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The spin Hall effect (SHE) is responsible for electrical spin current generation, which is a key concept of
modern spintronics. We present a theoretical study of an extrinsic mechanism of SHE arising from a spin-
dependent s-d scattering in ferromagnets. In order to investigate the spin conductivity in a ferromagnetic 3d
alloy model, we employ a microscopic transport theory based on the Kubo formula and the averaged T-matrix
approximation. From the model, we derived an extrinsic mechanism that contributes to both the SHE and the
time-reversal odd SHE known as the magnetic SHE. This mechanism can be understood as the contribution from
anisotropic (spatial-dependent) spin-flip scattering due to the combination of the orbital-dependent anisotropic
shape of s-d hybridization and spin flipping, with the orbital shift caused by spin-orbit interaction with the d
orbitals. We also show that this mechanism is valid under crystal-field splitting among the d orbitals in either the
cubic or tetragonal symmetry.
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I. INTRODUCTION

The spin current is a central concept in recent spintron-
ics, and many novel devices driven by the spin current have
been proposed, including spin torque magnetic random ac-
cess memory [1]. Importantly, the use of the spin current
in practical applications requires the spin current to be gen-
erated efficiently. One of the most practical methods is the
spin-transfer effect in ferromagnetic metal bilayers. However,
because the spin transfer effect entails not only spin conduc-
tion but also charge conduction in principle, it damages the
barrier layer, which is a bottleneck in the development of
high-density memory [2,3].

The spin Hall effect (SHE) and inverse SHE are among the
most promising methods for controlling spin currents in next-
generation spintronics devices [4]. SHE is a phenomenon in
which a spin current is generated perpendicular to the applied
electric field in a material. Because the SHE can inject the
spin current without a large current flowing through the barrier
layer, it is expected to overcome the weakness of the spin
transfer effect. SHE has been studied mainly in nonmagnetic
heavy metals with a large spin-orbit interaction (SOI), such
as Pt. Recently, however, the SHE in ferromagnetic metals
(FMs) has attracted considerable attention [5–10]. Some mea-
surements show that the SHE in FMs can generate sufficient
spin current to induce magnetization switching with a spin
conversion ratio comparable to that in Pt [11–16]. The spin
swapping effect, a type of SHE that has a perpendicularly
polarized spin current, is also enhanced in FMs [17,18].
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Furthermore, spin-current generation owing to the planar
Hall effect (PHE) [a transverse anisotropic magnetoresistance
(AMR) effect], rather than the SHE, has also been shown to
occur in ferromagnetic metals [11,19,20]. This PHE-driven
spin current (PHE-SC) can also generate a large spin-orbit
torque, as demonstrated in recent measurements [19,20]. The
magnetic spin Hall effect (MSHE) and inverse MSHE, which
are new types of charge-spin conversion phenomena, have
been reported for a wide range of magnetic materials and have
attracted much attention [21–25]. The MSHE is defined as
the time-reversal odd (T-odd) spin-current generation effect;
that is, its sign is inverted under a time-reversal operation,
unlike the conventional SHE. According to this definition,
the PHE-SC can be considered as a variant of the MSHE
because the PHE-SC has T-odd symmetry as well. It should
be emphasized that the MSHE differs from the spin-polarized
current driven by the anomalous Hall effect (AHE), which
must be a T-even spin current because of the restriction of the
reciprocity theorem among the anomalous Hall conductivities.
Although the AHE and the associated spin-current generation
are driven by Lorentz forces owing to effective magnetic
fields, such as Berry curvature, the MSHE is not. As discussed
later, the redistribution of electrons by an applied electric field
is essential for the MSHE, rather the effective magnetic fields.

From the perspective of device applications, these
magnetization-induced SHE-like effects can have some ad-
vantages compared to SHE in nonmagnetic materials. For
example, magnetic materials could reduce the use of precious
metals. Moreover, the spin current in magnetic materials can
be easily controlled by modifying the magnetic structure,
whereas the spin current in nonmagnetic materials is restricted
by either the symmetry of the material or the geometry of

2469-9950/2021/104(9)/094417(15) 094417-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.094417&domain=pdf&date_stamp=2021-09-14
https://doi.org/10.1103/PhysRevB.104.094417


YUTA YAHAGI et al. PHYSICAL REVIEW B 104, 094417 (2021)

the device. An additional advantage is that the spin current
in magnetic materials is less constrained than that in non-
magnetic materials because of the symmetry breaking arising
from the magnetic structure. Magnetic materials can provide
polarized spin current parallel to the flow direction, which is
preferable for the spin-orbit torque switching of perpendicular
magnetization.

When an electric field Ej is applied to a material, the
response spin current Jμ

i is described as

Jμ
i = σ

μ
i j E j, (1)

where μ and i denote the spin polarization direction and flow
direction of the spin current, respectively. The linear response
tensor σ

μ
i j is referred to as a spin-conductivity tensor. We

decompose σ
μ
i j by the time-reversal symmetry, and define the

T-even term as the SHE with T σ SHE = +σ SHE and the T-odd
term as the MSHE with T σ MSHE = −σ MSHE where T de-
notes the time-reversal operation. For systems invariant under
time-reversal symmetry, such as nonmagnetic materials, the
relationship of T σ

μ
i j = +σ

μ
i j holds and the MSHE is forbid-

den. Therefore, MSHE can only appear in magnetic materials.
The shape of the spin-conductivity tensor has already been
determined by symmetry analysis with a general formalism of
linear response theory [26,27]. While the symmetry analyses
include all linear response contributions, we shall discuss
individual mechanisms to gain more insight into the origin of
the spin conduction.

The microscopic mechanisms of SHE in nonmagnetic ma-
terials have been understood with reference to the theory of
the anomalous Hall effect (AHE) in ferromagnetic materials.
The major contributions to the SHE are widely believed to
be the intrinsic mechanism owing to the Berry curvature of
the band structure [28] and the extrinsic mechanism due to
impurity scattering under the influence of the SOI, as well as
skew scattering [29] and the side jump [30]. Hereinafter, we
refer to the SHE arising from the intrinsic, skew-scattering,
and side-jump mechanisms as the conventional SHE.

In magnetic materials, σ
μ
i j cannot be fully explained by

extending the AHE theory because of the existence of ad-
ditional contributions. Recently, several measurements have
shown a qualitative disagreement between the anomalous Hall
resistivity and the spin Hall resistivity [31–33]. These re-
sults illustrate that the SHE is not always proportional to the
AHE, as is sometimes believed, and suggest the breakdown
of the two-current model or the existence of unidentified
mechanisms.

The mechanism of the MSHE is not analogous to that of
the AHE. From the viewpoint of Boltzmann transport theory,
the MSHE can be expressed by an asymmetric nonequilib-
rium distribution of the electron spins at the spin-momentum
locked Fermi surface, shifted by an external electric field
[21]. Although previous studies on the MSHE have mainly
focused on noncollinear antiferromagnets because this effect
was initially predicted [21] and observed [22] in Mn3Sn, the
symmetry analysis shows that the MSHE can appear in a
wide range of magnetic materials, including typical ferromag-
netic metals [24,25]. The MSHE was also first predicted for
bcc-Fe, assuming a simple estimation under the assumption
of spin-independent scattering [21]. In actual ferromagnetic

metal systems, however, spin-dependent scattering can play
a dominant role. The AMR effect is a typical phenomenon
in which the contribution from spin-dependent scattering is
more dominant than that from spin-independent scattering.
As mentioned above, it has already been partially discussed
in the study of the PHE-SC, a subset of the MSHE, under
the assumption of the two-current model. However, spin cur-
rents driven by spin-polarized currents are only the secondary
effects of a charge current response; thus, it is necessary to
proceed beyond the two-current model to completely under-
stand the spin-current response.

