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Sum rules of L-edge x-ray magnetic circularly polarized emission for 3d transition metals
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We propose sum rules of x-ray magnetic circularly polarized emission (XMCPE) at L edges for 3d transition
metals. By making use of combinations of incident and emitted photon helicities, z-component expectation
values of spin, orbital, magnetic dipole, and quadrupole terms can be obtained separately. The fundamental
difference in the sum rules between x-ray magnetic circular dichroism and XMCPE arises from the variety of
electron transitions involving core states split by the spin-orbit interaction. The additional electron transition in
XMCPE causes complicated angular dependence of the sum rule relation for the spin moment. Our findings
promote future L-edge XMCPE measurements, which have not been observed at present.
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I. INTRODUCTION

X-ray magnetic circular dichroism (XMCD) is one of the
most powerful techniques to reveal local magnetic properties
around the x-ray absorbing atom in various materials [1–3]. In
particular, the sum rules of L-edge XMCD provide the local
orbital moment and effective spin moment separately [4–10].
Although the effective spin moment comprises not only the
pure spin moment but also the magnetic dipole moment, the
extraction of each magnetic contribution from the total mag-
netic moment is unique and an advantage of XMCD.

Instead of observing XMCD, magnetic circular dichroism
of the emission spectra at the L edges has been used, where
the incident circular polarization is flipped [11–22]. Whereas
the absorption spectroscopies including XMCD reflect prop-
erties in the unoccupied states basically, it was expected that
magnetic properties in the occupied states are obtained more
directly by this emission technique than by XMCD. However,
to our knowledge, no sum rule of the x-ray emission has been
proposed, and thus XMCD has been still the unique x-ray
spectroscopic technique to provide quantitative information.

Recently, Inami has developed a novel x-ray emission
spectroscopy, called x-ray magnetic circularly polarized emis-
sion (XMCPE), which detects circularly polarized x rays
emitted from a magnetized sample [23]. XMCPE has been
confirmed for metallic iron in the Kα emission [23]. In the
Kα emission, first a 1s electron is excited to a photoelectron
state by an incident x-ray photon, and subsequently x rays are
emitted by electron transition from 2p to 1s states. Because the
1s hole has no orbital moment and the photoelectron energy
does not depend on the orbital moment, the polarization of
the incident x rays has no effect on K-edge XMCPE. On the
other hand, the energy levels of the 2p states are split by
the interaction with the spin-polarized 3d states in 3d tran-
sition metal (TM) magnets, which provides magnetic circular

dichroism of K-edge XMCPE. Detailed shapes of the K-edge
XMCPE spectra have been investigated theoretically by using
a Keldysh Green’s function approach, which elucidates the
contribution of the continuum nature of the 3d band structures
in metallic iron [24]. Although 3d electron excitation due to
a many-body effect contributes to K-edge XMCPE spectra
in TMs, the existence of sum rules based on the 3d → 3d
indirect electron transition cannot be guaranteed. On the other
hand, L-edge XMCPE where 3d → 2p direct transition is
dominant in itinerant TMs has a potential to provide new sum
rules by making use of the polarization of the incident and
emission x rays. Although L-edge XMCPE for TMs has not
been observed at present, such new sum rules are closely re-
lated to the occupied 3d states and could make x-ray emission
spectroscopy more quantitative and useful in the future.

This paper presents sum rules of L-edge XMCPE for 3d
TMs and is organized as follows. In Sec. II A, the Hamiltonian
that describes our system is given. In Sec. II B, the transition
probability from incident to outgoing photons is calculated
by a Keldysh diagram and Keldysh Green’s functions. The
integration of L-edge XMCPE spectra converts the 3d Green’s
functions to the 3d-electron-number matrices, which play an
essential role in the derivation of the sum rule relations. In Sec.
II C, we show sum rules providing z components of magnetic
dipole, quadrupole, and spin terms (Tz, Qzz, and Sz). In Sec. III,
the dependence of the sum rule relations on the incident and
emitted x-ray angles is exhibited. In Sec. IV, the origin of the
angular dependence and the difference between XMCPE and
XMCD are discussed. We also comment on practical measure-
ments of L-edge XMCPE. Section V provides the conclusion.
An example of calculated XMCPE spectra within the Hartree-
Fock approximation is shown in Appendix A. Details of the
dipole transition matrices are explained in Appendix B. The
representation of characteristic functions which is used to
derive sum rules is discussed in Appendix C.
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FIG. 1. Schematic of a typical Lα XMCPE process. (Left) A
2p3/2 electron is excited to a photoelectron state by an incident x-ray
photon in the first step of Lα XMCPE. The photoelectron state is
approximated to a free electron state denoted by d̃ . The 2p hole state
depends on the polarization and angle of the incident photon. (Right)
A circularly polarized photon is emitted by the relaxation of a 3d
electron to the 2p state. The circular polarization originates from the
angular momentum conservation in the 2p hole annihilation and the
3d hole creation. The relative positions among the electron energy
levels are depicted schematically and not quantitatively precise.

II. THEORETICAL FORMULATION

The basic physical concept of L-edge XMCPE described
here is similar to that of K-edge XMCPE shown in Ref. [24].
A schematic picture of an Lα XMCPE process, where a 2p3/2

hole is buried by a 3d electron, is depicted in Fig. 1. The
Lβ emission corresponding to the relaxation of a 2p1/2 hole
can be described by the same manner as the Lα emission. It
is assumed that, in the XMCPE measurements, the incident
x-ray energy is fixed and the emitted x-ray energy is scanned.
Substantial difference between K- and L-edge XMCPE is the
degrees of freedom in the intermediate (or first) hole states.
A 1s hole state only has the spin degrees of freedom and is
not influenced by the spin-orbit coupling, which leads to no
dependence on the incident polarization and angle in K-edge
XMCPE. Meanwhile, a 2p hole state has the spin and orbital
degrees of freedom and they are coupled by the spin-orbit in-
teraction, which causes the incident polarization dependence
and the incident angular dependence, in L-edge XMCPE. In
this paper all the equations are given in the Hartree atomic
units and all the values of the spin indices are a half integer.

We adopt a Keldysh Green’s function approach, which was
also used to investigate K-edge XMCPE spectra of metallic
iron [24]. There are two main advantages of the approach.
The one is that L-edge XMCPE theory can be compared to
the K-edge one easily. The other is that the L-edge XMCPE
sum rules should be derived as generally as possible in order

to make their limitation clear because there is no experimental
data to compare with theoretical results. We shall see that the
local 3d electron number appears for any choice of 3d Hamil-
tonian with small 3d spin-orbit interaction, which enables us
to derive the XMCPE sum rules.

A. Hamiltonian

The total Hamiltonian H consists of the unperturbed
Hamiltonian H0 and the electron-photon interaction Hx:

H = H0 + Hx. (1)

H0 consists of the electron and radiation-field parts:

H0 = He + hr . (2)

Before explaining the electron Hamiltonian He, we de-
scribe Hx and the radiation-field Hamiltonian hr . hr is given
by

hr =
∑
�

ε�a†
�a� [� ≡ (kr, λ)], (3)

where kr and λ are the momentum vector and polarization
of a photon, respectively. For simplicity, we label a photon
with the index �. a†

� and a� are the creation and annihilation
operators of the photon labeled with �, respectively, and ε�

is the photon energy.
Hx is expressed by the momentum operator p and the vector

potential A in the Coulomb gauge:

Hx =
∑
α,α′

〈ψα|
(

−1

c

)
(A · p)|ψα′ 〉c†

αcα′

=
∑
α,α′

∑
�

wαα′ (�)c†
αcα′a� + (H.c.), (4)

where c is the speed of light and its value is about 137 in
the Hartree atomic units. The indices α and α′ specify each
state of the 2p or 3d electrons or the photoelectron forming a
basis of He, which is explained below. ψα is the electron wave
function of the α state. c†

α (cα) is the creation (annihilation)
operator of the α electron. We apply the dipole approximation
to the matrix element w:

wαα′ (�) ∝ 1√
ε�

〈ψα|(ε̂λ · p)|ψα′ 〉, (5)

where ε̂λ is the polarization vector with the λ polarization.
He consists of the terms for the 2p, photoelectron, and band

states, and the 2p-3d interaction:

He = hd̃ + h2p + Hband + Vpd . (6)

The photoelectron Hamiltonian hd̃ is assumed to be

hd̃ =
∑
k,G

∑
σ

ε|k+G| c†
k,G,σ ck,G,σ ≡

∑
K

∑
σ

εK c†
K,σ cK,σ , (7)

where k, G, and i indicate a crystal-momentum vector in the
first Brillouin zone, a reciprocal lattice vector, and a unit cell,
respectively. The index σ shows the up (↑= +1/2) or down
(↓= −1/2) spin. c†

K,σ and cK,σ are the creation and annihila-
tion operators of the photoelectron with the momentum vector
K in the extended zone scheme and the spin σ . We assume that
the photoelectron energy εK is sufficiently large to consider
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the photoelectron as a free electron, whose energy does not
depend on σ .

