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Quantum paramagnetism and magnetization plateaus
in a kagome-honeycomb Heisenberg antiferromagnet
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A spin-1/2 Heisenberg model on a honeycomb lattice is investigated by doing triplon analysis and quantum
Monte Carlo calculations. This model, inspired by Cu2(pymca)3(ClO4), has three different antiferromagnetic
exchange interactions (JA, JB, JC) on three different sets of nearest-neighbor bonds which form a kagome
superlattice. While the model is bipartite and unfrustrated, its quantum phase diagram is found to be dominated
by a quantum paramagnetic phase that is best described as a spin-gapped hexagonal-singlet state. The Néel
antiferromagnetic order survives only in a small region around JA = JB = JC . The magnetization produced by
the external magnetic field is found to exhibit plateaus at 1/3 and 2/3 of the saturation value, or at 1/3 alone,
or no plateaus. Notably, the plateaus exist only inside a bounded region within the hexagonal-singlet phase.
This study provides a clear understanding of the spin-gapped behavior and magnetization plateaus observed in
Cu2(pymca)3(ClO4), and also predicts the possible disappearance of 2/3 plateau under pressure.
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I. INTRODUCTION

Models of interacting quantum spins are essential to our
understanding of magnetism in real materials. They come
in different forms and display a variety of phenomena aris-
ing from an interplay of competing interactions, quantum
fluctuations, and lattice geometry [1,2]. The antiferromag-
netic spin-1/2 Heisenberg model is a problem of fundamental
importance to quantum magnetism, and its physics depends
sensitively on the underlying lattice. For instance, on a hon-
eycomb lattice with uniform nearest-neighbor interactions,
it is known to realize Néel order in the ground state [3,4].
But the same spin-1/2 model on a kagome lattice harbors a
complex spin-liquid ground state [5–8]. There are materials
that realize spin-1/2 honeycomb [9–12] or kagome [13,14]
antiferromagnets. The absence of magnetic order on a kagome
lattice is due to its frustrated geometry. Such a loss of mag-
netic order can also be caused on a honeycomb lattice by
allowing the exchange interactions to compete. It can be done
either by having further neighbor interactions [15,16] or, at
the very least, by making the nearest-neighbor interactions
nonuniform. In this paper, we take the latter route and consider
spins on such a nonuniform honeycomb lattice whose nearest-
neighbor bonds form a kagome superlattice. We term it as the
kagome-honeycomb lattice.

The motivation for the present paper comes from recent
experimental studies of Cu2(pymca)3(ClO4) [17,18]. This
compound is reported to have no magnetic order down to
0.6 K and to exhibit magnetization plateaus at 1/3 and 2/3
of the saturation value. The basic model applicable to this
material is the spin-1/2 Heisenberg model on a honeycomb
lattice with three different nearest-neighbor antiferromagnetic
interactions JA, JB, and JC , as shown in Fig. 1. Note that these
three exchange interactions form a kagome superlattice on

the underlying honeycomb. The material realizes this kagome
superstructure via lattice distortions [18] (consistent with a
theorem on the possible distortions of the honeycomb lattice
[19]). Thus, we have a kagome-honeycomb Heisenberg anti-
ferromagnet in Cu2(pymca)3(ClO4). It can also be viewed as
a system of hexagons formed by two types of bonds (say, JB
and JC) and coupled via the third (say, JA). This is exactly
like some spin-1 kagome systems with antiferromagnetic JB
and JC , but ferromagnetic JA [20–23]. An early example of
a frustrated spin-1/2 Heisenberg model with an exact dimer
singlet (DS) ground state on kagome-honeycomb lattice oc-
curs in Ref. [24].

In this paper, we study the quantum phase diagram
of the spin-1/2 Heisenberg antiferromagnet on a kagome-
honeycomb lattice by doing triplon analysis and unbiased
quantum Monte Carlo (QMC) simulations. The theory of
triplon fluctuations and the observables computed by QMC
produce mutually consistent results not only qualitatively but
also quantitatively. Remarkably, in spite of being bipartite and
unfrustrated, this model is found to realize in a large part of
the phase diagram a quantum paramagnetic phase, while only
a small region around JA = JB = JC corresponds to the Néel
antiferromagnetic phase. This quantum paramagnetic phase is
described well as a spin-gapped hexagonal singlet (HS) state.
We also investigate this model in an external magnetic field
and find the magnetization plateaus at 1/3 and 2/3 of the
saturation value, or only one plateau at 1/3, or no plateau
at all. In the phase diagram, the region of existence of the
2/3 plateau is found to occur inside that of the 1/3 plateau,
which itself exists inside a bounded region within the HS
phase. It clearly affirms that Cu2(pymca)3(ClO4) realizes a
HS ground state. Our estimate of the exchange interactions
puts this material inside the two-plateau region but close to
the boundary. This leads to an interesting testable prediction
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FIG. 1. The ABC Heisenberg model on kagome-honeycomb lat-
tice. The exchange interactions JA, JB, and JC are antiferromagnetic
and they form a kagome superlattice (indicated by thin-dotted lines)
on the honeycomb structure. The �a1 and �a2 are two primitive vectors
of the underlying Bravais lattice.

that the 2/3 plateau in Cu2(pymca)3(ClO4) can be made to
disappear, say, by applying pressure.

