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Ballistic SNS sandwich as a Josephson junction
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This paper develops the theory of the ballistic SNS sandwich, in which the Josephson effect exists without the
proximity effect. The theory considers restrictions imposed by the charge conservation law and the incommen-
surability of the superconducting gap with the Andreev level energy spacing. This resulted in revisions of some
conclusions of previous works. In the one-dimensional (1D) case, the Josephson phase of the ground state of the
ballistic SNS sandwich is not necessarily zero but may have any value from 0 to π . If this value is π , this is a
π junction, which was well known before. The suppression of the supercurrent at temperatures on the order of
or higher than the Andreev level energy spacing, which was predicted in previous investigations, does not take
place in the 1D case. At zero temperature, the ballistic SNS sandwich of any dimensionality is not a weak link.
This leads to unusual properties: the absence of the Josephson plasma mode localized at the normal layer and
the Meisner effect with the same London penetration depth in the normal and the superconducting layers.
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I. INTRODUCTION

Originally, the Josephson junction was considered an
insulator or normal metal bridge between two superconduc-
tors. The Josephson coupling between superconductors was
provided due to penetration of the superconducting order pa-
rameter into the bridge (proximity effect) if the bridge was
not too long compared with the coherence length. However, it
was noticed long ago [1–3] that, if the bridge is a ballistic
normal metal, the Josephson coupling is possible even for
rather long bridges. This was demonstrated in an idealized
model of the ballistic SNS sandwich (planar SNS Josephson
junction). There is a normal layer of width L between two
superconductors. The layers are perpendicular to the axis x
(Fig. 1). The effective masses and Fermi energies are the same
in the superconductors and in the normal metal. The only dif-
ference is that the pair potential sharply vanishes in the normal
layer −L/2 < x < L/2. Investigations of this model continue
up to now [4]. The ballistic SNS Josephson junction was
studied for unconventional pairing in high-Tc superconductors
[5]. There were theoretical and experimental investigations for
other materials bridging two superconductors: graphene [6,7],
topological insulator [8], and nanotubes [9].

Previous theoretical investigations of the ballistic SNS
sandwich have left some questions unanswered up to now.
Ishii [2] noticed that canonical charge-phase relations for the
pair of Hamiltonian conjugated variables were not satisfied.
There was a problem with the charge conservation law be-
cause the theory postulated some spatial distribution of the
order parameter (gap) without solving the self-consistency
equation for gap, which determines this distribution. There
were also disagreements on the final form of the current-phase
relation.
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In this paper, we suggest an approach free of those flaws.
Restrictions imposed by the charge conservation law were
checked. This resulted in a revision of some previous results.
The charge conservation law can be satisfied only considering
three contributions to the total current: (i) the current induced
by the phase gradient in the superconducting layers—we shall
call it the Cooper-pair condensate or simply condensate cur-
rent; (ii) the current, which can flow in Andreev states even if
the Cooper-pair condensate is at rest and all Andreev states
are empty—it will be called vacuum current; and (iii) the
current induced by nonzero occupation of Andreev states,
i.e., by creation of quasiparticles—it will be called excitation
current. The condensate motion produces the same current
in superconducting and normal layers of the SNS sandwich,
while vacuum and excitation currents, which are connected
with the Andreev states, exists only in the normal layer. The
charge conservation law requires that, in a stationary state, the
total current in all layers must be the same. Thus, the sum of
the vacuum and the excitation currents must always vanish.

Our analysis revealed the effect of incommensurability of
the spectrum gap in the superconducting layers to the An-
dreev level energy spacing in the 1D case, when normal and
superconducting layers become normal and superconducting
segments of a 1D wire. The effect is important up to high
temperatures. Here and later on, low or high temperatures
mean temperatures much lower or much higher than the
Andreev level energy spacing but still always much lower
than the superconducting gap. Due to the incommensurability
effect, in the ground state of the SNS sandwich, the phase
difference θ across the SNS sandwich is not necessarily zero
but may vary from zero to π . In the past, Josephson junc-
tions with the ground state at the phase difference ±π were
well known and called π junctions. In analogy with this, we
shall call junctions with the phase difference θ in the ground
state θ junctions. Josephson π junctions were predicted
and observed in ferromagnetic junctions [10], junctions with
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FIG. 1. Energy levels and phases in the SNS sandwich. The
interval of continuum states is shaded. The Andreev bound states
inside the gap �0 are shown by solid lines. The lower part of the
figure shows the bound-state phase θ0, the superfluid phase θs, and
the Josephson phase θ .

unconventional superconductivity [11], quantum dot junctions
[12], and SINIS junctions [13]. The transition from 0 to π

junction was observed in carbon nanotube Josephson junc-
tions [9] (see further discussion in the concluding Sec. IX).
Another outcome of our analysis is that strong suppression
of the supercurrent at temperatures comparable or higher than
the Andreev level energy spacing, which was predicted in pre-
vious investigations [1–3], does not take place in 1D systems.

Sometimes at currents smaller than critical values, not only
the sum of the vacuum and excitation currents vanish, but any
of them vanishes separately. This takes place in 1D systems
at any temperature and in systems of any dimensionality at
zero temperature. Thus, the charge is transported only by
the moving condensate, and the phase distribution does not
differ from the case when the normal layer is replaced by a
superconducting layer from the same material as other layers,
i.e., does not differ from a uniform superconductor. Then the
ballistic SNS junction is not a weak link, and therefore, there
is no Josephson plasma mode with the frequency much lower
than the plasma frequency in the superconducting layer and no
suppression of the Meisner effect in the normal layer. A weak
magnetic field penetrates into the normal layer on the same
London penetration depth as into the superconducting layers,
in contrast to usual Josephson junctions with the Josephson
penetration depth much larger than the London penetration
depth. At stronger magnetic fields, the Josephson vortices
appear with the core size of the order of the normal layer
thickness L. Since their energy is lower than the energy of
bulk Abrikosov vortices, Josephson vortices are pinned to the

normal layer, and the first critical magnetic field for the SNS
junction is smaller than that for superconducting bulk but not
so small as in usual Josephson junctions.

The analysis mostly addresses the 1D case, when only
motion along the x axis normal to layers is considered.
Its generalization on the two-dimensional (2D) and three-
dimensional (3D) cases is straightforward. Integration over
spaces of transverse wave vectors in 2D and 3D cases results
in replacement of the 1D electron density by 2D and 3D
densities, respectively, in all expressions for currents, which
become current densities.

