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Recent experiments suggest a multicomponent pairing function in Sr,RuQO,, which appears to be inconsistent
with the absence of an apparent cusp in the transition temperature 7, as a function of the uniaxial strain. We show,
however, that the theoretical cusp in 7, for a multicomponent pairing can be easily smeared out by the spatial
inhomogeneity of strain, and the experimental data can be reproduced qualitatively by a percolation model.
These results shed light on multicomponent pairings. We then perform a thorough group-theoretical classification
of the pairing functions, taking the spin-orbit coupling into account. We list all 13 types of two-component
spin-singlet pairing functions, with 8 of them belonging to the E, representation. In particular, we find two types
of intraorbital pairings in the E, representation (k.k, k,k;) are favorable in view of most existing experiments.
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I. INTRODUCTION

Sr,RuQy is a layered perovskite superconductor isostruc-
tural to the cuprate La,CuQO4 and has been widely studied
since its discovery [1]. Muon spin rotation (uSR) [2,3]
and Kerr experiments [4] indicate the time-reversal symme-
try is spontaneously broken in the superconducting state,
suggesting that the pairing order parameter must have
multiple components. This is, indeed, consistent with ultra-
sound experiments [5,6]. Theoretically, a symmetry-protected
multicomponent pairing function must belong to the twofold-
degenerate E, or E, representation of the underlying Dy,
point group of Sr,RuQ4. The two types of pairing functions
differ in parity. Early phase-sensitive probes [7—11] suggest
the pairing function transforms as k, + ik,, belonging to the
E, representation, as proposed in the early stage [12,13].

However, more recent and refined experiments strongly
challenge the k, + ik, spin-triplet pairing. First, according to
the Ginzburg-Landau (GL) theory, the two components of the
order parameter in the E, (or even E,) representation can
couple to the uniaxial strain linearly, leading to a cusplike
feature in the superconducting transition temperature 7, as
a function of the uniaxial strain. But no apparent cusp is
observed experimentally [14—17], and this appears to rule out
the possibility of a multicomponent order parameter. Second,
if the pairing is spin triplet, the Knight shift should not drop
below T, (at least for a magnetic field applied orthogonal to
the so-called d vector of the triplet). But it actually drops
significantly in strained as well as unstrained samples in
most recent and refined nuclear magnetic resonance (NMR)
experiments [18,19]. These NMR experiments and the polar-
ized neutron experiment [20] act strongly against spin-triplet
pairing, making it difficult to reconcile with phase-sensitive
experiments [21]. Importantly, in the same type of samples the
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ultrasonic measurement reveals the signature of a multicom-
ponent order parameter [5,6]. On the one hand, it combines the
behavior of the Knight shift, suggesting spin-singlet pairing
that transforms as the E,, or even E, representation in the pres-
ence of spin-orbital coupling (SOC), but on the other hand,
it seems to conflict with the absence of a cusp in 7, versus
the uniaxial strain [14—17]. The current situation is therefore
rather paradoxical and motivates careful reexamination of
the pairing symmetry in SrpRuQOy4 [22-28] regarding issues
such as single component vs multicomponent, spin singlet vs
triplet, nodal vs nodeless quasiparticles, etc.

In this work, we try to reconcile the paradox and reinforce
the possibility of the spin-singlet pairing in the degenerate
E, representation. First, we realize that the strain in the
reported sample is inhomogeneous, as seen in a scanning
superconducting quantum interference device (SQUID) ex-
periment [17]. We show with a percolation model that in
the presence of an inhomogeneous background of strain, the
cusp is absent or smeared out even if the pairing function
is in the E, or E, representation. Combining the ultrasound,
Knight-shift, neutron, SR, and Kerr experiments provides a
consistent picture of multicomponent pairing in the E, or E,
representation. Since various forms of E, and E, representa-
tions remain in the system with multiple orbitals and SOC,
we perform a thorough group-theoretical classification of the
pairing functions in spin, orbital, and momentum spaces and
discuss the relevance of various pairing functions in view of
the other experiments, such as superfluid density [29], specific
heat [30,31], and thermal transports [32,33]. We find two
types of intraorbital pairings in the E, representation (trans-
forming as k.k; + ik,k;) are the most favorable in view of such
experiments.

