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Effect of magnons on the temperature dependence and anisotropy of spin-orbit torque
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We investigate the influence of magnons on the temperature dependence and the anisotropy of the spin-
orbit torque (SOT). For this purpose, we use third-order perturbation theory in the framework of the
Keldysh formalism to derive suitable equations to compute the magnonic SOT. We find several contribu-
tions to the magnonic SOT, which depend differently on the spin-wave stiffness A and the temperature T ,
with the dominating contribution scaling like T 2/A2. Based on this formalism, we compute the magnonic SOT
in the ferromagnetic Rashba model. For large Rashba parameters, the magnonic SOT is strongly anisotropic, and
for small quasiparticle broadening, it may become larger than the nonmagnonic SOT.
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I. INTRODUCTION

Spin-orbit torques (SOTs) allow us to excite magnetiza-
tion dynamics and to switch the magnetization in magnetic
bits, which may be used for magnetoresistive random-access
memory applications [1]. Therefore, they have become a cor-
nerstone in spintronics research (see Ref. [2] for a recent
review). A magnetic bilayer, such as Co/Pt, is composed of
a magnetic layer (Co) on a heavy metal layer (Pt). When
an electric current is applied in plane along the x direction
in the magnetic bilayer, the torque exerted on the magne-
tization M̂ due to the SOT consists of the fieldlike torque
∝ M̂ × êy and the antidamping torque ∝ M̂ × [M̂ × êy]. Ad-
ditional contributions, which depend neither like M̂ × êy nor
like M̂ × [M̂ × êy] on the magnetization direction M̂ have
been found both experimentally [3] and theoretically [4,5].
They are referred to as the anisotropy of the SOT.

Electronic structure calculations describe many proper-
ties of the SOTs measured in experiments correctly [6–8].
However, the SOT measured in Ta/CoFeB/MgO nanowires
exhibits a strong increase of the fieldlike component with in-
creasing temperature, suggesting thermally induced excitation
processes to be at play, which have not yet been considered in
microscopic calculations of the SOT [9–11]. The same ob-
servation is made in Pt/Co/C [12], Pt/Hf/FeCoB/MgO, and
W/Hf/FeCoB/MgO [11]. A second phenomenon that calls
for extensions of the existing theoretical models is the strong
anisotropy found in experiments [3], which contrasts the often
roughly isotropic or only weakly anisotropic SOT obtained in
first-principles electronic structure calculations [13].

In this paper, we extend our formalism for calculations of
the SOT [7] by including magnons. Theoretical approaches
to compute the effect of magnons on the electrical con-
ductivity in models use rate equations [14], the Boltzmann
equation [15], and diagrammatic perturbation theory [16,17].

*Corresponding author: f.freimuth@fz-juelich.de

First-principles methods are based on the disordered-local-
moment approach [18] or on the Kubo-Landauer formalism
applied to a large supercell with spin disorder [19]. In this
paper, we make use of the torque operator T to include the
effect of magnons. In previous works, we showed that the
torque operator may be used to compute the response to
magnetization dynamics [20] and to calculate the effects of
magnetic texture [21,22]. Here, we use perturbations of the
form Tx sin(q · r − ωmagt ) to consider the wave vectors q and
the frequencies ωmag of magnons. We employ the Keldysh
nonequilibrium formalism to assess the SOT in the presence
of these perturbations by magnons.

This paper is structured as follows. In Sec. II A, we de-
velop the equations suitable to compute the magnonic SOT.
Several contributions to the magnonic SOT are detailed in
Appendix A. The necessary integrals of the magnon disper-
sion are dealt with in Sec. II B. In Sec. II C, we explain how
the magnonic torque scales with temperature and spin-wave
stiffness. In Sec. II D, we generalize the formalism for general
magnetization directions, which is necessary for the calcula-
tion of the anisotropy of the SOT. In Sec. III, we present our
results on the magnonic torque in the ferromagnetic Rashba
model. Additional results for various different parameters are
presented in Appendix B. This paper ends with a summary in
Sec. IV.

II. FORMALISM

A. SOT in the presence of magnons

The one-magnon state is described by the normalized mag-
netization:

M̂(r, t ) =
⎧⎨
⎩

η cos [q · r − ωmag(q)t]
η sin [q · r − ωmag(q)t]

1 − η2

2

⎫⎬
⎭, (1)

where η determines the cone angle of the magnon, ωmag(q) is
the dispersion, and q is the magnon wave vector. From the so-
lution of the Heisenberg model, it is known that Mz is reduced
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in the one-magnon state by the factor 1 − 1/Nmag, where Nmag

is the number of sites. Consequently, 1 − η2/2 = 1 − 1/Nmag,
and therefore,

η =
√

2

Nmag
. (2)

We consider the ferromagnetic ground state with magne-
tization in the z direction as the unperturbed reference
state (in Sec. II D, we will generalize the formalism to
general magnetization directions) and add the perturbation
term:

δHmag(t ) = μB�xc(r)ησx cos [q · r − ωmag(q)t] + μB�xc(r)ησy sin [q · r − ωmag(q)t]

= ηTy cos [q · r − ωmag(q)t] − ηTx sin [q · r − ωmag(q)t], (3)

to the Hamiltonian to compute the electronic states in the presence of the magnon, Eq. (1). Here, �xc(r) = 1
2μB

[V eff
minority(r) −

V eff
majority(r)] is the exchange field, i.e., the difference between the effective potentials of minority and majority electrons, μB is the

Bohr magneton, and T is the torque operator [7]. We include the effect of this perturbation, Eq. (3), on the electronic states with
the help of the Keldysh nonequilibrium formalism. A single perturbation by Eq. (3) leads to a response that oscillates spatially
proportional to the cos and sin so that its spatial average is zero. We therefore consider the quadratic response to the perturbation
Eq. (3). A sampling over the magnon distribution is performed in the course of the derivation.