The 2p Hamiltonian h2p includes the spin-orbit interaction:

h2p =
∑

k

∑
ζ ,ζ ′

[
ε2pδζζ ′ + εsoc

2p (l · s)ζ ζ ′
]
c†

k,ζ ck,ζ ′ , (8)

where the indices ζ and ζ ′ indicate the magnetic quantum
number and the spin index to specify each 2p state. c†

k,ζ

and ck,ζ are the creation and annihilation operators of the 2p
electron with k and ζ , respectively. The bare 2p energy ε2p

does not depend on k. The spin-orbit interaction is described
by the orbital angular momentum vector l, the spin vector s,
and the coupling energy εsoc

2p .
The band Hamiltonian Hband including 3d states dominates

the values of the physical quantities and detailed shapes of L-
edge XMCPE spectra (see Appendix A). However, the explicit
form of Hband does not appear because the expectation value
of the 3d electron number is only used for deriving the sum
rules.

The 2p-3d interaction Vpd is given by

Vpd = 1

N

∑
k,k′,q

∑
ζ ,ζ ′

∑
ξ,ξ ′

vζ ζ ′,ξξ ′c†
k,ζ

c†
k′,ξ ck′+q,ξ ′ck−q,ζ ′ , (9)

where the index ξ indicates each 3d state specified by the
magnetic quantum number and the spin index. c†

k,ξ and ck,ξ are
the creation and annihilation operators of the 3d electron spec-
ified by k and ξ , respectively. The momentum q is transferred
between the 2p and 3d states. N is the number of k points in
the first Brillouin zone. We assume that the 2p states preserve
the nature of the eigenstates for the total angular momentum
and its z component due to the strong spin-orbit interaction.
This assumption can be expressed by use of the mean-field 2p
Hamiltonian H̄2p defined as follows:

V̄pd ≡
∑

k

∑
ζ ,ζ ′

∑
ξ,ξ ′

vζ ζ ′,ξξ ′n3d
ξ,ξ ′c†

k,ζ ck,ζ ′ , (10)

n3d
ξ,ξ ′ = 1

N

∑
k′

〈c†
k′,ξ ck′ξ ′ 〉 , (11)

H̄2p ≡ h2p + V̄pd =
∑
j,μ

ε j,μc†
k, j,μck, j,μ, (12)

ck,ζ ≡
∑
j,μ

u j,μ
ζ ck, j,μ =

∑
j,μ

〈
1, mζ ;

1

2
, σζ

∣∣∣∣ j, μ

〉
ck, j,μ, (13)

where n3d is the 3d-electron-number matrix. j and μ are
the eigenvalues of the total angular momentum and its z
component in each 2p state, respectively. The unitary trans-
formation from ζ = (mζ , σζ ) to ( j, μ) is obtained by the
Clebsch-Gordan coefficient. Because the energy positions are
not important due to the integration of emission spectra with
respect to the emitted photon energy for the sum rules, specific
values of V̄pd and vζ ζ ′,ξξ ′ do not appear in the main text.
In Appendix A, specific values of vζ ζ ′,ξξ ′ appear in order to
illustrate an example of calculated L-edge XMCPE spectra.

FIG. 2. Keldysh diagram for an L-edge XMCPE process. The
times t and 0 belong to the + leg, whereas the times t ′ and u′ belong
to the − leg, as defined in Ref. [25]. The wavy lines correspond to
the incident photon states labeled with �i or the outgoing photon
state labeled with � f . The horizontal lines describe 2p states and
the downward line indicates a free electron state denoted by d̃ . The
upward double line indicates a 3d state.

B. Transition probability

To describe the transition probability from incident to out-
going photons, it is useful to use the interaction picture of Hx:

Hx(t ) = eiH0t Hxe−iH0t

=
∑
α,α′

∑
�

hαα′ (t ; �)a�e−iε�t + (H.c.), (14)

hαα′ (t ; �) = wαα′ (�)c†
α (t )cα′ (t ), (15)

h†
α′α (t ; �) = w∗

α′α (�)c†
α (t )cα′ (t ). (16)

The transition probability Wi→ f from the photon state �i to
� f is given by the time derivative of the number of outgoing
photons [24]:

Wi→ f = d〈n� f 〉(�i )

dt0

∣∣∣∣
t0→∞

=
∫ 0

−∞
dt

∫ ∞

−∞
du′

∫ u′

−∞
dt ′S(t, 0, u′, t ′)eiεi (t ′−t )e−iε f u′

,

(17)

where εi and ε f are the photon energies with �i and � f ,
respectively. S(t, u, u′, t ′) depending on the times t , u, u′, and
t ′ is the S matrix, defined as follows [24,25]:

S(t, u, u′, t ′) = 〈0|h†
β ′

1β1
(t ′; �i )hα1α

′
1
(u′; � f )

× h†
α′

2α2
(u; � f )hβ2β

′
2
(t ; �i )|0〉, (18)

where 〈0| and |0〉 correspond to the electronic ground state.
To describe an L-edge XMCPE process, we use a Keldysh

diagram for the S matrix (Fig. 2). In accordance with
Ref. [25], the upper and lower horizontal lines in Fig. 2 be-
long to the + and − branches, respectively. The − branch
corresponds to the complex conjugate of the + branch, and the
diagrammatic connection between the two branches provides
the excitation or relaxation processes. Figure 2 shows that the
incident photon with �i creates a hole in the 2p states, which
is accompanied by electron excitation from the 2p to d̃ states
at the time t . After the time evolution of the 2p hole state
from the time t to 0, the 2p hole is relaxed and buried by a 3d
electron at the time 0, which is accompanied by the emission
of the outgoing photon with � f .
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The expression of the S matrix corresponding to the dia-
gram is

S(t, 0, u′, t ′) =
∑
K̃,σ̃

∑
kd ,k′

d ,

∑
kp,k̃p

∑
ξ,ξ ′

∑
ζ ,ζ ′

∑
ζ̃ ,ζ̃ ′

[w] [G], (19)

[w] = w
d̃,2p
K̃σ̃ ,kpζ

(�i )
(
w

3d,2p
kd ξ,kpζ ′ (� f )

)∗

× w
3d,2p
k′

d ξ ′,k̃pζ̃
(� f )

(
w

d̃,2p
K̃σ̃ ,k̃pζ̃ ′ (�i )

)∗
, (20)

[G] = ( − iGc,2p
ζ ,ζ ′ (t, 0)

)( − iG+,3d
kd ξ,k′

d ξ ′ (0, u′)
)

× ( − iG̃c,2p
ζ̃ ,ζ̃ ′ (u

′, t ′)
)(

iG−,d̃
K̃

(t ′, t )
)
. (21)

Each Green’s function is defined as follows [25,26]:

Gc
α,β (t, t ′) = 1

i
〈T [cα (t ) c†

β (t ′)]〉, (22)

G̃c
α,β (t, t ′) = 1

i
〈T̃ [cα (t ) c†

β (t ′)]〉, (23)

