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Strain-induced spin vortex and Majorana Kramers pairs in doped topological
insulators with nematic superconductivity
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Using the Ginzburg-Landau approach, we show that the strain of the nematic superconductor can generate
a specific (nematic) vorticity. In the case of doped topological insulators that vorticity forms a spin vortex.
We find two types of topologically different spin vortices that either enhance (type I) or suppress (type II)
superconductivity far from the vortex core. We apply Bogoliubov–de Gennes equations to study electronic states
in the nematic superconductor with spin vortices. We find that in the case of the type I vortex, zero-energy states
are localized near the vortex core. These states can be identified as Majorana Kramers pairs. In the case of the
type II vortex, there are no localized zero-energy states. Thus, we establish a nontrivial connection between the
strain and Majorana fermions in the doped topological insulators with nematic superconductivity.
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I. INTRODUCTION

Nematic superconductivity in doped topological insulators
attracts a great deal of attention nowadays [1–8]. In these
systems, the superconducting order parameter is time reversal
invariant, which corresponds to the Eu representation that
breaks inversion symmetry and couples electrons with the
same spin projections but from different orbitals [9,10]. NMR
measurements confirmed the triplet nature of the nematic
topological superconductivity in doped topological insula-
tors [11].

Exotic quasiparticles with non-Abelian statistics such as
Majorana fermions can exist in topological superconduc-
tors [12,13]. The Majorana fermions can be localized on
various types of topological defects [14]. One way to induce
Majorana fermions is to generate vorticity in the mass term.
For example, the Majorana fermions can be localized in the
cores of Abrikosov vortices [12,15–18]. If time-reversal sym-
metry is present, then, the Majorana fermions arise as Kramers
pairs [14,19].

Superconducting order in doped topological insulators be-
longs to the DIII symmetry class [20]. An analog of the
nematic superconductor of class DIII is the superfluid B phase
in 3He [21]. An interesting property of such a phase of helium
is a possible realization of the spin vortex that preserves the
time-reversal symmetry. The spin vortices in the B phase of
3He have been observed experimentally [22].

The spin vortices in the context of superconductivity have
been briefly discussed for (px + ipy)↑(px − ipy)↓ supercon-
ductors [19]. The spin vortex (referred to as the nematic
vortex) was studied in a superconductor with the nematic
order parameter in Ref. [23]. A single-orbital Hamiltonian
with a quadratic dispersion and k-dependent order parameter

was considered. It has been argued that the spin vortex brings
Majorana Kramers pairs into the system that form a Majorana
flat band.

A distinct feature of the nematic superconductivity is
strong coupling of the superconductivity with strain [24]. In
particular, the strain is responsible for a twofold symmetry
of the second critical field that has been observed in the
experiments [25,26]. The strain can be either spontaneous or
external [7]. We show that the applied centrosymmetric strain
can generate spin vortices in doped topological insulators with
nematic superconductivity.

We assume that a local force is applied to a sample of the
doped topological insulator, which has the form of a disk. The
force generates a centrosymmetric strain that couples with the
superconductivity and forms a (nematic) spin vorticity. De-
pending on the sample properties, two types of topologically
different spin vortices can exist. Such spin vortices have a nor-
mal core. We solve Bogoliubov–de Gennes (BdG) equations
and show that one type of spin vortices localizes the Majorana
Kramers pairs. Near the core of another type of spin vortex
there are no localized zero-energy states.

II. GINZBURG-LANDAU APPROACH

The Ginzburg-Landau (GL) free energy of the Eu topolog-
ical superconductor with D3d crystal symmetry can be written
as [10]

F0 = A(|�1|2 + |�2|2) + B1(|�1|2 + |�2|2)2

+ B2|�∗
1�2 − �1�

∗
2|2. (1)

Here �� = (�1,�2) is the vector order parameter, and A1 ∝
T − Tc < 0 and B1 > 0 are the GL coefficients. We suppose
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that B2 is positive, which corresponds to the nematic super-
conductivity with a real order parameter �� = �(cos α, sin α).
The vector �n = (cos α, sin α) shows the nematicity direction.
The free energy (1) is degenerate with respect to α. The
nematicity direction can be fixed by the strain [10,24].

