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Extent of frustration in the classical Kitaev-I' model via bond anisotropy
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In the pseudospin—% honeycomb Mott insulators with strong spin-orbit coupling, there are two types of
bond-dependent exchange interactions, named Kitaev (K) and I', leading to strong frustration. While the ground
state of the Kitaev model is a quantum spin liquid with fractionalized excitations, the ground state of the I'
model remains controversial. In particular, the phase diagram of the KT' model with ferromagnetic K and
antiferromagnetic I' interactions has been intensively studied because of its relevance to candidate materials
such as «-RuCl;. Numerical studies also included the effects of tuning the bond strengths, i.e., z-bond strength
different from the other bonds. However, no clear consensus on the overall phase diagram has been reached
yet. Here we study the classical KI" model with anisotropic bond strengths using Monte Carlo simulations to
understand the phases that emerge out of competition between the two frustrated limits. We also address how the
anisotropic bond strength affects the phase diagram and strength of quantum fluctuations. We found various large
unit cell phases due to the competing frustrations, and analyzed their intrinsic degeneracy based on the symmetry
of the Hamiltonian. Using the linear spin wave theory we showed that the anisotropic bond strength enhances
quantum fluctuations in the I"-dominant regime where a small reduced moment is observed. The implications of

our findings in relation to the quantum model are also discussed.
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I. INTRODUCTION

The Kitaev spin model on the two-dimensional honey-
comb lattice serves as a fascinating example of a quantum
spin liquid (QSL) [1]. In particular, the braiding statistics of
fractionalized Majorana excitations in the Kitaev spin lig-
uid (KSL) has generated intense interest in both condensed
matter physics and quantum information communities due
to their application in fault-tolerant quantum computation
[2]. A key ingredient of the model is a particular type of
bond-dependent interactions resulting in spin frustration, dif-
ferent from more traditional approaches based on geometrical
constraints or going beyond nearest-neighbor interactions on
bipartite lattices [3-6]. This intriguing model had been a
pure theoretical interest until the Jackeli-Khaliullin mecha-
nism [7,8] outlined how the Kitaev interactions are generated
in the low-energy description of pseudospin Je = 1/2 mo-
ments in spin-orbit coupled Mott insulators. However, it was
shown that in solid-state materials non-Kitaev interactions
are inevitable, and a nearest-neighbor generic model includes
another bond-dependent off-diagonal exchange term named
the I" interaction in addition to a conventional Heisenberg (J)
term [9]. The generic model was studied using a 24-site exact
diagonalization (ED), which showed a rich phase diagram in-
cluding various ordered and disordered phases, but the nature
of the disordered phases near the I" region was not identified

[9].

“hykee @physics.utoronto.ca

2469-9950/2021/104(9)/094431(11)

094431-1

A considerable amount of theoretical effort has been made
to pin down the phase diagram of the extended model and
to identify the potential QSL in Kitaev candidate materials
such as «-RuCl; [10-24]. While the KSL and various or-
dered phases are uncovered, there still remains regions of the
phase space which are not well understood, with the most
peculiar region being that of ferromagnetic (FM) Kitaev and
antiferromagnetic (AFM) T" interactions (KT" model). Sev-
eral numerical simulations of the K" model have reported
quantum-disordered phases [25-32], but the phase diagram
is still controversial [33]. The classical KI" model in a small
phase space near the pure Kitaev [34—39] or pure I" region was
also studied [19,30,40-43]. They revealed the macroscopic
degeneracy at the pure Kitaev and I' limits [44,45], and the
large unit cells (LUCs) that cannot be captured by small clus-
ters used in, for example, ED on the 24-site cluster.

These studies have focused on the isotropic limit, where the
exchange interactions are equivalent on each honeycomb lat-
tice bond. In parallel, the effects of exchange anisotropy on the
spin frustration have also been explored to find possible QSLs
and to understand their connection to the KSL [46—49]. They
suggest that the strong z-bond region hosts large regions of
disordered phases but it is not clear whether they correspond
to the isolated dimer limit [47,48] or spin liquid states such
as the I spin liquid (I"'SL) [30,43] or multinode gapless QSLs
[49]. These numerical studies may also suffer from finite-size
effects and thus an investigation of the classical K" model
whereby the bond strength is tuned would offer an insight to
the ground states of the anisotropic KI" quantum model.

In this paper, we tackle this problem by addressing the
following questions. What types of magnetic orderings appear

©2021 American Physical Society
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via the competition between two extreme frustrated limits,
i.e., Kitaev and I" limits? How does the exchange anisotropy
affect the classical ground states of the KI' model, and
which regions of the anisotropic phase space may exhibit
a quantum-disordered ground state? Using classical Monte
Carlo simulations, we found various LUCs with intriguing
fourfold or eightfold degeneracy except for a few special
points with macroscopic degeneracy. It is likely that LUCs are
results of the competition between the two frustrated Kitaev
and I" limits [38,44]. Near the I"'-dominant region, the bond
strength anisotropy further enhances the quantum fluctuations
leading to a complete destruction of the magnetic moment
suggesting possible QSLs in this region.