The purpose of this work is to investigate the spin-current
response in ferromagnetic metals with special focus on the
spin-dependent scattering effects. We consider a ferromag-
netic 3d transition metal dilute alloy model by assuming that
the atoms of the minority species are randomly distributed
impurities and investigate the impurity s-d scattering in this
model. The electronic structure is described within the frame-
work of the impurity Anderson model [34], which contains the
host-lattice Hamiltonian, impurity Hamiltonian, and their hy-
bridization term. We identified all the components of the spin
current by directly formulating the spin conductivity based on
microscopic linear response theory. Consequently, we found a
new extrinsic mechanism of electrical spin-current generation
arising from anisotropic (spatial-dependent) spin-flip (ASF)
scatterings, a type of spin-flip scattering that depends on
the direction of the momentum of the electron. This ASF
scattering mechanism can contribute both to the SHE and
to the MSHE with spin polarization not only parallel but
also perpendicular to the magnetization direction, which is
a feature that distinguishes it from the spin currents due to
spin-polarized AHE or PHE currents. Intuitively, the spin
current from the ASF scattering can be expressed as spins with
different spin angular momenta depending on their direction
of motion during the impurity scattering processes, as shown
in Fig. 1. This scattering process does not occur in an s-s
scattering but can occur in the s-d scattering involving an
SOI in the d-orbital states and the orbital-selective s-d tran-
sition. The SOI in d orbitals has two roles: spin-orbit mixing,
which causes spin flipping and orbital splitting as an effective
magnetic field. The orbital selectivity of the s-d transition
reorientates the spins in a different direction, of which the sign
corresponds to the phase of the target d orbital. Consequently,
the electrons moving in different directions receive different
spin angular momenta. Thus, the ASF scattering induces a
momentum imbalance of the nonequilibrium spin distribution,
which can drive spin currents polarized both parallel and
perpendicular to the magnetization direction. This mechanism
is new in the sense of microscopic origin, but not necessarily
in the sense of symmetry. Hereafter, we refer to the T-even
contribution from the ASF as the ASF-SHE and to the T-odd
contribution from the ASF as the ASF-MSHE.

The remainder of this paper is structured as follows. In
Sec. II, we introduce a one-electron Hamiltonian to describe
ferromagnetic dilute alloys in the impurity Anderson model
and express the spin conductivity by using the Kubo-Streda
formula [35]. In Sec. III, we present the results of perturbation
analyses and numerical calculations. In addition, we provide a
kinetic picture of ASF-SHE and MSHE. Finally, we summa-
rize our findings in Sec. IV.
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FIG. 1. (a) Real-space view of a spin-current induced by
anisotropic spin-flip (ASF) scattering, s-d scattering involving an
orbital-selective momentum-dependent spin-flip process. The blue
spheres with arrows represent s electrons with their spins moving
in the direction of the black arrows under the applied electric field Ex

and the magnetization m̂ ‖ x̂. The black spheres with red and blue el-
lipses represent an impurity with a d orbital. The colors correspond to
the sign of the phase. For example, an electron moving in the [1, 1, 0]
direction is more likely to receive a net spin angular momentum
+sy from a momentum-dependent spin flip, and vice versa for the
electrons moving in the [1, −1, 0] direction. Accordingly, not only
is the longitudinal spin current Jx

x associated with the spin-polarized
current, but also the transverse spin current Jy

y polarized perpendic-
ular to the magnetization direction. (b) Schematic representation of
a representative ASF scattering event. From a microscopic point of
view, a momentum-dependent spin flip can be realized by a combi-
nation of the spin-orbit interaction (SOI) in the d orbitals and the
selection rule for the s-d transition that connects the momentum and
d orbital of the s electron. This means that the momentum and spin
of an electron are coupled via intermediate d orbitals.

II. MODEL AND METHOD

In this study, we used two different coordinate systems, as
shown in Fig. 2. The first is a stationary coordinate system
with basis {x̂, ŷ, ẑ} and the other is a rotational coordinate
system with respect to the magnetization vector with basis
{θ̂, φ̂, m̂}. These coordinate systems are connected by the
following transformation:

(θ̂, φ̂, m̂)

= (x̂, ŷ, ẑ)

⎛
⎝cos θm cos φm − sin φm sin θm cos φm

cos θm sin φm cos φm sin θm sin φm

− sin θm 0 cos θm

⎞
⎠

≡ (x̂, ŷ, ẑ)R (2)

with a three-dimensional rotation matrix R with respect to θm

and φm, a polar angle and an azimuthal angle of a magneti-
zation vector determined in the stationary coordinate system.
For the sake of readability, we use Greek indices, such as μ, ν,

and λ, for the rotational coordinate system and Roman indices,
such as i, j, and n, for the stationary coordinate system. The

FIG. 2. Schematics of the coordination system of the stationary
coordinate with the basis {x̂, ŷ, ẑ} and the rotational coordinate with
respect to the magnetization direction m̂ with the basis {θ̂, φ̂, m̂}.

Pauli matrices are defined as

σ̃θ =
(

0 1
1 0

)
, σ̃φ =

(
0 −i
i 0

)
, σ̃m =

(
1 0
0 −1

)
,

(3)
and the spin basis {|↑〉 , |↓〉} is chosen from the eigenfunctions
of σ̃m. Hereinafter, all the operators represented by the 2 × 2
matrix in spin space, such as Ã, are distinguished by a tilde
and the 2 × 2 identity matrix is denoted as σ̃0.

Focusing on a ferromagnetic 3d transition metal dilute
alloy, for simplicity, we consider a downfolded electron band
containing 4s and 3d bands of the host lattice and localized
states of the minority species. For the host-lattice system,
we assume that the 4s band plays the role of conduction
and is described by the electron gas model, whereas the 3d
band plays the role of magnetization and is described by an
effective magnetic field under a mean-field approximation. On
the other hand, the localized states of the minority species
are regarded as randomly distributed magnetic impurities, and
their electronic states are described by localized atomic 3d
orbitals. In such a situation, the electron Hamiltonian can be
described as a multiorbital impurity Anderson model:

H̃ = H̃s + H̃imp + H̃hyb + Ũss, (4)

where H̃s is the conduction band Hamiltonian of the host-
lattice system, H̃imp is the atomic 3d orbital Hamiltonian of the
impurity system, and H̃hyb is the hybridization term. Ũss on the
right-hand side of Eq. (4) represents the s-s scattering through
the impurity potential and assumes a spin-independent delta
function potential for a sufficiently short distance compared
to the mean-free path of the conduction electrons. The con-
duction band can be described by

H̃s =
∑

k

h̄2k2

2m
c†

kck − �s

∑
k

(c†
kσ̃ck) · m̂, (5)

where ck = (ck,↑, ck,↓)T and c†
k = (c†

k,↑, c†
k,↓) denote the cre-

ation and annihilation operators of conduction electrons with
momentum k and spin σ . σ̂ = (σ̃θ , σ̃φ, σ̃m) is a vector rep-

resentation of the Pauli matrices in Eq. (3). h̄2k2

2m represents
the kinetic energy of the conduction electron, and �s is the
strength of the exchange splitting from the ferromagnetic
background. The Hamiltonian of the localized states in a
scheme of the Hartree-Fock approximation (HFA) can be
described by considering an exchange splitting, a SOI, and
a crystal field as follows:

H̃imp =
Nimp∑

i

2∑
M,M ′=−2

d†
i,M ′ {(Eimpσ̃0 − �dσ̃ · m̂)δM ′,M

+ λ[l]M ′,M · σ̃ + (Ṽcf )M ′,M}di,M , (6)

[Ṽcf ]M ′,M =�C

2
(δM ′,±2δM,±2 + δM ′,±2δM,∓2 + δM ′,±0δM,±0)

