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BCS-BEC crossover in a two-band superconductor with odd-parity hybridization

G. N. Bremm, M. A. Continentino , and T. Micklitz
Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro, Brazil

(Received 28 September 2020; revised 16 July 2021; accepted 24 August 2021; published 16 September 2021)

We study the crossover from the weak coupling Bardeen-Cooper-Schrieffer (BCS) state to Bose-Einstein
condensation (BEC) at strong coupling in a two-band superconductor with orbitals of opposite parity coexisting
at a common Fermi surface in the metallic state. In such systems hybridization can play a role similar to spin-orbit
interaction in fermionic spinor gases, enhancing interband pairing and opening the possibility for driving the
BCS-BEC crossover. Building on a mean-field analysis, we investigate the BCS-BEC crossover induced by a
variation of the hybridization strength. We show that the relevant scale for the crossover depends strongly on the
ratio of effective masses, with the crossover favored in systems with one dispersive and one flat band. Including
the effect of thermal pair fluctuations in a one-loop approximation, we calculate the dependence of the critical
temperature on the microscopic parameters in the strong coupling regime.
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I. INTRODUCTION

Multiorbital superconductors have been in the focus of
active research for many decades. Starting with the seminal
works by Suhl [1] and Kondo [2] on transition metals, the
discovery of iron-based high-Tc superconductors has lead to
a more recent boost in the interest of superconductors in-
volving multiple orbitals [3–9]. In the early works, a two-gap
scenario for a model of decoupled s and d bands has been
proposed which has only recently been experimentally ob-
served [10–16]. Hybridization of orbitals, on the other hand,
suppresses the possibility of independent intraband pairs and,
at the same time, facilitates the formation of interband su-
perconductivity with pairs formed by electrons belonging to
different bands [17]. Recent numerical work on a two-orbital
model [18,19] for the pnictides, e.g., conclude on the favor-
ing of interorbital pairing, a scenario further investigated in
Refs. [20,21]. Interband pairing has also been studied in the
context of heavy fermions [22,23], cuprates [24], cold atom
systems, and even quantum chromodynamics [25,26].

In the case of heavy fermions, it was argued that interband
pairing could occur for f and d electrons. That is, involv-
ing bands with largely different effective masses and orbitals
of opposite parity [22,23]. The hybridization in this case is
odd under parity transformation and shares characteristics
of spin orbit interaction, as pointed out in the recent work
Ref. [27]. The latter can play an interesting role in driving
a BCS-BEC crossover, as recently discussed in the context
of ultracold fermionic spinor gases with tunable synthetic
SU(2) gauge fields. More specifically, it has been proposed
that varying spin orbit interaction allows us to continuously
interpolate, at a fixed (weak) interaction strength, between
the two scenarios for the formation of the superfluid state
in fermionic systems. That is, the Bardeen-Cooper-Schrieffer
state (BCS) [28], where weakly coupled Cooper pairs are
formed from fermion states near the Fermi level and the
characteristic size for the pair correlation significantly exceeds

the interparticle distance, and the Bose-Einstein condensation
regime (BEC) [29] where fermions are first paired into com-
pact two-particle ‘molecules,’ which then condense.

Motivated by the (formal) similarities between odd parity
hybridization and spin orbit interaction, we here study the pos-
sibility of a hybridization driven (e.g., via pressure or doping)
BCS-BEC crossover in multiband superconductors [30,31]
involving atomic orbitals of opposite parity. An important
difference to fermionic spinor gases is the absence of a sym-
metry constraint relating the involved bands. Specifically, we
find that the ratio of effective fermion masses constitutes an
important parameter in the present problem [32–35]. Starting
out from a model, previously introduced by Khomskii and
co-workers to investigate thermodynamic and electrodynamic
properties of heavy fermion systems [22,23], we focus on the
scattering length, hybridization strength, and ratio of effective
masses as relevant parameters for the BCS-BEC crossover.
We first study the mean field properties and then include the
effect of thermal pair fluctuations in a one-loop approximation
to estimate the critical temperature in the strong coupling
regime. We find that the hybridization can play a similar role
to the scattering length, driving the crossover from the BCS
to the BEC regime, where the relevant scale for the crossover
depends on the ratio of effective masses. Large ratios favor the
crossover, which is specifically interesting for heavy fermion
systems with wide d and shallow f bands.

The paper is organized as follows. In Sec. II we introduce
the model for the two-band superconductor which is then
exposed to a mean-field analysis in Sec. III. We discuss,
respectively, the mean-field order parameter, critical temper-
ature, and chemical potential, and compare their dependence
on the fermionic scattering length, odd-parity hybridization,
and ratio of effective masses. Section IV explores the strong
coupling regime. We derive the effective gaussian theory for
the two-particle ‘molecules’ from which we calculate the crit-
ical temperature in the BEC limit. Throughout the paper we
set kB = h̄ = 1.
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II. MODEL

We start out from the two-band model Ĥ = Ĥ0 + Ĥint,
previously introduced by Khomskii and co-workers to study
superconductivity in heavy-fermion systems [22,23]. The free
fermion Hamiltonian,

Ĥ0 =
∑
k,σ

(
ε

f
k f̂ †

kσ f̂kσ + εd
k d̂†

kσ d̂kσ + Vk f̂ †
kσ d̂kσ + H.c.

)
, (1)

describes f and d electrons with dispersions ε
f
k = k2/(2m f )

and εd
k = k2/(2md ), respectively, and hybridizing via the

potential Vk. Here f̂ †, f̂ and d̂†, d̂ are the creation and an-
nihilation operators for f and d electrons, summation is over
three-dimensional momenta k and spin σ =↑,↓, and ‘H.c.’
denotes the hermitian conjugate. The attractive interaction,

Ĥint = 1

N

∑
kk′,σ

gkk′ f̂ †
kσ d̂†

−k−σ d̂−k′−σ f̂k′σ , (2)

with local potential gkk′ = −g/2, where g is the (positive)
coupling constant and N the number of lattice sites, induces
s-wave pairing with (mean-field) order parameter

�0 = g

4

∑
k,σ

〈d̂−k−σ f̂kσ 〉. (3)

Notice that in the absence of a hybridization, V̂k = 0, the
model only accounts for interband pairing. For finite hy-
bridizations, on the other hand, it includes both inter- and
intraband pairing, as evident in the band representation dis-
cussed below.