The rest of the paper is organized as follows. In Sec. II
we briefly discuss the physics of an isolated z bond before
introducing x-and y-bond interactions, and then present the
phase diagram of the two-dimensional model obtained via
classical Monte Carlo simulations. In Sec. III we introduce
three symmetry operations that map each bond Hamiltonian
to itself, which reveals the degeneracy of each ordered phase
independent of the bond anisotropy. In Sec. IV we focus on the
phases near the I'-dominant region, which arise from freezing
the Ising degrees of freedom that form the classical I'SL. In
Sec. V we discuss the effects of quantum fluctuations using
linear spin wave theory (LSWT) [50]. We then summarize
our results and discuss implications of our findings on the
quantum model in the last section.

II. DIMER HAMILTONIAN AND CLASSICAL
PHASE DIAGRAM

We study the KT" model on the honeycomb lattice with
bond anisotropy, where the Hamiltonian is given by

H =Y K"S/S/ +T7(s¢s? +5/'s9), (D
(ij)y

where y € {x,y,z}, o, B € {x,y, z}\y label the interaction
along a particular bond. Here the spin direction S is de-
fined in the local octahedral xyz basis as shown in Fig. 1.
The crystallographic XY Z basis is also shown, where Z =
\%(1, 1, 1) is perpendicular to the honeycomb plane, and
X = \/Lg(l, 1,-2),Y = %(—1, 1, 0) are perpendicular and
parallel to the z bonds, respectively. These will be used
when we describe the magnetic ordering moment directions
in Sec. III. A, B, C denoted by varying shades of gray in Fig. 1
represent the three /3 x +/3 plaquette sublattices used in Secs.
IIT and IV. The bond anisotropy is tuned by a parameter
g € [0, 1] by introducing the interaction strengths as

K =—(1-¢)K, K =-K,
M =+(1-¢)r, TIT=+4T, 2

where K = cos ¢ and I" = sin ¢ and ¢ € [0, 0.57] is chosen
to study the region between the FM Kitaev limit (¥ = 0) and
the AFM T limit (¢ = 7 /2).

The g = 1 limit corresponds to the case of isolated z bonds,
whereas the three bonds are equivalent at the isotropic limit
g = 0. We study the I'/K — g phase diagram using classical
Monte Carlo to identify possible magnetic orderings, their
origins, and competitions. Before we present the phase dia-
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FIG. 1. The honeycomb lattice in the strong z-bond limit (g > 0)
where the enhanced z-bond interaction strength is indicated in red
and the xy chain extends horizontally. The three plaquette sublat-
tices A, B, C are highlighted in dark gray, light gray, and white,
respectively. The cubic xyz and crystallographic XY Z bases are also
shown, where Z is perpendicular to the honeycomb plane and X, ¥
are perpendicular and parallel to the z-bond direction, respectively.

gram, we analyze the dimer limit g = 1, which will be useful
to understand several ordered phases appearing when g # 1.
At g =1 the KI" Hamiltonian is a sum of isolated z bonds
denoted in red in Fig. 1, and for the (12), bond it is given by

Hy), = K*S7S5 + (8185 4 5153). 3)

In the classical limit S; can be parameterized by
S(cos ¢; sinb;, sin¢; sin6;, cos ;) where ¢; € [0,27) is
the azimuthal angle in the xy plane and 6; € [0, 7] is the polar
angle from the z axis as in Fig. 1. The bond energy is mini-
mized when 6y = 6; and ¢ + ¢, = —m /2 and the moments
can be written as 5’1 =S(a,b,c), 3’2 = S (—b, —a, c) where
a, b, c € R satisfy a®> + b* 4+ ¢* = 1. The bond energy for this
configuration is then

Ej)./S* = —T — (K — )¢ 4)

Note that when K =T" (v = 7 /4) each of the N/2 isolated
z bonds retain an O(3) symmetry, where N is the number of
sites. Away from this point the O(3) symmetry is lifted and
one of two states may stabilize, while the macroscopic degen-
eracy associated with each z bond remains. When K > T" the
energy is minimized by setting ¢ = 1 and the moments form
FM dimers pinned along the Z direction with a twofold Ising
degeneracy. On the other hand, when I' > K the bond energy
is minimized by placing the moments in the xy plane. In this
case the moments retain a continuous O(2) degeneracy with
the restriction that ¢y + ¢, = —m /2. The transition between
the two phases is thus a first-order spin-flop transition. Intro-
ducing interactions along the x and y bonds when g # 1 may
lift the macroscopic degeneracy and one may wonder what
possible orderings arise from the peculiar point, and how far
they can be extended, i.e., if they can survive all the way to the
two-dimensional isotropic limit. To answer these questions,
we solve the classical model numerically using simulated
annealing Monte Carlo (SAMC) [51-53] on clusters of up to
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FIG. 2. The classical phase diagram of the anisotropic KT
model. All phases are separated by first-order transitions except for
the 18" and 18’ phase boundary, which is of second-order. We high-
light three points with macroscopic degeneracy, the K = I dimer
point and the pure isotropic K and I' points, with a black diamond,
triangle, and circle, respectively. In the isotropic limit the three ori-
entations of ZZ + 12, 6 + 18, and 16 + 48 phases are degenerate,
which we indicate by the dark red, dark blue, and dark purple lines
along g = 0, respectively. This degeneracy is lifted for g # 0 due to
the broken C; symmetry. At ¢ = 0 we indicate the Kitaev FM dimer
phase in dark gray, which immediately forms the FM + 120° order
in the presence of I' > 0. See the main text for the ordering patterns
of the phases and their SSF peaks in Appendix B.

