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Exploring multichannel superconductivity in ThFeAsN
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We investigate theoretically the superconducting state of the undoped Fe-based superconductor ThFeAsN.
Using input from ab initio calculations, we solve the Fermi-surface based, multichannel Eliashberg equations for
Cooper-pair formation mediated by spin and charge fluctuations, and by the electron-phonon interaction (EPI).
Our results reveal that spin fluctuations alone, when coupling only hole-like with electron-like energy bands,
can account for a critical temperature Tc up to ∼7.5 K with an s±-wave superconducting gap symmetry, which
is a comparatively low Tc with respect to the experimental value T exp

c = 30 K. Other combinations of interaction
kernels (spin, charge, electron-phonon) lead to a suppression of Tc due to phase frustration of the superconducting
gap. We qualitatively argue that the missing ingredient to explain the gap magnitude and Tc in this material might
be the first-order correction to the EPI vertex. In the noninteracting state this correction adopts a form supporting
the s± gap symmetry, in contrast to EPI within Migdal’s approximation, i.e., EPI without vertex correction, and
therefore it enhances tendencies arising from spin fluctuations.
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I. INTRODUCTION

The discovery of superconductivity below T exp
c ∼ 30 K

in ThFeAsN [1] has added another member to the growing
family of Fe-based superconductors exhibiting large critical
temperatures [2,3]. Most compounds in this class of materials
show magnetic order in the ground state and allow for a
Cooper pair condensate only upon sufficient doping or pres-
sure [4,5]. ThFeAsN takes an unusual role in this respect since
the ground state has been reported to already be nonmagnetic
and superconducting, without the need for external parameter
tuning [1,6,7]. Additionally, it has been shown that applying
pressure to this system decreases Tc [8], which is in contrast
to other Fe-based superconductors, such as bulk FeSe [9].

Density functional theory (DFT) studies revealed that
the electronic structure of ThFeAsN can be considered as
quasi-two-dimensional (2D), while the Fermi surface (FS) is
prototypical for the Fe-based compounds [10–12]. It consists
of hole-like bands close to the folded Brillouin zone (BZ)
center and electron-like pockets at the corners. The sign-
change of the superconducting gap between electron and hole
pockets (s±-wave symmetry) is commonly associated with
antiferromagnetic spin fluctuations as a driving force for the

*fabian.schrodi@physics.uu.se
†fairoja.cheenicode-kabeer@physics.uu.se
‡alex.aperis@physics.uu.se
§peter.oppeneer@physics.uu.se

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

Cooper pair formation [13,14]. As for ThFeAsN, Barbero
et al. found a pressure-independent s±-wave symmetry of the
order parameter by performing Knight shift and muon-spin ro-
tation measurements [8]. Similarly, Wang et al. classified this
compound as comparable to other Fe-based superconductors
with respect to outcomes from magnetic susceptibility mea-
surements, attributing an important role to antiferromagnetic
spin fluctuations [1].

Although the discovery of ThFeAsN has triggered some
interest from both theory and experiment [6–8,10–12,15–
21], there has, so far, not been any attempt to theoret-
ically explain superconductivity in this compound. This
might be due to the apparent similarity of ThFeAsN to
other Fe-based superconductors, which have been studied
in great detail [2,3,14,22,23]. However, the aforementioned
ground-state properties make ThFeAsN one of very few in-
trinsically superconducting Fe-based compounds, along with,
e.g., LiFeAs [24], which makes it worthwhile to be studied
in detail. It has been found that FS nesting properties play a
crucial role in the family of Fe-based superconductors [25,26],
which is why we employ here a FS-based multichannel
Eliashberg theory (see, e.g., Ref. [27]) to solve for the char-
acteristics of the superconducting state. Our formalism allows
to self-consistently include electron-phonon interaction (EPI),
spin and charge fluctuations, all on the same footing.

We find the highest critical temperature as Tc � 7.5 K
when considering a spin-fluctuations interaction kernel, where
only electron bands are coupled to hole bands. Together
with an s±-wave superconducting gap, exhibiting a max-
imum value of 1.43 meV, this is insufficient to explain
the experimental results in superconducting ThFeAsN. Tak-
ing into account the full spin-fluctuations kernel suppresses
Tc to 3.15 K due to the phase-frustration effects of the
superconducting gap, which is a generic property of Fe-
based superconductors as recently reported in Ref. [28]. In
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additional calculations, where we combine the influence due
to spin fluctuations with EPI and charge fluctuations, no su-
perconducting state is found for temperatures down to 2 K.
Again, the reason lies in a phase frustration of the supercon-
ducting gap. When considering the McMillan equation for
electron-phonon mediated Cooper pairing, the Tc is negligible
in comparison to T exp

c , in agreement with Ref. [12]. Since
additional Eliashberg calculations for EPI only do not lead
to a finite solution either, it is apparent that the FS-based
description employed here is not sufficient to explain super-
conductivity in this compound.