II. THE BOGOLYUBOV–DE GENNES THEORY

Since in our model the order parameter � is supposed to
be known, we do not need the full Bardeen-Cooper-Schrieffer
(BCS) Hamiltonian with the interaction term quartic in the
electron wave function. It is sufficient to use the quadratic
in the wave function term in the second-quantized effective
Hamiltonian introduced in the self-consistent field method
[14]. Its density is

Heff = h̄2

2m

[∇ψ̂†
γ (x)∇ψ̂γ (x) − k2

f ψ̂
†
γ (x)ψ̂γ (x)

]
+�ψ

†
↑(x)ψ†

↓(x) + �∗ψ↓(x)ψ↑(x), (1)

where ψ̂†
γ (x) and ψ̂γ (x) are operators of creation and anni-

hilation of an electron, and the subscript γ has two values
corresponding to the spin up (↑) and down (↓). We address
a 1D problem with the Fermi wave number k f , assuming that
our system is uniform in the plane normal to the x axis. In
multidimensional (2D and 3D) systems with the Fermi wave

number kF k f =
√

k2
F − k2

⊥, where k⊥ is the transverse com-
ponent of the multidimensional wave vector k. The complex
order parameter, or gap, � can vary in space.

The quadratic effective Hamiltonian can be diagonalized
by the Bogolyubov-Valatin transformation from the free elec-
tron operators ψ̂†

γ (x) and ψ̂γ (x) to the quasiparticle operators

â†
iγ and âiγ :

ψ̂↑(x) =
∑

i

[ui(x)âi↑ − v∗
i (x)â†

i↓],

ψ̂↓(x) =
∑

i

[ui(x)âi↓ + v∗
i (x)â†

i↑]. (2)

For diagonalization of the effective Hamiltonian, the functions
ui(x) and vi(x) must be stationary solutions of the time-
dependent Bogolyubov–de Gennes equations [15]:

ih̄
∂u

∂t
= δH

δu∗ = − h̄2

2m

(∇2 + k2
f

)
u + �v,

ih̄
∂v

∂t
= δH

δv∗ = h̄2

2m

(∇2 + k2
f

)
v + �∗u. (3)

The summation over the subscript i means the summation over
all bound and continuum states corresponding to stationary
solutions of the Bogolyubov–de Gennes equations in Eq. (3).
The Bogolyubov–de Gennes equations are the Hamilton
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equations with the Hamiltonian (per unit volume)

HBG = h̄2

2m

(|∇u|2 − k2
f |u|2) − h̄2

2m

(|∇v|2 − k2
f |v|2)

+�u∗v + �∗v∗u. (4)

After the diagonalization, the effective Hamiltonian becomes

Heff =
∑

i

εi(a
†
i↑ai↑ + a†

i↓ai↓ − 2|v|2), (5)

where εi is the energy of the ith quasiparticle state.
In general, the functions u(x, t ) and v(x, t ) can be consid-

ered two components of a spinor wave function:

ψ (x, t ) =
[

u(x, t )
v(x, t )

]
, (6)

describing a state of a quasiparticle, which is a superposition
of a state with one particle (upper component u), and a state
with one antiparticle, or hole (lower component v). The num-
ber of particles (charge) is not a quantum number of the state.

The Hamiltonians in Eqs. (1) and (4) are not gauge invari-
ant, and therefore, the total number of electrons (charge) is not
a conserved quantity. Any ith solution of the Bogolyubov–de
Gennes equations in Eq. (3) satisfies the continuity equation:

∂ni

∂t
+ 1

e
∇ ji = 2i

h̄
(�∗v∗

i ui − �viu
∗
i ), (7)

where

ni = |ui|2 − |vi|2, (8)

is the electron density and

ji = − ieh̄

2m
(u∗

i ∇ui − ui∇u∗
i ) − ieh̄

2m
(v∗

i ∇vi − vi∇v∗
i ), (9)

is the electric current.
Although in the Bogolyubov–de Gennes theory the charge

is not conserved, there is another important conservation law
for the total probability to find a quasiparticle in the ith state
somewhere in the space. The corresponding continuity equa-
tion is

∂Ni

∂t
+ ∇gi = 0, (10)

where

Ni = |ui|2 + |vi|2, (11)

is the quasiparticle density and

gi = − ih̄

2m
(u∗

i ∇ui − u∇u∗
i ) + ieh̄

2m
(v∗

i ∇vi − vi∇v∗
i ), (12)

is the current, which will be called the quasiparticle flux.
While the density ni is the difference of the densities of
particles and holes, the density Ni is the sum of these two
densities.

The charge conservation law restores if one solves the
Bogolyubov–de Gennes equations in Eq. (3) together with the
self-consistency equation. However, we adopt the approach
used earlier [1–3]. Instead of solving the self-consistency
equation, we simply postulate the gap � of constant modulus
�0 = |�| in the superconducting layers and zero gap inside
the normal layer. The model is expected to be valid if the

thickness L of the normal layer essentially exceeds the co-
herence length:

ζ0 = h̄v f

�0
. (13)

The total density n and the total charge current j are expec-
tation values for the operators:

n̂(x) = ψ̂
†
↑(x)ψ̂↑(x) + ψ̂

†
↓(x)ψ̂↓(x)

=
∑

i

[|ui(x)|2â†
i↑âi↑ + |vi(x)|2âi↓â†

i↓]

=
∑

i

[|ui(x)|2â†
i↑âi↑ − |vi(x)|2â†

i↓âi↓ + 2|vi(x)|2],

(14)

ĵ = − ieh̄

2m

∑
i

[(u∗
i ∇ui − ui∇u∗

i )â†
i↑âi↑

+ (v∗
i ∇vi − vi∇v∗

i )â†
i↓âi↓ − 2(v∗

i ∇vi − vi∇v∗
i )].

(15)

There are two additive contributions to the density, the energy,
and the current [Eqs. (5), (14), and (15), respectively]. One is
the vacuum contribution calculated assuming that all energy
levels are not occupied (quasiparticle vacuum). This is given
by the last terms in the equations, which do not contain any
quasiparticle operator. The other terms in the equations yield
the contribution of excitations due to possible occupation of
energy levels.