G+
α,β (t, t ′) = −1

i
〈c†

β (t ′) cα (t )〉, (24)

G−
α,β (t, t ′) = 1

i
〈cα (t ) c†

β (t ′)〉, (25)

Gα (t, t ′) ≡ Gα,α (t, t ′). (26)

Here, T (T̃ ) is the time-ordering (anti-time-ordering) operator.
Because hd̃ and H̄2p are already diagonal, G−,d̃ , Gc,2p, and
G̃c,2p can be expressed as

iG−,d̃
K̃

(t ′, t ) = e−iεK̃ (t ′−t ), (27)

−iGc,2p
ζ ,ζ ′ (t, 0) = θ (0 − t )

∑
j,μ

u j,μ
ζ u j,μ∗

ζ ′ e−iε j,μ(t−0), (28)

−iG̃c,2p
ζ̃ ,ζ̃ ′ (u

′, t ′) = θ (u′ − t ′)
∑
j̃,μ̃

u j̃,μ̃
ζ̃

u j̃,μ̃∗
ζ̃ ′ e−iε j̃,μ̃(u′−t ′ ), (29)

where θ is the step function arising from the time-ordering
and anti-time-ordering operators. Here, the inverse Fourier
transform of a Green’s function G is defined as

G(t, t ′) =
∫ ∞

−∞

dω

2π
G(ω)e−iω(t−t ′ ). (30)

The following relations are useful to derive the sum rules:∫ ∞

−∞

dωd

2π

( − iG+,3d
kd ξ,k′

d ξ ′ (ωd )
) = 〈

c†
k′

d ξ ′ ckd ξ

〉
, (31)

n3d
ξ ≡ n3d

ξ,ξ = 1

N

∑
kd

〈
c†

kd ,ξ ckd ,ξ

〉
. (32)

By performing the time integrations in Eq. (17),

Wi→ f =
∑
K̃,σ̃

∑
kd ,k′

d ,

∑
kp,k̃p

∑
ξ,ξ ′

∑
ζ ,ζ ′

∑
ζ̃ ,ζ̃ ′

[w]
∑
j,μ,μ̃

u j,μ
ζ u j,μ∗

ζ ′ u j,μ̃
ζ̃

u j,μ̃∗
ζ̃ ′

×
∫ ∞

−∞
dωd

( − iG+,3d
kd ξ,k′

d ξ ′ (ωd )
)
δ(εK̃ − εi f (ωd ))

× 1

ε f + ε j,μ − ωd + i�p

1

ε f + ε j,μ̃ − ωd − i�p
,

(33)

εi f (ωd ) = ωd + εi − ε f , (34)

where �p is for a lifetime broadening of a 2p core hole. In
Eq. (33), it is assumed that the L2 and L3 edges are well
separated from each other.

We adopt the following approximations in order to calcu-
late [w]: (i) the dipole approximation; (ii) neglecting the s
component of the photoelectron states; (iii)

∑
K̃ f (K̃)�K̃ ≈∑

k̃

∫
dG̃ f (G̃) for any function f when G̃ � k̃; (iv) the

m-independent one-body radial wave functions. These ap-
proximations lead to the following expression:

Wi→ f =
∑

j

W j
i→ f , (35)

W j
i→ f ∝

∑
σ̃

∑
ξ,ξ ′

∑
mp,m′

p

∑
m̃p,m̃′

p

∑
μ,μ̃

Md̃,2p
m̃′

p,mp
(λi, βi )

× M3d,2p
mξ ,m′

p
(λ f , β f )M3d,2p

mξ ′ ,m̃p
(λ f , β f )

× u j,μ
mp,σ̃

u j,μ∗
m′

p,σξ
u j,μ̃

m̃p,σξ ′ u
j,μ̃∗
m̃′

p,σ̃

×
∫ ∞

−∞
dωd

(
−i

∑
kd

G+,3d
kd ξ,kd ξ ′ (ωd )

)

× 1

ε f + ε j,μ − ωd + i�p

1

ε f + ε j,μ̃ − ωd − i�p
,

(36)

where βi and β f are incident and emitted x-ray angles with
respect to the magnetization direction, respectively. It should
be mentioned that for the linear polarization (λi( f ) = 0) βi( f )

corresponds to the angle between the polarization and magne-
tization directions, while for circular polarization (λi( f ) = ±1)
βi( f ) corresponds to the angle between the photon propagation
and magnetization directions. The dependence on βi and β f is
introduced by Md̃,2p and M3d,2p, respectively:

Md̃,2p
m′,m(λi, βi ) =

∑
m̄

G(1, m′; 1, m̄ − m′|2, m̄) d (1)
m̄−m′,λi

(βi )

× G(1, m; 1, m̄ − m|2, m̄) d (1)
m̄−m,λi

(βi ),
(37)

M3d,2p
md ,mp

(λ f , β f ) = G(1, mp; 1, md − mp|2, md ) d (1)
md −mp,λ f

(β f ),

(38)

G(l1, m1; l2, m2|l3, m3) =
∫

d r̂ Y ∗
l3m3

(r̂)Yl2m2 (r̂)Yl1m1 (r̂),

(39)

where Y is the spherical harmonic function and d (1) is the
orthogonal Wigner’s small d matrix for the first order. While
calculated L-edge XMCPE spectra by using Eq. (36) are
shown in Appendix A, details of the derivation of Eq. (36)
are explained in Appendix B.

When 2p → s̃ transitions, where s̃ is the s state of a
photoelectron, are considered exactly, theoretical formulation
becomes much more complicated. Indeed, the 2p → s̃ con-
tribution can depend on the incident x-ray energy and the
photoelectron kinetic energy in experimental settings. For
example, photoelectron energy of a few kiloelectronvolts can
make the s̃ contribution negligible, but too high photoelectron
energy recovers the s̃ contribution. Thus the deviation caused
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by neglecting the transitions should be checked with experi-
mental data in future.

For sum rules, W j
i→ f is integrated with respect to the x-ray

emission energy, which leads to

I j
λi,λ f

(βi, β f ) ≡
∫

dε f W j
i→ f

∝
∑

σ̃

∑
ξ,ξ ′

∑
mp,m′

p

∑
m̃p,m̃′

p

∑
μ,μ̃

Md̃,2p
m̃′

p,mp
(λi, βi )

× M3d,2p
mξ ,m′

p
(λ f , β f )M3d,2p

mξ ′ ,m̃p
(λ f , β f )

× u j,μ
mp,σ̃

u j,μ∗
m′

p,σξ
u j,μ̃

m̃p,σξ ′ u
j,μ̃∗
m̃′

p,σ̃
n3d

ξ ′,ξ . (40)

In order to derive Eq. (40), it is assumed that |ε j,μ − ε j,μ̃| �
�p. Although the opposite limit |ε j,μ − ε j,μ̃| � �p gives
Eq. (40) with μ = μ̃ in any βi and β f , this difference does not
appear in βi = β f = 0. For 3d TMs, the spin-orbit coupling in
the 3d states is not pronounced compared with the Coulomb
interaction, which gives n3d

ξ ′,ξ ≈ n3d
ξ ′,ξ δσξ ′ ,σξ

.