II. STRAIN EFFECT

We first discuss the impact of the recent experiments us-
ing strain as the tuning parameter. The uniaxial component
of the strain, &€ = €,, — €, where ¢, is the element of the
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strain tensor, transforms as B, under symmetry operations.
Since Sr,RuQy is Dy, symmetric, the multicomponent pairing
order parameter must belong to the E; or E, representation,
except for accidental degeneracy between one-dimensional
representations [28] (which will not interest us here). Let the
two-component order parameter be (7, 17,), which transforms
as (x,y) in the E, case and (xz,yz) in the E; case. In ei-
ther case, it is clear that |n;|*> — |n2|* also transforms as Bj,.
Therefore, the order parameters can couple to ¢ linearly as
ae(|n1]? = |n21?), with a coefficient . Within the GL theory,
this coupling lifts the degeneracy in the bare transition tem-
peratures for the two components, and the modified transition
temperature is the higher one, so that the change in 7, behaves
as 87, « |¢e|, resulting in a cusp dependence in & [14,28].
Rather unexpectedly, no apparent cusp feature has been ob-
served in strain experiments [14—17]. This result appears to
rule out the picture of multicomponent order parameter in
Sr,RuQy, provided that the strain distribution is uniform in
the sample. In the literature, two possibilities have been pro-
posed towards reconciling this paradox: fluctuation-induced
first-order phase transition [34,35] and 7, determined by a
critical pairing amplitude [36].

However, the recent scanning SQUID experiment [17]
showed that the local T, measured in different regions of
the sample, reaches the minimum at different values of e,
although the minimal T, itself is only slightly changed. This
fact may imply inhomogeneity of the strain distribution except
for the possibility of sample slipping in the experiment [17].
To investigate the effect of such inhomogeneity, we assume
a background strain &}, which distributes over the sample
statistically with a probability density p(g)oc). The total strain
at a specific spatial point is given by . = € + €1oc, Where
¢ represents the applied (external) strain in experiments. It
defines a local bare transition temperature 7(&efr) = Tro +
|aeese|, where T is the value of T in the absence of any strain.
We then have to deal with a system with 7, inhomogeneity
arising from the strain distribution. Notice that experimen-
tally, the position-dependent T is determined by measuring
the diamagnetic susceptibility within a ring of diameter ~2
pum [17], which is much larger than the superconducting
coherence length & < 100 nm [13]. Therefore, the superfluid-
induced diamagnetic signal can be established only if the
associated large area has entered the superconducting state
collectively. The large area justifies a statistical treatment of
the strain distribution. Using the simplest percolation model,
we assume that superconductivity is achieved below T if the
statistical probability for t(e.) > T, is above a percolation
threshold p.. In the classical percolation model, it is known
that p. = 1 in one dimension, p. = 0.5 in two dimensions,
and p,. is lower in higher dimensions. In our case it is rea-
sonable to speculate that 0 < p. < 0.5, but its exact value is
unimportant for qualitative purposes. In this picture, we can
determine 6 7. = T. — T implicitly as

/9(a|8 + eloc] — 8712)p(€10c)dE1oc = Pe, (D

where 6 is the Heaviside step function. It turns out that the
resulting 87, no longer develops a cusp in the applied ¢
as long as p. > 0. To see this point most straightforwardly,
we can take the derivative with respect to ¢ in Eq. (1) to
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FIG. 1. 8T, vs uniaxial strain ¢ at different percolation thresholds
pe. o is the standard deviation of the Gaussian distribution p(gj,c).
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Clearly, d67,./0e = 0 at ¢ = 0 as long as p(g) iS an even
function. As a specific model, we assume a Gaussian distribu-
tion, p(&lpc) = \/21710 e—5:/2> Then Eq. (1) can be integrated

obtain

out exactly, yielding

f((S]}—as)_'_ f<87}+a8> 201 -
err|\ ———— erfl —— | = — Do),
«/500{ «/zaa P

where erf is the standard error function. In Fig. 1, we plot
8T. vs ¢ for various choices of p.. It can be seen that 57,
depends smoothly on ¢ unless the strain distribution width o
goes to zero (uniform strain distribution). Therefore, we have
shown that the smooth dependence of 7, on small & cannot
rule out the possibility of multicomponent order parameter in
SroRuQy. Instead, combining the strain experiments with the
USR [2,3], neutron [20], Kerr [4], and ultrasound [5,6] exper-
iments actually provides a consistent picture of spin-singlet
pairing in the E, or E, representation.