In a resting uniform superconductor with the constant �0,
solutions of the Bogolyubov–de Gennes equations are plane
waves (

u0

v0

)
exp

(
ikx − iε0t

h̄

)
, (16)

where

u0 =
√

1

2

(
1 + ξ

ε0

)
, v0 =

√
1

2

(
1 − ξ

ε0

)
. (17)

The quasiparticle energy is given by the well-known BCS
expression:

ε0 =
√

ξ 2 + �2
0. (18)

Here, ξ = (h̄2/2m)(k2 − k2
f ) ≈ h̄v f (k − k f ) is the quasipar-

ticle energy in the normal Fermi liquid, and v f = h̄k f /m
is the Fermi velocity. The states with positive and negative
signs of ξ correspond to particlelike and holelike branches
of the spectrum, respectively. Note that, mathematically, the
Bogolyubov–de Gennes equations have solutions with nega-
tive and positive energies ±ε0, but only solutions with positive
energy ε0 have the physical meaning [16]. In fact, consider-
ing solutions with negative energy would be double counting
since holelike solutions with positive energy but with k < k f

(negative ξ ) represent all states inside the Fermi surface.
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III. BOUND ANDREEV AND CONTINUUM STATES

A. Andreev bound states

The spectrum and the wave function for the present model
of the SNS sandwich have already been investigated in pre-
vious works, and it is sufficient here to present the résumé of
these investigations. In the limit of large Fermi wave numbers
k f � �0/h̄v f , the Bogolyubov–de Gennes equations of the
second order in gradients are reduced to the equations of
the first order. As a result, the boundary conditions on the
interfaces between the normal and superconducting layers
require the continuity of the wave function components u
and v but not their gradients. The components u and v are
superpositions of plane waves with wave numbers close to
either only +k f or only −k f . This means that, at interfaces
between normal and superconducting layers, only Andreev
reflection is possible, which does not change the quasiparticle
momentum essentially, but the quasiparticle group velocity
changes its sign.

Because of Andreev reflection, there are Andreev bound
states with energies 0 < ε0 < �0 localized in the normal
layer. The wave functions of these states, which satisfy the
Bogolyubov–de Gennes equations and the boundary condi-
tions, are given by(

u
v

)
=

√
N

2

{
exp

[ ± iη
2 ± imε0

h̄2k f

(
x − L

2

)]
exp

[− iθ+ ∓ iη
2 ∓ imε0

h̄2k f

(
x − L

2

)]
}

exp (±ik f x),

(19)
inside the normal layer −L/2 < x < L/2,(

u
v

)
=

√
N

2

[
exp

(± iη
2

)
exp

(−iθ+ ∓ iη
2

)] exp

(
±ik f x − x − L

2

ζ

)
,

(20)

inside the superconducting layer at x > L/2, and(
u
v

)
=

√
N

2

[
exp

(∓ iη
2

)
exp

(−iθ− ± iη
2

)] exp

(
γ ± ik f x + x + L

2

ζ

)
,

(21)

inside the superconducting layer at x < −L/2. Here,

eiη =
ε0 + i

√
�2

0 − ε2
0

�0
, cos η = ε0

�0
,

sin η =
√

�2
0 − ε2

0

�0
, (22)

and θ+ and θ− are the constant order parameter phases in the
superconducting layers at x > L/2 and x < −L/2. The upper
and lower signs correspond to the wave number semispaces
k > 0 and k < 0, respectively. The normalization constant

N = 1

L + ζ
, (23)

considers the penetration of the bound states into the super-
conducting layers with the penetration depth

ζ = ζ0
�0√

�2
0 − ε2

0

, (24)

which diverges when ε0 approaches the gap �0.

The boundary conditions are satisfied at γ = − iθ0
2 and the

Bohr-Sommerfeld condition:

ε0(s,±θ0) = h̄v f

2L
(2πs + 2η ± θ0), (25)

which determines the energies of the Andreev states. Here,
θ0 = θ+ − θ−, and s is an arbitrary integer. The notation s
for integers will appear further in other expressions, although
its value would be chosen differently. The two signs before
θ0 correspond to positive and negative signs of the 1D wave
numbers in the Andreev states. Further, we shall call the phase
difference θ0 across the normal layer the bound-state phase
because it shifts the bound states with respect to the gap.

Equation (25) is not an expression but an equation for ε0

since η depends on ε0. At small energy ε0 	 �0, η = π/2,
and the spectrum of the bound states is

ε0 = h̄v f

2L

[
2π

(
s + 1

2

)
± θ0

]
. (26)

At the energy ε0 close to �0 (�0 − ε0 	 �0), one can use the
approximation

η ≈
√

2(�0 − ε0)

�0
. (27)

Then the solution of Eq. (25) for ε0 yields

ε0 = �0 − h̄2v2
f

2�0L2

{√
1 + �0L

h̄v f
[2π (s + α) ∓ θ0] − 1

}2

,

(28)

where α is the fractional part of the ratio:

�0L

π h̄v f
= s + α. (29)

An integer s is chosen so that 0 < α < 1. The parameter α

is the measure of incommensurability of the gap �0 with the
level energy spacing.

The charge current in the occupied sth Andreev state is
determined by the canonical relation

j±(s) = 2e

h̄

∂ε0(s,±θ0)

∂θ0
= ± ev f

L + ζ
. (30)

The factor 2 considers that θ0 is the phase of a Cooper pair
but not of a single electron. As expected, this expression
fully agrees with the fact that the mass current is the total
momentum h̄k f in the state divided by the size L + ζ of the
bound state.

The existence of charge current in a bound state is the
consequence of the absence of the charge conservation law
in our model. At the same time, the quasiparticle flux given
by Eq. (12) vanishes in accordance with the conservation law
in Eq. (10) for the total number of quasiparticles.

B. Continuum states

Delocalized continuum states with ε0 > �0 are scatter-
ing states. For a quasiparticle (ξ > 0) incident from the left
and propagating from x = −∞ to x = ∞, the wave function

094517-4



BALLISTIC SNS SANDWICH AS A JOSEPHSON … PHYSICAL REVIEW B 104, 094517 (2021)

is [
u0(ξ )

v0(ξ )e−iθ−

]
exp

[
i

(
k f + mξ

h̄2k f

)
x

]

+ r

[
u0(−ξ )

v0(−ξ )e−iθ−

]
exp

[
i

(
k f − mξ

h̄2k f

)
x

]
, (31)

for x < −L/2, and

t

[
u0(ξ )

v0(ξ )e−iθ+

]
exp

[
i

(
k f + mξ

h̄2k f

)
x

]
, (32)

for x > L/2. Here, t and r are amplitudes of transmission and
reflection determined from the continuity of spinor compo-
nents at x = ±L/2 [3]. As in the case of bound states, the
analysis considers only the Andreev reflection. The reflection
and the transmission probabilities are

R(θ0) = |r|2 =
�2

0

[
1 − cos

( 2ε0mL
h̄2k f

− θ0
)]

2ε2
0 − �2

0 − �2
0 cos

( 2ε0mL
h̄2k f

− θ0
) , (33)

T (θ0) = |t |2 = 2
(
ε2

0 − �2
0

)
2ε2

0 − �2
0 − �2

0 cos
( 2ε0mL

h̄2k f
− θ0

) . (34)

The spinor in the normal layer −L/2 < z < L/2 is given by
the same expression as Eq. (19) for the bound state but with
different normalization constant N = T .