However, the ratio between characteristic phonon energy
scale and minimal band shallowness suggests that vertex
corrections to the EPI are important for describing the su-
perconducting and, more generally, the interacting state. We
therefore consider an expression for the renormalized vertex
function due to nonadiabatic contributions to the EPI, which
was derived in Ref. [29]. By following Ref. [30] for a sim-
plified version of this function in the noninteracting state,
we obtain the renormalized vertex in a “one-shot” calcula-
tion. The resulting function has, similar to the spin-fluctuation
kernel, repulsive long wave-vector contributions to the super-
conducting gap, which support the global s±-wave symmetry.
For small momenta, the vertex corrected EPI counteracts
repulsive spin fluctuations contributions, which potentially
minimizes the encountered phase-frustration problems. We
therefore argue that the superconducting state can potentially
be explained by including spin fluctuations and vertex cor-
rected EPI in a self-consistent Eliashberg formalism.

The remainder of this paper is organized as follows. Start-
ing with the electronic structure calculations in Sec. II, we
obtain two sets of energies that serve as input for the discus-
sion on bosonic interactions in Sec. III. The presentation of
our ab initio calculations for the EPI, Sec. III A, is followed
in Sec. III B by the description of kernels due to spin and
charge fluctuations. Section IV is subject to the discussion of
the superconducting state in ThFeAsN, where we solve self-
consistent multichannel Eliashberg equations in Sec. IV A.
Additionally we argue why vertex corrections to the EPI are
likely to contribute cooperatively with the spin-fluctuations
interaction to the gap magnitude and Tc, Sec. IV B. Our
conclusions and a brief outlook are presented in the final
Sec. V.

II. ELECTRONIC STRUCTURE CALCULATIONS

The space-group symmetry of ThFeAsN is P4/nmm, with
space-group number 129, and we show the two-formula unit
cell in Fig. 1. The Fe atoms in this structure are in tetragonal
coordination, so that neighboring Fe-As bonds enclose an
angle of 109◦. We highlight these angles in Fig. 1 in red
and blue colors, and come back to this aspect below when
discussing the distance between Fe and As planes.

The electronic energies ξk,n are calculated using
the plane-wave DFT computational package QUANTUM

ESPRESSO [31,32]. We choose the generalized gradient
approximation with the exchange-correlation potential
by Perdew, Burke, and Ernzerhof [33,34]. Using scalar
relativistic projector augmented wave pseudopotentials
with nonlinear corrections for the core electrons [35], we

FIG. 1. Two-formula unit cell of ThFeAsN as used in our DFT
calculations. The angles between Fe-As bonds are highlighted in blue
and red.

include spin-orbit coupling in our noncollinear calculation.
The momentum space sampling is done on a 24 × 24 × 12
Monkhorst-Pack k-grid and we set the kinetic energy (charge
density) cutoff to 110 Ry (1100 Ry).

As a first step we relax the structure by minimizing the
forces on the atoms. Setting a convergence threshold of
10−8 Ry for the electronic self-consistency loop, we find re-
laxed structural parameters a = 4.0374 Å and c = 8.4307 Å.
The corresponding electron energies are shown in Fig. 2(a)
along high-symmetry lines of the BZ. The associated FS,
drawn in Fig. 2(b), consists of three hole-like bands that cross
the Fermi level around Z–�, and two electron bands at A–X .
The relaxed structure is then used to calculate the lattice
dynamics of the system, as we describe in Sec. III A.

Before we discuss the ionic degrees of freedom, we note
that there is a nonnegligible deviation of the obtained lat-
tice parameters when comparing to experimental findings
of aexp = 4.0367 Å, cexp = 8.5262 Å [1]. This observation in
ThFeAsN was already made by other authors [10,12]. We
therefore perform another electronic structure calculation by
fixing a = aexp and c = cexp, and using the experimental rel-
ative internal atomic heights of 0.13806 (Th), 0.5 (Fe), and
0.6531 (As) (see also Ref. [16]). The results for the band
structure and FS are shown in Fig. 3.

When comparing Figs. 2(b) and 3(b) it is apparent that
the relaxed structure is more dispersive along the kz-direction.
This stems from the fact that two energy bands in close vicin-
ity of the Fermi level along Z–� change roles, compare panel
(a) in both figures. In Fig. 2(a) we observe a dispersive band
along the Z–� crossing the FS, and a nearly constant one
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FIG. 2. (a) Calculated electron dispersion of ThFeAsN with re-
laxed lattice parameters, shown along high-symmetry lines of the
Brillouin zone, and measured relative to the Fermi energy. Electronic
bands crossing the Fermi level are shown in red, the remaining bands
in black. (b) Three-dimensional Fermi surface corresponding to ξk,n

as shown in panel (a).

slightly below. This is in contrast to a nearly flat band above
the Fermi level on this momentum path, and a dispersive ξk,n

below the FS in Fig. 3(a). The energy band with higher disper-
sion has dominant Fe-dz2 orbital character, while the nearly
flat band has mainly contributions from Fe-dxy states [10].
As mentioned before, in the ThFeAsN compound Fe is in
tetragonal coordination, hence the crystal-field splitting dic-
tates that the dz2 state is lower in energy than the dxy state.
According to this picture we conclude that Fig. 3 represents
results for ξk,n that is closer to experiment. When calculat-
ing the electronic energies with relaxed lattice parameters,
Fig. 2, these two bands along Z–� change role, i.e., the dxy

dominated band lies lower in energy than the dz2 dominated
band. This behavior indicates a structural distortion in our unit
cell.

