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Possible two-component spin-singlet pairings in Sr2RuO4
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Recent experiments suggest a multicomponent pairing function in Sr2RuO4, which appears to be inconsistent
with the absence of an apparent cusp in the transition temperature Tc as a function of the uniaxial strain. We show,
however, that the theoretical cusp in Tc for a multicomponent pairing can be easily smeared out by the spatial
inhomogeneity of strain, and the experimental data can be reproduced qualitatively by a percolation model.
These results shed light on multicomponent pairings. We then perform a thorough group-theoretical classification
of the pairing functions, taking the spin-orbit coupling into account. We list all 13 types of two-component
spin-singlet pairing functions, with 8 of them belonging to the Eg representation. In particular, we find two types
of intraorbital pairings in the Eg representation (kxkz, kykz) are favorable in view of most existing experiments.
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I. INTRODUCTION

Sr2RuO4 is a layered perovskite superconductor isostruc-
tural to the cuprate La2CuO4 and has been widely studied
since its discovery [1]. Muon spin rotation (μSR) [2,3]
and Kerr experiments [4] indicate the time-reversal symme-
try is spontaneously broken in the superconducting state,
suggesting that the pairing order parameter must have
multiple components. This is, indeed, consistent with ultra-
sound experiments [5,6]. Theoretically, a symmetry-protected
multicomponent pairing function must belong to the twofold-
degenerate Eg or Eu representation of the underlying D4h

point group of Sr2RuO4. The two types of pairing functions
differ in parity. Early phase-sensitive probes [7–11] suggest
the pairing function transforms as kx + iky, belonging to the
Eu representation, as proposed in the early stage [12,13].

However, more recent and refined experiments strongly
challenge the kx + iky spin-triplet pairing. First, according to
the Ginzburg-Landau (GL) theory, the two components of the
order parameter in the Eu (or even Eg) representation can
couple to the uniaxial strain linearly, leading to a cusplike
feature in the superconducting transition temperature Tc as
a function of the uniaxial strain. But no apparent cusp is
observed experimentally [14–17], and this appears to rule out
the possibility of a multicomponent order parameter. Second,
if the pairing is spin triplet, the Knight shift should not drop
below Tc (at least for a magnetic field applied orthogonal to
the so-called d vector of the triplet). But it actually drops
significantly in strained as well as unstrained samples in
most recent and refined nuclear magnetic resonance (NMR)
experiments [18,19]. These NMR experiments and the polar-
ized neutron experiment [20] act strongly against spin-triplet
pairing, making it difficult to reconcile with phase-sensitive
experiments [21]. Importantly, in the same type of samples the
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ultrasonic measurement reveals the signature of a multicom-
ponent order parameter [5,6]. On the one hand, it combines the
behavior of the Knight shift, suggesting spin-singlet pairing
that transforms as the Eg or even Eu representation in the pres-
ence of spin-orbital coupling (SOC), but on the other hand,
it seems to conflict with the absence of a cusp in Tc versus
the uniaxial strain [14–17]. The current situation is therefore
rather paradoxical and motivates careful reexamination of
the pairing symmetry in Sr2RuO4 [22–28] regarding issues
such as single component vs multicomponent, spin singlet vs
triplet, nodal vs nodeless quasiparticles, etc.

In this work, we try to reconcile the paradox and reinforce
the possibility of the spin-singlet pairing in the degenerate
Eg representation. First, we realize that the strain in the
reported sample is inhomogeneous, as seen in a scanning
superconducting quantum interference device (SQUID) ex-
periment [17]. We show with a percolation model that in
the presence of an inhomogeneous background of strain, the
cusp is absent or smeared out even if the pairing function
is in the Eg or Eu representation. Combining the ultrasound,
Knight-shift, neutron, μSR, and Kerr experiments provides a
consistent picture of multicomponent pairing in the Eg or Eu

representation. Since various forms of Eg and Eu representa-
tions remain in the system with multiple orbitals and SOC,
we perform a thorough group-theoretical classification of the
pairing functions in spin, orbital, and momentum spaces and
discuss the relevance of various pairing functions in view of
the other experiments, such as superfluid density [29], specific
heat [30,31], and thermal transports [32,33]. We find two
types of intraorbital pairings in the Eg representation (trans-
forming as kxkz + ikykz) are the most favorable in view of such
experiments.