The perturbation by the applied electric field is given by

δHem(t ) = ev · A(t ), (4)

where

A(t ) = 1

2

[
E0e−iωt

iω
− E0eiωt

iω

]
= −E0 sin(ωt )

ω
, (5)

is the vector potential, v is the velocity operator, and e is the elementary positive charge. We will take the limit ω → 0 at the end
of the calculation to extract the direct current response to the applied electric field.

Since we need the response quadratic in δHmag and linear in δHem, we take the third-order perturbation from the Dyson
equation [23]:

G<
3 = GR

eq
δHtot (t1)

h̄
GR

eq
δHtot (t2)

h̄
GR

eq
δHtot (t3)

h̄
G<

eq + GR
eq

δHtot (t1)

h̄
GR

eq
δHtot (t2)

h̄
G<

eq
δHtot (t3)

h̄
GA

eq

+ GR
eq

δHtot (t1)

h̄
G<

eq
δHtot (t2)

h̄
GA

eq
δHtot (t3)

h̄
GA

eq + G<
eq

δHtot (t1)

h̄
GA

eq
δHtot (t2)

h̄
GA

eq
δHtot (t3)

h̄
GA

eq,

(6)

where GR
eq, GA

eq, and G<
eq are the retarded, advanced, and lesser Green’s functions of the unperturbed system, respectively, and

δHtot (t ) = δHmag(t ) + δHem(t ). (7)

In Eq. (6), we suppressed the two time arguments that each Green’s function has for notational convenience. Additionally, we
suppressed the time integrations over the intermediate times t1, t2, and t3 for notational brevity. How these time integrals are
performed is clarified in the following Eq. (8). The time integration of the product of four Green’s functions is given by∫

dt1dt2dt3 exp (−i�1t1) exp (−i�2t2) exp (−i�3t3)Gα
eq(t, t1)Gα′

eq(t1, t2)Gα′′
eq (t2, t3)Gα′′′

eq (t3, t )

= exp [−i(�1 + �2 + �3)t]

2π

∫
d�Gα

eq(�)Gα′
eq(� − �1)Gα′′

eq (� − �1 − �2)Gα′′′
eq (� − �1 − �2 − �3),

(8)

where α = R, A,< and �i may take the values ±ω and ±ωmag (i = 1, 2, and 3). The following frequency combinations may
contribute to the magnonic SOT: Case 1: �1 = ±ω and �2 = −�3 = ±ωmag. Case 2: �2 = ±ω and �1 = −�3 = ±ωmag. Case
3: �3 = ±ω and �1 = −�2 = ±ωmag.

To make the equations more compact, we introduce the Keldysh Green’s function:

Ĝeq(�) =
[

GR
eq(�) G<

eq(�)
0 GA

eq(�)

]
. (9)

In case j, we obtain ( j = 1, 2, 3):

Ĝ3, j = lim
ω→0

1

8iω

∑
u=±

∑
u′=±

uĜ3, j (u, u′), (10)

where

Ĝ3,1(u, u′) = η2eE0

2π h̄3 ·
∑

γ=x,y

∫
d�Ĝeq(�)vĜeq(� − uω)Tγ Ĝeq,−u′q(� − uω − u′ωmag)Tγ Ĝeq(� − uω), (11)
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in case 1,

Ĝ3,2(u, u′) = η2eE0

2π h̄3 ·
∑

γ=x,y

∫
d�Ĝeq(�)Tγ Ĝeq,−u′q(� − u′ωmag)v−u′q

× Ĝeq,−u′q(� − uω − u′ωmag)Tγ Ĝeq(� − uω), (12)

in case 2, and

Ĝ3,3(u, u′) = η2eE0

2π h̄3 ·
∑

γ=x,y

∫
d�Ĝeq(�)Tγ Ĝeq,−u′q(� − u′ωmag)Tγ Ĝeq(�)vĜeq(� − uω), (13)

in case 3. Green’s functions and velocity operators that carry the momentum subscript −u′q are shifted in momentum space by
−u′q.

Summing up cases 1, 2, and 3, we obtain

Ĝ3 =
3∑

j=1

Ĝ3, j = lim
ω→0

1

8iω

∑
u=±

∑
u′=±

uĜ3(u, u′), (14)

where

Ĝ3(u, u′) = η2e

2π h̄3

∫
d�

∑
γ=x,y

[Ĝ�v · E0Ĝ�−uωTγ Ĝ�−uω−u′ωmag,−u′qTγ Ĝ�−uω

+ Ĝ�Tγ Ĝ�−u′ωmag,−u′qv−u′q · E0Ĝ�−uω−u′ωmag,−u′qTγ Ĝ�−uω

+ Ĝ�Tγ Ĝ�−u′ωmag,−u′qTγ Ĝ�v · E0Ĝ�−uω]. (15)

Here, to save space, we introduced the notation Ĝ� = Ĝeq(�). The SOT due to Ĝ3 is given by

Tmag = iTr[T G<
3 ]. (16)

An important consistency check is that Eq. (16) predicts a SOT of zero when there is no spin-orbit interaction. This may be
seen as follows: In the absence of spin-orbit interaction, the velocity operator is diagonal in spin-space, and the Green functions
Ĝ� are diagonal in spin-space as well. In contrast, every torque operator causes a transition from spin-up to spin-down or from
spin-down to spin-up. Since the number of torque operators in all summands is three, taking the trace in spin-space will yield
zero when there is no spin-orbit coupling included in the calculation.