We assume that the sample is deformed by some local
external force and the corresponding strain tensor has com-
ponents uxx, uyy, and uxy, which depend on the coordinate
�r. The strain tensor couples with the superconducting order
parameter. This coupling is described by an additional term in
the GL free energy [10,24],

Fu = gN (uxx − uyy)(|�1|2 − |�2|2)

+ 2gN uxy(�∗
1�2 + �1�

∗
2 ), (2)

where gN is a coupling coefficient. The order parameter be-
comes coordinate dependent, and in general, we have to take
into account the corresponding gradient terms in the GL free
energy. However, deformation and superconductivity are dif-
ferent phenomena with their spatial scales. The scale of the
superconductivity is the effective coherence length ξeff. It is a
microscopic value, while the strain characteristic scale lu is a
macroscopic value of the order of the sample sizes. Thus, it is
reasonable to suppose that lu � ξeff. In this case, away from
the center of the vortex r � ξeff, we can neglect the gradient
terms and assume that �� depends on the coordinate paramet-
rically, that is, ��(�r) = ��[uik (�r)], and the order parameter can
be found from minimization of F0 + Fu with respect to ��. To
obtain the correct behavior of the order parameter near the
center of the vortex, r ∼ ξeff, we should take into account
the gradient terms in the GL functional. This procedure is
performed in Appendix A. We show that the spin vortex has a
normal core with the size ∼ξeff similar to the Abrikosov vor-
tices [27]. This normal core can be considered a topological
defect. The values of the coherent length for vortices of type
I, ξI, and type II, ξII, are different.

We suppose that the force, and hence the strain, has ro-
tational symmetry and the strain tensor components can be
written in the cylindrical coordinates (r, ϕ, z) as (see Ref. [28]
and Appendix A)

uxx − uyy = u(r, z) cos (2ϕ),

2uxy = u(r, z) sin (2ϕ),
(3)

where u(r, z) depends on the applied force, sample sizes, and
boundary conditions.

After substitution of expressions for �� and uik in Eqs. (1)
and (2) we obtain

F0 + Fu = A�2 + B1�
4 + gN u�2 cos [2(α − ϕ)]. (4)

When gN u(r, z) > 0, the minimization of F0 + Fu by α gives

α = ϕ + π
(
n + 1

2

)
. (5)

When gN u(r, z) < 0, the minimum of F0 + Fu is attained if

α = ϕ + πn. (6)

Here n is an integer or zero. The value of �(r, z) is obtained
from minimization of the GL free energy with respect to �.

Taking into account Eqs. (5) and (6), we derive

�(r, z) =
√

−A + gN u(r, z)

2B1
. (7)

Thus, the external force not only affects the value of the order
parameter but also forms a vortex in the nematicity α ∝ ϕ. We
have two types of vorticity depending on the sign of gN u(r). If
gN u(r, z) > 0 [see Eq. (5)], we call the corresponding solution
a type I spin vortex, and

��I = �(r, z)(cos ϕ, sin ϕ). (8)

In the case with gN u(r, z) < 0 [see Eq. (6)], we have a type II
spin vortex:

��II = �(r, z)(− sin ϕ, cos ϕ). (9)

The superconducting order parameter away from the vor-
tex core is either enhanced (type I) or reduced (type II). A
schematic picture of the local nematicity direction and the
order parameter behavior for these spin vortices are shown in
Fig. 1. The spin vortices are topologically different, the vector
field of the type I spin vortex looks like a hedgehog, while
the nematicity vector field for the type II spin vortex has the
form of a curl. We can calculate the winding number of the
nematicity vector �n(r) around the vortex core,

P =
∮

C
�n · dr/2π,

where dr = (dx, dy) and C is the closed contour around the
vortex core with unit radius. In the case of the type I spin
vortex the winding number vanishes, P = 0, while for the type
II spin vortex the winding number is nonzero, P = 1. Further,
we show that different topologies of the vortices result in
different quasiparticle spectra.