+ �T(δM ′,±1δM,±1 + δM ′,±0δM,±0),
(7)

where di,M = (di,M,↑, di,M,↓)T and d†
i,M = (d†

i,M,↑, d†
i,M,↓) de-

note the creation and annihilation operators of electrons on the
3d-orbital state on the impurity site i with the orbital magnetic
quantum number M and spin σ . Eimp is the energy level
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center of the impurity state measured from the bottom of the
conduction band. We treat Eimp as an individual parameter that
includes the uniform energy shift due to electron-electron cor-
relation, instead of giving a specific electron configuration. �d

is the strength of the exchange splitting in the impurity state
in the HFA, representing not only the intra-atomic electron
correlation but also the contribution from the ferromagnetic
molecular field created by the 3d bands of the surrounding
host lattice. l = (lx, ly, lz ) denotes each component of the
angular momentum operator belonging to azimuthal quantum
number L = 2, and λ represents the coupling constant of the
SOI. For the crystal field, we consider the case of cubic or
tetragonal crystals and take the crystal axis as (â, b̂, ĉ) =
(x̂, ŷ, ẑ). �C denotes the strength of the cubic field splitting.
Although the strength of the tetragonal-field splitting is not
exactly the same for each state, it is represented by a single
parameter �T for simplicity. �T denotes the energy difference
resulting from tetragonal distortion, that is, the deviation from
cubic symmetry. Because each localized state is independent
of the impurity position, H̃imp can be divided into the on-site
part H̃d and a part representing the impurity configuration,
written as

H̃d ⊗
(Nimp∑

i

|i〉 〈i|
)

. (8)

The hybridization term between the conduction band and
the localized state is expressed as

H̃hyb = 1√
	

Nimp∑
i

∑
k,M

(
c†

ke−ik·riṼ sd
k,Mdi,M + H.c.

)
, (9)

Ṽ sd
k,M = (

Ṽ ds
M,k

)† = −Ṽ (k)Y2,M (k̂), (10)

Ṽ (k) =
(

V↑(k) 0
0 V↓(k)

)
, (11)

where ri is the position vector pointing to the impurity center,
	 is the volume of the system, Vσ (k) is a radial function with
spin σ , and YL,M (k̂) is a spherical harmonic in the k space.
Here, we assume that spin mixing via an s-d transition event
is negligibly small.

To treat the randomness of the impurities, we adopted a
scattering T-matrix approach with a method based on the
Green’s function [36,37]. The s-s scattering is taken into
account within the first Born approximation. For the s-d scat-
tering, we treat this within the framework of the averaged
T-matrix approximation in the dilute limit (DL-ATA), under
the assumption that the interference between the impurities is
negligible and the impurity concentration is sufficiently dilute.
In addition, we exclude the scattering processes in which
the s-s and s-d scattering interfere with each other. These
approximations correspond to the disregard of, for example,
the diagrams in Fig. 3. In such a case, the Green’s function
G̃k of the conduction electron and its self-energy Σ̃k can be
expressed as shown in Fig. 4,

G̃±
k (E ) = {E σ̃0 − H̃s − Σ̃±

k (E )}−1
, (12)

Σ̃±
k (E ) = 〈T̃ ±

k,k〉conf
± iηssσ̃0, (13)

FIG. 3. Representative terms of the diagrams excluded from this
work. (a) Higher-order Born terms of s-s scattering. (b) Crossing
diagrams corresponding to quantum interference between multiple
impurities. (c) On-site interference between s-s and s-d scattering
terms.

where G̃k or Σ̃k with + (−) corresponds to the retarded
(advanced) Green’s function or self-energy and takes an ap-
propriate sign depending on its own analyticity. ηss is a
positive real constant corresponding to the magnitude of s-s
scattering and describes the constant spectral broadening of
the conduction band. 〈Ã〉conf denotes the configurational av-
erage of Ã of the impurity; therefore, 〈T̃k,k〉conf represents the
configurational average T matrix of the s-d scattering. Using
Nimp � 1, 〈T̃k,k〉conf is approximately equal to the self-energy
from the s-d scattering contribution.

Applying the DL-ATA, we obtain

〈T̃k,k′ (E )〉conf 
 nimpt̃k,k′ (E ), (14)

where t̃k,k′ (E ) is a T matrix of single-site scattering, that is,
the repeated scattering by the same impurity. For the impurity
Anderson model, t̃k,k′ (E ) can be derived as

t̃±
k′,k(E ) =

∑
M,M ′

Y ∗
2,M ′ (k̂

′
)Y2,M (k̂)Ṽ (k′)

× [E σ̃0δM ′,M − H̃d − Σ̃±
d (E )]−1

M ′,MṼ (k), (15)

∵[Σ̃±
d (E )]M ′,M =

∑
k

Ṽ ds
M ′,kG̃±

k (E )Ṽ sd
k,M . (16)

The diagrammatic expression of t̃k,k′ (E ) is shown in Fig. 5(a).
It has almost the same form as the T matrix of the single
impurity Anderson model except that in the case of mul-
tiple impurities, it includes a clothed Green’s function G̃k

FIG. 4. Diagrammatic representations of (a) Dyson’s equation
for Green’s function and (b) the self-energy of the conduction elec-
tron. (a) The bold lines represent the clothed Green’s function, and
the thin line represents the bare one. (b) Self-energy approximated
by the configuration-averaged s-d and s-s scattering T matrix. The
double-dashed line represents the s-d scattering, and the dotted line
represents the s-s scattering. The point marked by a cross represents
a coherent scattering event by a single impurity, whereas the point
marked by a diamond represents the scattering by the renormalized
effective potential, including all single-site scattering processes.
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FIG. 5. Diagrammatic representation of (a) the single-site s-d scattering T matrix in the dilute limit averaged T-matrix approximation,
(b) the current–spin-current correlation function for the Fermi-surface term in the Kubo-Streda formula, and (c) the Bethe-Salpeter equation
(BSE) of the current vertex function. Here, g̃d ≡ (E σ̃0 − H̃d )−1 represents the bare Green’s function of the impurity system, and G̃d ≡ (E σ̃0 −
H̃d − Σ̃d ) represents the clothed function. The second and third terms on the right-hand side of (c) vanish owing to the symmetry consideration
of the s-d and s-s scattering as Γl,l ′ (−k) = −Γl,l ′ (k), which leads to

∑
k Γl,l ′ (k) f (k) = 0. Therefore, the current vertex function can be replaced

by a bare current operator. For this reason, although the T matrix in (a) includes higher-order terms than Born approximation, the skew-
scattering terms contribute neither charge- nor spin-conduction in this work.

instead of a bare one g̃k. For simplicity, we approximate
[Σ̃±

d (E )]M ′,M → ±iηdσ̃0δM ′,M by introducing a positive real
constant, ηd. We do not expect this approximation to have a
major influence on the results of this work.

Each component of the spin conductivity tensor σ
μ
i j is given

by the so-called Kubo-Streda formula [35]

σ
μ
i j = σ

μ(I)
i j + σ

μ(II)
i j , (17a)

σ
μ(I)
i j = h̄

4π	
Tr

〈
Jμ

i {g̃+
k (EF) − g̃−

k (EF)}J̃0
j g̃−

k (EF)

−J̃μ
i g̃+

k (EF)J̃0
j {g̃+

k (EF) − g̃−
k (EF)}〉

conf
, (17b)

σ
μ(II)
i j = − h̄

4π	

∫ EF

−∞
dETr

〈
J̃μ

i {g̃−
k (E )}2J̃0

j g̃−
k (E )

−J̃μ
i g̃−

k (E )J̃0
j {g̃−

k (E )}2 + J̃μ
i g̃+

k (E )J̃0
j {g̃+

k (E )}2

−J̃μ
i {g̃+

k (E )}2J̃0
j g̃+

k (E )
〉
conf . (17c)

Here, we assume that the Fermi distribution function of the
electron is given by the unit step function, which corresponds
to the zero-temperature limit. J̃0

i represents the charge current
operator, and J̃μ �=0

i ≡ −(h̄/4e){J̃0
i , σ̃μ} represents an operator

of the spin current polarized in the μ direction. Here {Ã, B̃}
denotes an anticommutator. The charge- and spin-current op-
erators contain a velocity term derived from the hybridization
Hamiltonian, that is, ∂H̃hyb/∂ pi, which is known to contribute
to the side-jump mechanism [38–40]. However, because the
side-jump mechanism is not the focus of our work, we exclude
this term; thus, we set the charge- and spin-current operators

to

J̃0
i = −e

h̄ki

m
σ̃0, J̃μ

i = h̄2ki

2m
σ̃μ. (18)