Similar expressions with the same R(θ0) and T (θ0) can
be derived for a quasihole (ξ < 0) incident from the right
and moving to the left. For a quasiparticle incident from the
right and a hole incident from the left, the reflection and the
transmission probabilities are R(−θ0) and T (−θ0).

The transmission probability differs from unity in the
energy interval of the order of �0, small with respect to
the Fermi energy ε f = h̄2k2

f /2m. The condition R + T = 1
follows from the conservation law for the number of quasi-
particles, which leads to the constant quasiparticle flux g in the
whole space [see Eq. (12)]. The scattering delocalized states
in the SNS sandwich were determined for θ0 = 0 by Bardeen
and Johnson [3] and for θ0 �= 0 in Refs. [17,18].

One can transform expressions for R and T , demonstrat-
ing their dependence on the incommensurability parameter α

introduced in Eq. (29):

T = 2
(
ε2

0 − �2
0

)
2ε2

0 − �2
0 − �2

0 cos
[ 2(ε0−�0 )mL

h̄2k f
+ 2πα − θ0

] . (35)

The reflection probability can be transformed similarly. Both
probabilities rapidly oscillate as functions of the energy, and
at large L, one may average over these oscillations, neglecting
variation of the energy ε0 within the short oscillation period.
The averaged reflection probability is

T̄ = 1

2π

∫ π

−π

2
(
ε2

0 − �2
0

)
dφ

2ε2
0 − �2

0 − �2
0 cos φ

= 2
(
ε2

0 − �2
0

)
√(

2ε2
0 − �2

0

)2 − �4
0

=
√

ε2
0 − �2

0

ε0
. (36)

After averaging, neither the incommensurability parameter α

nor the phase θ0 influences contributions of continuum states
to the transport process.

IV. QUASIPARTICLE VACUUM

A. Vacuum current

In the ground state in the superconducting layers, the elec-
tron fluid is at rest, and there are no currents. Mathematically,
in our model, the bound-state phase θ0 is an independent
parameter, and the energy of Andreev states depends on it. To
determine the ground state, one should find the θ0-dependent
energy of Andreev states and minimize it with respect to θ0.
Since the charge current is determined by the derivative of
the energy with respect to θ0, after minimization, the current
vanishes, as it should be in the ground state.

Further, we consider the vacuum not in the ground state
when the current does not vanish. Frequently, the terms vac-
uum and ground state are considered as synonyms. However,
we define vacuum as a broader term meaning the quasiparticle
vacuum when all Andreev levels are empty.

Neglecting the penetration depth ζ in Eq. (30), the total
current of all bound states vanishes if the numbers of states
with positive and negative momenta [two signs in Eq. (30)]
are equal (the sum of the numbers of states is even), and they
cancel one another. This is the case at phases θ0 = 0 and θ0 =
±π . However, at tuning, the phase θ0 energy levels move. At
both edges of the Andreev energy spectrum ε0 = 0 and ε0 =
�0, some levels can exit from the gap, and some new levels
can enter it. If α = 1

2 , the entrance and the exit processes at the
two edges are synchronized: at θ0 = ±π , a level exits (enters)
at the lower edge ε0 = 0 [see Eq. (26)], and simultaneously, a
level enters (exits) at the upper edge ε0 = �0 [see Eq. (28)].
The numbers of states with positive and negative momenta
remain equal, and the total current vanishes. At α �= 1

2 , levels
enter or exit at the lower edge of the Andreev spectrum at θ0 =
±π as before, but levels cross the upper edge at θ0 = ±2πα.
At −π < θ0 < −2πα and π > θ0 > 2πα, there is one state
with a positive or negative momentum without its counterpart
with an opposite-sign momentum. This means that the total
momentum is ±h̄k f , and the total electric current is ±ev f /L.
Eventually, the total vacuum current is

Jv = −
∑

s

[ j+(s) + j−(s)]

= J0

∑
s

{H[θ − 2π (s + α)] + H[θ − 2π (s + 1 − α)]

− 2H(θ − 2πs − π )}, (37)

where H(q) is the Heaviside step function, and

J0 = ev f

L
= πeh̄n0

2mL
. (38)

Deriving Eq. (37), we considered that, at any s and sign of
θ , there are two states corresponding to two spin values, and
according to Eq. (15), the vacuum current at an Andreev state
is two times less and has an opposite sign than the excitation
current j±(s). The factors 2 and 1

2 cancel one another.
In Eq. (38), the relation k f = πn0/2 between k f and the

1D electron density n0 was used. After this substitution, the
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FIG. 2. The vacuum current vs the bound-state phase θ0. Cur-
rents calculated neglecting or considering penetration of Andreev
states into superconducting layers at L/ζ0 = 50 are shown by solid
and dashed lines, respectively. The plots for α and 1 − α are identi-
cal. (a) α = 0. (b) α = 0.2. (c) The current and the energy averaged
over α.

formula becomes valid also for 2D and 3D systems, bearing
in mind that, at this generalization, n0 and Jv become the
electron density and current density in 2D and 3D systems,
respectively.

The stepwise dependence of the current Jv on the phase
θ0 at various α is shown in Figs. 2(a)–2(d) by solid lines. At
α = 1

2 , when the Andreev levels cross the lower (ε0 = 0) and

FIG. 3. The Andreev spectrum variation at tuning the bound-
state phase θ0 at α = 0. In the shaded area, the number of Andreev
states with energies growing and decreasing with θ0 are equal, and
the total current in these states vanishes (see the text). Only the
unshaded band closest to the gap edge ε0 = �0 is responsible for
the total current periodical dependence on θ0.

the upper (ε0 = 0) edge of the gap synchronically, the vac-
uum current vanishes except for the phases θ0 = 2π (s + 1

2 ).
At these phases, the vacuum current is proportional to the
derivative of the δ function δ[θ0 − 2π (s + 1

2 )].
In our derivation of the vacuum current dependence on θ0,

we used the concept of the spectral flow, which is rather pop-
ular in the analysis of SNS junctions (see, e.g., Refs. [19,20]).
The concept assumes that tuning of the phase θ0 leads to
steady motion of Andreev levels, which cross the whole gap,
i.e., enter the gap on one gap edge and exit from the gap on
the other edge. However, this picture is valid only in the limit
of infinite Fermi wave number when the Andreev levels are
degenerate at the phases 0 and π . Even small corrections to
this limit lift this degeneracy, introducing small gaps at the
phases 0 and π . As a result, at phase tuning, the Andreev
levels do not cross the gap but oscillate within bands separated
by the aforementioned small gaps. Our conclusions remain
valid even after this modification of topology of Andreev
levels. This is illustrated in Fig. 3 for the case α = 0 shown
in Fig. 2(a). Figure 3 shows the variation of the Andreev
level energies with varying phase θ0. In the shaded part of the
spectrum, at any phase, the numbers of levels with positive
and negative slope (i.e., with positive and negative currents)
coincide. Thus, contributions of these levels to the total vac-
uum current vanish. The variation of the total vacuum current
with the phase is determined only by the contribution of the
unshaded band closest to the gap edge. This contribution
(considering that, for any Andreev state, the vacuum current
differs from the current of the occupied state by the factor of
− 1

2 ) coincides with that shown by a solid line in Fig. 2(a).
The periodic dependence of the current on the incom-

mensurability parameter is fragile. In 2D and 3D systems,
integration over the transverse components of the wave vec-
tors should wipe out this dependence. Thus, it is reasonable
to consider the current averaged over α in the interval from
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0 to 1. After averaging, the vacuum current in the interval
−π < θ0 < π is

Jv = J0
θ0

π
. (39)

The periodical sawtooth dependence of the current Jv on θ0 is
shown in Fig. 2(c).