We make the following remarks: (1) Experimentally, 7
in different regions reaches the minimum at different applied
strains. This behavior can be explained if the applied strain
itself is nonuniform in the sample, such that the strain distri-
bution is biased differently at different spatial regions (which
are microscopically large but macroscopically small on the
scale of coherence length). (2) The approximation of linear
coupling to strain is valid only at small strains. Larger strains
may modify the electronic structure significantly (because the
Fermi level is close to the Van Hove singularity in the y band),
and the effect inevitably goes beyond the linear approximation
and beyond the scope of this work.
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III. GROUP CLASSIFICATION

Sr,RuOy is a multiorbital system, and its low-energy
bands are dominantly described by three ,, orbitals (d,;, d,.,
dyy) [13]. On the other hand, angle-resolved photoemission
spectroscopy has shown its band structures are strongly af-
fected by the SOC effect [37,38]. Therefore, a thorough group
classification of the possible pairing functions is needed, tak-
ing into account the #,, orbitals, the atomic SOC, and the
Dy, group. There has been some progress along this direc-
tion [22-28], and our strategy mainly follows Ref. [23]. A
general pairing Hamiltonian for electrons at momenta k and
—k can be written as WEA(k)iazwif( + H.c., where vy is
a multicomponent spinor composed of electron annihilation
operators of all internal degrees of freedom, such as or-
bital and spin, A(k) is a matrix function in the orbital and
spin bases, and 0,,—,1,2,3 Will henceforth denote the identity
and Pauli matrices acting on spins. Under a group opera-
tion g € Dy, the spinor transforms as v, = Ug¥,-1, where
U, encodes the k-independent transformation on orbitals
and spins. Correspondingly, the pairing matrix transforms as
AVIES UgAg—lkU;, where we used the fact that U, = TUgT’1
for transformation on spins and on real orbital bases, with
T = io, K being the time-reversal operator (and /C being
the complex conjugation operator). The pairing matrix can
be written as a linear superposition of the tensor products
Ay ® Ay ® fi, where A, is a matrix describing a fermion
bilinear operator superposition in the orbital (spin) basis and
Sk is a function of k. To set up notations, we define A
as a self-explaining matrix in the orbital basis (dx, dy., dy)
such that its elements read A, = 8;a8;5. Such matrices can
be used to expand A, and form irreducible representations.
For example, A1) + A@22) ~ Aig, A1) — A@22) ~ Big, etc. The
matrix A is expanded by o, with oy (01,23) representing
the spin-singlet (spin-triplet) component(s). Under Dy, these
matrices transform as oy ~ Ajyg, 03 ~ Asg, and (o1, 02) ~ E,.
(Note that under time reversal, oy is invariant, while o723
changes sign.) The classification of the function fj is standard.
The details of the separate classifications are presented in
Appendix A. Finally, the entire pairing function is classi-
fied by decomposing the tensor products of the separate
irreducible representations. The complete results are also pre-
sented in Appendix A. Note that it is possible that multiple
pairing functions with either a spin singlet or triplet trans-
form identically as the same irreducible representation. Such
pairing functions could mix, but this does not mean they have
to since the extent of mixing of such pairing functions is not
dictated by symmetry alone.

TABLE I. Spin-singlet pairing functions in the E, and E, rep-
resentations. Here A, denotes a matrix in the orbital basis, with
the elements Azb) = 8ia0,p. In each row, the two basis functions
transform as (xz, yz) in the E, representation and as (x,y) in the
E, representation. The identity matrix oy in the spin basis for spin-
singlet pairing is omitted for brevity.