The current vertex correction for the configuration average
is considered only for the terms containing 〈G̃±J̃0

i G̃∓〉conf be-
cause these terms are typically much more dominant in metals
than in other terms such as 〈G̃±J̃0

i G̃±〉conf . Therefore, in this
work, the vertex correction appears for σ

μ(I)
i j , and the Bethe-

Salpeter equation (BSE) for the current vertex −(eh̄/m)Γ̃ k,k′

is expressed as

[Γ̃ +−
k,k′ ]α,β = δk′,kδβ,αk + n2

imp

∑
{ki},{si}

[
Γ̃ +−

k1,k2

]
s1,s2

× [
G̃+

k1

]
s1,s3

[
G̃−

k2

]
s2,s4

[
t̃+
k1,k

]
s3,α

[
t̃−
k2,k′

]
s4,β

+ γ ss
∑

k,k′,s,s′
[Γ̃ +−

k,k′ ]s,s′ [G̃+
k ]s,α[G̃−

k′ ]s′,β , (19)

with the abbreviation for (E ) in each term. The diagrammatic
expressions of σ

μ(I)
i j and BSE are shown in Figs. 5(b) and

5(c). The second and third terms on the right-hand side of
Eq. (19) correspond to the vertex corrections from s-d and s-s
scattering, respectively. The s-s scattering vertex function γ ss

is a constant. The symmetry considerations show that these
vertex corrections vanish after taking the momentum integra-
tion because both integrands from the s-d and s-s scattering
are odd functions with respect to k as kY ∗

L,M (k̂′)YL,M (k̂) for
(L = 0, 2) [41].
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Eventually, the configurational averaged response function
can be obtained by replacing g̃k → G̃k and is derived as

σ
μ,(I)
i j = Aμ

(
h̄2

m

)2
1

(2π )3

∫
d3kkik jReTrσ σ̃μ

×{G̃+
k (EF)G̃−

k (EF) − G̃+
k (EF)G̃+

k (EF)}, (20a)

σ
μ,(II)
i j = Aμ

(
h̄2

m

)2
1

(2π )3

∫
d3k

∫ EF

−∞
dEkik jReTrσ σ̃μ

× [G̃+
k (E ),−G̃+

k (E )G̃+
k (E )]. (20b)

Aμ is the coefficient of charge conductivity A0 = e2/h for
μ = 0, and the coefficient of spin conductivity Aμ = −e/4π

otherwise. Both σ
μ,(I)
i j and σ

μ,(II)
i j do not change their sign

under the permutation of the direction (i ↔ j); therefore,
the resultant spin conductivity tensor is a symmetric tensor.
Note that the skew-scattering contribution does not appear
in this expression because Eq. (20) consists only of the co-
herent term owing to the absence of the vertex correction.
Skew scattering as a result of vertex correction is known
to appear when considering the scattering between states
with different parity, such as d-p scattering [38,39,42–44].
The side-jump contribution does not appear because it re-

quires relativistic corrections in the current operators [45],
which is not considered in Eq. (18). In addition, the intrinsic
mechanism disappears in Eq. (20) because the conduction
band is assumed to consist only of s electrons, where the
SOI does not take any effect unless the d-orbital SOI of the
impurity is induced extrinsically. Thus, we emphasize that all
of the conventional mechanisms (intrinsic, skew scattering,
and side jump) are excluded from Eq. (20). In addition, the
spin swapping effects are also excluded because they have the
same origins that are associated with the conventional mecha-
nisms of the SHE [17,18,46]. Hence all the contributions that
we study in this work arise from novel mechanisms.

III. CALCULATION RESULTS

A. Perturbative analysis

In this section, we derive an analytical expression for
the spin conductivity tensor σ

μ
i j in this model and deter-

mine its microscopic mechanism by taking a perturbation
expansion with respect to the SOI. For simplicity, the crystal
fields are disregarded in this section; thus �C = �T = 0. The
nonperturbative terms of the d-orbital Green’s function are
represented as

ϒ̃±(E ) =
(

ϒ±
↑ (E ) 0
0 ϒ±

↓ (E )

)
≡

(
(E − Eimp + �d ∓ iηd )−1 0

0 (E − Eimp − �d ∓ iηd )−1

)
. (21)

Hereinafter, their arguments are abbreviated.
After taking the perturbation up to the 2nd order with respect to the SOI coupling constant λ, the single-site T matrix t̃k,k in

Eq. (14) can be expanded as

t̃k,k 
 t̃0 + t̃ ′
0 + t̃ ′

‖ + t̃ ′
⊥, (22a)

t̃0 = 5

4π

(
V 2

↑ ϒ↑ 0
0 V 2

↓ ϒ↓

)
, (22b)

t̃ ′
0 = 15

4π
λ2(ϒ↑ + ϒ↓)

(
V 2

↑ ϒ2
↑ 0

0 V 2
↓ ϒ2

↓

)
, (22c)

t̃ ′
‖ = − 15

4π
λ2(ϒ↑ − ϒ↓)

(
V 2

↑ ϒ2
↑ 0

0 −V 2
↓ ϒ2

↓

)
k̂2

m, (22d)

t̃ ′
⊥ = − 15

4π
λ2V↑V↓ϒ↑ϒ↓(ϒ↑ − ϒ↓)(σ̃θ k̂θ + σ̃φ k̂φ )k̂m, (22e)

where t̃0 is the nonperturbative term, and the remainder are the perturbed terms. Among the perturbed terms, t̃ ′
0 represents the

isotropic parts with respect to the momentum vector k, whereas t̃ ′
‖ and t̃ ′

⊥ represent the spin-diagonal and off-diagonal parts of

the anisotropic (k̂-dependent) terms, respectively. By substituting these terms into Eq. (12), G̃k are expanded as

G̃ 
 G̃0 + nimpG̃0(t̃ ′
0 + t̃ ′

‖ + t̃ ′
⊥)G̃0, (23)

where G̃0 ≡ (E σ̃0 − H̃ s − nimpt̃0 ∓ iηss)−1 is the nonperturbative term of the Green’s function. We substitute this equation in
Eq. (20). Using the isotropic shape of G̃0 in the momentum space, we integrate Eq. (20) by part on the spherical surface and the
radius as

σ θ
μν = σ

(odd)
⊥

(
15

4π

)
I[k̂θ k̂mk̂μk̂ν] − σ

(even)
⊥

(
15

4π

)
I[k̂φ k̂mk̂μk̂ν], (24a)

σφ
μν = σ

(odd)
⊥

(
15

4π

)
I[k̂φ k̂mk̂μk̂ν] + σ

(even)
⊥

(
15

4π

)
I[k̂θ k̂mk̂μk̂ν], (24b)

σ m
μν = σ

(odd)
‖

(
15

4π

)
I[k̂μk̂ν k̂2

m] + δμ,ν σ̄ , (24c)
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where I[ f (k̂)] ≡ ∫
u.s. d k̂ f (k̂) is a surface integral on the unit sphere with respect to the momentum direction, σ̄ is the unperturbed

term of spin conductivity, and σ
(odd)
⊥ , σ

(even)
⊥ , and σ

(odd)
‖ are the remaining parts including a radial integral of a momentum vector,

which will be discussed later. The subscripts ‖ and ⊥ denote the spin polarization direction of the spin current parallel or
perpendicular to the magnetization direction, respectively. Here (even) and (odd) denote the even and odd parts with respect
to the permutation of the spin basis, which corresponds to the time-reversal symmetry. Performing the each spherical surface
integral in (24), we obtain the spin conductivity tensor in the rotational coordinates,

σ θ =
⎛
⎝ 0 0 σ

(odd)
⊥

0 0 −σ
(even)
⊥

σ
(odd)
⊥ −σ

(even)
⊥ 0

⎞
⎠, (25a)

σφ =
⎛
⎝ 0 0 σ

(even)
⊥

0 0 σ
(odd)
⊥

σ
(even)
⊥ σ

(odd)
⊥ 0

⎞
⎠, (25b)

σ m = 2(σ̄ + σ
(odd)
‖ )