The mismatch in the unit cell height (c = 8.4307 Å versus
cexp = 8.5262 Å) has the effect that the Fe-As tetragons are
slightly squeezed, changing the angle between Fe-As bonds
from 109◦ to approximately 105◦ and 119◦ (blue and red an-
gles in Fig. 1). As a consequence, the system does not exhibit
tetragonal crystal-field splitting, which is the reason that the
dxy states fall lower in energy than the dz2 states. The observed
mismatch between relaxed and experimental lattice structures
goes in line with DFT calculations on LaFeAsO [36], and has
been shown to potentially influence the superconducting state
significantly [37].

The results we obtain for ξk,n (Figs. 2 and 3) are in ex-
cellent agreement with previous works [10–12]. Despite the

FIG. 3. (a) Electron energies plotted along high-symmetry lines
of the Brillouin zone, relative to the Fermi energy. The lattice param-
eters are fixed to the experimental values, a = aexp and c = cexp. As
in Fig. 2, we show the Fermi surface crossing bands in red and the
remaining bands in black. (b) Fermi surface corresponding to panel
(a).

structural differences that we discussed above, we employ
both the relaxed and experimental structure in the following
when looking at different superconducting channels. We use
the experimental lattice parameters when being concerned
with purely electronic properties, such as susceptibilities and
spin-fluctuation interaction kernels, see Sec. III. The reason
for this is that such quantities require as accurate inputs as
possible for yielding the correct characteristics [37]. On the
other hand, for electron-phonon calculations we use the re-
laxed structure so as to have minimized forces on each atom
which lead to reliable phonon modes.

The theory applied in later Secs. III and IV is based on
electronic degrees of freedom close to the Fermi level. We
therefore end the current discussion by examining the density
of states (DOS) N (E ) in a narrow low-energy interval in
Fig. 4, calculated from experimental lattice parameters. The
red curve, representing the full DOS per formula unit, has
a characteristic shape for the family of Fe-based supercon-
ductors [38,39], where for our undoped system the Fermi
level falls into the prototypical dip of N (E ) [40,41]. As for
other members of this family, most low-energy states origi-
nate from the iron atoms, shown as blue line in Fig. 4. The
remaining atom species play only a very minor role in the
energy interval under consideration. At the Fermi level we
find the values N (0) = 1.92 states/eV/f.u. for the total DOS,
and NFe(0) = 1.69 states/eV/f.u. for the iron DOS. These
results are in reasonable agreement to related works on this
material [7,10–12].
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FIG. 4. Atom-projected density of states per formula unit, cal-
culated for the experimental lattice parameters (compare Fig. 3).
Different colors correspond to atomic species as indicated in the
legend.

III. BOSONIC INTERACTIONS

Here we discuss the EPI obtained by DFT calculations in
Sec. III A and show how to calculate spin-fluctuation kernels
within the random phase approximation (RPA) in Sec. III B.
All calculations presented from here on, including Sec. IV,
are carried out with the UPPSALA SUPERCONDUCTIVITY (UP-
PSC) code [42–46], partially with input from the QUANTUM

ESPRESSO package.

A. Electron-phonon interactions

Using the relaxed lattice parameters (compare Fig. 2) we
perform density functional perturbation theory calculations
with QUANTUM ESPRESSO. The k-grid is chosen as in the
electronic structure calculation, and we employ a 4 × 4 × 2
Monkhorst-Pack q-grid. The cutoffs for kinetic energy and
charge density are fixed at 130 Ry and 1300 Ry, respectively.
With an effective Coulomb repulsion of μ� = 0.136 we find
an isotropic coupling strength of λ0 = 0.40. Using the modi-
fied McMillan equation [47] for the superconducting critical
temperature,

Tc = ωlog

1.2
exp

( −1.04(1 + λ0)

λ0(1 − 0.62μ�) − μ�

)
� 1 K, (1)

with ωlog = 16.6 meV, suggests that superconductivity in this
system cannot simply be explained by an isotropic, weak-
coupling conventional BCS approach.

From our ab inito calculations we obtain the branch ν

resolved phonon frequencies ωq,ν and the couplings λ
(ep)
q,ν .

The couplings are defined in terms of the electron-phonon
scattering matrix elements gq,ν :

λ(ep)
q,ν = 2N (0)

|gq,ν |2
ωq,ν

. (2)

By using bosonic Matsubara frequencies ql = 2πT l , l ∈ Z,
we can calculate the momentum- and frequency-dependent
electron-phonon coupling as

λ
(ep)
q,l =

∑
ν

λq,ν

ω2
q,ν

ω2
q,ν + q2

l

. (3)

FIG. 5. Zero-frequency electron-phonon coupling, calculated ab
initio. (a) qz = −π . (b) qz = 0.