However, the penetration depth ζ diverges at ε0 → �0.
According to Eq. (30), at ζ → ∞, the current in the bound
state crossing the upper gap edge vanishes. Therefore, we
performed a more accurate calculation in this limit. At
�0 − ε0 	 �0, the spectrum of the bound state is de-
scribed by Eq. (28), and the total current in all bound
states is

Jv = −J0

2

⎧⎨
⎩

⎡
⎣1 − 1√

1 + �0L
h̄v f

(2πα − θ0)

⎤
⎦H(2πα − θ0) −

⎡
⎣1 − 1√

1 + �0L
h̄v f

(2πα + θ0)

⎤
⎦H(2πα + θ0)

+ ζ

(
1

2
,

h̄v f

2π�0L
+ 1 + α − θ0

2π

)
− ζ

(
1

2
,

h̄v f

2π�0L
+ 1 + α + θ0

2π

)}
. (40)

Here,

ζ (z, q) =
∞∑

s=0

1

(q + s)z
, (41)

is Riemann’s ζ function [21]. The series for Riemann’s ζ

function at z = 1
2 diverges, but the series for a difference of

ζ functions with different arguments q converges at large s,
which nevertheless corresponds with energies satisfying the
condition �0 − ε0 	 �0. Therefore, one can use the infinite
series with s → ∞. The vacuum current Jv calculated con-
sidering penetration of Andreev states into superconducting
layers at L/ζ0 = 50 is shown in Figs. 2(a)–2(c) by dashed
lines. Summarizing, the divergence of the penetration depth
at ε0 → �0 smears the current jump at the crossing of the
gap edge ε0 = �0 by the Andreev level, transforming it into
a smooth crossover. However, the width of the crossover is
small compared with the distance between levels and can be
ignored in the limit L → ∞.

B. Vacuum density

In the ballistic regime, the boundary conditions on the
interface affect the wave function in the whole bulk, but
it is natural to expect that the average density in the vac-
uum in the ballistic and diffusive regimes do not differ and
are fully determined by the volume of the Fermi sphere, as
Luttinger’s theorem [22] states. This also follows from the
principle that, although dissipative processes are necessary
for relaxation to the ground state, the final ground state it-
self is not determined by these processes. Nevertheless, it is
useful to check this principle for the SNS sandwich, although
this is a check of our analysis rather than of the principle
itself.

In the superconducting layers at x < −L/2 and x > L/2,
all states are delocalized and form the continuum. For the
determination of the vacuum particle density, one can replace
in Eq. (14) a summation by integration, and the total vacuum
density for two spins and all possible directions of motion of
incident quasiparticles and quasiholes is

n0 = 1

π

∫ ∞

−∞
|v|2dk = 1

π h̄v f

∫ ∞

−∞
|v|2dξ, (42)

where

|v|2 = |v0|2
4

[2 + R(θ0) + T (θ0) + R(−θ0) + T (−θ0)]

= |v0|2 = 1

2

(
1 − ξ

ε0

)
. (43)

The value of n0 coincides with the density n0 = 2k f /π in a
uniform superconductor. Thus, scattering does not affect the
average density n0 in the superconducting layers.

We start the estimation of the density in the normal layer
−L/2 < x < L/2 from the contribution of the Andreev bound
states. Any bound state is a superposition of a particle state
and of a hole state with equal probability 1

2 . Thus, in the
normal layer, the contribution of Andreev states to the vacuum
density is simply a half of the number of bound states per unit
length:

n0b = 2k f

π

�0

ε f
= n0

�0

ε f
. (44)

The contribution of the continuum states in the normal
layer is

n0c = 1

π h̄v f

∫ ∞

−∞
|v|2T̄ dξ = n0

(
1 − �0

ε f

)
, (45)

where the averaged transmission probability T̄ and |v|2 are
given by Eq. (36) and Eq. (43), respectively. Together with the
contribution from Eq. (44), the total density n0 = n0b + n0c is
the same as in uniform normal metals or superconductors with
the Fermi energy ε f .

V. MOVING COOPER PAIR CONDENSATE

A. Effect of the Cooper pair condensate motion on Andreev
states (Doppler shift)

Let us consider the case of the moving Cooper pair con-
densate when, in the superconducting layers, there is an order
parameter phase gradient ∇ϕ, which determines the super-
fluid velocity:

vs = h̄

2m
∇ϕ. (46)
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We must solve the Bogolyubov–de Gennes equations in
Eq. (3) with the gap:

� =
⎧⎨
⎩

�0 exp (iθ+ + i∇ϕx) x > L/2
0 −L/2 < x < L/2
�0 exp (iθ− + i∇ϕx) x < −L/2

. (47)

The solution differs from the solution of Eqs. (19)–(21)
obtained for the resting condensate by the presence of
the additional factors exp(imvsx/h̄) and exp(−imvsx/h̄)
in the expressions for the components u and v, respectively.
These factors are canceled in the boundary conditions, and
the expressions for ε0 [Eqs. (25), (26), and (28)] and for the
reflection and transmission probabilities [Eqs. (33)–(35)] re-
main valid. However, the energy ε of an Andreev state differs
from ε0 by the Doppler shift:

ε(s,±θ0) = ε0(s,±θ0) ± vsk f . (48)

At low energies ε0 	 �0,

ε(s,±θ0) = h̄v f

2L

[
2π

(
s + 1

2

)
± (θ0 + θs)

]
, (49)

where

θs = 2mLvs

h̄
, (50)

is the phase difference across the normal layer as if it were
not normal but superconducting (Fig. 1). Therefore, further, it
will be called the superfluid phase.