In the nonmagnonic SOT, the application of an electric field generates a nonequilibrium spin density perpendicular to the
magnetization, which exerts a torque on the magnetization. The magnonic SOT described by Eqs. (14)–(16) corresponds to
processes where these nonequilibrium spins are additionally flipped two times by a magnon. In the presence of spin-orbit
interaction, two consecutive spin flips by a magnon constitutes a nontrivial process because the nonequilibrium spins may
precess in the spin-orbit field in between the two spin flips. This leads to a modification of the nonequilibrium spin density by
the magnons.

For the numerical evaluation of Eq. (15), it is convenient to perform a Taylor expansion in q and ωmag as follows:

G<
3 (u, u′) = G<,(0,0)

3 (u, u′) + G<,(1,0)
3 (u, u′) + G<,(2,0)

3 (u, u′) + G<,(0,1)
3 (u, u′) + G<,(0,2)

3 (u, u′) + . . . , (17)

where

G<,(i, j)
3 (u, u′) ∝ (u′ωmag)iq j, (18)

i.e., G<,(i, j)
3 (u, u′) is ith order in ωmag and jth order in q in the Taylor expansion of G<

3 (u, u′). A priori, it is unclear whether
all terms in the expansion Eq. (17) contribute to the magnonic SOT. Therefore, we will evaluate them separately so that we can
compare their magnitudes later.

The contributions to G<,(i, j)
3 (u, u′) may be further distinguished according to the order of the derivative of the Fermi function

that they contain. Derivatives of the Fermi function are produced when the derivatives ∂/∂ω or ∂/∂ωmag act on the lesser Green’s
functions G<

eq(� − uω), G<
eq(� − u′ωmag), or G<

eq(� − uω − u′ωmag) because G<
eq(�) = f (�)[GA

eq(�) − GR
eq(�)] contains the

Fermi function f (�). While we use the derivative ∂/∂ω to take the ω → 0 limit, the ∂/∂ωmag derivatives are necessary for the
Taylor expansion in ωmag according to Eqs. (17) and (18). Following the standard notation used in linear response theory, we
label terms that contain f with a superscript II (so-called lesser-two) and terms that contain f ′ with a superscript I (so-called
lesser-one). However, due to the Taylor expansion in ωmag, we will also encounter higher derivatives of f that do not occur
in standard linear response theory. We denote terms that involve the second derivative f ′′ with a superscript III and terms that
involve the third derivative f ′′′ with a superscript IV.
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At zeroth order in ωmag and q, the lesser-one contribution from Eq. (15) is given by

G<,I,(0,0)
3 (u, u′) = −uωe

∫
d�

∑
γ=x,y

f ′(h̄�)
η2E0

2π h̄2 · [
GR

�vGS
�Tγ GA

�Tγ GA
� + GR

�vGR
�Tγ GS

�Tγ GA
�

+ GR
�vGR

�Tγ GR
�Tγ GS

� + GR
�Tγ GR

�vGS
�Tγ GA

� + GR
�Tγ GR

�vGR
�Tγ GS

� + GR
�Tγ GR

�Tγ GR
�vGS

�

]
, (19)

where GS
� = GA

� − GR
�.

Here, G<,I,(0,0)
3 (u, u′) still needs to be summed over the populated magnon modes. Also, G<,I,(0,0)

3 (u, u′) itself depends on
the magnons only through η. The effect of summing G<,(0,0)

3 (u, u′) over the magnon modes is therefore the multiplication by
the number of magnons. We Taylor-expand only the electronic lesser Green’s function in terms of ωmag and q and not the
Bose-Einstein distribution function. Therefore, we introduce the integral:

I (0,0)(T ) = 1

NmagAmag

∑
q

F [ωmag(q), T ] =
∫

d2q

(2π )2
F [ωmag(q), T ], (20)

where F [ωmag(q), T ] is the Bose-Einstein distribution function, and Amag is the area occupied by one magnetic site. For example,
in the case of Co/Pt magnetic bilayers, Amag is the area of the unit cell. This integral is evaluated below in Sec. II B.

Plugging Eq. (19) into Eq. (14), summing over magnon modes, and using Eq. (16) to evaluate the torque, we obtain therefore

TI,(0,0)
mag = −AmagI (0,0)(T )

2π h̄2

∫
d�

∑
γ=x,y

f ′(h̄�)Tr
{
T GR

�

[
vGS

�Tγ GA
�Tγ GA

� + vGR
�Tγ GS

�Tγ GA
�

+ vGR
�Tγ GR

�Tγ GS
� + Tγ GR

�vGS
�Tγ GA

� + Tγ GR
�vGR

�Tγ GS
� + Tγ GR

�Tγ GR
�vGS

�

] · E0e
}
, (21)

where we made use of η2 = 2/Nmag [see Eq. (2)].
Similarly, we may extract the lesser-two contribution from Eq. (15) and evaluate the corresponding torque, which is given in

Eq. (A1) in Appendix A.
The next contribution to the Taylor expansion is G<,I,(1,0)

3 (u, u′) [see Eq. (17)]. According to Eq. (18), we have
G<,I,(1,0)

3 (u, u′) ∝ u′ωmag. Since we need to sum over u′ = ±1, this does not contribute to the magnonic SOT. The following
contribution G<,I,(2,0)

3 (u, u′) [see Eq. (17)] requires us to extract the terms quadratic in ωmag from Eq. (15). We obtain

