/lWC (BB12) 3(b) −2.74 × 10−3, 1.79 × 10−3

lz/lx (SC) 3(c) −3.45 × 10−4, 6.43 × 10−4

σSC/σWC (BB10) 4(a) −1.35 × 10−3, 2.37 × 10−3

σSC/σWC (BB12) 4(b) −1.40 × 10−3, 2.47 × 10−3

σz/σx (SC) 4(c) −1.18 × 10−4, 1.88 × 10−4

thesis [42] and which are published in Ref. [43]. These calcu-
lations are based on new microscopic theory and represent an
updated, as well as potentially more accurate, strong-coupling
parameter set. To resolve any ambiguity, we have since per-
formed our calculations using these new parameters.

We find no alterations to our conclusions, with the new
results for both domain wall thickness and interface tension
calculations in agreement with our prior results within at least
0.1%, and for some calculations we find significantly smaller
changes. The plots generated by these new parameters are
visually indistinguishable from our Figs. 3, 4, and as such we
have not included them here. Instead, we have computed the
differences between results using both sets of �βi parameters
and present them in this Appendix. The principal differences
are located in areas near Tc, as would be expected due to
the form of the corrections in Eq. (20). We note that these
differences are minute and do not affect the trends described in
Secs. IV and V. Most significantly, the differences computed
in the plots comparing domain wall types (Fig. 6, Table II)
are an order of magnitude smaller than those for the single
domain walls, as seen in Table II. This reduction in extrema
further reinforces our conclusion that these revised parameters
do not affect the primary conclusion of this paper—namely,
that differences between domain walls are far more signifi-
cant than those imparted by strong-coupling corrections. We
further note that the zone of decreased thickness/increased
tension present near saturated vapor pressure is preserved with
these new parameters, despite the markedly different low-
pressure behavior of the Wiman �βi parameters. Thus, by
having repeated these calculations with the Wiman parameters
[43] we feel our results are reinforced, and continue to expect
domain wall formation to be unaffected in the strong-coupling
regime.
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