Pairing XZ Or x yzory
E, 1 Az + e Aazy +2ran
2 ok, (k2 — kyz.)()h(lz) + Aan) —koky (k2 — kf,)()»(zz,) + A32)
3 (k? = k) (23) + Az) —(kf = k) (ha3) + Aan)
4 keky(Aa13) + Aany) keky(A23) + A32))
5 koko (Ainy + A2)) kyk, (A1) + A@2)
6 kyk. (A a2y + A1) kek,(A2y + X))
7 kyk A3 kyk,A 33
8 kek. (A — Aaz) —kyk (A1) — A2))
E, 9 ek ke, (K2 — K2) ek o (2 — K2)
A3y — )~<31;) A3y — }»(32>')
10 k:(A23) — A32)) k(A3 — Aany)
11 kekyk.(X13) — A1) kekyk.(Aq3) — Aany)
12 k(K2 — kf)()»(zs) —Azy) k(K2 — kf)(l(ls) —Aan)
13 ky(Aa2y — A@rny) k(a2 — A@rny)

Here we focus on spin-singlet E, and E, representations,
along the lines of the previous discussions of the experiments.
Such pairing functions are listed in Table I. Note that if
necessary, each pairing function could be multiplied by an
additional Ay, factor function of k to describe pairing on
longer bonds. There are eight pairing functions in the E,
representation and five in the E, representation. (Note that
E, spin singlet is allowed if the pairing function is odd under
orbital exchange.) Among these pairing functions, only three
of them (5, 7, and 8) in the E, representation have intraorbital
pairing, while all the others involve interorbital pairing. If the
pairing arises from electron-electron correlations, the orbital-
wise matrix element effect in the overlap between Bloch states
should render interorbital pairing less relevant. In this case, we
may speculate that the above three E, pairing functions are the
most important. Once the dominant pairing functions in the E,
representation are realized, the others in the same representa-
tion may be induced by subleading correlation effects, so for
sufficient generality, we include all of the E, functions in the
list. In this setting, we can write the two degenerate general
pairing functions in the E, representation explicitly as, in the
orbital basis,

(ds + dg)k.k, dskyk, dukcky + dokeky (k2 — k2)
Ay (k) = dokyk, (ds — dg)k.k; dy (ki — k7)) + d, ,
| dikoky + dokoky (K2 — k) d3 (k2 — k) + d, dykk,
(ds — dg)kyk, dekk, —dy (ki —k}) + d
Ay (k) = dek,k, (ds + dg)kyk, dykiky — dokocky (k7 — K7) | @)
| —ds (k] —k}) +di dakeky — dokoky (K] — K7) drkyk,
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FIG. 2. A possible pairing of E, with d; = 0.01 and dg = 0.005
(in mRy). The normal state FS at k, = 0 is plotted in (a) to define the
o, B, and y pockets. In (b) to (d), the quasiparticle gaps are plotted
on the (6, k) plane for each pocket. 0 is defined as the azimuth angle
relative to the center of each pocket. The k, dependence at 6 = 0 is
explicitly shown in (e), and 6 dependence at k, = 7 is shown in (f).

Here dj.g are coefficients multiplying the respective E,
functions in Table I. The relative ratios among these co-
efficients depend on the microscopic details. (Once the
relative ratio is fixed, in the GL theory, the global coef-
ficients act as order parameters and carry or transform as
the same E, representation.) Below the transition tempera-
ture, it is usually favorable for the two degenerate pairing
functions, A, (k) and A, (k), to combine into the time-
reversal symmetry-breaking form, A(k) = A, (k) £ iA, (k)
to maximize the pairing gaps on the Fermi surface and gain
energy.

IV. GAP STRUCTURE

We now discuss the quasiparticle excitations sub-
ject to the above spin-singlet E, pairing functions. The
Bogoliubov—de Gennes Hamiltonian in the Nambu basis

W= (W, —y o) is
A(K)

- o
H_;\Ijk[A’r(k) —Th_kT1i|\yk’ ©)

where hy is the normal state single-particle Hamiltonian
taken from Refs. [37,39] with atomic SOC and

TABLE II. Irreducible representations of the pairing matrix in
orbital, spin, and momentum spaces. The total pairing can be any
tensor product of these three parts with odd parity in total.

Orbital Spin fk)
Aan + A
A (“))\(33) @2 g} 1
Ay, Aa2) — M@y o3 Koy (k2 — k)z,)
By, Aan — A ki —k;
By, razy + e kky
Az + AGys A3 + Aa2)),

e e BT
A kekye, (k2 — K2)
A2u kz
B, kokyk
By, k(K2 — k%)
E, (ks ky)