N = 720 sites with Nx10°> MC steps, see Appendix A for
simulation details.

We present the phase diagram in Fig. 2. The phase bound-
aries are obtained by comparing the energies of the classical
states, and the nature of the phase transitions across the
boundaries is determined by the first singular derivative of the
ground-state energy per site Ey/N. The presence of magnetic
order can be identified by sharp features in the static structure
factor (SSF) sx = Zij S; - §j ™ T where i, j range over
all sites of the cluster and r; is the vector pointing to site i.

The phase diagram shows several spin orderings and in
Appendix B we show the SSF of each order. Following
Ref. [38] we use the notation of n; + n,, where “+” represents
the degeneracy of two orderings and n; denotes the number of
sites in the phase’s magnetic unit cell. Three exceptions are the
FM, zigzag (ZZ), and 120° orders, which have two, four, and
six sites in the magnetic unit cell, respectively. In Fig. 2 we
find the presence of these three phases as well as the six- and
16-site orders: the former appears in Refs. [37,38,54] and is
composed of alternating zigzag and stripy chains, see Fig. 4(a)
in the next section. Interestingly, some of these phases are
degenerate with an order containing a larger unit cell with 12,
18, and 48 sites. There also exists the 18", 18, and 24-site
orders, which do not have a smaller ordering counterpart. We
note briefly that the LUC orders generally contain dominant
SSF peaks at multiple wave vectors within the 1% (crystal)
Brillouin zone. In particular the 18" and 18’ orders have finite
spectral weight at the three Q = %M , *M points of the crystal
Brillouin zone, see Appendix B.

We distinguish the phases that share the same ordering
pattern but with a different moment orientation using a sub-
script of i = x, y, z. For example, the ZZ, and ZZ, both have
four sites in the magnetic unit cell, but the zigzag chains
repeat along the z-bond direction in the former and the y-bond
direction in the latter. There is also a ZZ, orientation that is
degenerate with ZZ, and can be obtained by a C, rotation
about the z-bond direction ¥, but it is omitted in Fig. 2 for
simplicity.

The pure classical Kitaev model exhibits an extensive
ground-state degeneracy, and when g > 0 the moments form
disconnected FM dimers along the z bond, which point in
the £Z direction [34,35]. This is denoted by the solid gray
line in Fig. 2. When T is turned on the magnetic order is
stabilized and a FM is formed with moments pinned near the
Z axis. The 120° order, which is degenerate with the FM, can
be obtained by a symmetry operation to be discussed in the
next section. In a small region between the (ZZ + 12), and
6 + 18 regions we find 16 + 48 and 24-site orders, which may
arise from further moment frustration. Below we will focus
our attention on the ZZ + 12, 6 4+ 18, 18", and 18" phases,
which occupy the majority of the phase space extending from
the K = I" dimer point at (v, g) = (0.25m, 1) to the isotropic
limit. The ZZ + 12 and 6 4+ 18 orders are stabilized in the
Kitaev-dominant region and are sensitive to anisotropy since
a particular orientation is selected based on the values of g and
' /K. On the other hand, the 18" and 18’ phases remain eight-
fold degenerate throughout their respective phase regions. In
the next two sections we present the patterns of each magnetic
order and the symmetries related to their degeneracy, and in
Sec. V we will discuss the quantum effects on the magneti-
cally ordered states using LSWT.

III. CLASSICAL KT DEGENERATE MANIFOLDS

The degeneracy of the classical orders exhibited in Fig. 2
originates from a symmetry of the Hamiltonian Eq. (1). This
can be seen by considering the dual honeycomb lattice, i.e.,
a triangular network with sites at the center of each hexagon
labeled by the three plaquette sublattices A, B, C in Fig. 1.
For a sublattice & € {A, B, C}, we define the operation

R, =TT ®

PEG icdp

where C¥ is a r rotation about the cubic « axis and out(i) =
X, y, z refers to the bond, which extends outwards from the pla-
quette p € & at site i. The notation d p refers to the boundary
of the plaquette p, which consists of six bonds. For example,
the (12), bond Hamiltonian transforms under R ; as
Hgy, = K*Si85 + T(S1S) + $153)
Ri ,
= K(=S7)(=53) + T*[(=57) (=$3) + SiS3]
= H),. (6)

If we apply this operation to the remaining sites of the hon-
eycomb lattice, the total Hamiltonian Eq. (1) maps to itself.
This is the case for the Rz, Re operators defined for the
plaquette sublattices B, C, respectively. Thus the Hamiltonian
is intact under the three Rs symmetry operations of Eq. (5).
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FIG. 3. The (a) ZZ, and (b) 12, configurations at (¥, g)=(0.47,
0.94). The plaquette sublattice A is shown in gray. The color of each
moment in Figs. 3—5 denotes the angle made with respect to the [111]
direction.