II. STRAIN EFFECT

We first discuss the impact of the recent experiments us-
ing strain as the tuning parameter. The uniaxial component
of the strain, ε = εxx − εyy, where εab is the element of the
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strain tensor, transforms as B1g under symmetry operations.
Since Sr2RuO4 is D4h symmetric, the multicomponent pairing
order parameter must belong to the Eg or Eu representation,
except for accidental degeneracy between one-dimensional
representations [28] (which will not interest us here). Let the
two-component order parameter be (η1, η2), which transforms
as (x, y) in the Eu case and (xz, yz) in the Eg case. In ei-
ther case, it is clear that |η1|2 − |η2|2 also transforms as B1g.
Therefore, the order parameters can couple to ε linearly as
αε(|η1|2 − |η2|2), with a coefficient α. Within the GL theory,
this coupling lifts the degeneracy in the bare transition tem-
peratures for the two components, and the modified transition
temperature is the higher one, so that the change in Tc behaves
as δTc ∝ |ε|, resulting in a cusp dependence in ε [14,28].
Rather unexpectedly, no apparent cusp feature has been ob-
served in strain experiments [14–17]. This result appears to
rule out the picture of multicomponent order parameter in
Sr2RuO4, provided that the strain distribution is uniform in
the sample. In the literature, two possibilities have been pro-
posed towards reconciling this paradox: fluctuation-induced
first-order phase transition [34,35] and Tc determined by a
critical pairing amplitude [36].

However, the recent scanning SQUID experiment [17]
showed that the local Tc, measured in different regions of
the sample, reaches the minimum at different values of ε,
although the minimal Tc itself is only slightly changed. This
fact may imply inhomogeneity of the strain distribution except
for the possibility of sample slipping in the experiment [17].
To investigate the effect of such inhomogeneity, we assume
a background strain εloc, which distributes over the sample
statistically with a probability density ρ(εloc). The total strain
at a specific spatial point is given by εeff = ε + εloc, where
ε represents the applied (external) strain in experiments. It
defines a local bare transition temperature τ (εeff ) = Tc0 +
|αεeff |, where Tc0 is the value of Tc in the absence of any strain.
We then have to deal with a system with Tc inhomogeneity
arising from the strain distribution. Notice that experimen-
tally, the position-dependent Tc is determined by measuring
the diamagnetic susceptibility within a ring of diameter ∼2
μm [17], which is much larger than the superconducting
coherence length ξ < 100 nm [13]. Therefore, the superfluid-
induced diamagnetic signal can be established only if the
associated large area has entered the superconducting state
collectively. The large area justifies a statistical treatment of
the strain distribution. Using the simplest percolation model,
we assume that superconductivity is achieved below Tc if the
statistical probability for τ (εeff ) > Tc is above a percolation
threshold pc. In the classical percolation model, it is known
that pc = 1 in one dimension, pc = 0.5 in two dimensions,
and pc is lower in higher dimensions. In our case it is rea-
sonable to speculate that 0 < pc < 0.5, but its exact value is
unimportant for qualitative purposes. In this picture, we can
determine δTc = Tc − Tc0 implicitly as∫

θ (α|ε + εloc| − δTc)ρ(εloc)dεloc = pc, (1)

where θ is the Heaviside step function. It turns out that the
resulting δTc no longer develops a cusp in the applied ε

as long as pc > 0. To see this point most straightforwardly,
we can take the derivative with respect to ε in Eq. (1) to
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FIG. 1. δTc vs uniaxial strain ε at different percolation thresholds
pc. σ is the standard deviation of the Gaussian distribution ρ(εloc ).

obtain
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(
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(
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α

)]
. (2)

Clearly, ∂δTc/∂ε = 0 at ε = 0 as long as ρ(εloc) is an even
function. As a specific model, we assume a Gaussian distribu-
tion, ρ(εloc) = 1√

2πσ
e−ε2

loc/2σ 2
. Then Eq. (1) can be integrated

out exactly, yielding

erf

(
δTc − αε√

2σα

)
+ erf

(
δTc + αε√

2σα

)
= 2(1 − pc), (3)

where erf is the standard error function. In Fig. 1, we plot
δTc vs ε for various choices of pc. It can be seen that δTc

depends smoothly on ε unless the strain distribution width σ

goes to zero (uniform strain distribution). Therefore, we have
shown that the smooth dependence of Tc on small ε cannot
rule out the possibility of multicomponent order parameter in
Sr2RuO4. Instead, combining the strain experiments with the
μSR [2,3], neutron [20], Kerr [4], and ultrasound [5,6] exper-
iments actually provides a consistent picture of spin-singlet
pairing in the Eg or Eu representation.