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ + σ

(odd)
‖

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠, (25c)

and in the stationary coordinate,

σ n
i j =

∑
μνλ

RnλRiμRjνσ
λ
μν

= σ
(odd)
⊥ {Rjm(Riθ Rnθ + RiφRnφ ) + Rim(RnθRjθ + RnφRjφ )} + σ

(even)
⊥ {Rjm(RiθRnφ − RiφRnθ ) + Rim(RnφRjθ − RnθRjφ )}

+ Rnm{2(σ̄ + σ
(odd)
‖ )δ j,i + σ

(odd)
‖ (RjmRim − Rjθ Riθ − RjφRiφ )}. (26)

When m̂ = (0, 0, 1), both σλ
μν and σ n

i j are identical. Moreover, the spin conductivity tensor on the stationary coordinate for the
field and current direction and the rotational coordinate for spin polarization is

σ θ
i j = σ

(odd)
⊥ (RimRjθ + RjmRiθ ) − σ

(even)
⊥ (RimRjφ + RjmRiφ ), (27a)

σ
φ
i j = σ

(odd)
⊥ (RimRjφ + RjmRiφ ) + σ

(even)
⊥ (RimRjθ + RjmRiθ ), (27b)

σ m
i j = 2(σ̄ + σ

(odd)
‖ )δi, j + σ

(odd)
‖ (RimRjm − RiθRjθ − RiφRjφ ), (27c)

with the same rotation matrix R as Eq. (2). For example, in the case of Eq. (27), the transverse spin conductivity with i = y, j = x
when θm = π

2 is

σ θ
yx = σ

(even)
⊥ cos 2φm, (28a)

σφ
yx = −σ

(odd)
⊥ cos 2φm, (28b)

σ m
yx = σ

(odd)
‖ sin 2φm. (28c)

In Appendix A, we provide some more examples of spin conductivity tensor in the stationary coordinate system. Note that
Eqs. (25)–(27) hold for any system as long as the nonperturbative Green’s function G̃0 is isotropic in the momentum space.
The details of the electronic state are imposed on the coefficients σ

(odd)
⊥ , σ

(even)
⊥ , and σ

(odd)
‖ . σ m

i j in Eq. (27c) represents the
spin-conduction polarized parallel to the magnetization. This corresponds to the PHE-SC in the two-current model limit, which
treats each spin band independently when spin band mixing is sufficiently small [11]. In contrast to σ m

i j , σ θ
i j and σ

φ
i j in Eqs. (27a)

and (27b) represent the spin conduction polarized along a direction perpendicular to the magnetization.
Here, we comment on the shape of the tensor in Eq. (25) in terms of symmetry. The symmetry constraints on the spin

conductivity tensor have been established [26,27]. Because our model does not include any lattice (�C = �T = 0 in this section),
its symmetry is the same as that of a ferromagnetic electron gas. In such case, the symmetry-constrained spin conductivity tensor
is obtained as

σ θ =
⎛
⎝ 0 0 x002

0 0 −x102

x020 −x120 0

⎞
⎠, σ φ =

⎛
⎝ 0 0 x102

0 0 x002

x120 x020 0

⎞
⎠, σ m =

⎛
⎝x200 −x210 0

x210 x200 0
0 0 x222

⎞
⎠, (29)

by using the Symmetr code [47]. Thus, the tensor form in Eq. (25) is permitted in terms of symmetry. The tensor in Eq. (29) can
be found in all magnetic Laue groups which are compatible with ferromagnetism because an electron gas has higher symmetry
than any other lattices [48]. The individual tensors in Eq. (25) are symmetric under a permutation of field and current direction
whereas the general tensors in Eq. (29) do not have to be symmetric, for example, x020 �= x002. Note that while the ASF scattering
mechanism only produces the symmetric contribution in this work, a symmetric tensor is not necessarily a signature of this
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mechanism. Other microscopic origins can also contribute to symmetric tensors, and they are generally not distinguishable by
macroscopic symmetry.

We next derive the coefficients in Eq. (24), expressed as

σ
(odd)
⊥ = − 15

4π3
nimpe

(
λh̄2

m

)2 ∫ ∞

0
dkk4ReV↑V↓ϒ+

↑ ϒ+
↓ G+

0,↑G+
0,↓(G−

0,↑ + G−
0,↓) + (· · · ), (30a)

σ
(even)
⊥ = − 15

4π3
nimpe

(
λh̄2

m

)2 ∫ ∞

0
dkk4ImV↑V↓ϒ+

↑ ϒ+
↓ G+

0,↑G+
0,↓(G−

0,↑ − G−
0,↓) + (· · · ), (30b)

σ
(odd)
‖ = − 15

4π3
nimpe

(
λh̄2

m

)2 ∫ ∞

0
dkk4Re(ϒ+

↑ − ϒ+
↓ ){V 2

↑ (ϒ+
↑ )2G+

0,↑(G−
0,↑)2 − V 2

↓ (ϒ+
↓ )2G+

0,↓(G−
0,↓)2} + (· · · ), (30c)

where G±
0,σ = [G̃0]σ,σ and (· · · ) denote the terms including (G±

0,σ )3, whose contribution can be neglected in a diffusive metal
region. Because we consider dissipative conduction in metallic bands, we can neglect (· · · ) in Eq. (30). Assuming ηss = h̄

2τ0
�

EF and using the relations G+
0,σ (k)G−

0,σ (k) 
 2πτ0
h̄ δ(EF − Ekσ ), G+

0,σ (kFσ ) 
 −i τ0
h̄ , and G+

0,σ (kFσ̄ ) 
 σ 1
2�s

with Fermi momentum
of spin-σ band, kFσ , we can derive

σ
(odd)
⊥ 
 − h̄

2e

3nimpλ
2

8(E↑ − E↓)
{σ↑V↑(kF↓)V↓(kF↓) − σ↓V↑(kF↑)V↓(kF↑)}Re[(ϒ+

↑ − ϒ+
↓ )ϒ+

↑ ϒ+
↓ ], (31a)

σ
(even)
⊥ 
 h̄

2e

3nimpλ
2

8π (E↑ − E↓)
{σ↑V↑(kF↓)V↓(kF↓) + σ↓V↑(kF↑)V↓(kF↑)}Im[(ϒ+

↑ − ϒ+
↓ )ϒ+

↑ ϒ+
↓ ], (31b)

σ
(odd)
‖ 
 −3nimpλ

2

2e
{σ↑τ↑V 2

↑ (kF↑)Im[(ϒ+
↑ − ϒ+

↓ )(ϒ+
↑ )2] + σ↓τ↓V 2

↓ (kF↓)Im[(ϒ+
↑ − ϒ+

↓ )(ϒ+
↓ )2]}, (31c)

where σσ ≡ e2nσ τ0/m represents the nonperturbative conduc-
tivity of the spin-σ band with the Fermi momentum kFσ and

the carrier concentration of the Fermi gas nσ = k3
Fσ

6π2 . Because
all the expressions have (ϒ+

↑ − ϒ+
↓ ), these terms never appear

for a nonmagnetic impurity. From Eq. (31), we can obtain a
scaling law for the spin Hall (magnetic spin Hall) resistivity
ρSHE(MSHE) ≡ σ

even(odd)
⊥ /(σ↑ + σ↓)2 with respect to the longi-

tudinal charge resistivity ρxx as

ρSHE ∝ ρxx, ρMSHE ∝ P(EF)ρxx, (32)

where P(EF) ≡ (σ↑ − σ↓)/(σ↑ + σ↓) is the spin-polarization
ratio at the Fermi energy. Both ρSHE and ρMSHE scale linearly
with respect to ρxx, which is the same as the skew-scattering
mechanism of the conventional SHE.