In Fig. 5 we show λ
(ep)
q,l=0 = ∑

ν λ
(ep)
q,ν for qz = −π in

Fig. 5(a), and qz = 0 in Fig. 5(b). In both cases we observe
an enhanced magnitude at (qx, qy) = (0, 0) and (qx, qy) =
(−π,−π ). The contributions at the BZ corners are compar-
atively smaller for qz = −π . The overall magnitude of λ

(ep)
q,l=0

indicates a weak-coupling situation. Before using this EPI in
our multichannel Eliashberg formalism in Sec. IV, we first
calculate the analog of λ

(ep)
q,l in the spin and charge fluctuations

channels.

B. Spin and charge fluctuations

As mentioned before, we use from here on the electronic
energies as presented in Fig. 3. Assuming that the essential
physics are captured by processes at the Fermi level, we
can write the band-resolved bare susceptibility of the system
as [27]

χn,n′
q,l =

∑
k

e−ξ 2
k,n/σ

2
e−ξ 2

k+q,n′ /σ 2 nF (ξk,n) − nF (ξk+q,n′ )

ξk+q,n′ − ξk,n + iql
, (4)

where we use the Fermi-Dirac function nF (·) and adopt the
notation χn,n′

q,l = χn,n′
q (iql ). The Gaussians in Eq. (4) are used

to confine the electronic spectrum to coherent spin and charge
excitations in a narrow window around the Fermi level and
the energy smearing σ measures the width of this window.
We used a value of 0.272 eV for σ . In this way we neglect
the incoherent high-energy spectrum because this has been
shown to suppress superconductivity in Fe-based compounds
[48]. We carefully checked that this result is robust, i.e., other
choices for the broadening do not lead to qualitatively dif-
ferent results than what we report below. A direct approach
for obtaining a band-insensitive bare susceptibility is perform-
ing a double summation as χ

(0)
q,l = ∑

n,n′ χ
n,n′
q,l . However, it is

worthwhile splitting these summations according to certain
subsets of energy bands. As encountered in Sec. II, there
are three hole bands and two electron bands crossing the
Fermi level. Let us denote the set of such bands by h and e,
respectively. We can then define

χ
(e−e)
q,l =

∑
n∈e,n′∈e

χn,n′
q,l , (5)

χ
(h−h)
q,l =

∑
n∈h,n′∈h

χn,n′
q,l , (6)
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χ
(e−h)
q,l =

∑
n∈e,n′∈h

χn,n′
q,l +

∑
n∈h,n′∈e

χn,n′
q,l , (7)

χ
(0)
q,l = χ

(e−e)
q,l + χ

(h−h)
q,l + χ

(e−h)
q,l , (8)

where the label (e − h) means that all contributions involving
one electron band and one hole band are included, and like-
wise for (e − e) and (h − h).

Next, we use the bare response of the system to calculate
the interaction kernel due to spin fluctuations within the RPA
under the assumption of spin-singlet Cooper pairing. For de-
tails of the derivation we refer to Refs. [49–51] and references
therein. Making use of the Stoner factor U , which is not to
be confused with the commonly employed repulsive onsite
interaction between electrons (Hubbard U ), we compute

λ
(sf,r)
q,l = 3

2
N (0)U 2

χ
(r)
q,l

1 − Uχ
(r)
q,l

, (9)

with r ∈ {e − e, h − h, e − h, 0}, where the magnetic instabil-
ity is marked by the condition 1 − Uχ

(r)
q,l → 0. In a similar

way the interaction kernel due to charge fluctuations is given
by

λ
(cf,r)
q,l = 1

2
N (0)U 2

χ
(r)
q,l

1 + Uχ
(r)
q,l

. (10)

In this formulation, the Stoner factor U acts on the electronic
band states. Alternatively, orbital-dependent Stoner tensors
can be employed (see, e.g., Ref. [48]), when suitable tight-
binding orbital representations of the bands near the Fermi
energy are available.

In Figs. 6(a) and 6(b) we show the results for λ
(sf,e−e)
q,l and

λ
(sf,h−h)
q,l , respectively, where we set l = 0, qz = 0 and U =

110 meV. Figure 6(c) shows λ
(sf,e−h)
q,l=0 , i.e., the result for only

coupling electron bands with hole bands. The full interaction
kernel is drawn in Fig. 6(d).

We observe in the first two panels of Fig. 6 that λ
(sf,e−e)
q,l

and λ
(sf,h−h)
q,l are both peaked at q = �. This behavior is con-

sistent with intuition since the two electronic bands at the FS
are located in close vicinity to each other, and likewise for
the three hole bands. Therefore they are coupled via small
exchange momenta, for both interband and intraband terms.
Such contributions are expected to lead to a suppression of
superconductivity, as noted by some of the authors in a recent
work on bulk and monolayer FeSe [48]. This “self-restraint
effect” has been discussed convincingly for a more generic
model system of Fe-based superconductors by Yamase and
Agatsuma [28], and we come back to it in Sec. IV A. Together
with couplings between electron and hole bands, Fig. 6(c), the
full interaction has prominent peaks at q = M and a notable
hump at �, compare Fig. 6(d). How these features influence
the superconducting solution is discussed in the following
Sec. IV.