According to Eq. (49), the effects of the bound-state phase
θ0 and the superfluid phase θs on the energy are additive, and
the energy depends only on their sum. However, it is true as
far as θs (velocity vs) is small. In general, there is an essen-
tial difference between effects of θ0 and θs on the Andreev
spectrum. We saw that variation of θ0 makes the Andreev
levels move with respect to the Andreev spectrum edges. As
a result, some new levels can emerge, and some old ones can
disappear. In contrast, variation of θs leads to the shift of the
Andreev spectrum as a whole without changing positions of
levels with respect to the Andreev spectrum edges. This is
illustrated in Fig. 4. The principle of the BCS theory that only
solutions with positive energies should be considered refers to
the energy ε0, while the Doppler-shifted energy ε can be both
positive or negative. If ε is negative, the level is occupied at
zero temperature. This is important for the further analysis.

B. Charge currents due to the motion of the Cooper
pair condensate

The expression for the charge current Js produced by the
moving Cooper pair condensate follows from Eq. (15), in
which only the vacuum contribution is considered:

Js = ieh̄

m

∑
i

(v∗
i ∇vi − vi∇v∗

i ), (51)

where the summation is over all bound and continuum states,
but the summation over continuum states can be replaced
by integration. Comparing this expression with the vacuum
contribution to the electron density in Eq. (14), one can see
that the motion of the Cooper pair condensate produces the

Δ0

ε = 00

Δ

(a)

(b)

ε0 = 0

FIG. 4. Tuning of the energies of the Andreev states by the
phases θ0 and θs. Horizontal solid lines show unoccupied Andreev
levels. A horizontal solid line with a black circle shows an occupied
Andreev level. Horizontal dashed lines show ghost levels with nega-
tive ε0, which correspond to mathematically correct solutions of the
Bogolyubov–de Gennes equations but are not considered in the BCS
theory as physically real bound states. Arrowed dashed lines show
shifts of levels by tuning the phases θ0 and θs. (a) Tuning by the
phase θ0 at constant θs. The lowest physical level crosses the energy
ε0 = 0 and transforms to a ghost level, i.e., disappears. (b) Tuning
by the phase θs at constant θ0. All levels move together with the
gap edge with the energy ε0 remaining constant. The lowest physical
level crosses the energy ε = 0 and becomes occupied even at zero
temperature.

θs-dependent charge current:

Js = en0vs = J0
θs

π
, (52)

in all layers of the sandwich as in a uniform superconduc-
tor [3]. Thus, the condensate motion induces charge currents
satisfying the charge conservation law even in the absence of
vacuum and excitation currents in Andreev bound states. This
contrasts with the vacuum current, which is produced by the
bound-state phase θ0 only in the normal layer and must be
compensated by the excitation current to satisfy the charge
conservation law.

VI. EXCITATION CONTRIBUTION TO THE CURRENT

Andreev levels in the SNS sandwich are occupied at finite
temperatures or even at zero temperature if the energy ε of
some Andreev levels becomes negative due to the Doppler
shift. We consider only temperatures much lower than the
gap �0. Thus, quasiparticles in the superconducting layers are
absent. However, the temperature can be on the order of or
higher than the energy distance between Andreev levels. The
contribution of excitations (quasiparticles occupying Andreev
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FIG. 5. The excitation current vs. the bound-state phase θ0 at
θs = 0.4π . Solid, dashed, and dotted lines show the current at zero
temperature (β → ∞), low temperature (β = 30), and high temper-
ature (β → 0) respectively.

levels) to the current at the temperature T is

Jq = 2J0

∑
s

[
H

(
s + 1

2 + θ0
2π

)
exp

[
β
(
s + 1

2 + θ
2π

)] + 1

− H
(
s + 1

2 − θ0
2π

)
exp

[
β
(
s + 1

2 − θ
2π

)] + 1

]
, (53)

where θ = θs + θ0, and

β = π h̄v f

LT
. (54)

The Heaviside functions in the numerators provide that only
states of the Andreev spectrum with ε0 > 0 contribute to the
current. At zero temperature (β → ∞), the Fermi distribution
function also becomes the Heaviside function, and the excita-
tion current is

Jq = − θs

|θs|2J0, (55)

in the interval

π − θs < θ0 < π. (56)

At high temperatures (β → 0), the summation in Eq. (53) can
be replaced by integration. In the interval |θs|, |θ0| < π :

Jq ≈ 2J0

∫ ∞

0

[
ds

exp
[
β
(
s + θ

2π

)] + 1
− ds

exp
[
β
(
s − θ

2π

)] + 1

]

= −J0
θ

π
. (57)

The contribution of quasiparticles at occupied Andreev
states to the current is shown in Fig. 5 for β → ∞
(zero temperature), β = 30 (low temperature), and β → 0
(high temperature) by the solid, dashed, and dotted lines,
respectively.

FIG. 6. The current-phase θ0 relation for zero temperature.

VII. CHARGE CONSERVATION LAW AND
CURRENT-PHASE RELATION

As already mentioned, our model does not satisfy the
charge conservation law, and stationary solutions of the model
with different currents in different layers are mathematically
correct. However, only solutions which do satisfy the charge
conservation law have a physical meaning and must be cho-
sen. One can meet this requirement by imposing the condition
that, in the stationary case, the current in the normal layer
does not differ from the current in the superconducting lay-
ers. Since the motion of the condensate with the velocity vs

produces the same current Js in all layers, the vacuum and
excitation currents Jv and Jq in Andreev states must cancel one
another: Jv + Jq = 0. Thus, the total current J = Jv + Jq + Js

cannot differ from Js.
Figure 6 shows the current-phase θ0 relation obtained from

the condition Jv + Jq = 0 at zero temperature. It is remarkable
that, at zero temperature, the current-phase curve J (θ0) does
not depend on the incommensurability parameter α. Along
vertical segments of the curve at θ0 = 2πs, both Jv and Jq

vanish, and all Andreev levels are unoccupied. Compensation
of a nonzero vacuum current at θ0 �= 2πs by an excitation
current is possible if the lowest-energy Andreev level reaches
zero and is at least partially occupied. According to Eq. (26),
this takes place if θ0 + θs = 2π (s + 1

2 ). Using Eq. (52), one
obtains the current:

J = Js = J0

π
(2πs + π − θ0), (58)

at the sloped segments of the current-phase curve in Fig. 6,
which does not depend on the incommensurability parameter
α. Independence from α makes averaging over α in 2D and
3D systems unnecessary. Thus, the current-phase curve shown
in Fig, 6 is valid for a system of any dimensionality at zero
temperature.

However, at finite temperature, the current-phase relation
does depend on α. The current-phase curve Jv (θ0) at high
temperature is shown in Fig. 7 for α = 0, α = 0.2, and α = 1

2 .
For α = 0, the current-phase curve Jv (θ0) at high temperature
does not differ from that at zero temperature shown in Fig. 6.