C. Sum rules

In this subsection, we restrict the sum rules of L-edge
XMCPE for 3d TMs to those for βi = β f = 0, where only
the diagonal components n3d

ξ appear. The detailed reason for

the appearance of n3d
ξ is as follows: Md̃,2p

m̃′
p,mp

(λi, 0) first gives

m̃′
p = mp, which leads to μ̃ = μ because of u j,μ

mp,σ̃
u j,μ̃∗

mp,σ̃
. Since

σξ ′ = σξ , u j,μ∗
m′

p,σξ
u j,μ

m̃p,σξ
gives m′

p = m̃p, which leads to mξ =
mξ ′ due to M3d,2p

mξ ,m′
p
(λ f , 0)M3d,2p

mξ ′ ,m′
p
(λ f , 0). In Sec. III, we discuss

the cases for arbitrary βi and β f .
The following characteristic functions are useful to derive

sum rules analytically:

χ±2(m) = m

2

(
m2 − 1

3

)(
m ± 2

4

)
, (41)

χ±1(m) = m

(
m ± 1

2

)(
4 − m2

3

)
, (42)

χ0(m) = (1 − m2)

(
4 − m2

4

)
, (43)

χ±1/2(σ ) = 1

2
± σ, (44)

1 =
2∑

m′=−2

χm′ (m) =
∑

σ ′=±1/2

χσ ′ (σ ). (45)

The derivation of χm′ (m) is discussed in Appendix C. In addi-
tion, the Gaunt integral defined in Eq. (39) is proportional to
the Clebsch-Gordan coefficient for given azimuthal quantum
numbers l1, l2, and l3:

G(l1, m1; l2, m2|l3, m3) ∝ 〈 l1, m1; l2, m2|l3, m3〉. (46)

The following replacements make coefficients appearing in
equations simpler:

〈 l, m; 1, m̄|l ′, m′〉2 → (2l + 1)(2l + 2) 〈 l, m; 1, m̄|l ′, m′〉2
,

(47)

〈 l, m; 1/2, σ |l ′, m′〉2 → (2l + 1) 〈 l, m; 1/2, σ |l ′, m′〉2
.

(48)

By using these functions, the representation of
I j
λi,λ f

(≡ I j
λi,λ f

(0, 0)) can keep summation for m and σ ,
shown as follows:

IL3
0,± ∝

∑
m,σ

(−6m4 + 32m3σ ∓ 6m3 ± 64m2σ

± 62m2 − 32mσ ± 138m ∓ 64σ + 76)n3d
mσ , (49)

IL3
0,0 ∝

∑
m,σ

(12m4 − 64m3σ − 136m2 + 256mσ + 352)n3d
mσ ,

(50)

IL3±,± ∝
∑
m,σ

(±20m4σ + 3m4 + 64m3σ ± 28m3 ± 48m2σ

+ 79m2 − 4mσ ± 86m ∓ 8σ + 32)n3d
mσ , (51)

IL3∓,± ∝
∑
m,σ

(∓20m4σ + 3m4 + 24m3σ ∓ 22m3 ± 128m2σ

− 21m2 − 84mσ ± 136m ∓ 168σ + 132)n3d
mσ , (52)

IL3
±,0 ∝

∑
m,σ

(∓40m4σ − 6m4 − 88m3σ ∓ 50m3 ± 120m2σ

− 52m2 + 352mσ ± 200m ± 160σ + 304)n3d
mσ ,

(53)

where the superscript L3 indicates j = 3/2 for the 2p states.
For L2 or j = 1/2,

IL2
0,± ∝

∑
m,σ

(−40m3σ ∓ 80m2σ + 20m2 + 40mσ ± 60m

± 80σ + 40)n3d
mσ , (54)

IL2
0,0 ∝

∑
m,σ

(80m3σ − 40m2 − 320mσ + 160)n3d
mσ , (55)

IL2±,± ∝
∑
m,σ

(∓40m4σ − 80m3σ ± 10m3 ± 60m2σ

+ 40m2 + 140mσ ± 50m ± 40σ + 20)n3d
mσ , (56)

IL2∓,± ∝
∑
m,σ

(±40m4σ ∓ 10m3 ∓ 220m2σ − 60mσ ± 70m

± 120σ + 60)n3d
mσ , (57)

IL2
±,0 ∝

∑
m,σ

(±80m4σ + 80m3σ ∓ 20m3 ∓ 360m2σ

− 40m2 − 320mσ ± 80m ± 160σ + 160)n3d
mσ . (58)

Adding most of the polarization components gives a relation
with the total 3d electron number n3d (= ∑

mσ n3d
mσ ) and a z-

component spin-orbit term 〈LzSz〉:
IL3
LS ≡

∑
λi,λ f

IL3
λi,λ f

∝ 720
∑
m,σ

(mσ + 2)nm,σ = 720(2 n3d + 〈LzSz〉), (59)

IL2
LS ≡

∑
λi,λ f

λ2
i IL2

λi,λ f
= 2

∑
λ f

IL2
0,λ f

∝ 480(n3d − 〈LzSz〉), (60)
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In ≡ 2IL3
LS + 3IL2

LS ∝ 1440 × 3 n3d , (61)

ILS ≡ IL3
LS − 3IL2

LS ∝ 720 × 3 〈LzSz〉 , (62)

ILS

In
= 1

2

〈LzSz〉
n3d

, (63)

where 〈LzSz〉 = ∑
m,σ mσ n3d

m,σ . Here, we define circular
dichroism of x-ray emission:

�Iλi ≡
∑
λ f

λ f Iλi,λ f = Iλi,+ − Iλi,−. (64)

By using �I terms, a sum rule for a z-component angular
momentum 〈Lz〉 is obtained:

IL ≡
∑
λi

(
2�IL3

λi
+ 3λ2

i �IL2
λi

) = 2
∑
λi

�IL3
λi

+ 6�IL2
0

∝ 2160
∑
m,σ

mnm,σ = 2160 〈Lz〉 , (65)

IL

In
= 1

2

〈Lz〉
n3d

. (66)

A sum rule for a linear combination of z-component magnetic
dipole and spin terms (〈Tz〉 and 〈Sz〉) is also obtained with a
similar manner for 〈Lz〉:

I (1)
T S ≡

∑
λi

(
�IL3

λi
− 3λ2

i �IL2
λi

) =
∑
λi

�IL3
λi

− 6�IL2
0

∝ 1440
∑
m,σ

(m2σ − σ )n3d
mσ

= 720[7 〈Tz〉 + 2 〈Sz〉], (67)

〈Tz〉 = 2

7

∑
m,σ

(m2 − 2)σ n3d
mσ , (68)

〈Sz〉 =
∑
m,σ

σ n3d
mσ , (69)

I (1)
T S

In
= 1

n3d

(
7

6
〈Tz〉 + 1

3
〈Sz〉

)
. (70)

Note that the expression of 〈Tz〉 in Eq. (68) is only valid for d
states [10].

By taking only circularly polarized emission terms, a sum
rule for a z-component quadrupole term 〈Qzz〉 can be found:

IQ ≡
∑
λi,λ f

λ2
f

(
10IL3

λi,λ f
+ (3λ2

i + 8)IL2
λi,λ f

)

∝ 3600
∑
m,σ

(m2 + 2)n3d
mσ

= 1800(7 〈Qzz〉 + 8 n3d ), (71)

〈Qzz〉 = 2

7

∑
m,σ

(m2 − 2)n3d
mσ , (72)

IQ

In
= 35

12

〈Qzz〉
n3d

+ 10

3
. (73)

Next, we derive a sum rule only for Sz (or Tz) by finding
another relation with Tz and Sz with a linear combination

different from that in I (1)
T S . The basic strategy to obtain the sum

rule is elimination of m and m3 terms by linear combinations.
As useful linear combinations, we can take the following
combinations which have the same m terms:∑

λi

λ2
i �IL3

λi
∝

∑
m,σ

(12m3 + 352m2σ + 444m − 352σ )n3d
mσ ,

(74)∑
λ

λ
(
2IL3

λ,λ + IL2
λ,λ

) ∝
∑
m,σ

(132m3 + 312m2σ + 444m

+ 48σ )n3d
mσ , (75)

I1 ≡
∑
λi

λ2
i �IL3

λi
−

∑
λ

λ
(
2IL3

λ,λ + IL2
λ,λ

)

∝
∑
m,σ

(−120m3 + 40m2σ − 400σ )n3d
mσ . (76)

We can also take the following combination which has the
same m3 term as I1:

10�IL3
0 − 23�IL2

0 ∝
∑
m,σ

(−120m3 + 4960m2σ − 4960σ )n3d
mσ ,

(77)

I (2)
T S ≡ (

10�IL3
0 − 23�IL2

0

) − I1

∝ 120
∑
m,σ

(41m2σ − 38σ )n3d
mσ

= 60(41 × 7 〈Tz〉 + 44 × 2 〈Sz〉). (78)

A linear combination of I (1)
T S and I (2)

T S eliminates the 〈Tz〉 (〈Sz〉)
terms and gives a sum rule only for 〈Sz〉 (〈Tz〉):

IS ≡ 41I (1)
T S − 12I (2)

T S ∝ −4320 〈Sz〉 , (79)

IS

In
= −〈Sz〉

n3d
, (80)

IT ≡ 11I (1)
T S − 3I (2)

T S ∝ 540 × 7 〈Tz〉 , (81)

IT

In
= 7

8

〈Tz〉
n3d

. (82)

Because the individual sum rules for 〈Sz〉 and 〈Tz〉 cannot
be obtained by XMCD, those are an advantage of L-edge
XMCPE.