Since (R5)*> = RiRzRe = 1, the set {1, Rs, R, Re} is
isomorphic to the Klein four-group Z, x Z,. This group leads
to the degeneracy in all the phases shown in Fig. 2.

We note that the R; transformations were first introduced
in the context of the pure isotropic I' model [40]. In this work
we show that these operations continue to be symmetries of
the KT" model with finite g.

Let us now explore the action of R on the phases shown
in Fig. 2 using the (ZZ 4 12), orientation as an example. The
77, orientation shown in Fig. 3(a) is given by FM chains of
moments S; = S(—a, —a, +¢), Sy = S(+a, +a, —c) sepa-
rated by z bonds, where |S},| = |S},| = Sa,|S},| = Sc and
2a% 4 ¢* = 1. These moments lie in the crystallographic XZ
plane and a >> ¢ due to the proximity to the I" dimer limit,
which favors moments lying in the xy plane. Now we apply the
symmetry operation R; on this configuration where A is the
plaquette sublattice shown in dark gray in Fig. 3. Explicitly we
perform C; rotation on sites 1, 6, 1, ¢/, Cg onsites 3,4, 3,4,
and Cj on sites 2, 5,2, 5, which results in the 12-site order

® T [ ¥

P\l

FIG. 4. The (a) 6, and (b) 18, configurations at (y, g) = (0.25x,
0.84), where the counterrotating spiral pattern ABCCBA pattern is
shown. Whereas the 6, orientation contains a chain of FM aligned
moments along the x and y bonds, in the 6, orientation the chain runs
along the x and z bonds.

shown in Fig. 3(b) given by
=S(~a,+a,—c), Sy =S(~a,+a, +o),

S:S’ = S(_a5 —a, _C)’

§ = S(+a, +a, +c),

Sy = S(+a, —a, —¢),  S¢ = S(+a, —a, +c),
§ = S(+a, —a, —c), Sy = S(+a, —a, +c),
= S(+a, +a, +c), Sy =S(—a, —a, —c),
= S(—a, +a, —c), §3, =8(—a, +a, +c). ()

We call this particular orientation 12, due to the two-site
periodicity along the z bond as shown in Fig. 3(b). This shows
that the two orders are degenerate. The two other operations
R applied on ZZ, give the 12, order up to translations
of the magnetic unit cell, so that the total degeneracy due
to Rs and time reversal 7T : S‘,- — —§,~ is four. Similarly, the
(ZZ + 12), orientation is fourfold degenerate but cannot be
mapped to the (ZZ + 12), orientations when g # 0 and a
first-order transition separates the two. This analysis applies to
the three orientations of the FM + 120°, 6 4+ 18, and 16 + 48
orders as well: the (6 4 18), orientation is shown in Fig. 4.

From Eq. (7) we note that the moments in the 12, config-
uration alternate in a six-site pattern ABCCBA along the xy
chain. This is also the case for the 6 + 18 phases as indicated
in Fig. 4. This pattern is referred to as a counterrotating spiral
as the moments alternate as ABC along one site sublattice
and ACB along the other, forming two FM dimers serving
as inversion centers. This pattern has appeared in previous
models of hyperhoneycomb materials [55-58] suggesting a
relation between the 12 and 6 + 18 phases to the so-called
K states of Ref. [57].

IV. FREEZING THE I" SPIN LIQUID: 18" AND 18 PHASES

In this section we focus on the 18" and 18’ phases,
where there are four degenerate spin patterns (excluding
time-reversal partners) with the same size of magnetic unit
cell. One vortex pattern is denoted by 18] (called 18-C3 in
Ref. [38]) and three patterns as 18;’ fori € {x,y, z}, see Fig. 5.
Crucially, the four orientations are connected by the three R
operations.