The α-dependent current-phase curves in Fig. 7 are valid
only in the 1D case. After averaging over α in the multi-
dimensional (2D and 3D) systems, the vacuum current Jv

given by Eq. (39) can compensate the excitation current Jq

[Eq. (57)] only at θs = 0. Thus, the supercurrent vanishes
in the limit of high temperature when summation in the
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FIG. 7. The current-phase θ0 relation for high temperature.
(a) α = 0. (b) α = 0.2. (c) α = 1

2 .

expression Eq. (53) can be replaced by integration. At tem-
perature not high enough for validation of this approximation,
the supercurrent does not vanish completely but strongly de-
creases with temperature.

However, the bound-state phase θ0 is not a phase which
must be used in the canonical description of the Josephson
junction by the charge-phase pair of conjugate variables. The
proper phase is the total phase difference across the normal
layer θ = θ0 + θs, which we call the Josephson phase (Fig. 1).
The time derivative of the phase θ determines the voltage drop
across the normal layer:

V = h̄

2e

dθ

dt
. (59)

Figure 8 shows the current-phase relation for the Josephson
phase θ at various values of α at high temperature. In the phase
interval (−π, π ), it is given by

J (θ ) = J0

(
θ

π
− 2α

θ

|θ |
)

. (60)

FIG. 8. The current-phase θ relation for high temperature.
(a) α = 0. The same curve describes the current-phase relation at
zero temperature, which is independent from α. (b) α = 0.2. (c) α =
0.25. (d) α = 1

2 .

The critical Josephson current (its maximum value) depends
on α:

Jc = J0 ×
{

1 − 2α α < 1
4

2α α > 1
4

. (61)

According to Fig. 8, at any nonzero α, the current at small
positive (negative) θ becomes negative (positive). This means
that, at α �= 0, the Josephson energy

EJ = h̄

2e

∫ θ

J (θ )dθ, (62)

does not have a minimum but a maximum at θ = 0. The
energy minimum (ground state) is at the phase θ = 2πα. At
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varying α from 0 [Fig. 8(a)] to 1
2 [Fig. 8(d)], the phase θ in the

ground state varies from 0 to π . The case θ = π corresponds
to a π junction well known in the past (see the Introduction).
In general, one can call junctions with the nonzero θ in the
ground state θ junctions. The current-phase curve of the π/2
junction (α = 1

4 ) in Fig. 8(c) is periodical with the period π

instead of 2π , and the critical current has a minimum which
is two times smaller than that for 0 and π junction (α = 0
or 1

2 ).
The current-phase relation shown in Fig. 8(a), which is

valid for α = 0 for 1D systems at high temperature and for
any α and any dimensionality at zero temperature, does not
differ from the current-phase relation obtained by Bardeen and
Johnson [3] at zero temperature. Our analysis of multidimen-
sional (2D and 3D) systems also confirms their conclusion
that the supercurrent vanishes in the limit of temperatures
much higher than the Andreev level energy spacing. However,
our physical picture of the phenomenon differs from theirs.
Bardeen and Johnson [3] considered the current Js produced
by the condensate motion and the excitation current Jq but
ignored the vacuum current Jv determined by the phase θ0,
which is absent in their analysis. The charge conservation law
requires that the sum of Jv and Jq must vanish. The analysis
of Ref. [3] does not meet this requirement. The difference
between the physical pictures is important for 1D systems at
high temperatures. In this case, suppression of the supercur-
rent at high temperature predicted by Bardeen and Johnson
[3] is not valid.

VIII. SOME PROPERTIES OF THE SNS SANDWICH
AS A JOSEPHSON JUNCTION

A. The nonstationary Josephson effect at current bias

Let us consider the SNS sandwich shunted by ohmic re-
sistance R at the current bias I exceeding the critical one. The
general expression for the average voltage for the overdamped
Josephson junction is [16]

V̄ = 2πR∫ π

−π
dθ

I−J (θ )

. (63)

For the current-phase relations at high temperature shown in
Fig. 8, this yields the V I curve:

V̄ = 2RJ0

ln (I+2αJ0 )[I+(1−2α)J0]
(I−2αJ0 )[I−(1−2α)J0]

. (64)

Using the expression Eq. (61) for the critical current one
obtains

V̄ = 2RJc ×
{ 1

ln [(1−2α)I+2αJc )](I+Jc )
[(1−2α)I−2αJc )](I−Jc )

α < 1
4

1
ln [2αI+(1−2α)Jc ](I+Jc )

[2αI−(1−2α)Jc ](I−Jc )

α > 1
4
. (65)

As a reminder, for α = 0, the current-phase relations at zero
and high temperature do not differ, and the V I curve is

V̄ = 2RJc

ln I+Jc
I−Jc

. (66)

All curves follow the Ohm law V̄ = RI at I � Jc. We note for
comparison that, for Josephson junctions with the sinusoidal
current-phase relation, the V I curve is V̄ = R

√
I2 − J2

c [16].

B. The Josephson plasma mode. Is the SNS sandwich
always a weak link?

Although the dynamical analysis is beyond the scope of
this paper, we still want to address the first elementary step
of this analysis: the small oscillation around the ground state.
For the Josephson junction, this is the Josephson plasma oscil-
lation. For an arbitrary current-phase relation, the Josephson
plasma frequency is given by

ωJ =
√

2e

Ch̄

dJ (θ )

dθ
, (67)

where C is the capacitance of the Josephson junction, and
the derivative dJ (θ )/dθ is taken at θ , which corresponds to
the ground state. In usual Josephson junctions, the Josephson
plasma frequency is much lower than the plasma frequency:

ω0 =
√

4πe2n0

m
, (68)

in the bulk superconductor. This inequality is in fact a neces-
sary condition for the existence of the Josephson plasma mode
localized at the Josephson junction and decaying inside the
superconducting bulk.

Now let us consider a 3D sandwich, which is a planar
Josephson SNS junction when the capacitance C and the
current J (θ ) can be replaced by the capacity 4π/L per unit
area and the current density J (θ )/S, where S is the area in the
junction plane. At zero temperature (more generally, at tem-
perature much lower than the Andreev level energy spacing),
the SNS sandwich near the ground state is in the regime of
pure condensate charge transport, in which the vacuum and
the excitation currents are absent, i.e., θ = θs, and according
to Eq. (52), dJ (θ )/dθ = dJs(θs)/dθs = J0/π . Then ωJ and ω0

coincide. Thus, there is no localized Josephson plasma mode.
The localized Josephson plasma mode in a Josephson junc-

tion exists because the junction is a weak link. The hallmark
of weak link is that the supercurrent through the junction
requires a phase gradient (ratio of the phase difference across
the junction to its length) much larger than the phase gradient
providing the same current in the bulk superconductor. The
ballistic SNS sandwich at zero temperature is not a weak link
in this meaning.