The following linear combination gives another relation
with Tz and Sz different from I (1)

T S and I (2)
T S :∑

λ

λ
(
2IL3

−λ,λ + IL2
−λ,λ

)

∝
∑
m,σ

(−108m3 + 72m2σ + 684m − 432σ )n3d
mσ . (83)

By combining Eqs. (75) and (83),

I2 ≡
∑

λ

λ
[
57

(
2IL3

λ,λ + IL2
λ,λ

) − 37
(
2IL3

−λ,λ + IL2
−λ,λ

)]

∝ 720
∑
m,σ

(16m3 + 21m2σ + 26σ )n3d
mσ , (84)
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I (3)
T S ≡ 96I1 + I2

∝ 240
∑
m,σ

(79m2σ − 82σ )n3d
mσ

= 120(79 × 7 〈Tz〉 + 76 × 2 〈Sz〉). (85)

Although I (3)
T S gives a sum rule only for Sz (or Tz ), the linear

combination in Eq. (80) is simpler than that in a sum rule by
I (3)
T S .

In Appendix A, the values obtained by using the sum rules
and those obtained directly from density of states within the
Hartree-Fock approximation are compared as an example.

III. ANGULAR DEPENDENCE OF INTEGRAL
VALUES OF SPECTRA

In Sec. II C, βi and β f are fixed to zero, which leads to the
sum rules only using n3d

mσ . When βi and β f are taken to arbi-
trary angles, off-diagonal components of n3d appear generally
in the sum rule derivation. Although in atomic systems n3d is
diagonal to the magnetic quantum numbers m, in solids n3d

can be diagonal to real orbitals γ :

n3d
m′σ,mσ =

∑
γ

uγ

m′n3d
γ σ uγ ∗

m . (86)

In a cubic system, γ corresponds to xy, yz, zx, x2(≡ x2 − y2)
and z2(≡ 3r2 − z2). The matrix elements uγ

m of the unitary
transformation for a cubic system are given by

uxy
±2 = ∓ i√

2
, (87)

ux2

±2 = 1√
2
, (88)

uyz
±1 = i√

2
, (89)

uzx
±1 = ∓ i√

2
, (90)

uz2

0 = 1. (91)

The other elements are zero. In this section, we investigate
the angular dependence of sum rules by using the unitary
transformation and numerical calculations.

In order to investigate the angular dependence, we replace
I , which is defined in Eq. (40) and used to derive the sum
rules, by the following intensity:

I j,γ ,σd

λi,λ f
(βi, β f ) ≡

∑
md ,m′

d

∑
mp,m′

p

∑
m̃p,m̃′

p

∑
σp

∑
μ,μ̃

Md̃,2p
m̃′

p,mp
(λi, βi )

× M3d,2p
md ,m′

p
(λ f , β f )M3d,2p

m′
d ,m̃p

(λ f , β f )

× u j,μ
mp,σp

u j,μ∗
m′

p,σd
u j,μ̃

m̃p,σd
u j,μ̃∗

m̃′
p,σp

uγ

m′
d
uγ ∗

md
. (92)

This intensity reflects the situation where only the orbital
specified by γ and σd is occupied in the 3d shell. For example,
Ixy,↑ means I with n3d

γ σd
= δγ ,xy δσd ,↑.

We found that our numerical calculations show no βi and
β f dependence of In. This indicates that the angular de-
pendence of the sum rules where the denominator is In is
determined by the numerator. Figures 3 and 4 show that I (1)

T S

FIG. 3. Angular dependence of I (1)
T S defined in Eq. (67) with up

spin and each orbital. The horizontal and vertical axes indicate the
values of βi and β f , respectively. The values of I (1)

T S with each orbital
are normalized by the maximum value found in the (βi, β f ) space.

and IQ have cosinusoidal dependence on β f . In Figs. 3 and
4, the angular dependence is normalized by each maximum
value found in the (βi, β f ) space for each orbital and up spin
state. Note that the zero values of I (1)

T S with yz and zx orbitals
reflect that

〈Tz〉yz,↑ = 〈Tz〉zx,↑ = − 1
7 , (93)

〈Sz〉yz,↑ = 〈Sz〉zx,↑ = 1
2 , (94)

7
6 〈Tz〉 + 1

3 〈Sz〉 = 0. (95)

Because the rotations at βi and β f are in the y axis, there is no
angular dependence of IQ with the zx orbital.

Figure 5 shows the angular dependence of IS/In (not only
IS) with up spin and each γ without normalization. Although
the angular dependence of In, I (1)

T S , and IQ is similar to that
in x-ray absorption spectroscopy, the angular dependence of
IS/In is difficult to express by the trigonometric functions. In
Fig. 5, the value of −1/2 is correctly obtained for up spin and
all orbitals at (βi, β f ) = (0, 0) [see Eq. (80)]. In addition, the
value of 1/2 is obtained at (βi, β f ) = (π, π ), which can be
interpreted by setting the opposite magnetization. However,
regions where the absolute value of IS/In becomes greater
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FIG. 4. Angular dependence of IQ defined in Eq. (71) with up
spin and each orbital. The horizontal and vertical axes indicate the
values of βi and β f , respectively. The values of IQ with each orbital
are normalized by the maximum value found in the (βi, β f ) space.

than a half appear except for the zx orbital, indicating that the
sum rule for Sz is not valid in arbitrary βi and β f . In general
electronic structure, the angular dependence for up and down
spin is obtained by the linear combination of the dependence
for each orbital. Thus the sum rule for Sz can be used only
(βi, β f ) ≈ (0, 0), (π, π ). Because the sum rule for Tz is the
counterpart of that for Sz as shown in Eqs. (79) and (81), the
angular dependence for Tz has the same tendencies of that
for Sz.

It should be mentioned that the sign in Figs. 3 and 5
becomes completely opposite in the down-spin cases. Thus
an orbital occupied by two electrons with different spins does
not contribute to I (1)

T S and IS , which agrees with our physical
intuition for the nonmagnetic systems correctly.

IV. DISCUSSION

Generally, we cannot derive the explicit sum rules with
the (m, σ )-off-diagonal components which do not connect
with expectation values of physical quantities. Indeed, Iyz and
Izx have off-diagonal components with (m, m′) = (±1,∓1)
(shown in Figs. S20–S23 and S25–S28 in the Supplemental
Material [27]). Furthermore, although the Iz2

component has

FIG. 5. Angular dependence of IS/In defined in Eq. (80) with up
spin and each orbital. The horizontal and vertical axes indicate the
values of βi and β f , respectively.

no (m, σ )-off-diagonal component, its angular dependence is
complicated (shown in Figs. S9 and S10 in the Supplemental
Material [27]). In addition, in the practical cases, the en-
ergy splitting of the 2p sublevels |ε j,μ − ε j,μ̃| is not far from
the lifetime �p, which makes the contribution of the μ-off-
diagonal components incomplete (the angular dependence of
the μ-off-diagonal terms are shown in Figs. S11–S18 in the
Supplemental Material [27]). In the XMCD cases, the initial
2p states are fully occupied, and thus the angular dependence
of XMCD is determined by the transition matrix element from
2p to 3d states, and just cosinusoidal. On the other hand,
in XMCPE the incident photon prepares a 2p hole state to
accept a 3d electron, which causes the additional transition
matrix element and complex angular dependence of XMCPE
compared with XMCD.