To discuss the appearance of the 18" and 18’ phases in
the I'-dominant limit, and the difference between the two,
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FIG. 5. The (a) 18}, (b) 187, (c) 187, and (d) 18] configurations
at (¥, g) = (0.47, 0.5).

we first review the physics of the isotropic I' model. There
it was found that the classical ground state is the I" spin
liquid (I'SL), which contains an extensive degeneracy due to
free Ising degrees of freedom 7, = &1 that reside on each
plaquette p in addition to a continuous O(3) degeneracy [40].
This can be seen by separating the sign and magnitude of the
spin components as

§ +S(n¥ ai, 1! bi, n¢ ;)
=S a n) bi, i)

where A and B are the honeycomb site sublattices and
(ai, by, ¢i) = (IS71, IS7], IS?))/S satisfies a? + b? + ¢7 = 1
and n ==*£1,a € {x, y, z}. We introduce a visual guide
where each site i is represented by a triangle with each corner
corresponding to one of the three n{

1 € A sublattice,
l i € B sublattice. 9)

We refer to this as the n representation of the moments
S;, which allows us to easily extract the role of the spin
component signs n in the energy minimization process. For
example the signs of the two energy contributions from I'?
along the (12), bond in Fig. 1 are sgn(I'*S7S5) = — nn; and
sgn(I'?$)S3) = — nyn3, which are minimized for general a;, b;
when n}n, = n{n5 = 1. In the pure I limit all 5 constraints
may be minimized by fixing the signs of an arbitrary site i
as (¥, 7, n7) = (m, 2, n3) and distributing the signs by
satisfying the 5 constraints bond by bond, introducing new 7’s
as necessary to parametrize the signs of any leftover spin com-
ponents. One may see that each plaquette p may be assigned
an Ising variable 7, by satisfying the » constraints along the

i € A sublattice,
i € B sublattice,

i = (i ng) =

>

"

”

Pl

Preah = >
>

Pad
<

Y
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=

<

e
=

<]

FIG. 6. 7 representation of the moments S; in the pure I' limit,
where we only display the 7, that reside on the plaquette sublattice
A (shown in gray) for clarity.

plaquette’s boundary. Furthermore, the energy is insensitive to
the value of 7, as each contribution squares to unity, so that
the pure I" limit is equivalent to an Ising gas on the triangular
superlattice and exhibits an extensive ground-state degeneracy
[40]. The combination of time reversal and one of the three
global R transformations on the I'SL corresponds to flipping
the signs of all i, which live on one of the plaquette sublat-
tices & € {A, B, C} [40,41]. For example, for the plaquettes
shown in Fig. 6, applying 7 - R ; on each moment gives

S, — (—na|S’f

s S{, 57)7 §4 - (Sir +r]a}Sﬁ|v Szzt)t
S5[), S5 = (85, S5, —malS3]).
. 55), . g, S5), (10)
and similarly for the i’ and /" moments, which will flip the
signs of 1, and 7., respectively.

We add a finite Kitaev term and investigate the stability of

the T'SL. For the (61'),, (4'3”),, and (2”5), bonds shown in
Fig. 6, the Kitaev contributions to the energy come with sign

S, — (S;, S5, +1a
Sy — (S5, —74|S3

§6 — (+7’]a|5g

sgn Efgy), = —sgn K 1 ny, = 1 1.

sgn E{i’y')y = —sgn K 774yy ’7§~ = Np N,

sgn Efs). = —sen K 15, 0§ = e na, (11)
and thus are minimized when n,n, = np ne = Ne Ny = —1.

The three n,,. cannot be fixed simultaneously without
violating one of the n constraints, which shows that per-
turbing the I'SL with Kitaev interactions is identical to the
triangular Ising antiferromagnet with interactions between
next-nearest-neighbor n variables [3,59,60]. It also presents
a clear demonstration of the competition present between
Kitaev and I" interactions of opposite signs [44].
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FIG. 7. The (a) 18" order at (¥, g) = (0.4x, 0.5) and (b) 18
order at (¢, g) = (0.4, 0.75), with the values of the plaquette flux
W,/S® shown in the center of each hexagon. The nine-plaquette unit
cell is indicated by dashed lines. Note that in (b) the W, are inversion
symmetric about the zero-flux plaquette as the 18’ phase respects
inversion symmetry.

The ground state is obtained when two-thirds of all n,, carry
one sign while the remaining third carry the opposite sign [3].
For next-nearest-neighbor interactions only, there are several
configurations of 7, that minimize the energy [60]. However
including the spin magnitude |S¥| lifts this degeneracy and
selects the state with nine 7,, or 18 sites, in the magnetic
unit cell. This is precisely the 18" phase, which is a subset
of the classical degenerate ground states of the I'SL that is
selected by FM K. Similar to the I'SL the 18”7 phase exhibits
well-defined plaquette fluxes W, = 2°],,, 57" # 0, see
Fig. 7(a).

The 18 phase is separated from 18" phase via a second-
order transition. It is similar to the 18" phase with eightfold
degeneracy but the spin patterns respect inversion symmetry.
We label the orientations of 18} as i =x,y,z;,z; and we
note that inversion maps each of 18] | to itself, whereas 18],
maps to 18 and vice versa. The 18 phase contains an idle
plaquette with vanishing flux as shown in Fig. 7(b), and the
six surrounding moments are pinned near the [100], [010],
and [110] axes. Note that these moments lie in the xy plane,
which reflects the increasing influence of the I" dimer’s O(2)
degeneracy discussed earlier as bond anisotropy is increased.
Thus the 18" and 18’ phases result from the competing physics
of the dimer and isotropic I" limits in the presence of Kitaev
interactions.