IV. SUPERCONDUCTIVITY OF ThFeAsN

We are now in a position to solve a self-consistent set of
multichannel Eliashberg equations in Sec. IV A, where we use
the interaction kernels as introduced in Sec. III. As described
in the following, the theory employed here is not capable of

FIG. 6. Spin-fluctuations kernels calculated from Eq. (9) for U =
110 meV at T = 5 K, setting l = 0 and qz = 0. (a) Coupling between
electron bands. (b) Coupling between hole bands. (c) Coupling be-
tween electron and hole bands. (d) Full interaction kernel due to spin
fluctuations.

fully explaining the superconducting state in ThFeAsN, even
though we consider the EPI, spin-fluctuations, and charge-
fluctuations channels. Therefore we argue in Sec. IV B that
a proper inclusion of the first vertex correction to the EPI into
our Eliashberg theory would likely increase the computed gap
magnitude and critical temperature, so as to compare better
with experimental findings.

A. Eliashberg calculations

As introduced in Sec. III B, we distinguish different con-
tributions to the spin- and charge-fluctuation interactions,
according to the pair of bands they originate from. Con-
sequently, the full kernel to be used in our Eliashberg
theory similarly depends on r ∈ {e − e, h − h, e − h, 0}. The
electron-mass renormalization Z (r)

k,m and gap function �
(r)
k,m can

be self-consistently calculated by solving

Z (r)
k,m = 1 + πT

ωm

∑
k′,m′

δ(ξk′ )

N (0)
ωm′

λ
(+,r)
k−k′,m−m′√

ω2
m′ + (

�
(r)
k′,m′

)2
, (11)

�
(r)
k,m = πT

Z (r)
k,m

∑
k′,m′

δ(ξk′ )

N (0)
�

(r)
k′,m′

λ
(−,r)
k−k′,m−m′√

ω2
m′ + (

�
(r)
k′,m′

)2
, (12)

numerically. Here we use kernels λ
(±,r)
q,l =

±λ
(sf,r)
q,l (+λ

(cf,r)
q,l ) (+λ

(ep)
q,l ), where in the following we employ

different combinations of spin and/or charge fluctuations,
and/or EPI, as will be specified explicitly.

The Eliashberg equations as used in the current work
can be derived from the standard set of equations (see, e.g.,
Ref. [52]) under certain approximations. Assuming infinite
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FIG. 7. Self-consistent solutions to Eqs. (11) and (12), ob-
tained by choosing r = e − h and p = 99, at T = 2 K. (a) Zero-
frequency superconducting gap. (b) Zero-frequency electron mass
renormalization.

electronic bandwidth and only electrons close to the Fermi
level to participate in the formation of Cooper pairs, it is
possible to integrate out the electronic energies from the theo-
retical description. This step eliminates the chemical potential
renormalization [52] and leaves us with Eqs. (11) and (12).
The delta functions in both equations are used to restrict the
electron degrees of freedom only to the FS.

We already stated before that the magnetic instability of
the system is marked by choosing the Stoner parameters, such
that 1 − Uχ

(r)
q,l → 0. Therefore, we can define the maximally

allowed value for U as

U (r)
max = [

maxq,l χ
(r)
q,l

]−1
. (13)

For convenience we specify U in the following as percent-
age value of its maximum, which depends on the choice of
r, so that U = p

100 · U (r)
max with p ∈ (0, 100). Further, we as-

sume from here on a 2D system which is justified due to a
very nondispersive kz-direction, compare Fig. 3. We carefully
crosschecked that our results do not change qualitatively when
taking into account the full three-dimensional (3D) system.

Let us start with the conceptually easiest case, i.e., con-
sidering only spin fluctuations and setting r = e − h. From
Fig. 6(c) we know that the interaction kernel entering in
the Eliashberg equations, λ

(±,e−h)
q,l = ±λ

(sf,e−h)
q,l , peaks at q =

M and is otherwise small in magnitude and featureless. It
is hence to be expected that the superconducting gap at
the FS changes sign between electron and hole bands. In
Fig. 7 we show our numerical solutions to Eqs. (11) and
(12), setting T = 2 K, p = 99, and r = e − h. Indeed, we
find maxk �

(e−h)
k,m=0 ∼ 1 meV > 0 around the BZ center in

Fig. 7(a), while a minimum negative value mink �
(e−h)
k,m=0 ∼

−1.16 meV < 0 occurs around k = M. This is the prototypi-
cal s±-wave state that is shown here, which is the only stable
symmetry for the superconducting gap in ThFeAsN, which is
true for any choice of parameters we explored in this work.

The electron-mass enhancement is shown in Fig. 7(b),
and takes values between unity and ∼2.7. As apparent, the
hole bands exhibit clearly smaller values of Zk,m=0 than the
electron bands. Consequently, we predict that electron masses
at the BZ corners are noticeably higher than at the center.
However, it is under question whether such a behavior can
be seen in the experiment since our results change as function
of U and, as we discuss below, the critical temperature and

FIG. 8. (a) Calculated maximum superconducting gap for
λ

(±,e−h)
q,l = ±λ

(sf,e−h)
q,l as function of p. Different colors correspond to

T as indicated in the legend. (b) Same as (a), plotted against T for
various choices of p, see legend. (c) Temperature dependence of the
maximum gap size, obtained for λ

(±,0)
q,l = ±λ

(sf,0)
q,l , shown for three

different values of p.

maximum gap magnitude found here are lower than observed
experimentally. The next step is to perform a parameter varia-
tion in T and U to see how these quantities affect the solutions
of the Eliashberg equations.