We finally discuss how spin-dependent scattering with the
SOI produces a transverse spin conduction. To determine
the microscopic mechanism of both σ

(even)
⊥ and σ

(odd)
⊥ , we

analyzed the elementary processes of scattering, as shown
in Fig. 6. Here, we define the ladder operators σ̃± = (σ̃θ ±
iσ̃φ )/2. This process is referred to as anisotropic spin-flip
(ASF) scattering, highlighting its two distinctive features: spin
flipping and anisotropic (k̂-dependent) hybridization strength.
In ASF, the electrons are observed as the spin current of
σ̃± after experiencing s-d hybridization and propagation in
the d state with the SOI. The SOI plays two important
roles in ASF as orbital splitting (lmσ̃m) and orbital eleva-
tion with spin flipping (l±σ̃∓). The spin flipping leads to a
perpendicular-polarized spin current, which includes both the
T-even term and the T-odd term, as shown in Eqs. (25b)
and (25a). Moreover, because of the orbital elevation, the
incoming and outgoing d-orbital states can be different, such
as Ṽ sd

M Ṽ ds
M ′ �=M . Because Ṽ sd ∝ Y2,M (k̂) has an M-dependent

anisotropic shape, a mixture of Ṽ sd
M and Ṽ ds

M ′ �=M is required
for the spin conductivity to have not only the longitudinal
component (σμ

ii ), but also the transverse component (σμ
i j ). The

orbital splitting lm is required to avoid the cancellation of
Ṽ sd

M Ṽ ds
M±1 and Ṽ sd

−MṼ ds
−(M±1); therefore, the ASF-SHE/MSHE

should be obtained from the second- or higher-order perturba-
tion with respect to the SOI. For example, when the incoming
state M = 0 and outgoing state M ′ = +1, the transverse spin-
current contribution σ

θ (φ)
θm can be obtained as

σ
θ (φ)
θm ∝

∫
dkk̂mk̂θ (φ)

(
3k̂2

m − 1
){k̂m(k̂θ + ik̂φ )} �= 0. (33)

B. Kinetic view of the anisotropic spin-flip scattering

To provide an intuitive understanding of both ASF-SHE
and ASF-MSHE, we constructed a kinetic view of these
phenomena using the equations of motion based on the Boltz-

FIG. 6. Diagrammatic representation of an s-d scattering process
contributing both to the magnetic and the spin Hall effect, which
corresponds directly to Fig. 1(b). The solid and double lines rep-
resent the electrons of the conduction bands and impurity d-orbital
states, respectively. The gray points represent s-d hybridization, and
the white point represents the spin-orbit interaction on the d-orbital
states.
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FIG. 7. Polar plot for the nonequilibrium charge distribution function f0 with respect to φk for the different magnetization directions:
(a) φm = 0◦, (b) φm = 45◦, and (c) φm = 90◦, where φk and φm are the azimuthal angles of k̂ and m̂ on the stationary coordinate system. Each
line corresponds to the projection of θk and the polar angle of k̂. The bold arrow represents m̂, and the thin red arrow represents the anisotropic
part of the charge current induced by the direction-dependent distribution.

mann transport theory in the spin or space. We define the
2 × 2 matrix of the nonequilibrium electron distribution func-
tion as

f̃ (k) = σ̃0 f0(k) + σ̂ · f (k), (34)

where f0 is the charge distribution, and fμ is the spin distri-
bution with spin μ = θ, φ, m. We assume a three-dimensional
ferromagnetic electron gas with a weak SOI, which leads to a
spin-diagonal equilibrium distribution function with feq,↑ and
feq,↓, and start with the Boltzmann equation for a steady state

with the relaxation time approximation [49]

−eExvx

h̄
f̃ ′(k) = −1

2
{τ̃−1, δ f̃ (k)}, (35)

with f̃ ′(k) = ∂ f̃ (k)/∂ε↑,k = ∂ f̃ (k)/∂ε↓,k. δ f̃ (k) = f̃ (k) −
f̃eq(k) denotes the deviation from the equilibrium distribution.
The relaxation time τ̃ is spin-dependent and is represented by
a 2 × 2 matrix. Hereinafter, we assume the φ scan (θm = π/2)
for the magnetization direction until the end of this section.
Using the results of Eqs. (14) and (15), we define a relaxation
time which depends on the momentum direction (θk, φk) as
well as the magnetization direction φm, and obtain a linear
response solution of Eq. (35):

δ f0(k) ∝ {h0 + [ f ′
eq,↑(k) − f ′

eq,↓(k)] sin2 θk cos2(φk − φm)} sin θk cos φk, (36a)

δ fm(k) ∝ {hz + [ f ′
eq,↑(k) + f ′

eq,↓(k)] sin2 θk cos2(φk − φm)} sin θk cos φk, (36b)

δ fθ (k) ∝ [ f ′
eq,↑(k) + f ′

eq,↓(k)] sin2 θk sin 2(φk − φm) sin θk cos φk, (36c)

δ fφ (k) ∝ [ f ′
eq,↑(k) − f ′

eq,↓(k)] sin2 θk sin 2(φk − φm) sin θk cos φk, (36d)

where the terms h0 and hz are independent of k̂ and m̂, re-
spectively. The derivation is given in Appendix B. First, we
observe the momentum dependence of the charge distribution,
f0(k), as plotted in Figs. 7(a)–7(c). Reflecting the s-d scatter-
ing nature of the relaxation time, δ f0(k) shows an anisotropic
distribution depending on the relative angle between the mag-
netization angle φm and momentum angle φk. Comparing
φm = 0 and φm = π

2 in Fig. 7, the distribution along the x axis
is different, and therefore the longitudinal current j0

x is modu-
lated by the direction of magnetization. This behavior can be
understood as the AMR effect. For φm = π

4 , the distribution
is biased in the y-axis direction and provides finite transverse
currents j0

y , which is the PHE.
Similarly, δ fθ (k) and δ fφ (k) also have momentum-

dependent distributions as shown in Figs. 8(a)–8(c), resulting
in nonequilibrium spin currents polarized along θ̂ or φ̂. When
φm = 0 or φm = π

2 , as shown in Fig. 8, the finite transverse
spin currents jθy , jφy , which correspond to ASF-SHE/MSHE,
exist. Namely, the ASF-SHE/MSHE can be understood intu-

itively in a similar way to the PHE in terms of the anisotropic
spin-dependent relaxation time. The ASF-SHE/MSHE is
governed by spin-flip scattering, whereas the PHE is gov-
erned by spin-dependent momentum scattering. When φm =
π
4 , there are finite longitudinal spin currents jθx , jφx , which can
be understood similarly to the AMR effect.

Note that a nonequilibrium anisotropic spin distribu-
tion of this nature is not specific to the momentum- and
magnetization-dependent relaxation time, as discussed here.
When the Fermi surface has spin-momentum locking, a con-
stant relaxation time can also generate a spin distribution and a
resultant spin current, which can show the same magnetization
dependence [21]. Although both mechanisms can contribute
to the spin current with the same symmetry, they show quanti-
tatively different dependencies on parameters, reflecting their
different microscopic origins. Therefore, we would obtain
both contributions and their interference effect if we were to
utilize both the spin-momentum locking Fermi surface and
magnetization-dependent relaxation time.
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FIG. 8. Spherical plot for the isosurface of a nonequilibrium spin distribution function δ fθ with respect to φk for the different magnetization
directions: (a) φm = 0◦, (b) φm = 45◦, and (c) φm = 90◦. The colored area represents the sign of the distribution function, with red and blue
denoting positive and negative signs, respectively. The ↑ spins are more likely to flip to ↓ for the red area, and vice versa for the blue area,
which corresponds to the illustration in Fig. 1. Note that δ fφ shows the same isosurface as δ fθ .

C. Numerical calculation

We numerically evaluated Eq. (20) to test the validity of
the perturbative analysis developed in the previous section and
qualitatively investigate the dependence on several parameters
including the crystal-field splitting. In this section, we focus
on σμ

yx with μ = θ, φ, m. We set the parameters �s = �d =
0.5 and ξ = −0.025 in units of h̄2/2m, which we consider to
be reasonable for ferromagnetic metals. We take the bottom
of the conduction electron band as the reference point for the
energy and set Eimp = 0.45. The density of states (DOS) is
shown in Fig. 9. For simplicity, we assume V↑(kF) = V↓(kF) =
V , and choose the parameters related to impurity scattering as
nimpV 2 = 0.1 and ηss = ηd = 0.1.