A(k)= A (k)+iA, (k) (tensor produced implicitly by
0p). In order to obtain the desired (k.k,, kyk;) intraorbital
pairing as discussed above, we consider the nearest-neighbor
interlayer pairings on bonds (+a/2, +a/2, +c/2), where a
and ¢ are in-plane and out-of-plane lattice constants. The
simple form factor fx is replaced by the corresponding
lattice  harmonics, e.g., kik, — sin(k.a/2)sin(k,c/2),
kf — kf, — cos(kca/2) — cos(kya/2), etc. The quasiparticle
gaps for different pairings, characterized by the coefficients
di—1,,...8, can be found in Appendix B. For all the E, pairings,
there is a horizontal nodal line at k, = 0 by symmetry. It is
consistent with the specific heat [31] and neutron [40]
experiments. When interorbital pairing is included, the
horizontal nodal line may expand into a nodal torus, forming
the Bogoliubov Fermi surface [41], as shown in Appendix B.
This would generate a finite zero-energy quasiparticle density
of states, which is, however, inconsistent with the universal
thermal conductivity [32,33], which can arise only if the
energy gap is nodal or quasinodal [42-44] or the Bogoliubov
Fermi surface is too small [45]. Furthermore, the substantial
nonzero c-axis thermal conductivity in the 7 = 0 K limit [33]
was taken to be strong evidence to rule out the “simple”
k, = 0 horizontal nodal line picture. Recently, a scanning
tunneling microscopy experiment [46] also indicated the
existence of a vertical nodal line (or gap minima) along
the (11) direction. Taking these discussions together, we
find (d7,ds) pairing may be the most relevant. With the
parametrization d; = 2dg = 0.01 mRy, the quasiparticle gaps
on the three pockets defined in Fig. 2(a) are plotted on the
(0, k;) plane in Figs. 2(b) to 2(d), where 6 is the azimuthal
angle relative to the pocket center. In particular, for clarity,
the gaps along two cuts, # =0 and k, = m, are given in
Figs. 2(e) and 2(f). Clearly, in addition to the horizontal
nodal lines for all three pockets, there is a very deep gap
minimum at # = 7 /4 on the y pocket. This quasinode stems
from the effect of SOC, which causes the Bloch state at the
Fermi angle 6 = /4 on the y pocket to be dominated by
the d,, and d,, components, while the pairing of the latter
two orbitals (A1) — A2 contributes a B, factor within
the E, representation) has an exact node at 6 = /4. This
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TABLE III. Full classification of Sr,RuQy. In general, a pairing can be written as a linear superposition of the tensor products A ® 0, ®
S« Notice that fi give only the lowest-order lattice harmonics. For compactness, we use the notation A, to represent the matrix A ;) as defined
in the main text.

Irreducible representation 09 03 (01,02)
A+ A (A2 — Ao (kek 01 — kyk.02)
, 2)»33 (ria — Ao1)0s , ()»132— A31)o1 + (A — Axn)oz
i B0 2D s = ) — Kk — a0~ B s~ B
e Ghrs + ) + ke (s + ) k(s = a0+ (has — o
keky (k2 — kyz)(}»n +A2) (A2 — Aan)(kyk o1 + kik.02)

koky (K2 — kyz))»sa 2 2 (A13 = A31)02 — (A23 — A32)o
X koky (ki — kZ)(Ap — A
Aoy Kky Gty — 222) g R 0%k (= DGz — Asn)n + s — A
(k2 = k)02 + 221) YRR A RS TR (2 = kDI (s — 23102 + (s — A32)o]

kek: (A3 + Aa1) — kyk: (A3 + A32) keky[(A13 — Az1)or — (A3 — A32)07]

(k2 — kﬁ)(kll + A22) kek, (12 — Aa1)o1 + kyk, (A2 — Ap1)0,
(k§ — k})As3 2 2 (A3 — A31)o1 — (Aa3 — Azn)on
x E ki —kZ)(Ap — A
By, Al — A hok (A( T N “))(_i_l;k_(;l)cfk )]J%ky(kf - kf)[(lls — A31)02 + (A3 — An)oi]
kyky (K2 — kf)()vlz + A21) eI T R A (k% — k?)[(}»lz — A31)01 + (A3 — Ax)oz]