III. BOGOLIUBOV–DE GENNES EQUATIONS

Now we seek zero-energy solutions of the BdG equa-
tions assuming that lu → +∞ (for more details see also
Appendix B). For the doped topological insulators these equa-
tions can be presented as [10,29–31]

HBdG(k) = H0(k)τz + ��τx, (10)

where the single-electron Hamiltonian H0 is

H0(k) = −μ + mσz + vσx(sxky − sykx ) + vzkzσy. (11)

Here σ , s, and τ are the Pauli matrices acting in orbital, spin,
and electron-hole spaces, respectively, the superconducting
order parameter is �� = �(r)σys · �n (the symmetry of the or-
der parameter corresponds to Eu pairing [10,29–31]), k is the
momentum, μ is the chemical potential, m is a single electron
gap, and v and vz are the in-plane and transverse Fermi veloc-
ities. According to the GL consideration, we choose �n as �n =
[cos (ϕ + νπ/2), sin (ϕ + νπ/2)], where ν = 0 corresponds
to the type I spin vortex, Eq. (8), and ν = 1 corresponds to the
type II vortex, Eq. (9). The strain induces a so-called pseudo-
magnetic field in the system with Hamiltonian (11); however,
this field is negligible in the doped Bi2Se3 materials [32].

094511-2



STRAIN-INDUCED SPIN VORTEX AND MAJORANA … PHYSICAL REVIEW B 104, 094511 (2021)

FIG. 1. (a) A schematic picture of the nematicity direction �n and (b) the function �(r)/�0 for the type I vortex. (c) and (d) The same as
(a) and (b), but for the type II vortex. Here ξI, ξII, and ξ0 are effective coherence lengths for the type I vortex, for the type II vortex, and for
the undeformed sample, respectively [formulas for ξi are presented in Appendix A, Eqs. (A7)]. The size of the vortex core is of the order of
the corresponding coherence length, which is a microscopic value. The size of the spin vortex is of the order of the macroscopic scale lu of the
strain. We assume that for r > lu the nematicity direction (1,0) is fixed.

The spin vortex can be induced in Hamiltonian (10) by the
transformation [19,21]

e−isz[ϕ+(ν−1)π/4]�σysxτxeisz[ϕ+(ν−1)π/4]. (12)

The vortex generates vorticity in the spin space s, while the
Abrikosov vortex generates vorticity in the mass space τ [21].

We consider here the states with kz = 0 and rewrite
Eq. (10) in the coordinate space, substituting kx(y) = −i∇x(y).
In the polar coordinates the Hamiltonian reads

HBdG = −μτz + mσzτz + ivσxsxτz

×
[

ei(ϕ+π/2)sz∇r − 1

r
eiϕsz∇ϕ

]
+ �σysxτxei(ϕ+νπ/2)sz .

(13)

We are interested in the solutions of the BdG equations with
zero energy: HBdG
 = 0, where the eight-component spinor
is 
 = ( f1↑, f1↓, f2↑, f2↓, h1↑, h1↓, h2↑, h2↓)T . Here 1 and 2
are orbital indices, ↑ and ↓ are spin projections, and f and h
represent electron and hole states. We will seek such a solution
in the form


(r, ϕ) = exp [i(l − sz/2)ϕ]
ψ (r)√

r
, (14)

where l is the orbital number. The wave function is single
valued if l is a half-integer l = ±1/2,±3/2, . . . .