A similar model has recently been discussed for the pnic-
tides [20,21]. However, there the two orbitals involved share
the same parity, while for our discussion the opposite parity
of d and f orbitals is a crucial ingredient. (A corresponding
model with even parity hybridization does not show a BCS-
BEC crossover induced by the hybridization, see Ref. [36].)
Opposite parity of orbitals implies that the hybridization po-
tential is odd under parity transformation, V−k = −Vk, and
the small momentum expansion of the hybridization potential
reads Vk � iαvF (kx + ky + γ kz ), with vF the Fermi velocity.
Notice that in the strong-coupling limit there are no Fermi
surfaces and the Fermi velocity then is a measure for the
number density, vF ∝ n1/3.

For concreteness we here specified to systems with tetrag-
onal symmetry in which the main interaction between orbitals
resides within the layers, as frequently encountered in heavy
fermions materials exhibiting nearly two-dimensional be-
havior [38]. The dimensionless parameter α controls the
hybridization strength, and we will focus on cases in which the
main overlap between orbitals resides within the layers, i.e.,
on anisotropies γ 	 1. Finally, notice that in a time-reversal
invariant system α is a real parameter, and the hybridization
potential Vk purely imaginary.

As already discussed in the introduction, the above model
Eqs. (1) and (2) share some similarities with fermionic spinor
gases with pair correlations and spin orbit interactions. Due
to the recent progress in the generation of synthetic SU(2)
gauge fields, the latter have been studied in detail [39–44], and
the scenario of a BCS-BEC crossover driven by the tunable
spin orbit interaction has been suggested [42,45]. Given the

FIG. 1. Schematic plot of the dispersion relation ε(kx = ky =
0, kz ) of the two band system in the absence of pairing correlations
�0 = 0. Dashed line indicates the energy of the band minimum,
E0(δ, α), defined in the main text. Inset: E0(δ, α) as function of α

for different values of δ.

similarities between both systems, it is then natural to inves-
tigate a BCS-BEC crossover in the two-band superconductors
driven by odd-parity hybridization. An important difference
to fermionic spinor gases is the absence of a symmetry con-
straint on the dispersion relation of bands coupled by the
hybridization. While spin orbit interaction couples fermions
with identical dispersion (as imposed by time-reversal sym-
metry), the ratio of fermion masses constitutes a relevant
parameter in the present problem. More specifically, we as-
sume that m f � md and introduce the ‘difference in fermion
masses,’ δ = (m f − md )/(m f + md ), taking values 0 � δ <

1, and then study pairing as a function of the scattering length
(see below), hybridization α, and mass difference δ. We will
see that interband pairing in the weak coupling regime is
reduced upon increasing δ, while the situation is different in
the strong coupling regime. Also, the BCS-BEC crossover
driven by moderate hybridization requires rather large mass
differences.

For the following it is convenient to introduce the (inverse)
reduced mass 2/m ≡ 1/m f + 1/md , where εF = k2

F /(2m) the
Fermi energy and kF = k f

F

√
1 + δ = kd

F

√
1 − δ. Figure 1

shows the single particle dispersion for the two band system
Eq. (1) for momenta in the plane kz = 0. The band minimum is
at E0(δ, α) = (α/δ)2(

√
1 − δ2 − 1)εF < 0, which is reduced

by increasing either hybridization α or mass difference δ (see
inset of Fig. 1). In the presence of pair correlations induced by
the attractive interaction Eq. (2), the crossover from the BCS
into the BEC regime is expected to occur when the chemical
potential falls below this energy μ � E0 [46–51].

Following the standard procedure, we introduce a path
integral representation for the partition function in terms of a
fermionic field integral. Decoupling interactions via Hubbard-
Stratonovich transformation and integrating out fermionic
degrees of freedom (see Appendix A for details) we arrive
at the effective action,

S[�] = 2

g

∑
q

|�q|2 − Tr ln G−1
� + C, (4)
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where C = ∑
k(ξ d

k + ξ
f

k )/T is a constant, � is the pairing
field, q = (ωm, q) a four-momentum with ωm = 2mπ T (m
integer) the bosonic Matsubara frequencies, and the trace ac-
counts for summation over Nambu space and internal degrees
of freedom. We further introduced the inverse Nambu-Gorkov
Green’s function G−1 = G−1

0 + �, with

G−1
0,k =

⎛
⎜⎜⎝

iεn − ξ
f

k −V̄k 0 0
−Vk iεn − ξ d

k 0 0
0 0 iεn + ξ

f
k −Vk

0 0 −V̄k iεn + ξ d
k

⎞
⎟⎟⎠ (5)

the inverse free propagator. Here ξ
f (d )

k ≡ ε
f (d )
k − μ, and k =

(εn, k) is the four-momentum with fermionic Matsubara fre-
quencies εn = (2n + 1)π T . Finally,

�x =

⎛
⎜⎜⎝

0 0 0 −�x

0 0 �x 0
0 �̄x 0 0

−�̄x 0 0 0

⎞
⎟⎟⎠, (6)

with x = (τ, x) the conjugate four-coordinate. As already
mentioned above, we notice that in a band representation the
order parameter Eq. (6) describes both inter- and intraband
pairing. That is, changing to a basis that diagonalizes Eq. (5),
the homogeneous and static order parameter becomes the
Nambu space matrix �0 = ( 0 �

�̄ 0 ), with

� = �0 ×
(

i sin(2φk ) − cos(2φk )
cos(2φk ) −i sin(2φk )

)
, (7)

and correspondingly for �̄. Here and in the follow-
ing cos(2φk ) = δεk/
k and i sin(2φk ) = Vk/
k, with εk =
k2/(2m) and 
k =

√
δ2ε2

k + |Vk|2. We further notice that
Eq. (7) in the limit of equal masses, m f = md , reduces to
a model with only intraband pairing. The mass difference
δ can, therefore, be understood to tune the contribution of
interband pairs in the band representation. We next discuss
the mean-field properties of the effective action Eq. (4).