V. EFFECTS OF QUANTUM FLUCTUATIONS

In this section we discuss the effects of quantum fluc-
tuations on the classical ground states by measuring the
zero-point motion about the ordered state. Using LSWT the
magnon gap is defined as Ag = min wy > 0 where wy, are the
magnon dispersions and s labels the sites of the magnetic unit
cell. Increased quantum fluctuations lead to a reduction of the
moment magnitude

(M) =s—}VZ<a§a,~>, (12)

i

where (a; a;) is the number of magnons per site in the ground
state |0) at T = 0. In Fig. 8 we show two cuts where the

1.0
¥ =02m

(6+18),

{(@zz+12),

0.0

(®) o2 : — 710

105 (m)

0.0 . , E 4 0.0
0.0 0.2 04 0.6 0.8 1.0

g

FIG. 8. Reduced moment (M) /S (red) and magnon gap A, (blue)
as a function of g for (a) ¥ = 0.2 and (b) ¥ = 0.47. The classical
phases stabilized in each region are labeled and the phase boundaries
are indicated by the dashed black lines.

bond anisotropy is varied at fixed I' /K in the Kitaev-dominant
limit ¥ =0.27(I'/|K| ~ 0.73) and the I'-dominant limit
Y =0.4n(I'/|K| ~ 3.08). We indicate the magnon gap Ay
and the reduced moment (M) /S in blue and red, respectively.
(M)/S ~ 0 indicates that the classical order is unstable due
to quantum fluctuations. Throughout both cuts the moment
is reduced by more than 50% indicating strong quantum ef-
fects in all phases. However, the effects of anisotropy are
qualitatively different between the K and I' regimes. In the
Kitaev-dominant region increased anisotropy leads to a de-
crease in moment reduction, and the gap increases due to
the stability of the Ising easy axis at the pure dimer limit.
On the other hand, in the I"'-dominant limit the gap goes to
zero as anisotropy is increased. This is due to the proxim-
ity of the O(2) symmetric I' dimer, which exhibits gapless
excitations within the xy plane as discussed in Sec. II. In-
terestingly, while the magnons are gapped away from this
limit, the reduced moment indicates that quantum fluctuations
become strong enough to completely destroy the magnetic
order within LSWT.

The LSWT is valid up to O(1/S) and can return an unphys-
ical result when the number of magnons is large relative to S.
This occurs in the presence of low-lying flat magnon bands
where the magnon-magnon interactions cannot be ignored. In
such a case the LSWT breaks down and accurate calculation
of observables requires a proper accounting of effects beyond
the single-magnon picture, which already tend to be signif-
icant in noncollinear magnetic orders [61-63]. Nevertheless
the reduced moment provides a general estimate of the regions
of the classical phase space which are most susceptible to a
quantum-disordered state [64], and we find that such a phase
may be stabilized in the I'-dominant limit with moderate
anisotropy.

VI. DISCUSSION AND SUMMARY

As we presented above, the KT Hamiltonian with the
bond anisotropy g is invariant under the R; operators of
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Eq. (5). However, when other interactions are present the
symmetry is generally broken. This includes the first (J)
and third (J3) nearest-neighbor Heisenberg interactions and
bond-dependent I'" interactions, which are relevant for the
description of Kitaev candidate materials [18,23,65]. For ex-
ample, the J term on the (12), bond in Fig. 1 transforms
under Rj as JS; - Sy — J(—S{S5 — S1S) + $iS5), and the
I term as TV[S]S5 + S785 + (x = y)] — T'[S1S5 — S785 —
(x — y)]. The external Zeeman field also breaks the symme-
try. Thus the degeneracy related to this symmetry in all the
magnetic orders shown in this study is lifted in the presence of
any one or more of these terms. This explains several results of
previous studies including how a FM I lifts the (ZZ + 12),
degeneracy and selects the ZZ, over the 12, configurations
[26,29,30,54,66]. Similarly the external magnetic field lifts
the ZZ + 12 and 6 + 18 degeneracies near the Kitaev region
and selects the ZZ and six-site orders, respectively [38,67].

We compare our results with previous studies of the KT
model at the isotropic limit g = 0. This was first explored
in Ref. [9] where the classical limit shows the presence of
an incommensurate spiral order along the KT line using a
single-Q variational ansatz. Further studies of the KI" line
go beyond this approximation using classical Monte Carlo
techniques [37-39,44,45]. More recently it was found that the
incommensurate spiral order is stabilized at low temperatures
T ~ 0.1-0.2 as exhibited by the magnetic susceptibility and
heat capacity [39]. In contrast, we obtain the LUC orders in
this region of g = 0 when T ~ 10~° where thermal fluctua-
tions are minuscule compared to the average interaction scale.
We determine the energy of each phase to a high precision
using the algorithm given in Ref. [38], i.e., by annealing
the cluster to this ultralow temperature and then performing
sweeps of the cluster where the moments are aligned with
their local molecular fields, see Appendix A for details.