Ĝ(2,0)
3 (u, u′) = −euω[ωmag]2

4π

η2

h̄3

∫
d�

∑
γ=x,y

Ĝ�E0

·
[

v
∂Ĝ�

∂�
Tγ

∂2Ĝ�

∂�2
Tγ Ĝ� + vĜ�Tγ

∂3Ĝ�

∂�3
Tγ Ĝ� + vĜ�Tγ

∂2Ĝ�

∂�2
Tγ

∂Ĝ�

∂�
+ Tγ

∂2Ĝ�

∂2�
v
∂Ĝ�

∂�
Tγ Ĝ�

+ Tγ

∂2Ĝ�

∂�2
vĜ�Tγ

∂Ĝ�

∂�
+ Tγ Ĝ�v

∂3Ĝ�

∂�3
Tγ Ĝ� + Tγ Ĝ�v

∂2Ĝ�

∂�2
Tγ

∂Ĝ�

∂�
+ 2Tγ

∂Ĝ�

∂�
v
∂2Ĝ�

∂�2
Tγ Ĝ�

+ 2Tγ

∂Ĝ�

∂�
v
∂Ĝ�

∂�
Tγ

∂Ĝ�

∂�
+ Tγ

∂2Ĝ�

∂�2
Tγ Ĝ�v

∂Ĝ�

∂�

]
. (22)

From this, we extract the lesser-one contribution:

G<,I,(2,0)
3 (u, u′) = −

∫
d� f ′(h̄�)

∑
γ=x,y

× GR
�

[
vGS

�Tγ

∂2GA
�

∂�2
Tγ GA

� + 2v
∂GR

�

∂�
Tγ

∂GS
�

∂�
Tγ GA

� + 3vGR
�Tγ

∂2GS
�

∂�2
Tγ GA

� + 2vGR
�Tγ

∂GS
�

∂�
Tγ

∂GA
�

∂�

+ vGR
�Tγ

∂2GR
�

∂�2
Tγ GS

� + 2Tγ

∂GS
�

∂�
v
∂GA

�

∂�
Tγ GA

� + Tγ

∂2GR
�

∂2�
vGS

�Tγ GA
� + 2Tγ

∂GS
�

∂�
vGA

�Tγ

∂GA
�

∂�

+ Tγ

∂2GR
�

∂2�
vGR

�Tγ GS
� + 3Tγ GR

�v
∂2GS

�

∂�2
Tγ GA

� + 2Tγ GR
�v

∂GS
�

∂�
Tγ

∂GA
�

∂�
+ Tγ GR

�v
∂2GR

�

∂�2
Tγ GS

�

+ 2Tγ GS
�v

∂2GA
�

∂�2
Tγ GA

� + 4Tγ

∂GR
�

∂�
v
∂GS

�

∂�
Tγ GA

� + 2Tγ GS
�v

∂GA
�

∂�
Tγ

∂GA
�

∂�
+ 2Tγ

∂GR
�

∂�
vGS

�Tγ

∂GA
�

∂�

+ 2Tγ

∂GR
�

∂�
v
∂GR

�

∂�
Tγ GS

� + 2Tγ

∂GS
�

∂�
Tγ GA

�v
∂GA

�

∂�
+ Tγ

∂2GR
�

∂�2
Tγ GR

�vGS
�

]
· E0

e

4π
uω[ωmag]2 η2

h̄2 . (23)
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Equation (23) depends on the magnons through η2 and through ω2
mag. Consequently, to perform the sampling over magnon

modes, we introduce the integral:

I (2,0)(T ) =
∫

d2q

(2π )2
[h̄ωmag(q)]2F (q, T ), (24)

which we discuss below in Sec. II B. Thus, employing Eqs. (14) and (16) yields the following contribution to the SOT after
summing over the magnon modes:

TI,(2,0)
mag = −AmagI (2,0)(T )

4π h̄4

∫
d�

∑
γ=x,y

f ′(h̄�)

× Tr

{
T GR

�

[
vGS

�Tγ

∂2GA
�

∂�2
Tγ GA

� + 2v
∂GR

�

∂�
Tγ

∂GS
�

∂�
Tγ GA

� + 3vGR
�Tγ

∂2GS
�

∂�2
Tγ GA

� + 2vGR
�Tγ

∂GS
�

∂�
Tγ

∂GA
�

∂�

+ vGR
�Tγ

∂2GR
�

∂�2
Tγ GS

� + 2Tγ

∂GS
�

∂�
v
∂GA

�

∂�
Tγ GA

� + Tγ

∂2GR
�

∂2�
vGS

�Tγ GA
� + 2Tγ

∂GS
�

∂�
vGA

�Tγ

∂GA
�

∂�

+ Tγ

∂2GR
�

∂2�
vGR

�Tγ GS
� + 3Tγ GR

�v
∂2GS

�

∂�2
Tγ GA

� + 2Tγ GR
�v

∂GS
�

∂�
Tγ

∂GA
�

∂�
+ Tγ GR

�v
∂2GR

�

∂�2
Tγ GS

�

+ 2Tγ GS
�v

∂2GA
�

∂�2
Tγ GA

� + 4Tγ

∂GR
�

∂�
v
∂GS

�

∂�
Tγ GA

� + 2Tγ GS
�v

∂GA
�

∂�
Tγ

∂GA
�

∂�
+ 2Tγ

∂GR
�

∂�
vGS

�Tγ

∂GA
�

∂�

+ 2Tγ

∂GR
�

∂�
v
∂GR

�

∂�
Tγ GS

� + 2Tγ

∂GS
�

∂�
Tγ GA

�v
∂GA

�

∂�
+ Tγ

∂2GR
�

∂�2
Tγ GR

�vGS
�

]}
· E0e. (25)

Similarly, we obtain TII,(2,0)
mag from the lesser-two contribution to the Green’s function, which is given in Eq. (A2) in Appendix

A. Due to the derivatives with respect to ωmag, there are additionally the contributions TIII,(2,0)
mag and TIV,(2,0)

mag from the lesser-three
and lesser-four Green’s functions, respectively. The explicit expressions are given in Eqs. (A3) and (A4) in Appendix A.