III. MEAN-FIELD ANALYSIS

Concentrating on homogeneous configurations, �(x) =
�0, the mean-field equation takes the form

1

g
= 1

2

∑
k,η=±

1

ε
η

k

(
ε

η

k

)2 − A+
k(

ε
η

k

)2 − (
ε

−η

k

)2 tanh

(
ε

η

k

2T

)
, (8)

where here and in the following A±
k = ξ 2

k + �2
0 − δ2ε2

k ±
|Vk|2, and the excitation energies are given by

ε±
k =

√
ξ 2

k + |Vk|2 + δ2ε2
k + �2

0 ± 2Ek, (9)

with Ek =
√

(ξ 2
k + �2

0)δ2ε2
k + ξ 2

k |Vk|2, and we introduced

ξk ≡ (ξ d
k + ξ

f
k )/2 = εk − μ (see Appendix B for details).

The ultraviolet divergence in Eq. (8) is accounted for in the
standard way [27,52]. That is, substituting the bare interaction
parameter for the s-wave scattering length of the two-body
problem in vacuum, as, and a counter term that regularizes
the asymptotic behavior of the sum over momenta, g−1 �→

−m/(4πas) + ∑
k(2εk )−1. The interaction is then character-

ized by the ratio of the average interparticle distance and
scattering length, (kF as)−1, and varies from large negative val-
ues in the weak to large positive values in the strong coupling
regime.

A closed set of equations that fixes the chemical potential
and order parameter, respectively, critical temperature, is ob-
tained from adding the occupation number equation, n(T ) =
T ∂μ ln Z , with Z = ∫

D� e−S[�] the partition function result-
ing from action (4). In our two-band scenario the latter takes
the form (see Appendix B for details)

n(T ) =
∑

k,η=±

[
1 − 2ξk

ε
η

k

(
ε

η

k

)2 + A−
k(

ε
η

k

)2 − (
ε

−η

k

)2 tanh

(
ε

η

k

2T

)]
. (10)

Finally, to eliminate the particle density from the equations,
we use that at zero temperature n(0) = 2Fδ[kF /(2π )]3, where
the factor 2 here accounts for spin polarizations, and

Fδ = 4π

3

[
1

(1 + δ)3/2
+ 1

(1 − δ)3/2

]
. (11)

We notice that the divergence of Fδ for δ → 1 reflects the di-
verging density of states (DoS) in the flat band limit 1/m f →
0. Next, we discuss numerical solutions of the coupled equa-
tions (8) and (10) in the zero temperature limit and for
temperatures close to the superconducting transition.

A. Numerical solutions at T = 0

Taking the continuum limit we arrive at the coupled mean-
field equations in the zero temperature limit,

4π2

kF as
=

∫
d3k

mkF

[
1

εk
− 1

ε+
k + ε−

k

(
1 + A+

k√
Ck

)]
, (12)

Fδ =
∫

d3k

k3
F

[
1 − ξk

ε+
k + ε−

k

(
1 + A−

k√
Ck

)]
, (13)

with Ck = (A−
k )2 + 4|Vk|2�2

0, which are next solved numeri-
cally. We first notice that the anisotropy can be absorbed into
a rescaling of the hybridization [53] α �→ αγ ≡ α

√
(2 + γ 2)

and are thus left with three relevant parameters. That is, we
next compare solutions for different values of the scatter-
ing length (kF as)−1, hybridization αγ (for simplicity in the
following still denoted by α), and mass difference δ. More
specifically, we compare the cases in which either the scatter-
ing length (kF as)−1 or the hybridization α is used as a tuning
parameter, while keeping the other and δ fixed.

Figure 2 shows the mean field order parameter and chemi-
cal potential as functions of (kF as)−1 for two fixed values α =
0.5, 2.0, and the three values δ = 0.1, 0.5, 0.9. In all cases we
observe the characteristic features of a BCS-BEC crossover.
That is, increasing order parameter and decreasing chemical
potential as the tuning parameter (kF as)−1 is increased. These
features are independent of the specific values of δ and α, al-
though details change. Specifically, for weaker hybridization
strength, α = 0.5, the δ dependence of the mean field order
parameter is more pronounced, showing an increasingly sharp
crossover from the BCS into the BEC regime. This can be
understood from noting that for moderate hybridization, large
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FIG. 2. Zero temperature mean-field order parameter, �0, and
chemical potential, μ, (in units of the Fermi energy) as functions of
the scattering length (kF as )−1. Here for hybridizations α = 0.5 (left),
and α = 2.0 (right) and mass differences δ = 0.1, 0.5, 0.9.

mass differences kinetically constrain fermions from differ-
ent bands (and with opposite momenta) to be at a common
Fermi level (see also below). Large values δ therefore suppress
superconductivity in the BCS regime. In the strong coupling
regime, on the other hand, fermions form bound molecules,
and increasing δ rather increases the mean field order pa-
rameter (see discussion below). This explains the sharp rise
of �0 for large mass differences and moderate hybridization.
Increasing the hybridization, the kinetic constraint from large
mass difference becomes less relevant. Indeed, we observe in
the right panels of Fig. 2 that the rapid rises in the mean field
order parameter disappears for α = 2.0, with �0 increasing
approximately linear in (kF as)−1 for all values δ.