In Fig. 8(a) we plot our results for �(e−h) = maxk |�(e−h)
k,m=0|,

found from numerically solving Eqs. (11) and (12), as func-
tion of p for various temperatures as indicated in the legend.
It is easily observed that the maximum superconducting gap
grows nearly linear with p, while the onset of superconductiv-
ity is strongly temperature dependent. For all solutions found
in the shown parameter range, the gap function has s±-wave
symmetry. The reasons for a growing �(e−h) with p is that
the interaction kernel is approaching a magnetic instability as
U → Umax. As was shown in Ref. [48], the spin-fluctuation
kernel at the instability wave vector scales like

maxq |λ(±,e−h)
q,l=0 | ∝ U 2

U (e−h)
max − U

, (14)

hence an increase in coupling strength is responsible for the
enhancement of the gap magnitude with p.

It is also apparent that our theory inherits an upper limit
of �(e−h), as the gap size does not diverge for p → 100.
The reason lies again in Eq. (14): The mass renormalization
scales approximately like Zk,m=0 ∝ 1 + maxq λ

(+,e−h)
q,l=0 , while

the superconducting order parameter has a similar behav-
ior, φ

(e−h)
k,m=0 ≡ �

(e−h)
k,m=0Z (e−h)

k,m=0 ∝ maxq |λ(−,e−h)
q,l=0 |. Since the gap

function is found from �
(e−h)
k,m=0 = φ

(e−h)
k,m=0/Z (e−h)

k,m=0, the diver-

gences of both φ
(e−h)
k,m=0 and Z (e−h)

k,m=0 cancel approximately, and
the result is only linear in the Stoner factor.

Next, let us turn to the maximum superconducting gap as
function of T , which we show in Fig. 8(b), still for the choice
r = e − h. Different choices for p are colored as written in
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the legend. Note, that the values for p are very critical, i.e.,
we have to consider a Stoner factor very close to U (e−h)

max ,
similar to results shown in Fig. 8(a). Here we find that both
the maximum superconducting gap and critical temperature
increase with p, where the largest possible values are �(e−h) ∼
1.43 meV and Tc ∼ 7.5 K. Naively one might expect that these
quantities can be arbitrarily increased by choosing U closer to
U (e−h)

max , but as discussed in connection to Fig. 8(a) this is not
possible due to an upper bound on the gap magnitude. The
highest critical temperature found here is significantly lower
than the experimental value T exp

c = 30 K [1,17], which indi-
cates that some important ingredients relevant for ThFeAsN
are missing in our theory.

We now turn to a different interaction kernel used for
solving the Eliashberg equations, namely we include all con-
tributions due to spin fluctuations, setting λ

(±,0)
q,l = ±λ

(sf,0)
q,l .

When solving Eqs. (11) and (12) as a function of U we find
that a finite superconducting gap (still s±-wave) can only
be found if U is at least p = 99.98% of U (0)

max. The results
�(0) from three of such very critical choices are shown in
Fig. 8(c) as function of T . It is easily observed that, compared
to Fig. 8(b), both gap magnitude (max. ∼0.3 meV) and Tc

(max. ∼3.15 K) are reduced by more than a factor of 2. This
behavior is, however, not very surprising when considering
the shape of the interaction kernel.

As shown earlier, the large wave-vector contributions to
the spin-fluctuations kernel, compare Fig. 6(d), promote an
s±-wave symmetry of �k,m=0 because they enter the equation
for the superconducting gap with an overall minus sign. On
the other hand, finite values of λ

(sf,0)
q,l around the BZ center,

which originate from electron-electron and hole-hole band
couplings, can numerically induce a different symmetry of
�k,m=0, e.g., a nodal s± or d-wave state [22]. If the Stoner in-
stability is not approached sufficiently close, the competition
between symmetries promoted by λ

(sf,0)
q∼�,l and λ

(sf,0)
q∼M,l leads to a

phase oscillation of the superconducting gap, which does not
represent a valid solution, i.e., � = 0 meV. For more details
on this self-restraint effect in Fe-based superconductors we
refer to Ref. [28].

When including EPI and/or charge fluctuations in the
Eliashberg equations we do not find any superconductivity
down to T = 2 K. Choosing λ

(±,0)
q,l = λ

(ep)
q,l , λ

(±,0)
q,l = λ

(cf,0)
q,l ,

or λ
(±,0)
q,l = λ

(cf,0)
q,l + λ

(ep)
q,l does not provide sufficient coupling

strength to obtain a self-consistent finite superconducting
gap. Taking into consideration all electronic contributions
only λ

(±,0)
q,l = ±λ

(sf,0)
q,l + λ

(cf,0)
q,l leads to an enhancement of the

self-restraint effect because the charge-fluctuations kernel is
peaked at M and enters with opposite sign compared to λ

(sf,0)
q,l

into the equation for �
(0)
k,m. Similarly, λ

(±,0)
q,l = ±λ

(sf,0)
q,l + λ

(ep)
q,l

does not give a finite solution because the spin-fluctuation
kernel relevant for the order parameter is decreased at both
� and M. Finally, the full multichannel interaction λ

(±,0)
q,l =

±λ
(sf,0)
q,l + λ

(cf,0)
q,l + λ

(ep)
q,l leads to �

(0)
k,m = 0 also due to the

aforementioned reasons. We therefore conclude that results
from our self-consistent Eliashberg theory are underestimat-
ing Tc and the superconducting gap magnitude. We carefully
checked that these conclusions do not change when using the
electron dispersions from Fig. 2, instead of that from Fig. 3.