The next contribution to the Taylor expansion is G<,I,(0,1)
3 (u, u′) [see Eq. (17)]. Since it is linear in q, the average over magnon

modes evaluates to zero for it. The next nonzero contribution is therefore G<,I,(0,2)
3 (u, u′). The Taylor expansion of Eqs. (11)–(13)

up to second order in q and up to zeroth order in ωmag yields the lesser-one contributions:

Ĝ<,I,(0,2)
3,1 (u, u′) = −uω

1

4π

η2

h̄2 e
∑

γ=x,y

∑
i j

qiq j

∫
d� f ′(h̄�)GR

�E0

·
[

vGS
�Tγ

∂2GA
�,q

∂qi∂q j
Tγ GA

� + vGR
�Tγ

∂2GS
�,q

∂qi∂q j
Tγ GA

� + vGR
�Tγ

∂2GR
�,q

∂qi∂q j
Tγ GS

�

]
, (26)

in case 1,

Ĝ<,I,(0,2)
3,2 (u, u′) = −uω

∑
i j

∑
γ=x,y

∫
d� f ′(h̄�)

1

4π
qiq j

η2

h̄2 eE0 · GR
�Tγ

×
[

∂2GR
�,q

∂qi∂q j
vGS

�Tγ GA
� + ∂2GR

�,q

∂qi∂q j
vGR

�Tγ GS
� + ∂GR

�,q

∂qi
v
∂GS

�,q

∂q j
Tγ GA

�

+ ∂GR
�,q

∂qi
v
∂GR

�,q

∂q j
Tγ GS

� + ∂GR
�,q

∂q j
v
∂GS

�,q

∂qi
Tγ GA

� + ∂GR
�,q

∂q j
v
∂GR

�,q

∂qi
Tγ GS

� + GR
�v

∂2GS
�,q

∂qi∂q j
Tγ GA

�

+ GR
�v

∂2GR
�,q

∂qi∂q j
Tγ GS

� + ∂GR
�,q

∂qi

∂v
∂q j

GS
�Tγ GA

� + ∂GR
�,q

∂q j

∂v
∂qi

GS
�Tγ GA

� + GR
�

∂v
∂q j

∂GS
�,q

∂qi
Tγ GA

�

+ GR
�

∂v
∂qi

∂GS
�,q

∂q j
Tγ GA

� + ∂GR
�,q

∂qi

∂v
∂q j

GR
�Tγ GS

� + ∂GR
�,q

∂q j

∂v
∂qi

GR
�Tγ GS

� + GR
�

∂v
∂q j

∂GR
�,q

∂qi
Tγ GS

�

+ GR
�

∂v
∂qi

∂GR
�,q

∂q j
Tγ GS

�

]
, (27)
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in case 2, and

Ĝ<,I,(0,2)
3,3 (u, u′) = −uωeE0 ·

∑
i j

qiq j

∑
γ=x,y

∫
d� f ′(h̄�)GR

�Tγ

∂2GR
�,q

∂qi∂q j
Tγ GR

�vGS
�

1

4π

η2

h̄2 , (28)

in case 3.
These lesser-one Green’s functions depend on the magnons

through η2 and through qiq j . Consequently, we use the inte-
gral:

I (0,2)
i j (T ) =

∫
d2q

(2π )2
qiq jF (q, T ), (29)

to average over the magnon distribution. This integral is dis-
cussed below in Sec. II B. Using Eqs. (14) and (16) and
summing over the magnon modes, we obtain the torque TI,(0,2)

mag
from the lesser-one Green’s functions in Eqs. (26)–(28). The
explicit expression is given in Eq. (A5) in Appendix A. Sim-
ilarly, we obtain the torque Eq. (A6) from the lesser-two
Green’s function.

We introduce the torkance tensors t I,(J,K )
mag,i j [7] so that

TI,(J,K )
mag =

3∑
i=1

2∑
j=1

êit
I,(J,K )
mag,i j E0, j, (30)

where E0 = (E0,x, E0,y, 0) is the applied in-plane electric field
(applied in the plane of the magnetic bilayer, therefore no z
component), êi is the unit vector along the ith Cartesian direc-
tion, I = I, II, III, IV, J = 0, 2, and K = 0, 2. When periodic
boundary conditions are used, the Green’s functions depend
on a k-point, which we suppress for notational simplicity. In
this case, an additional k integration is necessary, i.e., we use

t tot
mag,i j =

∫
d2k

(2π )2

[
t I,(0,0)
mag,i j + t II,(0,0)

mag,i j + t I,(2,0)
mag,i j + t II,(2,0)

mag,i j

+ t III,(2,0)
mag,i j + t IV,(2,0)

mag,i j + t I,(0,2)
mag,i j + t II,(0,2)

mag,i j

]
, (31)

to obtain the total torkance.