Numerical studies of the quantum model in the isotropic
limit g = O report various quantum-disordered phases includ-
ing a proximate KSL (PKSL) [27,31,49], a I'SL [30,43], and
anematic paramagnet [28,29]. Away from g = 0, a disordered
region between the isotropic limit and the dimer phase, which
rapidly expands when I > K, was also reported [48]. How-
ever, it is not clear whether this is a true phase boundary or
simply a crossover region connecting the two phases. A series
of multinode gapless QSLs before entering a dimer phase
at larger g was found using variational MC (VMC) [49]. A
further VMC simulation including the multi-Q orders around
the I region with finite g (i.e., 18" and 18") would extend our
current knowledge on possible QSLs and their nature in this
region.

Here, for the classical K" model with g = 0 we find four
different phases (ZZ + 12, 6 4+ 18, 16 + 48 and 18") with
LUCs, and the LSWT shows that, in the I"'-dominant regime,
the reduced moment (M)/S for fixed I'/K in Fig. 8(b) de-
creases as g increases. This supports the disordered phases
reported in Refs. [48,49]. Furthermore if the magnetic or-
dering in the 187 orientations are destroyed by quantum
fluctuations but the spontaneous C; symmetry breaking sur-
vives at g =0, it generates a nematic paramagnetic state.
We emphasize though this broken lattice-rotational symmetry
does not exclude a QSL.

Finally, an interesting proposal is a possible vison crystal
spin liquid near the I'SL. In fact, one feature of the I'SL is
significant correlations of the plaquette fluxes, which peak
at the " and K, K’ points in the reciprocal space [42,43]. A
vison crystal spin liquid, which is magnetically disordered
yet exhibits a broken translational symmetry in the form of
a long-range (W,W,) correlation function, may be stabilized
in the I'-dominant region with moderate z-bond anisotropy,
which remains as a subject for future study.

In summary, we have studied the classical KT'-g model
to understand the phases out of two competing frustrated
interactions and the effects of bond anisotropy on their com-
petition. The pure Kitaev and I' models have classical spin
liquids with macroscopic degeneracy, but when they are both
present, we found there exist several LUC phases occur-
ring via their competition. All the phases have the intrinsic
degeneracy related to a product of 7 rotations around the pla-
quette, where a subset of degenerate states can have a smaller
magnetic unit cell as a special case of a larger magnetic
unit cell state. Near the I"'-dominant region, we find 18-site
magnetic unit cells, which retain their degeneracy in the pres-
ence of bond anisotropy unlike the C; related degeneracy
appearing in the Kitaev-dominant region at g = 0. The bond
anisotropy enhances quantum fluctuations in the I"'-dominant
region, which suggests that this region hosts a potential
QSL.

ACKNOWLEDGMENTS

We would like to thank K. Chen, P. P. Stavropoulos, E. Z.
Zhang, and J. Zhao for useful discussions. We acknowledge
support from the NSERC Discovery Grant No. 06089-2016.
H.-Y.K. also acknowledges support from CIFAR and the
Canada Research Chairs Program. Computations were per-
formed on the Niagara supercomputer at the SciNet HPC
Consortium. SciNet is funded by the Canada Foundation
for Innovation under the auspices of Compute Canada; the
Government of Ontario, Ontario Research Fund—Research
Excellence, and the University of Toronto.

APPENDIX A: MONTE CARLO SIMULATION DETAILS

We perform the SAMC simulation on a finite-size hon-
eycomb cluster with periodic boundary conditions. We
parametrize the honeycomb sites by placing them into unit
cells located at R = Zi m; T;, where T, T, define the unit
cell vectors and m;, m, are integers. The honeycomb lattice
contains s > 2 sublattices within a unit cell, each forming its
own sublattice: every site i can be labeled by three integers
i = (my, mp, t) where t =1, ...,s. One choice for the ge-
ometry of the unit cell is to use the two-site rhombic unit cell
with translation vectors

Tl :al —az = (1, 0),

T, =a; = (l ﬁ)
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(L
0‘0 x

FIG. 9. The two unit cells used to construct the Monte Carlo
cluster, with vectors a; and a, shown along with the three bond
types. From left to right: the rhombic unit cell with unit cell vectors
Eq. (A1) and the rectangular unit cell with unit cell vectors Eq. (A2).
The bond type x, y, z are colored green, blue, and red, respectively.

which is shown in Fig. 9 along with a, ». This choice produces
a cluster that is commensurate with the 18 site phases when
m; and m, are multiples of 3. We may also use the 4-site
rectangular unit cell with translation vectors

T =a; —a,=(1,0),

T, =a;+a, = (0, \/3), (A2)

which produces a cluster commensurate with the (ZZ + 12),
order whenever m; is a multiple of 3. Either unit cell may
be used to build the cluster as long as one ensures that the
ordering wave vectors of the classical states are accessible.
For our purposes we use the N = 288 site cluster with a

FIG. 10. The accessible momentum points for the N =
4x12x6 = 288 site cluster constructed using the rectangular unit
cell in Eq. (A2). The red and green hexagons correspond to the first
and second Brillouin zones, respectively. The three M points are
shown and we use the label x, y, z to distinguish different orientations
of the same magnetic order: see Appendix B.