FIG. 9. Schematics of the projected density of states (PDOS) of
the conduction bands and the 3d level for Eimp = 0.45 and �s =
�d = 0.5. The solid gray and solid black lines represent the PDOS
of the conduction band and the PDOS of the 3d states for each
spin, respectively. The dotted red and blue lines represent the PDOS
of each splitting 3d level due to the cubic and tetragonal crystal
fields, respectively. The hatched area represents a half-metallic re-
gion, where a single spin conduction band is present. To improve
visualization, the spin-orbit interaction is ignored, and the spectral
widths are adjusted using different values from those in the numerical
calculations.

First, we show the dependence of the spin conductivities
on the direction of magnetization and Fermi energy in the case
of �C = �T = 0, and then compare the results of the pertur-
bative analysis. Hereinafter, we consider the spin Hall angles
(SHAs) ϑμ

yx ≡ − h̄
2eσ

μ
yx/σ

0
xx instead of σμ

yx. Figure 10 shows the
dependencies of the SHAs on the magnetization angle in the φ

scan (θm = π/2) with EF = 0.9. These results are consistent
with the prediction of the perturbative analysis in Eq. (28)
because we find that the σ θ

yx, σ
φ
yx ∝ cos 2φ and σ m

yx ∝ sin 2φ.

The Fermi energy dependencies of ϑ
(even)
⊥ , ϑ

(odd)
⊥ , ϑ

(odd)
‖ and

the planar Hall angle (PHA) are shown in Figs. 11(a) and
11(b). The results show that all of the plots have peaks be-
cause of resonant scattering in the vicinity of each impurity
level. Referring to Eq. (31), it is clear that these resonance
peaks reflect the spectral structure of the Green’s functions
of each of the d-orbital states. In panel (a), the PHA takes
values of approximately �2%, which seems of a reasonable
order of magnitude in a typical ferromagnetic metal, although
we use a simplified model with roughly estimated parame-
ters. In the half-metallic region (EF � 0.55), σ

(odd)
‖ is roughly

proportional to the PHA, supporting the spin-polarized PHE.
In the normal metallic region (EF � 0.55), the relationship
between ϑ

(odd)
‖ and PHA becomes more complex because the

contribution from both spin bands is tangled. ϑ
(odd)
‖ tends to

be enhanced in the half-metal region rather than in the normal

FIG. 10. Spin Hall angles ϑμ
yx ≡ −(2e/h̄)σμ

yx/σ
0
xx as functions of

the in-plane magnetization direction φm.
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FIG. 11. Fermi energy dependencies of the spin Hall angles for (a) σ
(odd)
‖ and (b) σ

(even)
⊥ , σ

(odd)
⊥ . The vertical red line represents the position

of each 3d level. The insets show the intensities of each spin conductivity before being normalized by the longitudinal conductivity. The planar
Hall angle is also plotted in (a). The hatched area represents the half-metallic region shown in Fig. 9.

metallic region. This is because σxx in the half-metal region is
smaller than that in the normal metal region. In contrast, σ (odd)

‖
maintains the same order of magnitude from the half-metal
region to the normal metal region. On the other hand, in panel
(b), because ϑ

(even)
⊥ and ϑ

(odd)
⊥ are governed by the mixing

of ϒ↑ and ϒ↓, little difference in magnitude exists between
the half-metallic and normal metallic regions. Note that this
is the case for the SHA; however, the absolute value of the
spin conductivity itself increases with increasing longitudinal
conductivity, as shown in the inset of Fig. 11(b). Comparing
the behavior of ϑ

(even)
⊥ and ϑ

(odd)
⊥ with Eqs. (31b) and (31a), it

becomes possible to obtain the characteristics of the real and
the imaginary parts of the Green’s function.

Next, we present the calculation results by taking into
account the cubic or tetragonal crystal field, either of which
splits the 3d-orbital states, as shown in Fig. 9. Figures 12(a)
and 12(b) show the magnetization angular dependencies of
SHAs under the cubic field (�C = 0.15,�T = 0) and the

tetragonal field (�C �= 0,�T �= 0). Compared to the results
obtained without the crystal field (Fig. 10), the crystal fields
change not only the angular dependency but the amplitudes in
each component of the SHA.

Figure 13 shows the Fermi energy dependencies of ϑ
(even)
⊥

and ϑ
(odd)
⊥ for various values of the cubic field. In both results,

the resonance peaks shift together with the splitting 3d levels
when �C �= 0, whereas the behavior around each peak is
similar to that in the case of �C = 0. This trend also holds for
the tetragonal crystal field. Figure 14 shows the Fermi energy
dependencies of ϑ

(even)
⊥ and ϑ

(odd)
⊥ for various values of the

tetragonal field. Similarly to Fig. 13, the peaks shift together
with the 3d levels without any drastic change of the functions.
These results suggest that the cubic or tetragonal crystal field
can modify the magnitude of the SHAs via the splitting of
the 3d states, but do not change the physical view of ϑ

(even)
⊥

and ϑ
(odd)
⊥ that arise from the s-d scattering with anisotropic

spin flipping. Therefore, we expect both the ASF-SHE and

FIG. 12. Spin Hall angles σ̃ μ
yx ≡ −(2e/h̄)σμ

yx/σ
0
xx as functions of the in-plane magnetization direction φm with (a) the cubic field splitting

�C = 0.15, �T = 0.0 and (b) the tetragonal field splitting �C = 0.15, �T = 0.05.
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FIG. 13. Fermi energy dependencies of spin Hall angles for (a) σ
(even)
⊥ and (b) σ

(odd)
⊥ for various values of the cubic crystal field �C =

0.0, 0.15, 0.3. The arrows at the bottom represent the positions of the corresponding energy levels.

ASF-MSHE to be robust against the crystal field effect and to
appear in actual materials.

IV. SUMMARY

We proposed an extrinsic mechanism for the spin Hall
effect (SHE), which arises from anisotropic spin flipping in
the electron scattering processes. We assumed the existence
of s-d scattering in a ferromagnetic 3d alloy and represented it
using a multiorbital impurity Anderson model considering the
spin-orbit interaction (SOI) and the crystal-field splitting of
the d-orbital states. The spin conductivities were formulated
using microscopic transport theory based on the Kubo formula
within the averaged T-matrix approximation for randomness.
To determine the physical aspect of the spin conductivity, we
first performed an analytical derivation using a perturbation
expansion with respect to the SOI up to the second order. As
a result, we obtained the spin conductivity tensor with both
contributions to the time-reversal even (SHE) and the time-

reversal odd (magnetic SHE) from the anisotropic spin-flip
scattering (ASF) process: a scattering process that combines
the anisotropic (spatially dependent) s-d hybridization and
spin flip by the SOI. From a microscopic viewpoint, the ASF
can be understood as the coupling between the momentum of
the s electron and its spin via the intermediate d orbital of an
impurity, which is a result of the combination of the SOI in
the d orbital and the orbital-selective s-d transition. The spin
current of both effects follows cos 2φ, where φ is the relative
angle between the magnetization and the applied electric field,
and their spin Hall resistivities approximately scale linearly
with the longitudinal resistivity in the diffusive metal region.
For the analytical calculation, we disregarded the crystal-field
splitting for simplicity. In the kinetic view, the ASF scattering
processes are responsible for a φ-dependent spin-flip relax-
ation time, which induces an anisotropic nonequilibrium spin
distribution and consequently generates a finite spin current.
This is similar to the planar Hall effect (PHE) in bulk fer-
romagnets, which arises from an anisotropic nonequilibrium

FIG. 14. Fermi energy dependencies of spin Hall angles for (a) σ
(even)
⊥ and (b) σ

(odd)
⊥ for various values of the tetragonal distortion �T =

−0.1, −0.05, 0.0, 0.05, 0.1 and the cubic crystal field �C = 0.15 (fixed).
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charge distribution. A distinctive feature of the ASF-SHE
is that the spin current is polarized perpendicular to m̂ and
controllable by the magnetization direction. We also per-
formed numerical calculations to determine the influence of
the crystal-field splitting. The φ dependencies and Fermi
energy dependencies were computed for different strengths
of the crystal field. As a result of their dependencies on φ,
both the spin Hall angle (SHA) of the ASF-SHE and the
ASF-MSHE were proportional to cos 2φ, in agreement with
the perturbative results even with cubic or tetragonal crystal
fields. From the Fermi energy dependencies, we found that
the crystal fields appear to produce only energy shifts owing
to the level splitting among d states and do not suppress the
spin current. The results suggest that both the ASF-SHE and
ASF-MSHE are robust against orbital splitting owing to the
crystal fields; therefore, they can appear in actual materials.
Although both the ASF-SHE and ASF-MSHE have not yet
been experimentally determined, we expect that a contribu-
tion from these effects can be involved in the SHE signals
of precursive measurements in ferromagnetic metals. If they
occur, we expect their contribution to show linear scaling with
the longitudinal charge conductivity and a twofold (cos 2φ)
dependence with respect to the relative angle between the
applied electric field and the magnetization direction.