Potential cures to this behavior are discussed in the following
Secs. IV B and V.

B. Possibility of nonadiabatic effects

In the previous Sec. IV A we showed that the supercon-
ducting state in ThFeAsN can neither be explained by spin
fluctuations alone, nor does the inclusion of charge fluctua-
tions and EPI lead to a complete picture. This can be explained
by phase frustration (i.e., phase oscillation) of the super-
conducting gap, caused by repulsive spin fluctuation kernel
contributions at � and M, which both do not support the
same global symmetry. We therefore want to discuss here
the possibility of vertex corrections to the EPI that poten-
tially can contribute positively to the superconducting gap size
and eventually Tc. In a recent work by some of the authors
it was shown for a model system that unconventional gap
symmetries, such as s±-wave, can arise from isotropic EPI
when taking vertex corrections into account [30]. We therefore
want to obtain here an estimate of the vertex function when
considering the noninteracting state of the system.

Let us assume that the EPI is isotropic to first-order ap-
proximation, so that scattering matrix elements are given
by a single number g0. The characteristic energy scale of
the phonon spectrum is ωlog � 17 meV (value taken from
DFT calculation), from which we can define the isotropic
EPI kernel Vm−m′ = 2g2

0ωlog/(ω2
log + q2

m−m′ ). Taking into con-
sideration the shallowness of our system εF � 52 meV, we
get a nonadiabaticity ratio of α = ωlog/εF ∼ 0.33, which is
an indicator for the nonnegligible relevance of vertex cor-
rections [30]. This estimate is obtained by using the band
structure of Fig. 3, which resembles the actual electron prop-
erties due to fixing the lattice parameters at the experimental
values. To put this observation into perspective, Migdal’s
approximation can be considered accurate either in the adi-
abatic limit α � 1 [53], or the very nonadiabatic limit α � 1
[54,55]. For simplicity let us assume that the system is in the
noninteracting state, which translates into an electron Green’s
function [

Ĝ(0)
k,n,m

]−1 = iωmρ̂0 − ξk,nρ̂3, (15)

defined in Nambu space that is spanned by a Pauli matrix basis
ρ̂i (i = 0, 1, 2, 3). As was shown in Refs. [29,30], the electron
self-energy including vertex corrections can be written as

�̂km = T
∑

k′,n,m′
Vm−m′ ρ̂3Ĝ(0)

k′,n,m′ ρ̂3
(
1 + g2

0�̂
(0)
k,k′,m,m′

)
. (16)

We use here the label (0) to stress that we are in a noninteract-
ing situation. By making use of the relation q = k − k′, the
vertex function can be expressed as

�
(0)
k,k′,m,m′ = �

(0)
q,m,m′

= − T

g2
0

∑
m′′

Vm′−m′′
∑
k′′

(
γ

(ω)
k′′+q,m′′−m′+m

× γ
(ω)

k′′,m′′ − γ
(ξ )

k′′,m′′γ
(ξ )

k′′+q,m′′−m′+m

)
, (17)

with the definitions γ
(ω)

k,m = ∑
n ωm/θk,n,m, γ

(ξ )
k,m =∑

n ξk,n/θk,n,m, and θk,n,m = (iωm)2 − ξ 2
k,n. We perform

the Matsubara summation over index m′′ analytically and
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FIG. 9. Estimate for the renormalized electron-phonon vertex
1 + g2

0�
(0)
q,m at m = 0 and qz = 0, computed for ωlog = 16.7 meV at

T = 10 K.

set m = m′, allowing us to visualize the renormalized vertex
function below.

Considering that the nonadiabatic equation for the super-
conducting order parameter contains the interaction kernel
−(1 + g2

0�k,k′,m,m′ ) [30], we want to find a rough estimate
of the scattering strength g0 by following the approach of
Ref. [15]. According to McMillan [56], the electron-phonon
coupling constant can to first-order approximation be written
as

λ = 1.04 + μ� log(�D/1.45Tc )

(1 − 0.62μ�) log(�D/1.45Tc ) − 1.04
, (18)

where �D is the Debye temperature. Inserting μ� = 0.136,
�D = 332 K [7], and Tc = T exp

c = 30 K [1] gives λ � 1.6.
From here we can solve for the scattering strength via g0 =√

λωlog/2N (0).
It is worth mentioning that Eq. (18) is not derived from

Eq. (1) but rather from the original McMillan equation, as
was done in Ref. [15]. Historically, Eq. (18) was developed
for weak-coupling superconductors of the conventional kind,
while the modifications by Allen and Dynes [47] aimed at
explaining larger couplings as well, while both assumed a
relatively isotropic interaction. On a related note, we use the
coupling estimate of Eq. (18), rather than our value for λ

calculated from DFT because we aim for results as close as
possible to the experiment. The coupling strength obtained
from DFT cannot account for the experimentally observed
Tc, which is why we base our current estimate of the vertex
correction on the formalism in Ref. [15].