We make the following remarks: (1) Experimentally, Tc

in different regions reaches the minimum at different applied
strains. This behavior can be explained if the applied strain
itself is nonuniform in the sample, such that the strain distri-
bution is biased differently at different spatial regions (which
are microscopically large but macroscopically small on the
scale of coherence length). (2) The approximation of linear
coupling to strain is valid only at small strains. Larger strains
may modify the electronic structure significantly (because the
Fermi level is close to the Van Hove singularity in the γ band),
and the effect inevitably goes beyond the linear approximation
and beyond the scope of this work.
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III. GROUP CLASSIFICATION

Sr2RuO4 is a multiorbital system, and its low-energy
bands are dominantly described by three t2g orbitals (dxz, dyz,
dxy) [13]. On the other hand, angle-resolved photoemission
spectroscopy has shown its band structures are strongly af-
fected by the SOC effect [37,38]. Therefore, a thorough group
classification of the possible pairing functions is needed, tak-
ing into account the t2g orbitals, the atomic SOC, and the
D4h group. There has been some progress along this direc-
tion [22–28], and our strategy mainly follows Ref. [23]. A
general pairing Hamiltonian for electrons at momenta k and
−k can be written as ψ

†
k�(k)iσ2ψ

†,t
−k + H.c., where ψk is

a multicomponent spinor composed of electron annihilation
operators of all internal degrees of freedom, such as or-
bital and spin, �(k) is a matrix function in the orbital and
spin bases, and σμ=0,1,2,3 will henceforth denote the identity
and Pauli matrices acting on spins. Under a group opera-
tion g ∈ D4h, the spinor transforms as ψ ′

k = Ugψg−1k, where
Ug encodes the k-independent transformation on orbitals
and spins. Correspondingly, the pairing matrix transforms as
�′

k = Ug�g−1kU †
g , where we used the fact that Ug = TUgT −1

for transformation on spins and on real orbital bases, with
T = iσ2K being the time-reversal operator (and K being
the complex conjugation operator). The pairing matrix can
be written as a linear superposition of the tensor products
�o ⊗ �s ⊗ fk, where �o(s) is a matrix describing a fermion
bilinear operator superposition in the orbital (spin) basis and
fk is a function of k. To set up notations, we define λ(ab)

as a self-explaining matrix in the orbital basis (dxz, dyz, dxy)
such that its elements read λ

i j
(ab) = δiaδ jb. Such matrices can

be used to expand �o and form irreducible representations.
For example, λ(11) + λ(22) ∼ A1g, λ(11) − λ(22) ∼ B1g, etc. The
matrix �s is expanded by σμ, with σ0 (σ1,2,3) representing
the spin-singlet (spin-triplet) component(s). Under D4h these
matrices transform as σ0 ∼ A1g, σ3 ∼ A2g, and (σ1, σ2) ∼ Eg.
(Note that under time reversal, σ0 is invariant, while σ1,2,3

changes sign.) The classification of the function fk is standard.
The details of the separate classifications are presented in
Appendix A. Finally, the entire pairing function is classi-
fied by decomposing the tensor products of the separate
irreducible representations. The complete results are also pre-
sented in Appendix A. Note that it is possible that multiple
pairing functions with either a spin singlet or triplet trans-
form identically as the same irreducible representation. Such
pairing functions could mix, but this does not mean they have
to since the extent of mixing of such pairing functions is not
dictated by symmetry alone.

TABLE I. Spin-singlet pairing functions in the Eg and Eu rep-
resentations. Here λ(ab) denotes a matrix in the orbital basis, with
the elements λ

i j
(ab) = δiaδ jb. In each row, the two basis functions

transform as (xz, yz) in the Eg representation and as (x, y) in the
Eu representation. The identity matrix σ0 in the spin basis for spin-
singlet pairing is omitted for brevity.

Pairing xz or x yz or y

Eg 1 λ(23) + λ(32) λ(13) + λ(31)

2 kxky(k2
x − k2

y )(λ(13) + λ(31) ) −kxky(k2
x − k2

y )(λ(23) + λ(32) )

3 (k2
x − k2

y )(λ(23) + λ(32) ) −(k2
x − k2

y )(λ(13) + λ(31) )

4 kxky(λ(13) + λ(31) ) kxky(λ(23) + λ(32) )

5 kxkz(λ(11) + λ(22) ) kykz(λ(11) + λ(22) )

6 kykz(λ(12) + λ(21) ) kxkz(λ(12) + λ(21) )

7 kxkzλ(33) kykzλ(33)

8 kxkz(λ(11) − λ(22) ) −kykz(λ(11) − λ(22) )

Eu 9 kxkykz(k2
x − k2

y ) kxkykz(k2
x − k2

y )
(λ(13) − λ(31) ) (λ(23) − λ(32) )

10 kz(λ(23) − λ(32) ) kz(λ(13) − λ(31) )

11 kxkykz(λ(13) − λ(31) ) kxkykz(λ(13) − λ(31) )

12 kz(k2
x − k2

y )(λ(23) − λ(32) ) kz(k2
x − k2

y )(λ(13) − λ(31) )

13 ky(λ(12) − λ(21) ) kx (λ(12) − λ(21) )