Nevertheless, In, I (1)
T S , and IQ have much simpler angular

dependence than IS (or IT ). This shows that the off-diagonal
components are canceled in arbitrary βi and β f by the lin-
ear combination of the intensity I j

λi,λ f
in In, I (1)

T S , and IQ. On
the other hand, some off-diagonal components remain in the
linear combination given by Eqs. (80) and (82), and thus IS/In

and IT /In cannot keep the sum rule relation in the whole space
of (βi, β f ).
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We briefly comment on the practical application of the
XMCPE sum rules. Because the derived sum rules require the
ideal intensity ratio between the L2 and L3 edges, the effects
of self-absorption should be eliminated from observed spec-
tra. In particular, the L2-edge emission intensity suffers more
from the self-absorption effect than the L3-edge one because
x rays emitted by the transition from 3d to 2p1/2 states can
be absorbed by 2p3/2 core electrons. This absorption deviates
the intensity ratio, which causes errors in the values of the
physical quantities estimated by using the sum rules. How
much each approximation is satisfied also affects the esti-
mated values by the sum rules. For instance, the deviation
of u j,μ

m,σ from the Clebsch-Gordan coefficient shifts the cal-
culated value of IS/In from the true value of 〈Sz〉 /n3d (see
Appendix A). In addition, in order to observe XMCPE in
the soft x-ray region, a device which separates the helicity
of the emitted x rays is required. In the K-edge XMCPE
measurement, a quarter-wave plate of a single-crystal dia-
mond plate has been used to convert circularly polarized x
rays to linearly polarized x rays [23,28]. As far as we know,
such devices have not been achieved in the soft x-ray re-
gion, and thus the sum rules are awaiting future experimental
confirmation.

V. CONCLUSION

We have proposed the sum rules of L-edge XMCPE for 3d
TMs by use of the Keldysh Green’s function approach. The
sum rules make use of the incident and emitted x-ray photon
helicities, which provide the 3d expectation values related to
Lz, Qzz, Tz, and Sz. In particular, the individual sum rules for
the Sz and Tz terms are unique compared with the sum rules in
x-ray absorption spectroscopy such as XMCD.

In the derivation of the sum rules, we assumed that spin-
orbit interaction for d electron states is small. Moreover,
it was assumed that the photoelectron energy is sufficiently
large to perform summation (or integration) with respect to a
crystal-momentum vector and that with respect to a reciprocal
lattice vector separately. The high photoelectron energy is also
related to the approximation to neglect the s component of
the photoelectron. In addition, electron correlation should be
moderate not to merge the L2 and L3 edges for using the sum
rules. These assumptions could be satisfied in 3d TMs with
high incident photon energy.

Because our individual sum rules for Sz and Tz were derived
by the heuristic linear combinations of integrals of spectra,
there could be other linear combinations providing differ-
ent sum rules. However, the angular dependence for Sz (or
Tz) shows that such linear combinations do not always keep
the sum rule relations in the whole space of (βi, β f ). Thus
the angular dependence for them should be checked care-
fully. The difference of sum rules between L-edge XMCD
and XMCPE comes from the additional transition matrix
element in the emission process, which makes the angular
dependence of XMCPE spectra more complicated than that of
XMCD.

Although the observation of XMCPE in the soft x-ray
region has not been realized, our findings would encourage
development of experimental setups.
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APPENDIX A

In this Appendix, we show calculated L-edge XMCPE
spectra of BCC iron within the Hartree-Fock approximation
(or mean-field approximation) as an example. The method and
parameters of the calculation is basically the same as that for
K-edge XMCPE in Ref. [24]. The band Hamiltonian Hband is
approximated to a Hubbard-type Hamiltonian H̄band within the
Hartree-Fock approximation:

H̄band = hTB + H̄ ′
band − H̄ ′TB

band =
∑

k,γ ,σ

Ekγ σ c†
k,γ ,σ

ck,γ ,σ ,

(A1)

H̄ ′
band =

∑
k,μ,σ

{
U

2
[n̄μ − sgn(σ )m̄μ]

+
∑

μ′( �=μ)

[(
U ′ − J

2

)
n̄μ′ − sgn(σ )

J

2
m̄μ′

]}
nk,μ,σ + Ē ,

(A2)

where μ (μ′) and γ are the indices of Wannier orbitals
and bands, respectively. hTB is the tight-binding Hamiltonian
where not only 3d but also 4s and 4p states are considered.
The hopping parameters in hTB are determined to reproduce
band structures calculated by density functional theory with-
out spin polarization. The generalized gradient approximation
with the Perdew-Burke-Ernzerhof functional is used as an
effective exchange-correlation functional [29]. Spin polariza-
tion is caused by the Coulomb integrals U , U ′, and J in the
Hamiltonian. n̄ and m̄ are the mean values of electron number
and spin polarization. Here, the double counting correction
H̄ ′TB

band is H̄ ′
band with n̄ and m̄ obtained by solving only hTB.

The explicit form of vζ ζ ′,ξξ ′ is represented by the matrix
elements of the electron-electron interaction vee:

vζ ζ ′,ξξ ′ = 〈ψζ ψξ |vee|ψζ ′ψξ ′ 〉 − 〈ψζ ψξ |vee|ψξ ′ψζ ′ 〉, (A3)

〈ψζ ψξ |vee|ψζ ′ψξ ′ 〉

=
∑

L

4π

2l + 1
G(1, mζ ′ ; L|1, mζ )G(2, mξ ; L|2, mξ ′ )

× F l (2p, 3d )δσζ ,σζ ′ δσξ ,σξ ′ , (A4)

〈ψζ ψξ |vee|ψξ ′ψζ ′ 〉

=
∑

L

4π

2l + 1
G(2, mξ ′ ; L|1, mζ )G(2, mξ ; L|1, mζ ′ )

× Gl (2p, 3d )δσζ ,σξ ′ δσξ ,σζ ′ , (A5)

where the angular momentum index L is shorthand notation
for (l, m). F l (2p, 3d ) and Gl (2p, 3d ) are the lth order of the
Slater-Condon parameters. We set (F 0, F 2; G1, G3) to (2, 0;
2, 0) in the unit of electronvolt.
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FIG. 6. Calculated L-edge XMCPE spectra for metallic iron
within the Hartree-Fock approximation. The polarization of the in-
cident and emitted photons are denoted by (λi, λ f ). The emission
intensity is normalized by the integral of the spectrum with the
polarization of (0, 0).

G+,3d is approximated to Ḡ+,3d within the Hartree-Fock
approximation:

−i
∑
kd

Ḡ+,3d
kd ξ,kd ξ ′ (ωd ) ∝

∑
γ

uγ
mξ

uγ ∗
mξ ′ Dγ σd (ωd ) f (ωd ), (A6)

TABLE I. Integral values of spectral intensities obtained from the
sum rules are compared with those calculated by DOS D.

Integral/In From spectra From DOS

ILS −0.007695 0
IL −0.000010 0
IQ 3.333069 3.333269
I (1)
T S 0.058986 0.054975

I (2)
T S 0.213275 0.201574

IS −0.140879 −0.164887
IT 0.009019 0.000009

Dγ σd (ωd ) = 2π

N

∑
kd

[
− 1

π
Im

(
1

ωd − Ekd γ σd + iηD

)]
,

(A7)

where D is the density of states (DOS) in the 3d shell and f is
the Fermi distribution function. The energy origin is chosen to
the Fermi energy. ηD is a broadening parameter and its value
is set to 0.01 eV as a substantially small value.