kyk (A3 + A31) — kek (A3 + A32) keky[(A13 — A31)02 — (Aa3 — A3zz)o1]
keky (A1 + A22) (A2 = A (kk01 — kok,o2)
kekyAzs ko, Gy — 2ot ) (A3 — A31)02 + (Aa3 — A3z)04
By, kky (k7 — k) (M1 — A22) N keky (k2 = k)[(h13 — A31)o1 — (Aa3 — Az)oa]
A1z }+ A2l [yke(As = A1) =~ kekeldas = Ao (2 = k[ (s = 2a1)os — (has — Az)or]
kek, (A3 + A31) — kyk(Aas + A32) kxk)vf()»la — A31)01 + (A23 — A3)o2]
k. (ke ky)(A1 + A22) (A2 — A21)(01, —02)

kz(kxa ky))‘-33
ko (ke, —ky)(A11 — Ax)
ko (ky, k) (A2 + A1)

keky (k= k3 )iz = A1 )(02, 01)
(k? — k}z,)()hn — A2)(01,02)
keky (A2 — A21)(02, —01)

kz(kxv ky)()"IZ - )\2] )03
[A13 = Az1, —(A23 — A3z)]o3

Keoky (2 — K2)(has — Doz, Ags — A

Es (A3 + A3, A1z + A31) (])(g © kz)y(i( zi 5 32}\ li 2 ;:7)03 ko (ky, ky)[(A13 — A31)01 + (A23 — A32)o2]
aky (F = ks + dan, = Fda)l? 7700 T ke, —k[(has = dan)ox = (o = A)on]
(K = kD)3 + Az, —(has + )] 0078 3 AR k(e —k)[ (i — Aa1)on — (has — Aa)on]
koky(M13 + Aa1, Aoz + A32) ke (ky, kLA 13 — A31)02 + (A2 — As2)o]

(A1t + Ax)(kcoy — kyor)

A3(keor — kyos)

kzo‘;; }»—f- 2»22)03 (A1 — Ax)(keoy + kyor)

A k(A2 — A1) k(K2 — k;)(if 3_ 22)s (A2 + Ao (kyor — ky02)

e k(A3 — A31) — ky(Aoz — A3n) ‘ kxk k (})L _l;k )22 P kdkyk (K — kyz)[()»la + A31)o1 + (A3 + A32)02]

[k, (. j_;hz)_l{_zk (AZI +3A Yo k{13 + A31)02 — (A3 + A32)01]
v o A 220 kekyk [(A13 + A31)o1 — (A3 + A3z)02]
ke (k2 = k)13 4 A31)02 + (ha3 + Ax)oi]
(A1 + Ax)(kyoy + kyo3)
kekyke (k2 — R2)0hat + Ao Shascy b ldascs
& k}; (kz}— 12)hss0 (A1 — An)(kyor — k,02)
4 ek (k= k) (az = Ao Rk Gt — s (A2 + A2)) (k01 + keo2)

u ky(Aiz — Az1) + ke(Aoz — A32) k (kx2 y_zkz)l(lx _’_22)\ 3)6 kokyk (K2 — kf)[()»13 + A31)02 — (A3 + A3)oi]
PP k'z(k o S k(s + A31)01 + (s + A32)03]
ez + A31) = ky (B3 32103 kekyk [(A13 + A31)02 + (A23 + A3)o1]

k(K2 — k}z,)[()% + A31)o1 — (A3 + A3)oz]
(A1t + An) (ko + kyo2)
k(R — )1 + 2o hastlan +kyn)
);C (kz}— 123305 (A1 — An) (ko — kyos)
k (k2 — k2)(hip — A N Ty Ao + Aoy (k,o1 + ko
B, Lk — k) (M2 — A1) k.Gt — 3a2)0s (A12 + A1) (kyoy 2)

ke(A1z — A3p) + k(Ao — A3n) kekyk [(A13 + A31)o1 — (A23 + A32)02]
k. [(A13 + A31)02 + (A3 + A3z)01]
kekyk [(A13 + Az1)or + (A2s + A3x)02]

k (k2 — k2)[(M13 + A31)02 — (has + A3)o ]

kokyk, (k2 — kyz)()vlz + A21)03
[ky(A13 + A31) — ke(Ao3 + A3z)]o3
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TABLE IIl. (Continued.)