Here we focus on spin-singlet Eg and Eu representations,
along the lines of the previous discussions of the experiments.
Such pairing functions are listed in Table I. Note that if
necessary, each pairing function could be multiplied by an
additional A1g factor function of k to describe pairing on
longer bonds. There are eight pairing functions in the Eg

representation and five in the Eu representation. (Note that
Eu spin singlet is allowed if the pairing function is odd under
orbital exchange.) Among these pairing functions, only three
of them (5, 7, and 8) in the Eg representation have intraorbital
pairing, while all the others involve interorbital pairing. If the
pairing arises from electron-electron correlations, the orbital-
wise matrix element effect in the overlap between Bloch states
should render interorbital pairing less relevant. In this case, we
may speculate that the above three Eg pairing functions are the
most important. Once the dominant pairing functions in the Eg

representation are realized, the others in the same representa-
tion may be induced by subleading correlation effects, so for
sufficient generality, we include all of the Eg functions in the
list. In this setting, we can write the two degenerate general
pairing functions in the Eg representation explicitly as, in the
orbital basis,

�xz(k) =
⎡
⎣ (d5 + d8)kxkz d6kykz d4kxky + d2kxky

(
k2

x − k2
y

)
d6kykz (d5 − d8)kxkz d3

(
k2

x − k2
y

) + d1

d4kxky + d2kxky
(
k2

x − k2
y

)
d3

(
k2

x − k2
y

) + d1 d7kxkz

⎤
⎦,

�yz(k) =
⎡
⎣ (d5 − d8)kykz d6kxkz −d3

(
k2

x − k2
y

) + d1

d6kxkz (d5 + d8)kykz d4kxky − d2kxky
(
k2

x − k2
y

)
−d3

(
k2

x − k2
y

) + d1 d4kxky − d2kxky
(
k2

x − k2
y

)
d7kykz

⎤
⎦. (4)
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FIG. 2. A possible pairing of Eg with d7 = 0.01 and d8 = 0.005
(in mRy). The normal state FS at kz = 0 is plotted in (a) to define the
α, β, and γ pockets. In (b) to (d), the quasiparticle gaps are plotted
on the (θ, kz ) plane for each pocket. θ is defined as the azimuth angle
relative to the center of each pocket. The kz dependence at θ = 0 is
explicitly shown in (e), and θ dependence at kz = π is shown in (f).

Here d1∼8 are coefficients multiplying the respective Eg

functions in Table I. The relative ratios among these co-
efficients depend on the microscopic details. (Once the
relative ratio is fixed, in the GL theory, the global coef-
ficients act as order parameters and carry or transform as
the same Eg representation.) Below the transition tempera-
ture, it is usually favorable for the two degenerate pairing
functions, �xz(k) and �yz(k), to combine into the time-
reversal symmetry-breaking form, �(k) = �xz(k) ± i�yz(k)
to maximize the pairing gaps on the Fermi surface and gain
energy.

IV. GAP STRUCTURE

We now discuss the quasiparticle excitations sub-
ject to the above spin-singlet Eg pairing functions. The
Bogoliubov–de Gennes Hamiltonian in the Nambu basis
�

†
k = (ψ†

k ,−ψ t
−kiσ2) is

H =
∑

k

�
†
k

[
hk �(k)

�†(k) −T h−kT −1

]
�k, (5)

where hk is the normal state single-particle Hamiltonian
taken from Refs. [37,39] with atomic SOC and

TABLE II. Irreducible representations of the pairing matrix in
orbital, spin, and momentum spaces. The total pairing can be any
tensor product of these three parts with odd parity in total.

Orbital Spin f (k)

A1g
λ(11) + λ(22)

λ(33)
σ0 1

A2g λ(12) − λ(21) σ3 kxky(k2
x − k2

y )

B1g λ(11) − λ(22) k2
x − k2

y

B2g λ(12) + λ(21) kxky

Eg
(λ(13) + λ(31), λ(23) + λ(32) ),
(λ(13) − λ(31), λ(23) − λ(32) )

(σ1, σ2) (kxkz, kykz )

A1u kxkykz(k2
x − k2

y )
A2u kz

B1u kxkykz

B2u kz(k2
x − k2

y )

Eu (kx, ky )

�(k) = �xz(k) + i�yz(k) (tensor produced implicitly by
σ0). In order to obtain the desired (kxkz, kykz ) intraorbital
pairing as discussed above, we consider the nearest-neighbor
interlayer pairings on bonds (±a/2,±a/2,±c/2), where a
and c are in-plane and out-of-plane lattice constants. The
simple form factor fk is replaced by the corresponding
lattice harmonics, e.g., kxkz → sin(kxa/2) sin(kzc/2),
k2