Finally, we also observe that increasing α at a fixed value
(kF as)−1 increases �0, respectively, decreases μ, indicating
a transition into strong coupling regime induced by α. To
further elaborate on this last point we show in Fig. 3 the
mean-field solutions as a function of α for the weak cou-
pling value (kF as)−1 = −0.5, and for different values δ =
0.1, 0.3, 0.7, 0.9. Increasing α leads to qualitatively the same
behavior as in Fig. 2. That is, a decrease in the chemical
potential and increase in the order parameter, although for
the shown range of α values the latter is visible only for the
larger values δ = 0.7, 0.9. For the smaller values δ = 0.1, 0.3,
the order parameter varies only by a few percent within the
indicated range of α, exhibiting a slightly nonmonotonous α

dependence. For the large values of δ = 0.7, 0.9 we see the
qualitatively same behavior resulting from either (kF as)−1 or
α as a tuning parameter. The consequences of an increasing
mass difference δ are therefore different in the weak and
strong coupling regimes, as already noticed in Fig. 2. That
is, �0 in the weak and strong coupling regimes reduces, re-

FIG. 3. Zero temperature mean-field order parameter �0 and
chemical potential μ (in units of the Fermi energy) as functions of
the hybridization strength α. Here for (kF as )−1 = −0.5 and mass
differences δ = 0.1, 0.3, 0.7, 0.9.

spectively, increases with larger values of δ, leading to steeper
profiles already mentioned above. The increase of correlations
with δ can be related to an increase in the DoS in the flat band
limit 1/m f → 0. Relatedly, we observe that increasing δ, the
crossover into the BEC regime occurs for smaller values of the
tuning parameters α, (kF as)−1. These features are also further
investigated below.

Summarizing, the zero temperature mean-field solutions
how that odd-parity hybridization plays a similar role as
the scattering length. That is, our main observation here is
that, analogous to spinor gases, where a tunable BCS-BEC
crossover can be induced by controlling spin orbit interac-
tion [39–41], the crossover in the two band superconductors
can be driven by increasing the odd-parity hybridization. To
further investigate this second scenario we next turn our dis-
cussion to finite temperatures.

B. Numerical solutions at T � Tc

Close to the phase transition we can neglect �0 in the exci-
tation energies and arrive at the coupled mean field equations,

4π2

kF as
=

∑
η=±

∫
d3k

2mkF

[
1

εk
− 1 + f η

k

2ξk
tanh

(
ξ

η

k

2Tc

)]
, (14)

Fδ =
∑
η=±

∫
d3k

2k3
F

[
1 − tanh

(
ξ

η

k

2Tc

)]
, (15)

with gapless energies ξ±
k = ξk ± 
k, and f ±

k =
∓|Vk|2/(
kξ

±
k ). The numerical solutions for mean-field

parameters μ, Tc as functions of α, (kF as)−1, and for different
values δ resulting from Eqs. (14) and (15) are shown in
Figs. 4 and 5. The results are qualitatively similar for both
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FIG. 4. Finite temperature mean-field critical temperature Tc and
chemical potential μ (in units of the Fermi energy) as functions of
the scattering length (kF as )−1. Here for hybridizations α = 0.5 (left)
and α = 2.0 (right), and mass differences δ = 0.1, 0.5, 0.9. The gray
dashed line indicates the band bottom E0.

tuning parameters, and also similar to the behavior of μ,
�0 in the zero temperature limit. That is, we again observe
the characteristic features of a BCS-BEC crossover, viz.
increasing critical temperature and decreasing chemical
potential as the tuning parameter is increased. To identify the
crossover into the strong coupling regime, we indicate in all
figures the energy of the band minimum in the absence of
pairing, E0, by dashed gray lines.

Figure 4 shows the critical temperature and chemical po-
tential as functions of (kF as)−1, for hybridization strengths
α = 0.5 (left) and α = 2.0 (right) and mass differences δ =
0.1, 0.5, 0.9. As already mentioned, the crossover into the
strong coupling regime (indicated by the crossing E0 � μ)
is shifted to smaller values of (kF as)−1 as either α or δ is
increased. Again we observe that for the smaller value α =
0.5 the crossover becomes more pronounced as δ increases.
Figure 5 shows the corresponding behavior of the critical
temperature (main panel) and chemical potential (inset) as
α is varied, here for a scattering length (kF as)−1 = −0.5
in the weak coupling regime, and for mass differences δ =
0.1, 0.3, 0.7, 0.9. Similar to the order parameter in the zero-
temperature limit, we find for small mass differences δ a
weak α dependence of Tc in the indicated range of α values,
which then becomes more pronounced as δ increases. That is,
Tc decreases, respectively, increases in the weak and strong
coupling regimes as δ increases. Interestingly, Tc(α) appears
to intersect in a single point α � α0 for different δ values,
indicating some form of scaling that is not understood at the
moment (see Appendix E for further details). The inset shows
the α dependence of the chemical potential for the corre-
sponding values of (kF as)−1 and δ. Notice that for the range

FIG. 5. Main: Finite temperature mean-field critical temperature
Tc (in units of the Fermi energy) as functions of α. Here for scattering
lengths (kF as )−1 = −0.5 in the weak coupling regime, and mass
differences δ = 0.1, 0.3, 0.7, 0.9. Inset: Chemical potential μ (in
units of the Fermi energy) as functions of α, and the same set of
parameters. The gray dashed line indicates the band bottom E0, and
the crossover from the BCS to the BEC regime occurs when μ � E0

(here only for the largest value of mass difference δ = 0.9).

of α values presented, μ intersects E0 only for the largest
value δ = 0.9. As δ decreases, larger α values are required for
the BCS-BEC crossover to take place. At the same time, in-
creasing the scattering length the crossover occurs for smaller
values α (see also Fig. 7 below). The α-driven BCS-BEC
crossover is thus favored in systems with one dispersive and
one flat band, as typically encountered in the heavy fermion
systems with a shallow band of f electrons and a wide band
of d electrons.

Again we observe that the impact of large mass differences
δ is qualitatively different in the weak and strong coupling
regimes. To illustrate this further, we show in Fig. 6 the δ

dependence of the critical temperature (left) and chemical
potential (right) for three different values (kF as)−1 = ±0.5, 0
and α = 0.5 (top) and 2.0 (bottom). One clearly sees the
opposite impact of an increasing δ in the weak and strong
coupling regimes. That is, a decreasing (eventually dropping
to zero) and increasing critical temperature in the weak (top)
and strong coupling (bottom) regimes, respectively, accom-
panied by an increasing, respectively, decreasing chemical
potential. Notice that for large hybridization the chemical
potential eventual drops below the band bottom E0 (indicated
by the dashed gray line) as δ is increased.