(a) (b)

© (d

O ©

I |

0.00 0.25 0.50 0.75 1.00
Relative sy

FIG. 11. SSF of the (a) ZZ, and (b) 12, patterns at (¥, g) =
(0.47,0.94), as well as the (c) ZZ, and (d) 12, patterns at
(0.157,0.94) and (0.1m, 0.65), respectively. The ZZ peaks are lo-
cated at one of the three M points, whereas the 12-site peaks are
located at one of three 1K, 1K’ pairs. The color of each ordering
wave vector in Figs. 11-16 denotes the relative intensity of each
peak.

(@) (®)

© @

FIG. 12. SSF of the (a) 6, and (b) 18, patterns at (0.257, 0.84),
as well as the (c) 6, and (d) 18, patterns at (0.357, 0.84). The six-site
peaks are located at one of three %M . M pairs, whereas the 18-site
peaks are located at multiple %M , M pairs.
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(a) (b)

(d

FIG. 13. SSF of the (a) 18] and (b) 18;7, patterns at (0.4, 0.5),
as well as the (¢) 18;] and (d) 18; phase at (0.4, 0.71). The ordering
vectors are located at multiple %M, iiM pairs.

rectangular unit cell, which accesses the M, K/2, and 2M/3
reciprocal points as shown in Fig. 10. We have also extended
the cluster size to N = 720 to check whether other large unit
cell orders are stabilized.

After constructing the cluster we obtain the classical
ground state using the SAMC algorithm given in Ref. [38],
where Monte Carlo trials are performed for a finite temper-
ature 7', which is slowly tuned to zero. For our simulations
we anneal according to the cooling schedule 7;1; =097T;
until the final temperature Ty = (0.9)** ~ 1077 is reached.
At each temperature step 7; of the simulation, we perform
Nx10° Metropolis trials where we choose a random moment,
flip it so that it points in a random direction, and accept
the new configuration with probability min(1, e=2£/T) where
AE is the energy difference between the two states. When
the final temperature is reached, we further refine the energy
by choosing a random moment and aligning it with its local
molecular field, and then repeating this N x 10* times.

In order to obtain the phase diagram Fig. 2 we first perform
the SAMC on large clusters to resolve the possible classical
ground states, and then refine the energy of each phase by

(a) l (b) O

FIG. 14. SSF of the (a) FM; and (b) 120 phase at (0.047, 0.5).
The dominant SSF peak is at the I point for the FM phase and one
of three K, K’ pairs for the 120° phase.

(a) () /\
\/

FIG. 15. SSF of the (a) 24, and (b) 24, patterns at (0.125m,
0.57). The 24, dominant SSF peaks are at %Mz whereas for 24,
they are at (35, ). (—15. 15) in the {by, by} basis, where b, , satisfy
a; - bJ = 27'[8,']'.

either running the SAMC on small clusters or parametrizing
the moments with angles (¢;, 6;) and minimizing the total
energy within the unit cell with respect to each angle. To accu-
rately obtain the 7 = O classical phase diagram it is important
to determine each order’s energy to full precision as the energy
difference of the competing phases is within AE ~ O(1073).
Otherwise at higher temperatures one may stabilize a mixture
of the competing phases. For example, the ZZ, six-site, and
16-site phases, which have SSF peaks along the I"-M lines
in reciprocal space, are close in energy for ¢ /m ~ 0.07-0.09
along g = 0. A mixture of the three phases would appear as an
incommensurate order with SSF peaks that vary along I'-M,
but such a state remains higher in energy than the true classical
ground state at 7 = 0.

APPENDIX B: MAGNETIC ORDER OF THE KT
CLASSICAL GROUND STATES

We present in Figs. 11-16 the SSF patterns of the phases
shown in the phase diagram Fig. 2. In each plot we show the
first and second Brillouin zones in red and green, respectively.
Different orderings, which share the same size of magnetic
unit cell but with different moment orientations, are distin-
guished by a subscript i = x, y, z. These labels are assigned
by the distribution of the SSF ordering vectors about one of
the three I'-M; lines in Fig. 10.

() (b)

FIG. 16. SSF of the (a) 16, and (b) 48, patterns at (0.147,0.5).
The 16, dominant SSF peaks are at %My, %My, whereas for 48, they
are at (—%, —2—14), (%, 27—4) in the {by, b,} basis, where b, , satisfy
a;-b; =2nd;;.
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