x − k2
y → cos(kxa/2) − cos(kya/2), etc. The quasiparticle

gaps for different pairings, characterized by the coefficients
di=1,2,...,8, can be found in Appendix B. For all the Eg pairings,
there is a horizontal nodal line at kz = 0 by symmetry. It is
consistent with the specific heat [31] and neutron [40]
experiments. When interorbital pairing is included, the
horizontal nodal line may expand into a nodal torus, forming
the Bogoliubov Fermi surface [41], as shown in Appendix B.
This would generate a finite zero-energy quasiparticle density
of states, which is, however, inconsistent with the universal
thermal conductivity [32,33], which can arise only if the
energy gap is nodal or quasinodal [42–44] or the Bogoliubov
Fermi surface is too small [45]. Furthermore, the substantial
nonzero c-axis thermal conductivity in the T = 0 K limit [33]
was taken to be strong evidence to rule out the “simple”
kz = 0 horizontal nodal line picture. Recently, a scanning
tunneling microscopy experiment [46] also indicated the
existence of a vertical nodal line (or gap minima) along
the (11) direction. Taking these discussions together, we
find (d7, d8) pairing may be the most relevant. With the
parametrization d7 = 2d8 = 0.01 mRy, the quasiparticle gaps
on the three pockets defined in Fig. 2(a) are plotted on the
(θ, kz ) plane in Figs. 2(b) to 2(d), where θ is the azimuthal
angle relative to the pocket center. In particular, for clarity,
the gaps along two cuts, θ = 0 and kz = π , are given in
Figs. 2(e) and 2(f). Clearly, in addition to the horizontal
nodal lines for all three pockets, there is a very deep gap
minimum at θ = π/4 on the γ pocket. This quasinode stems
from the effect of SOC, which causes the Bloch state at the
Fermi angle θ = π/4 on the γ pocket to be dominated by
the dxz and dyz components, while the pairing of the latter
two orbitals (λ(11) − λ(22) contributes a B1g factor within
the Eg representation) has an exact node at θ = π/4. This
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TABLE III. Full classification of Sr2RuO4. In general, a pairing can be written as a linear superposition of the tensor products λ(ab) ⊗ σμ ⊗
fk. Notice that fk give only the lowest-order lattice harmonics. For compactness, we use the notation λab to represent the matrix λ(ab) as defined
in the main text.

Irreducible representation σ0 σ3 (σ1, σ2)

A1g

λ11 + λ22

λ33

(k2
x − k2

y )(λ11 − λ22)
kxky(λ12 + λ21)

kykz(λ13 + λ31) + kxkz(λ23 + λ32)

(λ12 − λ21)σ3

[kxkz(λ13 − λ31) − kykz(λ23 − λ32)]σ3

(λ12 − λ21)(kxkzσ1 − kykzσ2)
(λ13 − λ31)σ1 + (λ23 − λ32)σ2

kxky(k2
x − k2

y )[(λ13 − λ31)σ2 − (λ23 − λ32)σ1]
(k2

x − k2
y )[(λ13 − λ31)σ1 − (λ23 − λ32)σ2]

kxky[(λ13 − λ31)σ2 + (λ23 − λ32)σ1]

A2g

kxky(k2
x − k2

y )(λ11 + λ22)
kxky(k2

x − k2
y )λ33

kxky(λ11 − λ22)
(k2

x − k2
y )(λ12 + λ21)

kxkz(λ13 + λ31) − kykz(λ23 + λ32)

kxky(k2
x − k2

y )(λ12 − λ21)σ3

[kykz(λ13 − λ31) + kxkz(λ23 − λ32)]σ3

(λ12 − λ21)(kykzσ1 + kxkzσ2)
(λ13 − λ31)σ2 − (λ23 − λ32)σ1

kxky(k2
x − k2

y )[(λ13 − λ31)σ1 + (λ23 − λ32)σ2]
(k2

x − k2
y )[(λ13 − λ31)σ2 + (λ23 − λ32)σ1]

kxky[(λ13 − λ31)σ1 − (λ23 − λ32)σ2]

B1g

(k2
x − k2

y )(λ11 + λ22)
(k2

x − k2
y )λ33

λ11 − λ22

kxky(k2
x − k2

y )(λ12 + λ21)
kykz(λ13 + λ31) − kxkz(λ23 + λ32)

(k2
x − k2

y )(λ12 − λ21)σ3

[kxkz(λ13 − λ31) + kykz(λ23 − λ32)]σ3

kxkz(λ12 − λ21)σ1 + kykz(λ12 − λ21)σ2

(λ13 − λ31)σ1 − (λ23 − λ32)σ2

kxky(k2
x − k2

y )[(λ13 − λ31)σ2 + (λ23 − λ32)σ1]
(k2

x − k2
y )[(λ13 − λ31)σ1 + (λ23 − λ32)σ2]

kxky[(λ13 − λ31)σ2 − (λ23 − λ32)σ1]