Figure 6 shows calculated L-edge XMCPE spectra by
using Eq. (36) for metallic iron without the Gaussian broaden-
ing. The incident and emitted x-ray angles (βi and β f ) are set
to 0◦. The detailed parameter settings are the same as those
for K-edge XMCPE shown in Ref. [24]. The origin of the
calculated emission energies is shifted to be consistent with
the reported x-ray emission energy [30]. In Table I the values
obtained by the sum rules are compared with those calculated
by D. The deviation of the value of IS/In is about 20%, which
comes from the deviation of the calculated u j,μ

m,σ from the
Clebsch-Gordan coefficients. It is confirmed that the deviation
for IS/In as well as for the other integrals becomes less than
a few percentages by using the exact Clebsch-Gordan coeffi-
cients instead of the calculated u j,μ

m,σ .

APPENDIX B

In this Appendix, we show details of the dipole transition
matrices wd̃,2p and w3d,2p and the derivation of Eq. (36).

We use the following relation in order to convert the veloc-
ity form to the length form of the dipole matrices:

[x − X, He] = ipx(X ), (B1)

px(X ) ≡ 1

i

∂

∂ (x − X )
, (B2)

He |n〉 = En |n〉 , (B3)

where He is the electron Hamiltonian and X is a classical
number and a position in the x direction. Within the dipole
approximation, a transition matrix can be represented as
follows [31]:∑

i

eiQ·Ri 〈n|ε̂λ(β ) · p(Ri )|n′〉

∝
∑

i

eiq·Ri (En′ − En)〈n|riY1,λ[r̂i(β )]|n′〉, (B4)

Q · ε̂λ(β ) = 0, (B5)
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Ri = (Xi,Yi, Zi ), (B6)

ri(β ) = R(β )(r − Ri )R
−1(β ) ≡ R(β ) riR

−1 (β ), (B7)

Y1,λ[r̂i(β )] =
∑

m̄

Y1,m̄(r̂i) d (1)
m̄,λ(β ), (B8)

where Q and q are the momentum vector in the extended zone
scheme and the crystal-momentum vector in the first Brillouin
zone, for a photon with the polarization λ, respectively. Ri is

the position vector at the lattice point i. The operator R(β )
rotates a vector at an angle β in the y axis. For the linear
polarization (λ = 0) β corresponds to the angle between the
polarization and magnetization directions, while for circular
polarization (λ = ±1) β corresponds to the angle between
the photon propagation and magnetization directions. d (1) is
the orthogonal Wigner’s small d matrix for the first order.
In this paper, the eigenstates for the transition matrices are
approximated to the Hartree-Fock solutions.

First, wd̃,2p can be calculated as follows:

w
d̃,2p
K̃σ̃ ,kpζ

(�i) ∝ 1√
εi

1√
N

∑
ii,ip

eiqi ·Rii eikp·Rip
〈
ψ d̃

K̃,σ̃

∣∣ε̂λi (βi ) · p(Rii )
∣∣ψ2p

ip,ζ

〉

∝ 1√
N

∑
ii,ip

eiqi ·Rii eikp·Rip

∑
ζ̄ , j,μ

Ej,μ − εK̃√
εi

(
u j,μ

ζ uζ̄
j,μ

)〈
ψ d̃

K̃,σ̃

∣∣riiY1,λi [r̂ii (βi )]
∣∣ψ2p

ip,ζ̄

〉

≈ 1√
N

Ē2p − εK̃√
εi

∑
ii,ip

eiqi ·Rii eikp·Rip
〈
ψ d̃

K̃,σ̃

∣∣riiY1,λi [r̂ii (βi)]
∣∣ψ2p

ip,ζ

〉
, (B9)

where Ē2p is the average value of the eigenvalues of H̄2p. The wave functions ψ d̃ and ψ2p are defined by

〈
r
∣∣ψ d̃

K̃,σ̃

〉 = 1√
�

eiK̃·r|σ̃ 〉, 〈
r
∣∣ψ2p

ip,ζ

〉 = ψ2p(rip )Y1,mζ
(r̂ip )|σζ 〉, (B10)

where � is the volume of a unit cell. Bauer’s formula is useful to calculate a plane wave function:

eiK·r = 4π
∑

L

il jl (Kr)YL(r̂)Y ∗
L (K̂ ), (B11)

where jl is the spherical Bessel function for the order l . The braket part in Eq. (B9) is approximated as follows:

〈
ψ d̃

K̃,σ̃

∣∣riiY1,λi [r̂ii (βi )]
∣∣ψ2p

ip,ζ

〉 = δσ̃ ,σζ√
�

∫
dr e−iK̃·rripY1,λi

[
r̂ip (βi )

]
ψ2p

(
rip

)
Y1,mζ

(
r̂ip

) ≈ δσ̃ ,σζ√
�

e−iK̃·Rip Imζ ,λi (K̃; βi ) δii,ip, (B12)

Imζ ,λi (K̃; βi ) = 4π i2I2(K̃ )
∑
m,m′

G(1mζ , 1m′|2m)d (1)
m′,λi

(βi )Y2,m(− ˆ̃K ) + 4π i0I0(K̃ )
∑

m′
G(1mζ , 1m′|00)d (1)

m′,λi
(βi )Y00, (B13)

Il (K̃ ) =
∫

dr r3 jl (K̃r)ψ2p(r). (B14)

Therefore,

w
d̃,2p
K̃σ̃ ,kpζ

(�i ) ∝ 1√
N

Ē2p − εK̃√
εi

δσ̃ ,σζ
Imζ ,λi (K̃; βi )

∑
ip

ei(kp+qi−k̃)·Rip = δkp+qi,k̃δσ̃ ,σζ

√
N

Ē2p − εK̃√
εi

Imζ ,λi (K̃; βi ), (B15)

(
w

d̃,2p
K̃σ̃ ,k̃′

pζ̃
′ (�i )

)∗
w

d̃,2p
K̃σ̃ ,kpζ

(�i ) ≈ δk̃′
p+qi,k̃δkp+qi,k̃ δσ̃ ,σζ̃ ′ δσ̃ ,σζ

N

(
Ē2p − εK̃√

εi

)2

I∗
mζ̃ ′ ,λi

(K̃; βi )Imζ ,λi (K̃; βi ). (B16)

If K̃ is large enough to satisfy G̃ � k̃, then we can use∑
K̃

f (K̃) ≈
∑

K̃

f (G̃) ∝
∑

k̃

∫
dG̃ f (G̃), (B17)

where f is any function of K̃. This approximation allows the solid-angle integration of I∗
mζ̃ ′ ,λi

Imζ ,λi , which eliminates the off-
diagonal terms:∫

d ˆ̃G I∗
mζ̃ ′ ,λi

(G̃; βi ) Imζ ,λi (G̃; βi ) ∝ (I2(G̃))
2
Md̃,2p

mζ̃ ′ ,mζ ;λi
(βi; R02),

Md̃,2p
mζ̃ ′ ,mζ ;λi

(βi; R02) ≡
∑

m̄

G(1, mζ̃ ′ ; 1, m̄ − mζ̃ ′ |2, m̄) d (1)
m̄−mζ̃ ′ ,λi

(βi )G(1, mζ ; 1, m̄ − mζ |2, m̄) d (1)
m̄−mζ ,λi

(βi )

+ R02 d (1)
−mζ̃ ′ ,λi

(βi ) d (1)
−mζ ,λi

(βi ), (B18)
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where R02 is originally (I0(G̃)/I2(G̃))2 but treated as a parameter in this paper. In order to obtain sum rules, R02 is set to 0 and
Md̃,2p(βi ) ≡ Md̃,2p(βi; 0). The following relation is useful to derive Eq. (36):

∑
G̃

(
w

d̃,2p
K̃σ̃ ,k̃′

pζ̃
′ (�i )

)∗
w

d̃,2p
K̃σ̃ ,kpζ

(�i ) f (K̃ ) ≈ Nδk̃,k̃′
p+qi

δk̃,kp+qi
δσ̃ ,σζ̃ ′ δσ̃ ,σζ

Md̃,2p
mζ̃ ′ ,mζ ;λi

(βi )
∫

dG̃ G̃2 I d̃,2p(G̃, εi ) f (G̃)