To summarize the main observation of this section, we
confirm that the relevant scale for the hybridization driven
BCS-BEC crossover depends strongly on the ratio of effec-
tive masses. Large mass differences in the weak coupling
regime suppress superconductivity, and the weak coupling
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FIG. 6. Finite temperature mean-field critical temperature, Tc,
(left) and chemical potential, μ, (right) as functions of the mass
difference δ (the grey dashed line again denotes the band bottom E0).
Here for three values of the scattering length (kF as )−1 = ±0.5, 0,
and hybridizations α = 0.5 (top) and α = 2.0 (bottom).

order parameter, destroyed by δ, can be restored by the hy-
bridization. This is similar to spin orbit coupled gases, where
large Zeeman fields destroy superconductivity and can be
restored by spin orbit interaction. Indeed, upon substituting
the Zeeman and spin orbit interaction energies for δεk and
Vk, respectively, we can repeat the argument of Ref. [45].
That is, without hybridization a finite mass difference lifts
the degeneracy between electrons from f and d bands and
thus destroys pairing when the mass difference exceeds the
pairing interaction in units of the Fermi energy. This can be
understood from the quasiparticle spectrum Eq. (9), where the

excitation gap Eg = mink|
√

ξ 2
k + �2

0 − δεk| = 0 for a suitable
chosen k when α = 0 and δ > �0/εF . With hybridization, on
the other hand, the bands of the single particle Hamiltonian
both contain f and d components even with a large mass
difference, leading to nonzero Cooper pairing between two
fermions in the same band with opposite momenta. Finally,
the crossover is favored in systems with one dispersive and
one flat band, viz. large δ. This is specifically interesting for
heavy fermion systems with wide d and shallow f bands.

We observe in Fig. 5 a monotonic growth of Tc with in-
creasing α. A similar (algebraic) growth of the mean-field
critical temperature is observed in spinor gases with increas-
ing strength of spin orbit interaction [40]. An (exponential)
growth of the critical temperature is also observed for in-
creasing (kF as)−1 at fixed α. This monotonic growth of the
mean field critical temperature with the tuning parameter is
a well-understood artifact of the mean-field analysis of the
BCS-BEC crossover. It is also observed in the single band su-
perconductors, where the true critical temperature has a peak
at (kF as)−1 � 0 and saturates to a constant value for strong

couplings. To overcome the artifact of the mean-field analysis
in the present case, and to estimate the critical temperature as
a function of the hybridization strength in the strong coupling
regime, we next turn to the effect of pair fluctuations.

IV. STRONG COUPLING LIMIT

In the strong coupling regime, the mean field critical
temperature Tc rather describes the dissociation energy of
pairs than the temperature scale at which coherence is estab-
lished [54]. To overcome the deficiency of the bare mean-field
analysis, and to capture the critical temperature at strong
couplings, it is sufficient to account for pair fluctuations in
a one-loop approximation.

A. Gaussian pair fluctuations

Relying then on a one loop approximation, we expand the
effective action Eq. (4) in gaussian fluctuations of the order
parameter. The calculation is simplified in a basis diagonaliz-
ing the free Green’s function and results in the effective action
for pair fluctuations (see Appendix C for details),

S(2)[�] =
∑

q

�−1
q |�q|2, (16)

with the vertex function,

�−1
q = 2

g
−

∑
k,η,η̄

F ηη̄

k,q

1 − nF
(
ξ

η

k−q/2

) − nF
(
ξ

η̄

k+q/2

)
iωm + ξ

η

k−q/2 + ξ
η̄

k+q/2

. (17)

Here nF is the Fermi distribution,

F ηη̄

k,q =
{

cos2 (φk−q/2 + φk+q/2) η �= η̄,

sin2 (φk−q/2 + φk+q/2) η = η̄,
(18)

and for convenience of the reader we recall that
i sin(2φk ) = Vk/
k and cos(2φk ) = δεk/
k. The vertex
function, Eq. (17), holds the relevant information on
pair fluctuations, and gaussian integration over � leads
to a spectral determinant which includes the effect of
pair fluctuations into the number equation. The resulting
coupled mean-field equations in the two-band scenario
become rather involved, and we here focus on the strong
coupling regime, where the chemical potential is always
below the band minimum E0, and fermionic occupations
are (exponentially) small. Neglecting then contributions
from Fermi distribution functions, we perform a gradient
expansion in small momenta and frequencies to arrive at
�−1

q � M0 + J0
2 (iωm + q2

4m ) − δ2�q, where

M0 = πν0

(√
xμ − 1

kF as

)
−

∑
k

�k

ξk
,

J0 = πν0

2εF
√

xμ

+
∑

k

�k

(
1

ξ 2
k

+ 2

ξ 2
k − 
2

k

)
,

�q = q2

4m

∑
k

εk

ξk

�k

ξ 2
k − 
2

k

+
∑

k

1

ξ 3
k

[(
k · q
2m

)
(1 + �k ) − εkVkVq

ξ 2
k − 
2

k

]2

, (19)

094514-6



BCS-BEC CROSSOVER IN A TWO-BAND … PHYSICAL REVIEW B 104, 094514 (2021)

with ν0 the DoS at the Fermi level, and we defined xμ ≡
|μ|/εF and �k ≡ |Vk|2

ξ 2
k −
2

k
. Notice that, although not explicitly

stated, all of the above expressions depend on (kF as)−1, α,
and δ.