C. Meissner effect and Josephson vortices

Another manifestation that, due to the incommensurabil-
ity effect, the SNS sandwich is not always a weak link is
its response to a weak magnetic field (Meisner effect). In
the case of a usual planar Josephson junction, the magnetic
field penetrates along the junction plane on the Josephson
penetration depth, which is much longer than the London pen-
etration depth into the superconducting bulk. A planar ballistic
SNS junction at zero temperature is not a weak link, and in
the normal layer, a supercurrent is supported by the same
phase gradient as in superconducting layers. Therefore, the
Josephson penetration depth does not differ from the London
penetration depth.

Despite that the SNS sandwich is not a weak link with re-
spect to linear effects like the Josephson plasma oscillation or
the Meisner effect, it is not the case for nonlinear effects like
the transition to the mixed state at the first critical magnetic
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field. The first critical magnetic field is determined by the
energy of the magnetic vortex localized near the normal layer
(Josephson vortex). Let us consider the Josephson vortex for
the case when the London penetration depth λ is much longer
than the thickness L. Thus, two inequalities are satisfied:
λ � L � ζ0. The axis of the straight vortex is in the middle
of the normal layer, and at distance r from the axis exceeding
L, the structure of the vortex does not differ essentially from
the Abrikosov vortex in the superconductor bulk. The area
r > L gives the logarithmic contribution to the vortex energy
per vortex length:

Ev =
(

�0

4πλ

)2

ln
λ

L
, (69)

where �0 = hc/2e is the magnetic flux quantum. The area
r < L adds a number of order unity to the large logarithm. The
energy Ev is lower than the energy of the Abrikosov vortex
with the coherence length ζ0 replacing L as a lower cutoff
of the logarithm [16]. If L � λ, the vortex energy is even
smaller since the large logarithm in Eq. (69) is replaced by a
number of order unity. This means that Josephson vortices are
pinned to the normal layer, where their energy is less than the
energy of Abrikosov vortices in the superconducting layers.
The vortex energy determines the first critical magnetic field:
Hc1 = 4πEv/�0.

IX. SUMMARY AND DISCUSSION

Previous investigations of the ballistic SNS sandwich were
revised on the basis of our approach, which properly satisfies
the charge conservation law and considers the incommensu-
rability of the superconducting gap with the Andreev level
energy spacing. Let us summarize the main conclusions of this
paper:

(1) Due to the effect of incommensurability, in the ground
state of a 1D ballistic SNS sandwich, the phase difference θ

across the sandwich is not necessarily 0, but can take any value
between 0 and π . Such a sandwich can be called a θ junction.
The well-known π junction is a particular case θ = π of θ

junctions.
(2) In 1D systems, there is no essential suppression of

the supercurrent through the ballistic SNS junction at tem-
peratures on the order of or higher than the energy distance
between Andreev levels but lower than the superconducting
gap.

(3) Although the ballistic SNS junction has some proper-
ties of the Josephson junction, it is not always a weak link in a
strict sense. At zero temperature or temperatures much lower
than the Andreev level energy spacing, the weak magnetic
field penetrates into the normal layer on the same London
penetration depth as into the superconducting layers. There
is no Josephson plasma mode localized at the normal layer in
this case.

(4) The structure of magnetic vortices in the ballistic SNS
junction essentially differs from the structure of usual Joseph-
son vortices but still has energy lower than the energy of the
Abrikosov vortex in the bulk of the superconductor. There-
fore, vortices are pinned to the normal layer, and the first
critical magnetic field for them is lower than for the super-
conductor bulk.

Through the whole paper, the ballistic SNS sandwich was
considered as a Josephson junction. However, it is also pos-
sible to describe it not in terms of the Josephson physics.
The ballistic normal layer does not destroy the phase co-
herence and supports the supercurrent Js = en0vs with the
same superfluid velocity vs and the same density n0 as in
the superconducting layers. The supercurrent is restricted by
the Landau criterion that the velocity vs does not exceed the
Landau critical velocity equal at zero temperature to

vL = ε0

h̄k f
= π h̄

2mL
. (70)

At this velocity, the energy of a quasiparticle at the lowest
Andreev level becomes negative due to the Doppler shift.
This yields the critical current Jc = J0 given by Eq. (38).
Since the Landau critical velocity is inversely proportional to
the layer thickness L, in the macroscopic (thermodynamic)
limit L → ∞, the Landau critical velocity vanishes. Thus,
“superconductivity” of the normal layer in the SNS sandwich
is not a macroscopic but a mesoscopic quantum phenomenon.
It is like mesoscopic persistent currents in 1D normal
metal rings predicted theoretically [23,24] and observed
experimentally (see Ref. [25] and references therein). The
values of these persistent currents are of the same order ev f /L
as supercurrents in the ballistic SNS sandwich (for currents
in normal rings, L is the circumference length of a ring). The
origin of persistent currents was connected with discreetness
of energy levels in mesoscopic rings, but incommensurability
is also an inevitable consequence of spectrum discreetness.
In the case of normal rings, this is incommensurability of the
Fermi energy (chemical potential) [24], when the number of
electrons changes from even to odd value. In the case of SNS
sandwiches, the number of Andreev levels changes from even
to odd.

Analogy with persistent currents in mesoscopic normal
ring points out a possible method of experimental investiga-
tion of supercurrents in ballistic SNS sandwiches. In normal
rings, they measured a magnetic moment induced by per-
sistent currents as a function of the magnetic flux threading
the ring. One can put the SNS sandwich into a closed elec-
trical circuit loop and make similar measurements. In fact,
this idea has already been realized in the experiment on a
carbon nanotube junction [9]. A carbon nanotube is a 1D or,
more accurately, nearly a 1D object (small number of active
channels). Delagrange et al. [9] observed the transition from 0
to π junction, in qualitative agreement with our prediction for
1D SNS junctions. Moreover, in the course of this transition,
they observed a current-phase relation with the period π [see
fig. 4(b)(4) in their paper] two times smaller than the usual
period 2π . This is also expected from our analysis [see the
paragraph after Eq. (62)].

Delagrange et al. [9] interpreted their experiment differ-
ently. They considered a nanotube as a quantum dot and
connected the 0-π transition with the Kondo effect. Treating a
nanotube as a quantum dot means that the nanotube is rather
short, and the number of Andreev levels in it is not large. Our
analysis is valid in the opposite limit of a very long nanotube
with many Andreev levels. The fact that the 0-π transition
is also predicted in this limit means that the phenomenon is
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robust and not necessarily connected with the properties of
quantum dots and the Kondo effect.
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