In the case with kz = 0, the Hamiltonian (10) conserves a
spin-orbital index, that is, [H, σzsz] = 0. We decompose the
spinor basis in two spin-orbital blocks with σzsz
̂± = ±
̂±.
Here 
̂+ = (
+, 0)T , and 
̂− = (0, 
−)T , where 
+(−) =
( f1↑(↓), f2↓(↑), h1↓(↑), h2↑(↓) )T . After the transformation given
by Eq. (14), we obtain

Hρ =
(

czm − μ − lv

r
cx − ρivcy∇r

)
τz − �cyτx(icz )ν . (15)

Here ρ = ±1 corresponds to different spin-orbital blocks,
Pauli matrices ci act in the spin-orbital space (1 ↑, 2 ↓) for
ρ = +1 and (1 ↓, 2 ↑) for ρ = −1, and τi acts in the particle-
hole space.

The Hamiltonian (10) has time-reversal, T = isyK , and
particle-hole conjugation, 
 = σyτyK , symmetries that com-
bine into a chiral symmetry Uc = 
T = iτy. The latter
symmetry anticommutes with the Hamiltonian, {H,Uc} = 0.
In the basis where the chiral operator Uc is diagonal, the
Hamiltonian transforms to

Ht =
(

0 H−
H+ 0

)
,

H∓ = μ + mκ∓z − κ∓x
lv

r
+ i[ρv∇r ∓ �(iκ∓z )ν]κ∓y,

(16)
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where κ∓i are the Pauli matrices that act in the basis
�L = (L1, L2)T = (h2↑(↓) ∓ i f1↓(↑), h1↓(↑) ∓ i f1↑(↓) )T for ρ =
+1(−1). As a result, we decompose an 8 × 8 system into four
blocks of 2 × 2 equations. We can see that H+ differs from H−
by only the sign before �.

IV. ZERO-ENERGY SOLUTIONS

First, we solve equations H∓ �L = 0 for the type I vortex
(ν = 0). The order parameter is eliminated by the substitution
L1,2 = l1,2 exp(∓ρ

∫
dr�/v). We get

v2l ′′
1 +

[
μ2 − m2 − v2l (l − ρ)

r2

]
l1 = 0,

(μ − m)l2 = v

(
ρl ′

1 − l

r
l1

)
, (17)

where the prime means differentiation over r. Solutions regu-
lar at r = 0 are

�L = Ne∓ρ
∫

dr�/v
√

r

×
(√

μ − mJl+ρ/2(r
√

μ2 − m2/v)
√

μ + mJl−ρ/2(r
√

μ2 − m2/v)

)
, (18)

where Jα (x) are the Bessel functions and N is a constant.
We take into account that the strain and, consequently, the
order parameter can be coordinate dependent. As we can see,
H+ has a normalized solution if ρ = +1, and H− has such a
solution when ρ = −1.

The solutions with different signs of ρ and l are degenerate
and form Kramers pairs. In the considered basis

ψ1 = [L1(l ), L2(l ), 0, 0, 0, 0, 0, 0],

ψ2 = (−1)2l [0, 0, 0, 0, 0, 0, L1(−l ), L2(−l )]

are the components of such a pair, where Li is the ith com-
ponent of the vector given by Eq. (18). We can rewrite the
obtained solutions in the original basis,


1 = [−iL2(l ), 0, 0,−iL1(l ), L2(l ), 0, 0, L1(l )],


2 = [0, iL2(−l ), iL1(−l ), 0, 0, L2(−l ), L1(−l ), 0].

Since Jn = (−1)nJ−n for integer n and l is a half-integer, we
obtain 
2 = isyK
1. Thus, 
1 and 
2 are the Kramers pair.

We can derive dispersion of the obtained solution in kz

using first-order perturbation theory in vzkzσyτz. For this
goal, we have to calculate elements of the 4 × 4 matrix N =
�
ivzkzσyτz �
 j . Note that the solutions with the same ρ but

different signs for the angular momenta, 
1(l ) and 
1(−l ),
have different densities of states. Nevertheless, a majority of
states are located at the distance L ∼ lξ from the center of the
vortex in both cases, and in the limit μ � m, the densities of
states for 
1(l ) and 
1(−l ) coincide. So it is reasonable to
consider only the matrix elements for the states with the same
absolute value of the angular momenta |l|. If μ � m, we find
that the eigenvalues of N consist of two doubly degenerate
branches with E = ±vzkz. Thus, the states in the type I spin
vortex have linear dispersion in the z direction.