B. Critical temperature

We can now deduce the critical temperature Tc in the BEC
regime from the dispersion relation of the pair propagator. To
this end we notice that, incorporating an overall constant into
the fields, Eq. (16) can be rewritten as

S(2)[�̄,�] =
∑

q

�̄q(iωm + εq + μeff )�q, (20)

with μeff = 2εF M0/(πν0J0), and the dispersion εq =∑3
i=1(δi j − 2δ2

J0

i j )

qiq j

4m , where � a symmetric block-diagonal
matrix reflecting tetragonal symmetry,


xx =
∑

k

[
εk

ξk

�k

ξ 2
k − 
2

k

+ k2
x

2m

(1 + �k )2

ξ 3
k

]
, (21)


yy =
∑

k

[
εk

ξk

�k

ξ 2
k − 
2

k

+ k2
y

2m

(1 + �k )2

ξ 3
k

]
, (22)


zz =
∑

k

[
εk

ξk

�k

ξ 2
k − 
2

k

+ k2
z

2m

(1 + �k )2

ξ 3
k

− 2εk�k(1 + �k )

ξ 3
k

+ α2εF
ε2

k

ξ 3
k

�k

ξ 2
k − 
2

k

]
, (23)

with 
xx = 
yy, while the remaining off-diagonal compo-
nents are zero.

Using then the standard relation for weakly interacting
Bose gases [55] between critical temperature, bosonic density
n/2, and effective masses we can relate Tc in the strong cou-
pling regime to the scattering length (kF as)−1, hybridization
α, and mass difference δ. That is,

Tc = π

(mxmymz )1/3

[
n

2ζ (3/2)

]2/3

, (24)

where mi = m/(1 − 2δ2
ii/J0), and the appearance of
anisotropic masses is another common characteristic with the
spin-orbit coupled systems [40]. Figure 7 shows the criti-
cal temperature as a function of α for two different values
(kF as)−1 = 0.1 (left) and 0.5 (right), and δ = 0.7 (top) and
0.9 (bottom). The mean-field result, applicable in the weak
coupling regime, is indicated by the blue dashed lines. The
result Eq. (24), describing the strong coupling regime, is
shown by the black dashed-dotted line. We here assumed that
in the strong coupling limit the boson density is half of the
total fermion density. The crossover region where E0 = μ is
indicated by the vertical dotted line. For large hybridization,
the critical temperature in the strong coupling regime saturates
to a value that in general depends on both (kF as)−1 and δ.
For δ = 0, expression simplifies to that of a gas of bosons
with mass 2m and density n/2 = k3

F /(3π2), and Tc(δ → 0) �
0.35εF . That is, independent of α, and (kF as)−1, as long as the
latter are within the strong coupling regime. (Notice, however,
that for δ = 0 we could only establish superconducting mean-

FIG. 7. Critical temperature as a function of hybridization
strength α, for scattering length (kF as )−1 = −0.1 (left) and −0.5
(right), and δ = 0.7 (top) and 0.9 (bottom). The blue dashed and
black dash-dotted lines are the analytical predictions for the weak
and strong coupling regimes, respectively. The vertical dotted lines
indicate the values at which the chemical potential passes the band
bottom E0 � μ. The solid line shows the interpolation discussed in
the main text.

field solutions for large scattering lengths). This value is a
factor z2/3 larger than the corresponding value, Tc � 0.22εF ,
for single-band superconductors, where z = 2 the number of
bands. As seen from Fig. 7, the critical temperature [here
for scattering lengths (kF as)−1 = −0.1 and −0.5] then in-
creases for larger δ, taking the value Tc � 0.48εF for δ = 0.7,
and nearly doubles to Tc � 0.65εF for δ = 0.9. The entire
profile interpolating between both curves can be numerically
found from including the pair susceptibility into the mean-
field equation which is beyond the scope of the present work.
For a rough estimate, we follow Refs. [40,42] and interpolate
the weak and strong coupling regimes by adding the fluc-
tuation contribution, nfluc = ∑

q 1/(e
∑

i q2
i /(4miTc ) − 1), to the

right hand side of the number equation (10), where mi are the
effective masses defined previously. Finally the interpolations
shown as solid red lines in Fig. 7 successfully reproduce
the critical temperatures at both weak and strong coupling
regimes.

V. DISCUSSION

We have studied the effect of an odd-parity hybridization
on the BCS-BEC crossover in multiorbital superconductors.
Our analysis is motivated by superconductors with orbitals of
opposite parity coexisting at a common Fermi surface, such as
heavy fermion superconductors, and builds on the two-band
model previously introduced by Khomskii et al. [22,23] to
study thermodynamic properties of the latter. Specifically, we
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have shown that the odd-parity hybridization can play a simi-
lar role as the scattering length, driving the crossover from the
weak coupling BCS state to BEC at strong coupling. We found
that the relevant scale for the crossover depends on the ratio
of effective masses and is favored in systems with a narrow
and a wide band, as typically encountered in heavy fermion
systems with their localized f and delocalized d electrons. We
also found that large mass differences have opposite impacts
in the weak and strong coupling regimes. That is, reducing
interband pairing at weak couplings and enhancing pairing
in the strong coupling regime. We related the enhancement
of strong correlations to the diverging DoS in the flat band
limit 1/m f → 0, while the suppression of superconductivity
in the weak coupling limit can be understood from the kinetic
constraints for pairing of fermions from different bands and
with opposite momenta induced by large δ. The suppression of
superconductivity in the weak coupling regime at moderated
hybridization and large mass differences is thus restored by
increasing hybridization. This is similar to spin orbit coupled
gases, where large Zeeman fields destroy superconductivity
and can be restored by spin orbit interaction [45]. Relat-
edly, the sharp profile of the mean field order parameter as
a function of the scattering length at large mass differences
disappears with increasing hybridization.