B. Integrals over magnon modes

In the previous subsection, we introduced integrals over
magnon modes in Eqs. (20), (24), and (29). To evaluate these
integrals, we assume that the magnon dispersion is given by

ωmag(q) = Aq2 + C, (32)

where A is the spin-wave stiffness, and C is the spin-wave
gap. In principle, the q integrals should be restricted to the first
Brillouin zone in q space, the volume of which is reciprocal to
Amag. However, for the examples considered here, one intro-
duces only a small error by waiving the restriction to the first
Brillouin zone and integrating instead over the full q space.
Therefore, we integrate in the following over the full q space,
which has the advantage that the integrals are given then by
analytical expressions.

The first integral is

I (0,0)(T ) =
∫

d2q

(2π )2
F [ωmag(q), T ]

= 1

2π

∫
qd q

exp
[ h̄ωmag(q)

kBT

] − 1

= 1

4πA

∫ ∞

C

d ωmag

exp
( h̄ωmag

kBT

) − 1

= 1

4πA
kBT

h̄

∫ ∞

h̄C/(kBT )

d ξ

eξ − 1

= 1

4πA
kBT

h̄

{
h̄C

kBT
− log

[
exp

(
h̄C

kBT

)
− 1

]}
,

(33)
which diverges when the magnon gap C goes to zero. Here, kB

is the Boltzmann constant.
The second integral is (assuming C = 0)

I (2,0)(T ) =
∫

d2q

(2π )2
[h̄ωmag(q)]2F [ωmag(q), T ]

= h̄2

2πA

[
kBT

h̄

]3

ζ (3),

(34)

where ζ denotes the ζ function, i.e., ζ (3) ≈ 1.202.
For the isotropic dispersion of Eq. (32), the third integrals

satisfy I (0,2)
xx (T ) = I (0,2)

yy (T ) = I (0,2)(T )/2, with (assuming
C = 0)

I (0,2)(T ) =
∫

d2q

(2π )2
q2F (q, T )

= π

24A2

[
kBT

h̄

]2

. (35)

In Table I, we list the values of these integrals for various
ferromagnets. For the spin-wave stiffnesses, we took bulk
values from the literature [24–26]. Here, Amag is the in-plane
area of the unit cell per magnetic atom. These areas are
Amag = 4.109 Å2 in the case of Fe, Amag = 2.723 Å2 in the
case of Co, and Amag = 3.107 Å2 in the case of Ni. The data

TABLE I. Integrals I (0,0)(T )Amag, I (2,0)(T )Amag, and I (0,2)(T )Amag

at temperature T = 300 K for various ferromagnets. In the case of
Mn-13K, the temperature is T = 13 K.

A I (0,0)Amag I (2,0)Amag I (0,2)Amag

(meVÅ2) (eV2) (Å−2)

Fe 307 0.153 4.424 × 10−5 3.814 × 10−3

Co 539 5.78 × 10−2 1.67 × 10−5 8.20 × 10−4

Ni 433 8.203 × 10−2 2.372 × 10−5 1.450 × 10−3

Mn-13K 56 3.923 × 10−2 4.808 × 10−8 5.246 × 10−4
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FIG. 1. (a) Magnonic spin-orbit torque (SOT) and (b) nonmagnonic SOT for αR = 72 meV Å and 
 = 25 meV.

for Mn correspond to a monolayer of Mn on W(001) [27]
with Amag = 10.018 Å2. For the first integral I (0,0), we used a
magnon gap of 0.1 meV, which ensures convergence, while
the values of the second and third integrals are almost not
affected by this small gap of 0.1 meV, and therefore, their
values are almost identical to the analytical expressions above
with C = 0. Since the scanning-tunneling microscopy (STM)
experiments on Mn/W(001) were performed at T = 13 K, we
set the temperature in the integrals to T = 13 K (Mn-13K). As
the spin-wave stiffness of the Mn monolayer is much smaller
than the spin-wave stiffnesses of Fe, Co, and Ni, the integrals
I (0,0) and I (0,2) in Mn at T = 13 K are similar in size to the
ones of Fe, Co, and Ni at T = 300 K.

C. Dependence on temperature

Putting together the results from the previous two subsec-
tions, we find that the three magnonic contributions to the
SOT exhibit the following scaling behavior with respect to
temperature T and spin-wave stiffness A:

t (0,0)
mag,i j ∝ T

A

{
h̄C

kBT
− log

[
exp

(
h̄C

kBT

)
− 1

]}
, (36)

t (2,0)
mag,i j ∝ T 3

A , (37)

and

t (0,2)
mag,i j ∝ T 2

A2
. (38)

In the ferromagnetic Rashba model, t (0,2)
mag,i j is the dominant

contribution. It depends quadratically on the temperature. A
scaling ∝ T d/2+1, where d is the dimensionality of the system,
has also been found for the spin-wave-induced correction to
the conductivity of ferromagnets [17]. This strong tempera-
ture dependence resembles the one measured in experiments
[9–12].

Even though the relaxation time τ depends on temperature
through phonon and magnon scattering, we do not express
the relaxation time in terms of the temperature here because
interfacial disorder is expected to provide major scattering
channels as well in magnetic bilayers. Therefore, we treat
temperature and relaxation time τ as independent parameters
because the latter can be controlled independently of temper-
ature by tuning the disorder in the system.

Spin disorder usually increases the electrical resistivity
[18,19] due to the additional scattering channels, which may
be described effectively by a simple reduction of the relax-
ation time. In contrast, the magnonic SOT discussed here
cannot simply be accounted for by this reduction of the re-
laxation time.