Similarly, we consider the type II vortex. We assume that
�(r) = �, and for �L = (L1, L2) we have

v2L′′
1 +

[
�2 + μ2 − m2 ± 2i�

vl

r
− v2l (l − ρ)

r2

]
L1 = 0,

(μ − m)L2 = v

(
ρL′

1 + l

r
L1

)
± i�L1. (19)

The solution of this system can be expressed
through Whittaker’s functions Mβ,γ (z) as L1 =
Mβ,γ (2ir

√
μ2+�2−m2/v), with β = ±l�/

√
μ2 + �2 − m2

and γ 2 = 1/4 − l (l − ρ). The obtained solutions are
regular at r = 0 but are not regularized at r → +∞ since
L1 ∝ r|β| exp [ir

√
μ2 + �2 − m2/v] at large radius. Thus, we

conclude that no localized zero-energy solutions exist in the
type II vortex core.

The considered system belongs to the DIII symmetry class
due to the presence of both time-reversal and particle-hole
conjugation symmetries. This class is characterized by the
topological invariant Z2, which is associated with the time-
reversal symmetry [19,20]

Z2 =
∏

K

Pf[ w(K)]/
√

det w(K). (20)

Here Pf is a Pfaffian, elements of a skew-symmetric ma-
trix wi j (k) = 〈ui(k)|T̂ |u j (k)〉 are calculated at time-reversal-
invariant momenta K in the reduced Brillouin zone, and ui are
eigenvectors of the Hamiltonian (10) at kz = 0. We found (for
details see Appendix C) that Z2 is trivial for the type I vortex
and nontrivial for the type II vortex,

Type I: Z2 = 1, ν = 0,

Type II: Z2 = −1, ν = 1.
(21)

Thus, the spin vortices of different types are topologically
different.

V. DISCUSSION

We find that two types of topologically different spin vor-
tices can be induced by strain in the topological superconduc-
tors. The localized Majorana solutions of Hamiltonian (10)
exist near the core of the type I vortex, while in the case of the
type II vortex such solutions are not observed. In Ref. [23] a
similar result was obtained for a different Hamiltonian with
a k-dependent nematic order parameter. We argue that this
similarity arises due to the similarity of the topologies of the
spin vortices. That is, properties of the spin vortices are similar
in different materials and are governed by the Z2 topological
index. The spin vortex can be created by the application of
a mechanical force applied at the center of a circular film
of a doped topological insulator. The lattice strain caused by
defects or the substrate can also generate spin vortices. Since
spin vortices have a normal core, they can be detected by
scanning tunneling microscopy or magnetic force microscopy.

Under the assumptions used above, an arbitrary small
strain generates the spin vortex. This is a result of the de-
generacy of the free energy of the nematic superconductor
with respect to the nematicity direction α. The degeneracy
of the nematicity is commonly lifted by the presence of a
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strain or hexagonal warping [10]. The initial strain u0, either
spontaneous or arising during the crystal growth, is usually
observed in samples of doped topological insulators [7,26].
Thus, a large enough force should be applied to generate
the spin vortex in a real experiment. In particular, the strain,
u, produced by the applied force must be much larger than
the initial strain u0. Hexagonal warping fixes the nematicity
direction as well [10] and, consequently, prevents generation
of the spin vortex. However, the corresponding terms appears
in the GL free energy in the sixth order in the order param-
eter and are less relevant for fixing the nematicity than the
strain. In principal, if the symmetry-breaking field is smaller
than spontaneous deformation [7], then, the nematicity direc-
tion becomes degenerate, and the spin vortices can nucleate
spontaneously. However, preparation of such samples with an
unfixed nematicity direction has not been reported so far.