We conclude with several comments on the model and
future directions. Our analysis builds on a simple model
by Khomskii and co-workers, and it should be interesting
to study extensions to more sophisticated models. The dis-
persions of free electrons, considered here, left the mass
difference δ as the only relevant parameter from the band
structure. As discussed above, δ plays an important role in
the α-driven BCS-BEC crossover, and it should be interesting
to see how additional parameters resulting from more realistic
band structures affect the latter. Also, the present model only
accounts for pairs of f and d electrons, and pairing in the
s-wave channel. In the presence of finite hybridizations this
includes both intra- and interband pairs, as can be seen in
the more physical band representation, with the density of
interband pairs proportional to δ. More specifically, tuning δ

one interpolates between a scenario of pure intraband pairing
to one with both intra- and interband pairs in the band repre-
sentation. Still, one may wonder how inclusion of pairing in
the d or f band changes the discussed results. We first notice
that the latter add a pairing potential in the band representation
similar to Eq. (7), where now the intraband contribution is
determined by δ and the interband contribution is proportional
to the hybridization. We further show in Appendix D that in
a model with only intraband pairing increasing α does not
tune the system into a strong coupling regime. We, therefore,
expect that in a model with pairing of both f and d electrons,
and the f -d pairs considered here, the latter will dominate
with increasing hybridization. Based on these observations,
we expect that the α-driven BCS-BEC crossover also applies
to more complex situations, however, more detailed studies
are required to corroborate this picture. In the same way, it
should be interesting to include the possibility of different
pairing symmetries into the two band systems with finite
hybridization.

Finally, our results are derived from a mean-field analy-
sis in the weak coupling regime, and in the strong coupling

regime the effect of pair fluctuations is included in a one-
loop approximation. We here focused on the weak and strong
coupling regimes and resorted to a simple interpolation in
between. Results for the entire crossover can be numerically
found by including the pair susceptibility, derived in Sec. IV,
into the coupled mean field equations for the critical tem-
perature and chemical potential. Solving the rather involved
coupled equations is, however, numerically challenging and
beyond the scope of the present work.
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APPENDIX A: EFFECTIVE ACTION

Within the path integral formalism our action is expressed
through the Grassmann fields ψ

d ( f )
kσ

as

S[ψ] =
∑
k,σ,l

ψ̄ l
kσ

(
ξ l

k − iεn
)
ψ l

kσ

− g

2

∑
k,k̄,q,σ

ψ̄
f

k+qσ
ψ̄d

−k−σ ψd
−k̄+q−σ

ψ
f

k̄σ

+
∑
k,σ

(
Vkψ̄

f
kσ

ψd
kσ + V̄kψ̄

d
kσ ψ

f
kσ

)
. (A1)

We decouple the quartic term in the Cooper channel to ar-
rive at the partition function Z = ∫

D[ψ]D� e−S[ψ,�], with
action,

S[ψ,�] =
∑

q

2

g
|�q|2 +

∑
k,σ,l

ψ̄ l
kσ

(
ξ l

k − iεn
)
ψ l

kσ

−
∑
k,q,σ

(
�qψ̄

f
k+qσ

ψ̄d
−k−σ + �̄qψ

d
−k−σ ψ

f
k+qσ

)

+
∑
k,σ

(
Vkψ̄

f
kσ

ψd
kσ + V̄kψ̄

d
kσ ψ

f
kσ

)
. (A2)

Introducing the Nambu spinor representation �̄k =
(ψ̄ f

k↑ ψ̄d
k↑ ψ

f
−k↓ ψd

−k↓) the action can be expressed as

S[�,�] = ∑
q

(
2
g |�q|2 − ∑

k �̄k+qG−1
� �k−q

) + C, (A3)

with G−1
� defined in Eqs. (5) and (6) in the main text, and

the constant C = ∑
l= f ,d

∑
k ξ l

k/T is due to reorganization
of fermionic operators in the Nambu representation. Upon
integration over fermionic fields we finally arrive at

S[�] =
∑

q

(
2

g
|�q|2 − ln Det G−1

�

)
+ C, (A4)

which, using the identity ln Det G−1
� = Tr ln G−1

� , becomes
Eq. (4) in the main text.
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APPENDIX B: MEAN-FIELD EQUATIONS

Concentrating on a static and homogeneous order parame-
ter, �q = �0, variation of the action δ�S = 0 results in

2�̄

g
− Tr(Gδ�G−1) = 0. (B1)

The only nonzero components are (δ�G−1)23 = 1 and
(δ�G−1)14 = −1, and therefore Tr(Gδ�G−1) = T

∑
k (G32 −

G41). The procedure to obtain the relevant G components is
straightforward but tedious. Skipping then longer algebraic
manipulations and assuming an s-wave order parameter, �0 =
�̄0, the saddle-point equation takes the form

2

g
= 2T

∑
k,εn

ε2
n + ξ

f
k ξ d

k + |Vk|2 + �2
0

DetG−1
, (B2)

with DetG−1 = ε4
n + 2Bk ε2

n + Ck, where

Bk = ξ 2
k + δ2ε2

k + �2
0 + |Vk|2, (B3)

Ck = (A−
k )2 + 4|Vk|2�2

0, (B4)

and we introduced ξk ≡ (ξ d
k + ξ

f
k )/2 = εk − μ. Performing

the sum over the odd frequencies εn we finally arrive at
Eq. (8).

Similarly, we can derive the occupation number equation
starting out from n(T ) = T ∂μ ln Z , where Z = ∫

D� e−S[�]

the partition function. Inserting action Eq. (A4), we arrive at

n(T ) =
∑

k

(
2 + T

∂

∂μ

∑
εn

ln detG−1

)
, (B5)

where the first contribution derives from the constant ∂μC.
More explicitly,

n(T ) =
∑

k

(
2 + T

∑
εn

2∂μBkε
2
n + ∂μCk

ε4
n + 2Bk ε2

n + Ck

)
, (B6)

and with the definitions given in Eq. (B3)

∂μBk = −2ξk, ∂μCk = −2ξkA−
k , (B7)

we can sum over the Matsubara frequencies in the second term
to arrive at Eq. (10) in the main text where we recall that A±

k =
ξ 2

k − δ2ε2
k + �2

0 ± |Vk|2.