∝ Nδk̃,k̃′
p+qi

δk̃,kp+qi
δσ̃ ,σζ̃ ′ δσ̃ ,σζ

Md̃,2p
mζ̃ ′ ,mζ ;λi

(βi )
∫

dε ρ0(ε) I d̃,2p(G̃ε, εi ) f (G̃ε ), (B19)

G̃ε =
√

2ε, (B20)

I d̃,2p(G̃ε, εi ) =
(

Ē2p − ε√
εi

)2

(I2(G̃ε ))
2
, (B21)

where ρ0 is the free electron density of states.
By using Eq. (B19), the terms related to K̃ in Eq. (33) are simplified as follows:∑

K̃

(
w

d̃,2p
K̃σ̃ ,k̃′

pζ̃
′ (�i )

)∗
w

d̃,2p
K̃σ̃ ,kpζ

(�i ) δ(εK̃ − εi f (ωd ))

≈ Nδk̃,kp+qi
δk̃,k̃′

p+qi
δσ̃ ,σζ̃ ′ δσ̃ ,σζ

Md̃,2p
mζ̃ ′ ,mζ ;λi

(βi)
∫

dε ρ0(ε) I d̃,2p(G̃ε, εi ) δ(ε − εi f (ωd ))

= Nδk̃,kp+qi
δk̃,k̃′

p+qi
δσ̃ ,σζ̃ ′ δσ̃ ,σζ

Md̃,2p
mζ̃ ′ ,mζ ;λi

(βi)ρ0(εi f (ωd )) I d̃,2p(G̃εi f (ωd ), εi ). (B22)

The order of εi f (ωd ) is dominated by that of (εi − ε f ), which is assumed to be a few kiloelectronvolts. Thus δ(εK̃ − εi f (ωd ))
restricts the order of εK̃ to a few kiloelectronvolts, which ensures G̃ � k̃ and justifies using Eqs. (B17) and (B19). Because the
order of the energy range of ωd is tens of electronvolts and substantially smaller than the order of (εi − ε f ), the ωd dependence
of εi f can be neglected. In addition, the order of �ε f [≡ | max(ε f ) − min(ε f )|] is the same as �ωd [≡ | max(ωd ) − min(ωd )|].
These energy-order estimations approximate ρ0 and I d̃,2p to constants (recall that εi is fixed and treated as a constant).

Next, w
3d,2p
kd ξ,kpζ

can be calculated as follows:

w
3d,2p
kd ξ,kpζ

(� f ) ∝ 1√
ε f

1

N

∑
id ,i f ,ip

e−ikd ·Rid eiq f ·Ri f eikp·Rip
〈
ψ3d

id ,ξ

∣∣ε̂λ f (β f ) · pi f

∣∣ψ2p
ip,ζ

〉

∝ 1√
ε f

1

N

∑
id ,i f ,ip

e−ikd ·Rid eiq f ·Ri f eikp·Rip

∑
ξ̄ ,γ

∑
ζ̄ , j,μ

Ej,μ − εγ (kd )√
ε f

(
uγ

ξ uξ̄
γ

)∗(
u j,μ

ζ uζ̄
j,μ

)〈
ψ3d

id ,ξ̄

∣∣ri f Y1,λ f [r̂i f (β f )]
∣∣ψ2p

ip,ζ̄

〉

≈ 1√
ε f

1

N

Ē2p − ε̄3d√
ε f

∑
id ,i f ,ip

e−ikd ·Rid eiq f ·Ri f eikp·Rip
〈
ψ3d

id ,ξ

∣∣ri f Y1,λ f [r̂i f (β f )]
∣∣ψ2p

ip,ζ

〉
, (B23)

where ε̄3d is the average of the eigenvalues of Hband. The braket part is approximated as follows:〈
ψ3d

id ,ξ

∣∣ripY1,λ f [r̂ip (β f )]
∣∣ψ2p

ip,ζ

〉 ≈ δσξ ,σζ
δid ,i f δi f ,ip

〈
ψ3d

i f ,ξ

∣∣ri f Y1,λ f [r̂i f (β f )]
∣∣ψ2p

i f ,ζ

〉
, (B24)

〈
ψ3d

i,ξ

∣∣riY1,λ f [r̂i(β f )]
∣∣ψ2p

i,ζ

〉 =
(∫

dri r3
i ψ3d,ξ (ri) ψ2p(ri)

)(∫
dr̂i Y ∗

2,mξ
(r̂i )Y1,λ f [r̂i(β f )]Y1,mζ

(r̂i )

)
≡ Iξ M3d,2p

mξ ,mζ ;λ f
(β f ), (B25)

Iξ =
∫

dr r3 ψ3d,ξ (r) ψ2p(r), (B26)

M3d,2p
mξ ,mζ ;λ f

(β f ) = G(1, mζ ; 1, mξ − mζ |2, mξ )d (1)
mξ −mζ ,λ f

(β f ). (B27)

Therefore,

w
3d,2p
kd ξ,kpζ

(� f ) ≈ δkd ,kp+q f δσξ ,σζ

Ē2p − ε̄3d√
ε f

Iξ M3d,2p
mξ ,mζ ;λ f

(β f )

≡ δkd ,kp+q f δσξ ,σζ
I3d,2p
ξ (ε f ) M3d,2p

mξ ,mζ ;λ f
(β f ), (B28)

I3d,2p
ξ (ε f ) = Ē2p − ε̄3d√

ε f
Iξ . (B29)
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In order to derive sum rules, we assume the m-independent radial 3d wave functions (ψ3d,ξ ≈ ψ3d ), which makes I3d,2p
ξ ≈

I3d,2p. Because �ε f is substantially smaller than the order of (Ē2p − ε̄3d )2, the ε f dependence of I3d,2p can be neglected, which
approximates I3d,2p to a constant.

Finally, combining Eqs. (33), (B22), and (B28) leads to Eq. (36).

APPENDIX C

In this Appendix, we show that the representation of the characteristic function χm′ (m) is determined uniquely in (βi, β f ) =
(0, 0). The eigenvectors em of Lz are defined by

em = (0, . . . , 0, 1, 0, . . . , 0)T ∈ R5, (C1)

where em has the unit value only for the m component. By the definition of em, the components of em work like the Kronecker
delta:

(em′
)m = δm′,m. (C2)

In order to construct a basis of R5, we define the following vector:

Vn
Lz

≡ (2n 1n 0n (−1)n (−2)n)T
, (C3)(

Vn
Lz

)
m = mn, (C4)

where 00 ≡ 1 in order to define V0
Lz

as the vector all of whose elements are one. Vn
Lz

corresponds to the vector extracting only
the diagonal components in the matrix form of (Lz )n represented by its eigenvectors with l = 2.

It can be shown that Vn
Lz

(n = 0, . . . , 4) is a basis of R5 as follows:

B ≡ (
V0

Lz
, V1

Lz
, V2

Lz
, V3

Lz
, V4

Lz

)
, (C5)

det(B) �= 0. (C6)

Thus em can be obtained by the linear combination of Vn
Lz

:

cm ≡ B−1em, (C7)

(Bcm′
)m =

4∑
n=0

(cm′
)nmn = δm′,m. (C8)

Therefore, χm′ (m) can be obtained by

χm′ (m) ≡
4∑

n=0

(cm′
)nmn. (C9)

Because χm′ (m) is a polynomial of m (= 0,±1,±2), any function of m can be expressed by a polynomial of m. For an
example of F (m) = f0δm,0 and G(m) = g1δm,1, when m is restricted to m = 0,±1,±2, the Kronecker delta can be replaced by
the characteristic function. As a result, F (m) + G(m) can be represented by

F (m) + G(m) =
(

f0

4
− g1

6

)
m4 − g1

6
m3 +

(
−5

4
f0 + 4

6
g1

)
m2 + 4

6
g1 m + f0. (C10)

Thus, unlike the Kronecker delta, the characteristic function allows one to perform calculations flexibly.
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