B2g

kxky(λ11 + λ22)
kxkyλ33

kxky(k2
x − k2

y )(λ11 − λ22)
λ12 + λ21

kxkz(λ13 + λ31) − kykz(λ23 + λ32)

kxky(λ12 − λ21)σ3

[kykz(λ13 − λ31) − kxkz(λ23 − λ32)]σ3

(λ12 − λ21)(kykzσ1 − kxkzσ2)
(λ13 − λ31)σ2 + (λ23 − λ32)σ1

kxky(k2
x − k2

y )[(λ13 − λ31)σ1 − (λ23 − λ32)σ2]
(k2

x − k2
y )[(λ13 − λ31)σ2 − (λ23 − λ32)σ1]

kxky[(λ13 − λ31)σ1 + (λ23 − λ32)σ2]

Eg

kz(kx, ky )(λ11 + λ22)
kz(kx, ky )λ33

kz(kx, −ky )(λ11 − λ22)
kz(ky, kx )(λ12 + λ21)

(λ23 + λ32, λ13 + λ31)
kxky(k2

x − k2
y )[λ13 + λ31, −(λ23 + λ32)]

(k2
x − k2

y )[λ23 + λ32,−(λ23 + λ32)]
kxky(λ13 + λ31, λ23 + λ32)

kz(kx, ky )(λ12 − λ21)σ3

[λ13 − λ31, −(λ23 − λ32)]σ3

kxky(k2
x − k2

y )(λ23 − λ32, λ13 − λ31)σ3

(k2
x − k2

y )(λ13 − λ31, λ23 − λ32)σ3

kxky[λ23 − λ32, −(λ13 − λ31)]σ3

(λ12 − λ21)(σ1, −σ2)
kxky(k2

x − k2
y )(λ12 − λ21)(σ2, σ1)

(k2
x − k2

y )(λ12 − λ21)(σ1, σ2)
kxky(λ12 − λ21)(σ2, −σ1)

kz(kx, ky )[(λ13 − λ31)σ1 + (λ23 − λ32)σ2]
kz(ky, −kx )[(λ13 − λ31)σ2 − (λ23 − λ32)σ1]
kz(kx, −ky )[(λ13 − λ31)σ1 − (λ23 − λ32)σ2]
kz(ky, kx )[(λ13 − λ31)σ2 + (λ23 − λ32)σ1]

A1u
kz(λ12 − λ21)

kx (λ13 − λ31) − ky(λ23 − λ32)

kz(λ11 + λ22)σ3

kzλ33σ3

kz(k2
x − k2

y )(λ11 − λ22)σ3

kxkykz(λ12 + λ21)σ3

[ky(λ13 + λ31) + kx (λ23 + λ32)]σ3

(λ11 + λ22)(kxσ1 − kyσ2)
λ33(kxσ1 − kyσ2)

(λ11 − λ22)(kxσ1 + kyσ2)
(λ12 + λ21)(kyσ1 − kxσ2)

kxkykz(k2
x − k2

y )[(λ13 + λ31)σ1 + (λ23 + λ32)σ2]
kz[(λ13 + λ31)σ2 − (λ23 + λ32)σ1]

kxkykz[(λ13 + λ31)σ1 − (λ23 + λ32)σ2]
kz(k2

x − k2
y )[(λ13 + λ31)σ2 + (λ23 + λ32)σ1]

A2u
kxkykz(k2

x − k2
y )(λ12 − λ21)

ky(λ13 − λ31) + kx (λ23 − λ32)

kxkykz(k2
x − k2

y )(λ11 + λ22)σ3

kxkykz(k2
x − k2

y )λ33σ3

kxkykz(λ11 − λ22)σ3

kz(k2
x − k2

y )(λ12 + λ21)σ3

[kx (λ13 + λ31) − ky(λ23 + λ32)]σ3

(λ11 + λ22)(kyσ1 + kxσ2)
kyλ33σ1 + kxλ33σ2

(λ11 − λ22)(kyσ1 − kxσ2)
(λ12 + λ21)(kxσ1 + kxσ2)

kxkykz(k2
x − k2

y )[(λ13 + λ31)σ2 − (λ23 + λ32)σ1]
kz[(λ13 + λ31)σ1 + (λ23 + λ32)σ2]

kxkykz[(λ13 + λ31)σ2 + (λ23 + λ32)σ1]
kz(k2

x − k2
y )[(λ13 + λ31)σ1 − (λ23 + λ32)σ2]

B1u
kz(k2

x − k2
y )(λ12 − λ21)

kx (λ13 − λ31) + ky(λ23 − λ32)

kz(k2
x − k2

y )(λ11 + λ22)σ3

kz(k2
x − k2

y )λ33σ3

kz(λ11 − λ22)σ3

kxkykz(k2
x − k2

y )(λ12 + λ21)σ3

[ky(λ13 + λ31) − kx (λ23 + λ32)]σ3

(λ11 + λ22)(kxσ1 + kyσ2)
λ33(kxσ1 + kyσ2)

(λ11 − λ22)(kxσ1 − kyσ2)
(λ12 + λ21)(kyσ1 + kxσ2)

kxkykz[(λ13 + λ31)σ1 − (λ23 + λ32)σ2]
kz[(λ13 + λ31)σ2 + (λ23 + λ32)σ1]

kxkykz[(λ13 + λ31)σ1 + (λ23 + λ32)σ2]
kz(k2

x − k2
y )[(λ13 + λ31)σ2 − (λ23 + λ32)σ1]
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TABLE III. (Continued.)