The considered spin vortices have a normal core, and con-
sequently, the usual Caroli–de Gennes–Matricon states with
nonzero energies En exist near their centers. The spectrum of
such quasiparticles for the doped topological insulator was
calculated in Ref. [33] in the quasiclassical approximation,
En = n�2/

√
μ2 − m2, where n = 1, 2, . . . . However, the Ma-

jorana fermions with zero energy discussed here are a special
type of the BdG solution, and they do not require a normal
vortex core to be localized. This can be seen from Eq. (18) (or
from Refs. [17,18] for the case of emergent chiral symmetry).
In particular, it is evidence that a particular form of the order
parameter spatial dependence near the core of the vortex is not
important for the existence of the Majorana solutions, and the
assumption that � in BdG equations is independent of r is a
good approximation for zero-energy solutions.

In conclusion, we showed that the rotational symmetric
strain can generate spin vortices in doped topological insula-
tors. These vortices can be either type I or II and have normal
cores. The type I spin vortex enhances superconductivity far
from its core and generates localized zero-energy Majorana

states, while the type II spin vortex suppresses superconduc-
tivity and has no zero-energy states near its core. The different
types of spin vortices have different topologies. We estab-
lished a nontrivial relation between the strain and Majorana
states in doped topological insulators.
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APPENDIX A

Here we take into account the gradient terms in the GL
functional. The main effect which is produced by these terms
is the appearance of the normal core at the center of the vortex.
The size of this vortex core is different for different types of
spin vortices.

The GL free energy of the topological superconductor is a
sum [24],

F = F0 + Fu + FD, (A1)

where F0 is the GL free energy in the absence of the strain, (1),
and Fu is the contribution due to strain, (2). The term FD arises
due to the inhomogeneity of the order parameter. We consider
here the case of nematic order; that is, B2 > 0 in F0, and the
GL order parameter is real, �� = �(cos α, sin α). In this case
Eq. (3) from Ref. [24] can be rewritten as

FD = −(J1 + J4)

[(
∂�1

∂x

)2

+
(

∂�2

∂y

)2]
− (J1 − J4)

[(
∂�1

∂y

)2

−
(

∂�2

∂x

)2]

−2(J4 + J2)
∂�1

∂x

∂�2

∂y
− 2(J4 − J2)

∂�1

∂y

∂�2

∂x
− J3

[(
∂�1

∂z

)2

+
(

∂�2

∂z

)2]
.

The corresponding GL equations are

δFi = δF

δ�∗
i

= 0, i = 1, 2,

δF1 = A�1 + 2B1
(
�2

1 + η2
2

)
�1 + gN [(uxx − uyy)�1 + 2uxy�2] + J1

(
∂2

x + ∂2
y

)
�1 + J3∂

2
z �1 + J4

[(
∂2

x − ∂2
y

)
�1 + 2∂x∂y�2

]
,

δF2 = A�2 + 2B1
(
�2

1 + η2
2

)
�2 + gN [−(uxx − uyy)�2 + 2uxyη1] + J1

(
∂2

x + ∂2
y

)
�2+J3∂

2
z �2 + J4

[ − (
∂2

x − ∂2
y

)
�2+2∂x∂y�1

]
.

(A2)

Let a central symmetric force along the z direction act
on a plate of the topological insulator, which has the form
of a disk. We introduce cylindrical coordinates (x, y, z) =
(r cos ϕ, r sin ϕ, z). The force �f = [0, 0, f (r, z)] produces an
elastic displacement of the material with components ur (r, z)
and uz(r, z). Elementary algebra allows us to express compo-

nents of the strain tensor ui j in terms of ur (r, z) and uz(r, z)
and their derivatives

uxx − uyy = u(r, z) cos 2ϕ,

2uxy = u(r, z) sin 2ϕ, u(r, z) = ∂ur

∂r
+ ur

r
. (A3)
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The value u(r, z) depends on f (r, z) and on the boundary con-
ditions of a particular elastic problem. However, ur (0, z) = 0
in any case due to the problem of central symmetry.