D. Generalizations of the formalism to
treat the anisotropy of SOT

In Sec. II A, we assumed that the magnetization is oriented
in the z direction. To compute the anisotropy of the SOT, it is
necessary to generalize this for general magnetization direc-
tions. It is effective to express the magnetization direction in

-1 0 1 2
Fermi energy [eV]

-4

-2

0

2

4

6

t ij [
10

-1
 e

/Å
]

txx (θ=0°)

txy (θ=0°)

tyx (θ=0°)

tyy (θ=0°)

tyx (θ=90°)

-tzx (θ=90°)

(a)

-2 -1 0 1 2
Fermi energy [eV]

-3

-2

-1

0

t ij [
10

-1
 e

/Å
]

txx (θ=0°)

txy (θ=0°)

tyx (θ=0°)

tyy (θ=0°)

tyx (θ=90°)

-tzx (θ=90°)

(b)

FIG. 2. (a) Magnonic spin-orbit torque (SOT) and (b) nonmagnonic SOT for αR = 720 meV Å and 
 = 25 meV.
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FIG. 3. (a) Magnonic spin-orbit torque (SOT) and (b) nonmagnonic SOT for αR = 720 meV Å and 
 = 136 meV.

spherical coordinates:

M̂ =
⎡
⎣sin(θ ) cos(φ)

sin(θ ) sin(φ)
cos(θ )

⎤
⎦. (39)

To discuss the anisotropy of the SOT, it is convenient to
project the torques onto the unit vectors êθ = ∂M̂/∂θ and
êφ = ∂M̂/∂φ/ sin(θ ) of the spherical coordinate system be-
cause the torques are perpendicular to the magnetization [3].

Equations (21), (25), and (A1)–(A6) become valid for gen-
eral magnetization direction if the following replacement is
made:

∑
γ=x,y

→
∑

γ=θ,φ

, (40)

where

Tθ =
∑

γ=x,y,z

êθ · êγTγ , (41)

and

Tφ =
∑

γ=x,y,z

êφ · êγTγ . (42)

III. MAGNONIC SOT IN THE FERROMAGNETIC
RASHBA MODEL

In this section, we study the magnonic SOT numerically in
the ferromagnetic Rashba model [28]:

Hk = h̄2

2m∗ k2 + αR(k × êz ) · σ + �V

2
σ · M̂, (43)

where αR is the Rashba parameter, M̂ is the magnetization di-
rection, and �V is the exchange splitting. We set the mass m∗
to the electron mass and the exchange splitting to �V = 1 eV.
We use the expressions given in Sec. II A and in Appendix A
to compute the magnonic SOT. For the integrals I (0,0)Amag,
I (2,0)Amag, and I (0,2)Amag, in these expressions, we take the
values provided in Table I for the case of Co. We introduce
a broadening parameter 
, which may be used to model the
effect of disorder, i.e., we use

GR
� = h̄[h̄� − Hk + i
]−1, (44)

GA
� = h̄[h̄� − Hk − i
]−1, (45)

and GS
� = GA

� − GR
� for the Green’s functions in Eqs. (21),

(25), and (A1)–(A6). To compare the magnonic SOT to the
nonmagnonic one, we also compute the nonmagnonic SOT
according to the equations in Ref. [7].

In Fig. 1, we show the SOTs when the Rashba parameter
and the broadening are αR = 72 meV Å and 
 = 25 meV,
respectively. The magnonic SOT shown in Fig. 1(a) is larger
than the nonmagnonic one shown in Fig. 1(b) for this choice
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FIG. 4. (a) Magnonic spin-orbit torque (SOT) and (b) nonmagnonic SOT for αR = 72 meV Å and 
 = 136 meV.
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FIG. 5. (a) Magnonic spin-orbit torque (SOT) and (b) nonmagnonic SOT for αR = 360 meV Å and 
 = 25 meV.
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FIG. 6. (a) Magnonic spin-orbit torque (SOT) and (b) nonmagnonic SOT for αR = 360 meV Å and 
 = 136 meV.
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FIG. 7. (a) Magnonic spin-orbit torque (SOT) and (b) nonmagnonic SOT for αR = 2 eV Å and 
 = 25 meV.
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FIG. 8. (a) Magnonic spin-orbit torque (SOT) and (b) nonmagnonic SOT for αR = 2 eV Å and 
 = 136 meV.
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FIG. 9. Magnonic spin-orbit torque (SOT) for (a) αR = 720 meV Å and 
 = 25 meV and (b) αR = 2 eV Å and 
 = 25 meV.

of parameters. To study the anisotropy of the SOT, we show
the torkances for θ = φ = 0, i.e., M̂ along êz, and for θ =
90◦, φ = 0◦, i.e., M̂ along êx. We call the SOT anisotropic
if txx(θ = 0◦) = −tzx(θ = 90◦) or tyx(θ = 0◦) = tyx(θ = 90◦)
are not satisfied. While the magnonic SOT shows a small
anisotropy, the anisotropy of the nonmagnonic SOT is invisi-
ble to the eye.

In Fig. 2, we show the SOTs when the Rashba parameter
and the broadening are αR = 720 meV Å and 
 = 25 meV,
respectively. Since the magnonic SOT is much larger for
θ = 90◦ than it is for θ = 0◦, it is out of scale for several
ranges of the Fermi energy in Fig. 2(a). We show the full
range of the magnonic SOT at θ = 90◦ in Fig. 9(a). The
nonmagnonic SOT shown in Fig. 2(b) is rather isotropic up to
the Fermi energy 0.5 eV, where its anisotropy starts to become
significant. In contrast, for the magnonic SOT in Fig. 2(a), the
relation tyx(θ = 0◦) = tyx(θ = 90◦) is satisfied approximately
only up to the Fermi energy of 0 eV, where its anisotropy starts
to increase rapidly. The relation txx(θ = 0◦) = −tzx(θ = 90◦)
is satisfied approximately only for very small Fermi energies
up to −0.3 eV.