Irreducible representation o)

o3 (01,02)

kxkykz()"lZ - )‘«21)

B u
? ky(A13 — Az1) — ke(Aoz — A32)

[k (A3 4+ A31) + ky (A3 + A32)]o03

(ky, =k )(A12 — A1)
kekyk, (k2 — kﬁ)[K13 — A3, —(Aa3 — A3)]
E, k(A3 — A3z, A1z — A31)
kekyk, (13 — A31, Aoz — A32)
ko (k= k)[Aos — Azz, —(Miz — Aa1)]

kekyk, (A1 + Ax)o3

kekyk: (kT — k) (A1 — Aa2)o3

(ky, =k ) (A 11 + Ax)o3

(ky, ko)A 11 — A22)
03(ky, —ky)(A12 + A21)03
kekyk (k3 — k7)Y (Ma3 + A3, A1z + Aa1)03
k[A13 + Azr, —(Aaz + A)]oz
kekyk [A23 + Azz, —(A13 + A31)]o3
k (k2 — kf)(kw + A31, Aoz + A32)03

(A1 + Ap)(kyoy — ko)
A3(kyor — k,02)

(A1 — Aa2)(kyo1 + k02)

(A2 + A1) (ko — kyoy)
kekyk [(A13 + A31)02 + (A2z + A3p)0o1]

k[(A13 + Az1)or — (A2s + A3)02]
kekyk [(A13 + A31)02 — (A3 + A32)01]
ke (k? = k[ + A31)01 + (a3 + Ax)on]

kxkykz)\{g 03

k(A2 + Aa1)os

kokyk (K — kf)()\ll + Axn)(o1, —02)
k(A 11 + An)(02, 01)
kekyk, (A1 + Axn) (01, 02)

k (k> — k}z,)()m + A2 )(02, —07)
kekyk: (k? — k})Aaz (o1, —02)
k:A33(02, 01)
kxkykz)“33 (01,02)
ke (k} — k)hsa(oz, —o1)
kokyk, (k2 — /?‘2,-)()»11 — An)(01,02)
k(A 11 — Ax2)(02, —071)
kekyk, (A1 — Axn)(01, —02)

k (k2 — k}z.)()tll — An)(02,01)
kokyk (K2 — kf)()vlz + Aa1)(o2, —01)
k(A2 + A21)(01, 02)
kekyk, (A 12 + X21)(02, 01)
ko (k? = k) (12 + Aa1)(01, —02)

(ke, kp)[(A13 — A31)01 + A2z — A32)02]
(ky, =k )[(A3 — A31)02 — (A3 — A32)o1]
(ky, =k )[(A13 — A31)01 — (Ao3 — A3p)00]
(ky, k)[(A13 — A31)02 + (Aa3 — A3z)01]

(ky, —k()A3303

quasinode naturally explains the observed universal thermal
conductivity [43,44,47].

Another issue raised by the experiment [33] is the super-
ficial mutual scaling of the in-plane and out-of-plane thermal
conductivities, shown as normalized «,,/T and k./T versus
the magnetic field. This was taken as the basis to exclude
the horizontal nodal line since the Fermi velocity here is in
plane and hence contributes to «,,/7 but not x./T. While
it is reasonable in the presence of the horizontal node alone,
the argument needs to be re-examined if the vertical node (or
quasinode) is also present. In the latter case, both in-plane and
out-of-plane thermal transports are possible, and both types
of nodes (quasinodes) are subject to the Volovik effect [48],
which induces a zero-energy density of states (DOS) p(0) =
N /B, where B is the magnetic field. In the presence
of impurity scattering rate y, the effective DOS is given by
0etr(0) ~ max(y, N3). Therefore, when N > y, both k., /T
and «./T are proportional to Ag, which explains the observed
mutual scaling.

V. SUMMARY

In this work, we first resolved the paradox between the
multicomponent pairings and the uniaxial strain experiments.
Then by performing a thorough group classification based
on the Dy, group with SOC included and by carefully ex-
amining different experiments, we concluded that the E,

pairing is the most probable symmetry for Sr,RuO,, namely,
(dy;, dy;) wave [transforming as (k.k;, kyk;)]. In particular, we
pointed out the spin-singlet intraorbital pairings dominated by
(kek, kyk: )X 33y and (kk;, kyk;)(A11) — A(22)) are compatible
with most known experiments.