ACKNOWLEDGMENTS

This study was supported by the Center for Spintron-
ics Research Network (CSRN). Y.Y. acknowledges support
from GP-Spin at Tohoku University. J.Ž. acknowledges the
Grant Agency of the Czech Republic Grant No. 19-18623Y,
Ministry of Education of the Czech Republic Grants No.
LM2018110, No. LNSM-LNSpin, EU FET Open RIA Grant
No. 766566, and support from the Institute of Physics of the
Czech Academy of Sciences and the Max Planck Society
through the Max Planck Partner Group Programme. This work
was supported by the Ministry of Education, Youth and Sports
of the Czech Republic through the e-INFRA CZ (ID:90140).

APPENDIX A: MAGNETIZATION ANGULAR
DEPENDENCE OF THE SPIN CONDUCTIVITY

To help with practical applications, we provide the mag-
netization angle θm, φm dependency of the spin conductivity
in some specific cases. We firstly derive σμ

xx and σμ
yx, (μ =

θ, φ, m), the longitudinal and transverse spin conductivity
with a rotational coordinate spin polarization in Eq. (27), that
will be compatible with magnetic resonance measurements.

(i) φm scan (θm = π/2, φm = [0 : 2π )) is

σ θ
xx = σ

(even)
⊥ sin2 φm, (A1a)

σφ
xx = σ

(odd)
⊥ sin 2φm, (A1b)

σ m
xx = 2(σ̄ + σ

(odd)
‖ ) + σ

(odd)
‖ cos 2φm, (A1c)

and σμ
yx is already given in the main text as Eq. (28).

(ii) Polar θm scan (θm = [0 : 2π ), φm = 0) is

σ θ
xx = σ

(odd)
⊥ sin2 θm, (A2a)

σφ
xx = σ

(even)
⊥ sin 2θm, (A2b)

σ m
xx = 2(σ̄ + σ

(odd)
‖ ) + σ

(odd)
‖ cos 2θm, (A2c)

σ θ
yx = −σ

(even)
⊥ sin θm, (A2d)

σφ
yx = σ

(odd)
⊥ sin θm, (A2e)

σ m
yx = 0. (A2f)

(iii) Transverse θm scan (θm = [0 : 2π ), φm = π/2) is

σ θ
xx = 0, (A3a)

σφ
xx = 0, (A3b)

σ m
xx = 2σ̄ + σ

(odd)
‖ , (A3c)

σ θ
yx = σ

(even)
⊥ sin θm, (A3d)

σφ
yx = −σ

(odd)
⊥ sin θm, (A3e)

σ m
yx = 0. (A3f)

We next derive σ n
xx and σ n

yx(n = x, y, z), the longitudinal
and transverse spin conductivity with a stationary coordinate
spin polarization in Eq. (26), which might be convenient to
control the spin-polarization direction.

(i) φm scan (θm = π/2, φm = [0 : 2π )) is

σ x
xx = −σ

(odd)
⊥ sin 2φm sin φm + {2(σ̄ + σ

(odd)
‖ )

+σ
(odd)
‖ cos 2θm} cos φm, (A4a)

σ y
xx = σ

(odd)
⊥ sin 2φm cos φm + {2(σ̄ + σ

(odd)
‖ )

+σ
(odd)
‖ cos 2θm} sin φm, (A4b)

σ z
xx = σ

(even)
⊥ cos 2φm, (A4c)

σ x
yx = σ

(odd)
⊥ cos 2φm sin φm + σ

(odd)
‖ sin 2φm cos φm, (A4d)

σ y
yx = −σ

(odd)
⊥ cos 2φm cos φm + σ

(odd)
‖ sin 2φm cos φm, (A4e)

σ z
yx = −σ

(even)
⊥ cos 2φm. (A4f)

(ii) Polar θm scan (θm = [0 : 2π ), φm = 0) is

σ x
xx = σ

(odd)
⊥ sin 2θm cos θm + {2(σ̄ + σ

(odd)
‖ )

+σ
(odd)
‖ cos 2θm} sin θm, (A5a)

σ y
xx = σ

(even)
⊥ sin 2θm, (A5b)

σ z
xx = −σ

(odd)
⊥ sin 2θm sin θm + {2(σ̄ + σ

(odd)
‖ )

+σ
(odd)
‖ cos 2θm} cos θm, (A5c)

σ x
yx = −σ

(even)
⊥ sin θm cos θm, (A5d)

σ y
yx = σ

(odd)
⊥ sin θm, (A5e)

σ z
yx = σ

(even)
⊥ sin2 θm. (A5f)

(iii) Transverse θm scan (θm = [0 : 2π ), φm = π/2) is

σ x
xx = 0, (A6a)

σ y
xx = (2σ̄ + σ

(odd)
‖ ) sin θm, (A6b)

σ z
xx = (2σ̄ + σ

(odd)
‖ ) cos θm, (A6c)

σ x
yx = σ

(odd)
⊥ sin θm, (A6d)
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σ y
yx = −σ

(even)
⊥ sin θm cos θm, (A6e) σ z

yx = −σ
(even)
⊥ sin2 θm. (A6f)

APPENDIX B: NONEQUILIBRIUM SPIN DISTRIBUTION FUNCTION FROM BOLTZMANN EQUATION

In this section, we derive Eq. (36) from Eq. (35). First, we assume the conservation of the spin angular momentum in the
stationary state, which means that

p↑↓ f↓↓ + p↑↑ f↑↓ = f↑↑ p↑↓ + f↑↓ p↓↓, (B1)

with (
f↑↑ f↑↓
f↓↑ f↓↓

)
= f̃ ,

(
p↑↑ p↑↓
p↓↑ p↓↓

)
= τ̃−1. (B2)

The left-hand side of Eq. (B1) represents the probability of gaining + h̄
2 angular momentum on average, whereas the right-hand

side represents the probability of losing. When the SOI is sufficiently small, we can ignore the second-order terms of f⊥ and p⊥,
and Eq. (B1) leads to [ p̃, f̃ ] = p̃ f̃ − f̃ p̃ 
 0. Using this, we can rewrite Eq. (35) to

δ f̃ = eExvx

h̄
τ̃ f̃ ′. (B3)

The relaxation time can be derived from 〈T̃k,k′ (E )〉conf given in Eqs. (14) and (15) with Fermi’s golden rule,

τ̃ (k̂, m̂) =
(

τ̄↑↑ + τ ′
↑↑ sin2 θk cos2(φk − φm) τ ′

↑↓ sin2 θk sin 2(φk − φm)
τ ′
↓↑ sin2 θk sin 2(φk − φm) τ̄↓↓ − τ ′

↓↓ sin2 θk cos2(φk − φm)

)
, (B4)

where τ ′
σσ ′ is the coefficient of the magnetization-dependent terms, and τ̄σσ is the coefficient of the magnetization-independent

terms. By substituting this into Eq. (35) and using vx ∝ kx ∝ sin θk cos φk, we can obtain Eq. (36).
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