In Fig. 3, we show the SOTs at the same Rashba parameter
αR = 720 meV Å but at a larger broadening of 
 = 136 meV.
In agreement with the expectation [7] for the nonmagnonic
torque, we find that txy ∝ 
0, tyx ∝ 
0, txx ∝ 
−1, tyy ∝ 
−1,
and tzx ∝ 
−1 are approximately satisfied when we compare
Figs. 3(b) and 2(b). In contrast, the magnonic SOT depends
much stronger on 
, and it is roughly one order of magnitude
smaller than the nonmagnonic one at this value of the broad-
ening of 
 = 136 meV.

In Appendix B, we provide the plots of the SOT for
several additional choices of parameters, which confirms
the trends that we discussed above using three examples.
In general, we find that the magnonic torque is sizable
in comparison with the nonmagnonic one if the broaden-
ing parameter 
 is small, i.e., when the disorder is small.
Additionally, we find that the anisotropy of the magnonic

SOT may become gigantic if the Rashba parameter is
large.

IV. CONCLUSIONS

Using third-order perturbation theory within the frame-
work of the Keldysh nonequilibrium formalism, we derive
suitable equations to assess the magnonic contributions to
the SOT. In comparison with the purely electronic SOT, its
magnonic counterpart depends more strongly on the temper-
ature. We distinguish several contributions to the magnonic
SOT, which depend differently on the spin-wave stiffness A
and the temperature T . The dominating contribution scales
like T 2/A2, which leads to a strong temperature depen-
dence of the magnonic contribution to the SOT, in agreement
with experimental observations. We compute the magnonic
SOT in the ferromagnetic Rashba model. It exhibits a strong
anisotropy when the Rashba parameter is large, and it
becomes larger than the nonmagnonic SOT when the quasi-
particle broadening becomes small. Since the magnonic SOT
is sizable in comparison with its purely electronic counterpart,
magnons may therefore explain both the strong temperature
dependence and the anisotropy of the SOT found in some
experiments.
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APPENDIX A: ADDITIONAL CONTRIBUTIONS

The torque from the lesser-two Green’s function at the
zeroth order in ωmag and q is given by

TII,(0,0)
mag = AmagI (0,0)(T )

4π h̄3

∫
d�

∑
γ=x,y

f (h̄�)

× Tr
{
T

[
GA

�Tγ GA
�Tγ GA

�vGA
�GA

� + GA
�Tγ GA

�vGA
�Tγ GA

�GA
� + GA

�Tγ GA
�vGA

�GA
�Tγ GA

�

+ GA
�vGA

�Tγ GA
�Tγ GA

�GA
� + GA

�vGA
�Tγ GA

�GA
�Tγ GA

� + GA
�vGA

�GA
�Tγ GA

�Tγ GA
�
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− GR
�Tγ GR

�Tγ GR
�vGR

�GR
� − GR

�Tγ GR
�vGR

�Tγ GR
�GR

� − GR
�Tγ GR

�vGR
�GR

�Tγ GR
�

− GR
�vGR

�Tγ GR
�Tγ GR

�GR
� − GR

�vGR
�Tγ GR

�GR
�Tγ GR

� − GR
�vGR

�GR
�Tγ GR

�Tγ GR
�

] · E0e
}
. (A1)

The torque from the lesser-two Green’s function at the second order in ωmag and at the zeroth order in q is given by
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Additionally, there are the following torques from the lesser-three and lesser-four Green’s functions:
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and
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The torque from the lesser-one Green’s function at the second order in q and zeroth order in ωmag is given by
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Additionally, we obtain the following Fermi sea contribution:
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APPENDIX B: ADDITIONAL PLOTS OF THE SOT

In this Appendix, we provide additional plots of the SOT
for different Rashba and broadening parameters. In Fig. 4, we
show the SOT for the Rashba and broadening parameters of
αR = 72 meV Å and 
 = 136 meV, respectively. In contrast
to Fig. 1, the magnonic SOT is roughly an order of mag-
nitude smaller than the nonmagnonic one due to the larger
broadening. In Fig. 5, we show the SOTs for the Rashba and
broadening parameters of αR = 360 meV Å and 
 = 25 meV,
respectively. The anisotropy of the magnonic SOT is much
larger than the one of the nonmagnonic SOT due to the Rashba
parameter, which is larger than in Figs. 1 and 4. In Fig. 6,
we show the SOTs at the same Rashba parameter but with

a larger broadening of 
 = 136 meV. In contrast to Fig. 5,
where the magnonic SOT is larger than the nonmagnonic
one, the magnonic SOT is smaller here due to the larger
broadening. In Fig. 7, we show the SOT for the Rashba and
broadening parameters of αR = 2 eV Å and 
 = 25 meV,
respectively. The anisotropy of the magnonic SOT is gigantic
at this large value of the Rashba parameter, and it is much
larger than the anisotropy of the nonmagnonic SOT. When the
broadening is increased to 136 meV, the magnonic SOT for
θ = 90◦ is still sizable in comparison with the nonmagnonic
SOT for Fermi energies ∼0, while it is suppressed otherwise,
as shown in Fig. 8. In Fig. 9(a), we replot Fig. 2 with a
different scale of the vertical axis to show the full range of the
magnonic SOT for θ = 90◦. Similarly, we replot Fig. 7(a) in
Fig. 9(b).
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