It is important to ask what pairing mechanism would cause
the interlayer E, pairing, which would possibly also explain
why T. of Sr,RuQ4 is much lower than that of cuprates. In
this regard, a careful study of the three-dimensional three-
orbital Hubbard model with SOC may shed light on the
underlying pairing mechanism [45,49]. Another remaining
question is how to explain the existing phase-sensitive exper-
iments [7—11] and reconcile the singlet nature of the pairing
seen in the NMR experiments. This deserves further study,
both theoretically and experimentally.
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APPENDIX A: GROUP CLASSIFICATION

Following the notations in the main text, the pairing matrix
can be written as a tensor product A, ® A; ® fx, where A,,
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Ay, and fi are for the orbital, spin, and momentum, respec-
tively. A, can be expanded on A, and A, can be expanded
on o, where A, denotes the matrix with the (i;)th element
given by A’(Jab) = 6iadjp and oy (0123) represents the spin
singlet (triplet). All three parts transform as independent ir-
reducible representations as listed in Table II. After obtaining
these representations, we apply the group product to obtain a
thorough list of all 148 pairings, as listed in Table III.

APPENDIX B: GAP STRUCTURE

Motivated by the recent NMR [18,19] and neutron [20]
experiments, we focus on only the spin-singlet pairings be-
longing to E, in this work. We solve the quasiparticle gap with
the pairing given by Eq. (4) of the main text. The normal state
single-particle Hamiltonian is taken from Refs. [37,39].

First, we studied the gap structure of each isolated case
with d; = 0.01 mRy. The results are shown in Fig. 3. For each

#1 a-pocket B-pocket ~-pocket O=m/4 k=m
——————
L~ m
N -
#2 g w
#3 ) C @
" [ A )
#5 N
#6 7~
#____/' -\___<
#7 @
1
3
05 o
3
0
0 /4 /2 | — | 0 /2 T 0 /4 /2
4 0 0.5 1 kz 6
A/A

max

FIG. 3. Gap structures of each spin-singlet pairing belonging to E, with TR-breaking composition (d,; + id,.). The number of each pairing
is from the definition in Table I. In calculations, the value of each pairing is chosen to be d; = 0.01 mRy (corresponding to about 0.1 meV).
For each pairing (line), the first three panels are color plots of the quasiparticle gap on three Fermi pockets versus the azimuthal angle 6 and
k;. In the fourth and fifth panels, the quasiparticle gaps versus k, (at 0 = 7 /4) and 0 (at k, = ) are plotted explicitly.
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a- = . - k,=m
#7.1) pocket (3-pocket ~-pocket O=m/4
#(7,2)
% [
#(7,3)
% [
#(7,4)
#(7,5) @—
—_— \_/'
y
#(7,6)
#(7,8) m ]
y /2_J — @ 0! £
o N\=7 /- 102 5
, —" N gl )
0 /4 /2 [— ] 0 /2 T 0 /4 /2
[4 0 0.5 1 kz )
A/A

FIG. 4. Gap structures similar to Fig. 3, but with two pairings coexisting. One pairing is chosen to be d; = 0.01 mRy, and the other is
d; = d7/2. Different from Fig. 3, the last column is plotted with logarithmic scale for clarity.

pairing, the quasiparticle gap amplitude contours on three
pockets are shown in the first three columns. In addition,
the k, and 6 dependences are explicitly given in the last two
columns. In our plots, 6 is defined as the azimuthal angle
relative to (0,0) for the B and y pockets, while it is relative
to (m, ) for the @ pocket. Due to the lattice symmetry, only
0 < 0 < 7 /4 is presented. From these plots, either horizontal
or vertical nodal lines can be found. Moreover, due to the
interorbital pairing, an out-of-plane horizontal nodal line with
kz # 0 is found for palrmg 6 ()\.(12) + )\(2])).

Next, we study the cases in which two pairings coexist
in Fig. 4. We choose d7 = 0.01 mRy, and the other compo-

nent dix7 = d7/2 for simplicity. Due to the coexistence of
two types of pairings, the vertical nodes are eliminated in
general. But for the case of (d7, dg), the quasinodes remain
along the (11) direction and are compatible with the uni-
versal thermal conductivity experiments as discussed in the
main text. Interestingly, in such a multiorbital pairing with
SOC, the gap structure can be very complex. For example, in
the case of (dy, d») and (dy, d3), we find the original k, = 0
horizontal nodal line is extended to a nodal surface called
the Bogoliubov Fermi surface [41]. However, for (d7, ds),
a nodal point can be found in the « and y pockets at
0 =m/4.
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