We assume that the angular symmetries of the vortex near
and far from the core [see Eqs. (8) and (9)] are similar. Thus,
we will seek solutions of the GL equations (A2) in the form

�� = �(r, z)[cos α(ϕ), sin α(ϕ)], α(ϕ) = mϕ + φ0. (A4)

Here m and φ0 are real, and �(r, z) is positive or zero.
We introduce linear combinations

δFα = δF1 sin α − δF2 cos α, δF� = δF1 cos α + δF2 sin α.

In the cylindrical coordinates the equation for δFα is

δFα = sin [2φ0 + 2(m − 1)ϕ]

{
J4

[
�′′(r) − 2m − 1

r
�′(r) + m(m + 2)

r2
�(r)

]
+ gN u�(r)

}
= 0, (A5)

where the prime means differentiation by r. This equation is compatible with δF� = 0 only if m = 1 and φ0 = 0 (the type I spin
vortex) or φ0 = π/2 (the type II spin vortex). The second GL equation then reads

δF� = (J1 ± J4)

(
�′′ + 1

r
�′ − 1

r2
�

)
+ J3

∂2�

∂z2
+ 2B1�

3 + (A ± gN u)� = 0. (A6)

The spatial scale of variation of � in the z direction is dictated
by the (macroscopic) elastic part of the problem, and it is
much larger than the scale in the r direction near the center
(core) of the vortex, which is of the order of the (microscopic)
coherence length of superconductivity. Therefore, the value
∂2�/∂z2 is small, and we ignore the z dependence of the order
parameter. Under the latter assumption we rewrite Eq. (A6) in
dimensionless variables as

f ′′(r̄) + 1

r̄
f ′(r̄) −

[
1 + 1

r̄2
f (r̄)

]
+ f (r̄)3 = 0,

f (r) = �(r)

�0
, �0 =

√
±gN u − A

2B1
,

r̄ = r/ξI,II, ξI,II =
√

±gN u − A

J1 ± J4
. (A7)

Here ξI and ξII are effective coherence lengths for the type I
and type II vortices, respectively. These values differ from the
coherence ξ0 in the sample without strain.

We neglect the coordinate dependence of �0 since its scale
is of the order of the spatial scale of the elastic strain and is
much larger than ξi. The latter equation is the same as the
equation for the order parameter in an “ordinary” supercon-
ductor near the core of the Abrikosov vortex [27]. Thus, the
behavior of the order parameter in the case of the spin vortex
is similar to that in the case of the Abrikosov vortex. The order
parameter is zero at r = 0, increases linearly in the region
r̄ � 1, and is equal to �0 when r̄ � 1. Thus, the spin vortex
has a normal core which can be considered a topological
defect. The size of this normal core is different for different
types of spin vortices.

APPENDIX B

Here we give a derivation of the equations used in Secs. III
and IV with more technical detail. We start with the BdG

Hamiltonian (10) rewritten for convenience in the form

HBdG(k) = −μ + mσz + vσx(sxky − sykx )

+ vzkzsxσyτz + (�xsx + �ysy)σyτx.

We put first kz = 0. In the polar coordinate space components
of the momentum operator are

kx = −i(∇r cos ϕ − sin ϕ/r ∇ϕ ),

ky = −i(∇r sin ϕ + cos ϕ/r ∇ϕ ).

We substitute these operators in Hamiltonian (10) and come
to Eq. (13). As mentioned in Sec. III, this Hamiltonian con-
serves the spin-orbital index, [H, szσz] = 0. In this case, there
exists a basis in which eigenvectors u±

i of the Hamiltonian
are classified according to this index, that is, Hu±

i = εiu
±
i ,

szσzu
+
i = +ui, and szσzu

−
i = −ui. The Hamiltonian is block

diagonal in a basis where the operator of a conserved index
is diagonal. Thus, we can choose the basis where each block
of the Hamiltonian corresponds to the eigenvectors with the
same index (plus or minus) of the spin-orbit operator. The spin
orbital operator szσz is already diagonal, and we need simply
to rearrange strings of the Hamiltonian to make it block diag-
onal. This rearrangement can be done by the transformation

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B1)
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We apply this transformation to the Hamiltonian,
W †H (r, l )W , and get

H =
(

H+ 0

0 H−

)
, (B2)

where 0 corresponds to a 4 × 4 zero matrix and Hρ = H± is
determined by Eq. (15).