APPENDIX C: GAUSSIAN PAIR PROPAGATOR

To derive the Gaussian pair propagator, we start out from
an expansion of the ‘tr log,’

Tr ln G−1
� = Tr ln G−1

0 −
∞∑

n=1

1

2n
Tr(G0�)2n, (C1)

and restrict ourselves to the leading second order contribu-
tion n = 1. The calculation is then simplified in a rotated
basis, i.e., applying a Bogoliubov-de Gennes transformation,
Uk = 12 ⊗ exp(iσ1φk ), with σ1 the first Pauli matrix acting in
Nambu space which diagonalizes G0. That is,

S(2)[�] =
∑

q

[
2

g
|�q|2 + 1

2
Tr(G̃0�̃)2

]
, (C2)

where

G̃0 = U†
kG0Uk =

⎡
⎢⎢⎣

G−
k 0 0 0

0 G+
k 0 0

0 0 −G−
−k 0

0 0 0 −G+
−k

⎤
⎥⎥⎦, (C3)

with the ± quasiparticles Green’s function G±
k = (iεn −

ξ±
k )−1 and the fluctuations matrix

�̃(k, q) = U†
k+q/2�qUk−q/2

= cos(φk+q/2 + φk−q/2)�c(q)

+ i sin(φk+q/2 + φk−q/2)�s(q), (C4)

where

�c(q) =

⎡
⎢⎣

0 0 0 −�q

0 0 �q 0
0 �̄−q 0 0

−�̄−q 0 0 0

⎤
⎥⎦ (C5)

and

�s(q) =

⎡
⎢⎣

0 0 −�q 0
0 0 0 �q

�̄−q 0 0 0
0 −�̄−q 0 0

⎤
⎥⎦, (C6)

with i sin(2φk ) = Vk/
k, and cos(2φk ) = δεk/
k. Notice
that the hybridization introduces an intraband pairing between
± bands, �s. Gaussian fluctuations then have the two contri-
butions ∑

q

Tr(G̃0�̃)2 = −2 T (Mq + Nq)|�q|2, (C7)

where

M2q =
∑
k,εn

Ckq(G+
k−qG−

−k−q + G−
k−qG+

−k−q ),

N2q =
∑
k,εn

Skq(G+
k−qG+

−k−q + G−
k−qG−

−k−q ), (C8)

and Ckq = cos2(φk−q + φk+q), Skq = sin2(φk−q + φk+q).
Lastly, performing the summation over fermionic frequencies

T
∑
εn

G±
k−qG±

−k−q = 1 − nF (ξ±
k+q) − nF (ξ±

k−q)

iωm + ξ±
k+q + ξ±

k−q

, (C9)

we arrive at the gaussian effective action S(2)[�] =∑
q �−1

q |�q|2 with the vertex function given in Eq. (17) in the
main text.

APPENDIX D: f -BAND PAIRING

For comparison we here discuss the mean-field analysis of
the main text for a model with pairing in only one of the bands
(here the f band). The mean-field order parameter then reads
�0 = g

∑
k〈 f̂−k↓ f̂k↑〉, with g a positive interaction constant in

the f band, and proceeding analogously as for the interband
pairing, we arrive at the gap equation

md

2πas
=

∑
k

1

εd
k

−
∑

k,η=±

1

ε
η

k

(
ε

η

k

)2 − (
ξ d

k

)2

(
ε

η

k

)2 − (
ε

−η

k

)2 tanh

(
ε

η

k

2T

)
,

(D1)
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FIG. 8. Finite T mean-field parameters for intraband supercon-
ductor as functions of (kF as )−1, here for mass difference δ = 0.8 and
different values of the hybridization strength α.

where the excitation energies ε±
k =

√
Bk ±

√
B2

k − Ck, with

Bk ≡
(
ξ

f
k

)2 + (
ξ d

k

)2 + �2
0

2
+ |Vk|2,

Ck ≡ (
ξ

f
k ξ d

k − |Vk|2
)2 + (

ξ d
k

)2
�2

0. (D2)

Together with the occupation number equation

n(T ) =
∑
k,η

[
1 − 1

ε
η

k

Dη

k + ξ d
k �2

0(
ε

η

k

)2 − (
ε

−η

k

)2 tanh

(
ε

η

k

2T

)]
, (D3)

where Dη

k ≡ 2ξk[(εη

k )2 + ξ
f

k ξ d
k − |Vk|2], this provides a closed

set of equations, which is next solved numerically for finite
temperatures T .

Figures 8 and 9 compare the mean-field gap function and
chemical potential as functions of the scattering length and
hybridization, respectively. Variation of the scattering length
(Fig. 8) shows results closely resembling those for the con-
ventional single band superconductors, while variation of the
hybridization (Fig. 9) has different implications. That is, dif-
ferently from the interband case, the hybridization suppressed
pair correlations as evident from the suppression of Tc with
increasing α (see main panels of Fig. 9). Further, we notice
that the chemical potential never falls below the band bottom,
μ > E0, when α is used as the tuning parameter (compare
Fig. 8 and insets of Fig. 9).

APPENDIX E: SCALING OF THE CRITICAL
TEMPERATURE

As discussed in Sec. III B, the critical temperature appears
to show some scaling as a function of α and δ. Tc(α, δ)

FIG. 9. Finite T mean-field parameters for intraband supercon-
ductor as functions of the hybridization strength α, for different
values of mass difference δ and scattering length (kF as )−1 = −0.5.

decreases, respectively, increases in the weak and strong cou-
pling regimes (i.e., for small, respectively, large values of α)
as δ increases. This can be seen in the left Fig. 10 for the
scattering length (kF as)−1 = −0.5. Interestingly, the curves
Tc(α) for different δ values all intersect in α0 � 1.08, indicat-
ing some form of scaling. In the right Fig. 10 we show the
result for a simple scaling ansatz

Tc(α, δ)

Tc(α0, δ)
= F

(
δ

|α − α0|p

)
, (E1)

where we find an (approximate) collapse for p = −1/3. This
indicates irrelevance of δ in the vicinity of the crossing point
α0, and a line of constant Tc for δ = C|α − α0|p, with C some
constant. At this point we do not have a deeper understanding
of this (approximate) scaling.

FIG. 10. Left: Mean-field critical temperature as a function of
the hybridization for scattering length (kF as )−1 = −0.5 and different
values of δ. All Tc curves intersect in α0 � 1.08. Right: Same data,
now using the scaling ansatz Eq. (E1) with p = −1/3.
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