Irreducible representation σ0 σ3 (σ1, σ2)

B2u
kxkykz(λ12 − λ21)

ky(λ13 − λ31) − kx (λ23 − λ32)

kxkykz(λ11 + λ22)σ3

kxkykzλ33σ3

kxkykz(k2
x − k2

y )(λ11 − λ22)σ3

kz(λ12 + λ21)σ3

[kx (λ13 + λ31) + ky(λ23 + λ32)]σ3

(λ11 + λ22)(kyσ1 − kxσ2)
λ33(kyσ1 − kxσ2)

(λ11 − λ22)(kyσ1 + kxσ2)
(λ12 + λ21)(kxσ1 − kyσ2)

kxkykz[(λ13 + λ31)σ2 + (λ23 + λ32)σ1]
kz[(λ13 + λ31)σ1 − (λ23 + λ32)σ2]

kxkykz[(λ13 + λ31)σ2 − (λ23 + λ32)σ1]
kz(k2

x − k2
y )[(λ13 + λ31)σ1 + (λ23 + λ32)σ2]

Eu

(ky, −kx )(λ12 − λ21)
kxkykz(k2

x − k2
y )[λ13 − λ31, −(λ23 − λ32)]

kz(λ23 − λ32, λ13 − λ31)
kxkykz(λ13 − λ31, λ23 − λ32)

kz(k2
x − k2

y )[λ23 − λ32, −(λ13 − λ31)]

(ky, −kx )(λ11 + λ22)σ3

(ky,−kx )λ33σ3

(ky, kx )(λ11 − λ22)
σ3(kx, −ky )(λ12 + λ21)σ3

kxkykz(k2
x − k2

y )(λ23 + λ32, λ13 + λ31)σ3

kz[λ13 + λ31,−(λ23 + λ32)]σ3

kxkykz[λ23 + λ32, −(λ13 + λ31)]σ3

kz(k2
x − k2

y )(λ13 + λ31, λ23 + λ32)σ3

kxkykz(k2
x − k2

y )(λ11 + λ22)(σ1,−σ2)
kz(λ11 + λ22)(σ2, σ1)

kxkykz(λ11 + λ22)(σ1, σ2)
kz(k2

x − k2
y )(λ11 + λ22)(σ2, −σ1)

kxkykz(k2
x − k2

y )λ33(σ1, −σ2)
kzλ33(σ2, σ1)

kxkykzλ33(σ1, σ2)
kz(k2

x − k2
y )λ33(σ2, −σ1)

kxkykz(k2
x − k2

y )(λ11 − λ22)(σ1, σ2)
kz(λ11 − λ22)(σ2, −σ1)

kxkykz(λ11 − λ22)(σ1, −σ2)
kz(k2

x − k2
y )(λ11 − λ22)(σ2, σ1)

kxkykz(k2
x − k2

y )(λ12 + λ21)(σ2, −σ1)
kz(λ12 + λ21)(σ1, σ2)

kxkykz(λ12 + λ21)(σ2, σ1)
kz(k2

x − k2
y )(λ12 + λ21)(σ1, −σ2)

(kx, ky )[(λ13 − λ31)σ1 + (λ23 − λ32)σ2]
(ky, −kx )[(λ13 − λ31)σ2 − (λ23 − λ32)σ1]
(kx, −ky )[(λ13 − λ31)σ1 − (λ23 − λ32)σ2]
(ky, kx )[(λ13 − λ31)σ2 + (λ23 − λ32)σ1]

quasinode naturally explains the observed universal thermal
conductivity [43,44,47].

Another issue raised by the experiment [33] is the super-
ficial mutual scaling of the in-plane and out-of-plane thermal
conductivities, shown as normalized κab/T and κc/T versus
the magnetic field. This was taken as the basis to exclude
the horizontal nodal line since the Fermi velocity here is in
plane and hence contributes to κab/T but not κc/T . While
it is reasonable in the presence of the horizontal node alone,
the argument needs to be re-examined if the vertical node (or
quasinode) is also present. In the latter case, both in-plane and
out-of-plane thermal transports are possible, and both types
of nodes (quasinodes) are subject to the Volovik effect [48],
which induces a zero-energy density of states (DOS) ρ(0) =
NB ∝ √

B, where B is the magnetic field. In the presence
of impurity scattering rate γ , the effective DOS is given by
ρeff (0) ∼ max(γ ,NB). Therefore, when NB > γ , both κab/T
and κc/T are proportional to NB, which explains the observed
mutual scaling.