We show the 2D zero-frequency result for (1 + g2
0�

(0)
q,m=0)

in Fig. 9, obtained at T = 10 K < T exp
c . At q = M the vertex

correction is negative, while in the remaining BZ our result is
strictly positive. These contributions enter the equation for the
order parameter in a repulsive and attractive way, respectively.
Therefore, in combination with the spin-fluctuations kernel,
see Sec. III B, we get an enhanced repulsive interaction at
q = M, which supports the s±-wave symmetry of the gap. On
the other hand, the repulsive small-q contribution of Fig. 6(d)

might likely be compensated by an attractive contribution
from �

(0)
q,0 around the BZ center, such that the “self-restraint”

effect is minimized [28]. At the current stage it is not possible
to quantitatively estimate the influence of the renormalized
vertex function on the critical temperature Tc. To do so, one
would need to self-consistently solve vertex-corrected Eliash-
berg equations, which is an interesting perspective for future
work.

Apart from the above arguments about the renormalized
electron-phonon vertex supporting the experimentally ob-
served s± symmetry of the superconducting gap, it has been
shown by some of the current authors that an interaction
similar to Fig. 9 can lead to realistic self-consistent solutions
in a model system of Fe-based superconductors [30]. The
main differences between ThFeAsN as considered here and
this model system is that in Ref. [30] we assumed only two
electron bands and a band-independent, isotropic EPI. Addi-
tionally, we consider here only couplings on the FS, while
results over the entire electronic bandwidth would be required
for self-consistent calculations. However, the striking similar-
ity of Fig. 9 to our model system, and the fact that we find
for the self-consistent interacting vertex �q,m,m′ � �

(0)
q,m,m′ in

Ref. [30], leaves us with the conclusion that vertex-corrected
EPI might lead to a boost in the gap magnitude and critical
temperature of ThFeAsN.

V. DISCUSSION AND CONCLUSION

In summary, a self-consistent FS-based Eliashberg theory,
including spin and charge fluctuations, and EPI, can not ex-
plain the critical temperature in ThFeAsN as it is observed
experimentally. In Sec. IV A we show that this is due to phase
frustration in the superconducting gap due to competing con-
tributions to the interaction kernel. From the strong similarity
to other Fe-based superconductors, especially concerning FS
properties, we conclude that such frustration behavior is likely
to be generic for this family of compounds. However, even in
the most simplified case of solely including spin-fluctuation
couplings between electron and hole bands, where no phase
frustration occurs, we find a maximum Tc = 7.5 K, which is
still significantly smaller than T max

c = 30 K.
As mentioned above, our Eliashberg calculations lead to

an underestimation of both Tc and superconducting gap mag-
nitude due to a phase frustration in the gap, caused by
competing short and long-range wave-vector contributions to
the spin-fluctuation interaction. It is possible that an inclu-
sion of orbital-dependent matrix elements in the calculation
of bare susceptibilities would improve this aspect signifi-
cantly [57,58]. Such matrix elements can alter the momentum
structure of the susceptibility, and therefore also of the charge
and spin kernels, such that the problematic features at the BZ
center might be suppressed. However, at this point we can
only speculate about the influence of orbital content on the
level of susceptibilities because the self-restraint effect in Fe-
based superconductors was only demonstrated in calculations
without such matrix elements [28].

Another potentially important aspect is the level on which
the RPA formalism is introduced. Here we use a global
Stoner parameter, i.e., only a single quantity to tune in or-
der to find a valid solution for the superconducting state.
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More general Hubbard Hamiltonians can include additional
physics, such as Hundness and intra or interorbital hopping,
as, e.g., employed in Refs. [59–62]. Not only can such model-
ing provide more insights into the important physics of the
system, but, additionally, a larger phase space for parame-
ter exploration is likely to allow the correct solution of the
interacting state. For a realistic anisotropic, full bandwidth,
and multiband/multiorbital description one might employ the
formalism of Ref. [48]. However, a faithful tight-binding fit to
the electronic dispersion is crucial for this approach, which is
why we did not attempt it here.

The potential boost for Tc due to vertex corrected
EPI as discussed in Sec. IV B has its root in the quasi-
2D character of the electronic energies, together with a
degree of nonadiabaticity, that suggests a treatment of EPI
beyond Migdal’s approximation as important. For represen-
tative model systems of high-Tc materials, including Fe-based
superconductors, it has been shown that a well-nested FS leads
to self-consistent unconventional superconductivity, mediated

by isotropic electron-phonon scattering [30]. Although only
a fully self-consistent calculation in ThFeAsN can test our
conjecture, the renormalized vertex function obtained here
resembles to a good degree recent model systems [30]. We
therefore speculate that nonadiabatic corrections might en-
hance spin-fluctuations mediated Cooper pairing in ThFeAsN,
while supporting the s± symmetry of the gap.
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