The Hamiltonian Hρ anticommutes with Uc = iτy,
{Hρ,Uc} = 0. In the basis where Uc is diagonal, the
Hamiltonian Hρ will be an off-diagonal block matrix.
The operator iτy is diagonalized by the transformation

R = 1√
2

⎛
⎜⎜⎜⎝

0 −i 0 i

−i 0 i 0

0 1 0 1

1 0 1 0

⎞
⎟⎟⎟⎠. (B3)

We apply this transformation to the Hamiltonian, Ht =
R†HρR, and obtain Eqs. (16).

APPENDIX C

A nematic superconductor with a spin vortex belongs to
the DIII symmetry class that is classified by the Z2 topo-
logical invariant, Eq. (20). Here we calculate this value
following Ref. [19]. In formula (20) the elements of a skew-
symmetric matrix wi j (k) = 〈ui(k)|T̂ |u j (k)〉 are calculated at
time-reversal-invariant momenta K in the reduced Brillouin
zone, ui are eigenvectors of the Hamiltonian given by Eq. (10)
for kz = 0, and T̂ = isyK is the operator of the time-reversal
symmetry. We use here the basis in which the Hamiltonian has
the form (B2). The operator of the time-reversal symmetry in
this basis is T̃ = W T syWiK = icztyK , where W is given by
Eq. (B1). Explicitly,

T̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −i 0 0 0

0 0 0 0 0 i 0 0

0 0 0 0 0 0 −i 0

0 0 0 0 0 0 0 i

i 0 0 0 0 0 0 0

0 −i 0 0 0 0 0 0

0 0 i 0 0 0 0 0

0 0 0 −i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

iK. (C1)

In these terms, the Hamiltonian can be rewritten as

H (k) =
(

Hρ=+1 0

0 Hρ=−1

)
, Hρ = (czm − μ − ρvkxcy + vkycx )τz + �cyτx cos ϕ − ρ�cxτx sin ϕ. (C2)

Eigenvectors of the Hamiltonian are P+(−) = (ψ+, 0) and (0, ψ−), where ψ+(−) are the eigenvectors of Hρ=+1(−1). Matrix
elements PiT̃ Pj for the eigenvectors with the same ρ vanish, and only the states with different ρ contribute to w(K), that is,
〈P+T̃ P−〉 = 〈ψ+iczψ− j〉 and 〈P−T̃ P+〉 = −〈ψ−iczψ+ j〉. The skew-symmetric matrix wi j reads

w(kx, ky) =
(

0 Q(kx, ky)

−QT (kx, ky) 0

)
, (C3)

where Qi j (k) = 〈ψ+i(k)|czK|ψ− j〉, i, j = 1, . . . , 4. Using a well-known formula for the Pfaffian, we get

Z2 =
∏

K

Det Q(k). (C4)

This product is calculated at the time-reversal momenta K of the reduced Brillouin zone. Explicit calculation for the type I
spin vortex gives Det Q(kx, ky) = 1. Thus, the topological index is trivial in this case, Z2 = +1. For the type II spin vortex
we get Det Q(kx, ky) = q(kx, ky)sgn (k2

x v
2 + k2

y v
2 + m2 − μ2 − �2). The sign of the latter value is different for small and large

momenta. We have to calculate the determinant at the time-reversal-symmetric points of the reduced Brillouin zone. Thus, we
have Z2 = q(0, 0)q(+∞, 0)q(0,+∞), q(+∞,+∞) = −1. We see that the type II spin vortex has a nontrivial topology, which
is different from the topology of the type I spin vortex.
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