V. SUMMARY

In this work, we first resolved the paradox between the
multicomponent pairings and the uniaxial strain experiments.
Then by performing a thorough group classification based
on the D4h group with SOC included and by carefully ex-
amining different experiments, we concluded that the Eg

pairing is the most probable symmetry for Sr2RuO4, namely,
(dxz, dyz ) wave [transforming as (kxkz, kykz )]. In particular, we
pointed out the spin-singlet intraorbital pairings dominated by
(kxkz, kykz )λ(33) and (kxkz, kykz )(λ(11) − λ(22)) are compatible
with most known experiments.

It is important to ask what pairing mechanism would cause
the interlayer Eg pairing, which would possibly also explain
why Tc of Sr2RuO4 is much lower than that of cuprates. In
this regard, a careful study of the three-dimensional three-
orbital Hubbard model with SOC may shed light on the
underlying pairing mechanism [45,49]. Another remaining
question is how to explain the existing phase-sensitive exper-
iments [7–11] and reconcile the singlet nature of the pairing
seen in the NMR experiments. This deserves further study,
both theoretically and experimentally.
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APPENDIX A: GROUP CLASSIFICATION

Following the notations in the main text, the pairing matrix
can be written as a tensor product �o ⊗ �s ⊗ fk, where �o,
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�s, and fk are for the orbital, spin, and momentum, respec-
tively. �o can be expanded on λ(ab), and �s can be expanded
on σμ, where λ(ab) denotes the matrix with the (i j)th element
given by λ

i j
(ab) = δiaδ jb and σ0 (σ1,2,3) represents the spin

singlet (triplet). All three parts transform as independent ir-
reducible representations as listed in Table II. After obtaining
these representations, we apply the group product to obtain a
thorough list of all 148 pairings, as listed in Table III.

APPENDIX B: GAP STRUCTURE

Motivated by the recent NMR [18,19] and neutron [20]
experiments, we focus on only the spin-singlet pairings be-
longing to Eg in this work. We solve the quasiparticle gap with
the pairing given by Eq. (4) of the main text. The normal state
single-particle Hamiltonian is taken from Refs. [37,39].

First, we studied the gap structure of each isolated case
with di = 0.01 mRy. The results are shown in Fig. 3. For each

-pocket
#1

-pocket -pocket = /4 kz=

#2

#3

#4

#5

#6

#7

#8

0 /4 /2
0

/2k
z

0 0.5 1

/
max

0 /2

kz

0 /4 /2
0

0.5

1

/
m

ax

FIG. 3. Gap structures of each spin-singlet pairing belonging to Eg with TR-breaking composition (dxz + idyz ). The number of each pairing
is from the definition in Table I. In calculations, the value of each pairing is chosen to be di = 0.01 mRy (corresponding to about 0.1 meV).
For each pairing (line), the first three panels are color plots of the quasiparticle gap on three Fermi pockets versus the azimuthal angle θ and
kz. In the fourth and fifth panels, the quasiparticle gaps versus kz (at θ = π/4) and θ (at kz = π ) are plotted explicitly.
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-pocket
#(7,1)
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FIG. 4. Gap structures similar to Fig. 3, but with two pairings coexisting. One pairing is chosen to be d7 = 0.01 mRy, and the other is
di = d7/2. Different from Fig. 3, the last column is plotted with logarithmic scale for clarity.

pairing, the quasiparticle gap amplitude contours on three
pockets are shown in the first three columns. In addition,
the kz and θ dependences are explicitly given in the last two
columns. In our plots, θ is defined as the azimuthal angle
relative to (0,0) for the β and γ pockets, while it is relative
to (π, π ) for the α pocket. Due to the lattice symmetry, only
0 < θ < π/4 is presented. From these plots, either horizontal
or vertical nodal lines can be found. Moreover, due to the
interorbital pairing, an out-of-plane horizontal nodal line with
kz 	= 0 is found for pairing 6 (λ(12) + λ(21)).

Next, we study the cases in which two pairings coexist
in Fig. 4. We choose d7 = 0.01 mRy, and the other compo-

nent di 	=7 = d7/2 for simplicity. Due to the coexistence of
two types of pairings, the vertical nodes are eliminated in
general. But for the case of (d7, d8), the quasinodes remain
along the (11) direction and are compatible with the uni-
versal thermal conductivity experiments as discussed in the
main text. Interestingly, in such a multiorbital pairing with
SOC, the gap structure can be very complex. For example, in
the case of (d7, d2) and (d7, d3), we find the original kz = 0
horizontal nodal line is extended to a nodal surface called
the Bogoliubov Fermi surface [41]. However, for (d7, d6),
a nodal point can be found in the α and γ pockets at
θ = π/4.
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