This paper is organized as follows: In Sec. II we describe
the model and discuss its key qualitative aspects; in Sec. III
we do triplon analysis of the model and present the quantum
phase diagram obtained from it; in Sec. IV, we present the
results obtained from QMC simulations. Section V is devoted
to the study of magnetization plateaus, with implications for
Cu2(pymca)3(ClO4). We conclude with a summary and out-
look in Sec. VI.

II. MODEL

The spin-1/2 Heisenberg model on kagome-honeycomb
lattice is given by the Hamiltonian, ĤABC = ĤA + ĤB + ĤC ,
where

ĤA = JA

∑
�R

(�S6 �R · �S1 �R + �S2 �R · �S3 �R + �S4 �R · �S5 �R), (1a)

ĤB = JB

∑
�R

(�S1 �R · �S2 �R + �S3 �R · �S4 �R + �S5 �R · �S6 �R), (1b)

ĤC = JC

∑
�R

(�S1 �R · �S4( �R+�a2 ) + �S3 �R · �S6( �R+�a1 )

+ �S5 �R · �S2( �R−�a1−�a2 ) ). (1c)

Here, the exchange interactions JA, JB, and JC are all anti-
ferromagnetic, and the lattice and the spin labels are as shown
in Fig. 1. The basic structure is honeycomb, but the pattern
of exchange interactions thereon is kagome. A primitive unit
cell of this so-called kagome-honeycomb lattice contains six
spins marked here by the integers 1 to 6; �R denotes the
position of a primitive unit cell. The vectors �a1 = 3ax̂ and
�a2 = 3a(−x̂ + √

3ŷ)/2 are two primitive vectors of the un-
derlying Bravais lattice. The corresponding Brillouin zone is
shown in Fig. 2. We also call this model by a short name, the
ABC model.

Since the lattice in Fig. 1 is bipartite, the antiferromagnetic
ABC model on it is unfrustrated [25] and can be expected
to realize Néel antiferromagnetic order. But the competition

FIG. 2. The first Brillouin zone for the lattice in Fig. 1. A point
in this zone is the wave vector �k = k1�b1 + k2 �b2, where �b1(2) are
reciprocal to �a1(2) such that �ai · �bj = δi j . The dashed line demarcates
the Brillouin zone in the hexagonal form.

between the three exchange interactions, together with quan-
tum fluctuations, provides enough scope for the spin-1/2 ABC
model to destroy Néel order and realize a quantum param-
agnetic ground state. Our goal is to study this competition.
Throughout this paper, the exchange interactions are taken to
have values between 0 and 1 in such a way that JA + JB +
JC = 1.

Since the uniform case, with JA = JB = JC , is known
to realize Néel order, even when the three exchange inter-
actions are unequal, the Néel order is expected to survive
in the vicinity of the point (JA, JB, JC ) = (1/3, 1/3, 1/3) in
the phase diagram. Far away from the uniform case, two
interesting limiting cases arise. One in which only one type of
bonds have nonzero exchange interaction, say (JA, JB, JC ) =
(1, 0, 0), realizes independent dimers. The other case in which
only one type of bonds have zero exchange interaction, e.g.,
(JA, JB, JC ) = (1 − x, x, 0) for x ∈ [0, 1], realizes indepen-
dent hexagons. In both limiting cases, the ground state is a
spin singlet and hence quantum paramagnetic (and in fact,
spin liquid, as they break no symmetry of the model).

In the ternary representation subject to the condition JA +
JB + JC = 1, the space of interaction parameters is an equi-
lateral triangle shown in Fig. 3. The corners of this triangle
correspond to independent dimers, and the sides to inde-
pendent hexagons. The ground state of the ABC model is,
therefore, bound to exhibit a quantum phase transition from
the Néel antiferromagnetic phase in the interior around the
centroid (1/3, 1/3, 1/3) to a nonmagnetic singlet phase out-
ward to the three sides of the ternary diagram. In the following
sections, we make systematic analytical and numerical calcu-
lations to obtain the quantum phase diagram of the spin-1/2
ABC model on kagome-honeycomb lattice.

First, we do the triplon analysis with respect to the hexago-
nal and the dimer singlet states. These are spin-gapped phases,
for which the closure of the gap marks a quantum phase
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FIG. 3. Ternary representation of the space of exchange inter-
actions such that JA + JB + JC = 1. At the base of this equilateral
triangle, JB = 0, which is the case of independent AC hexagons. The
apex (top corner) with JB = 1 corresponds to independent B dimers.
Likewise for the other two sides and corners. The centroid represents
the uniform honeycomb antiferromagnet.

transition to the Néel phase. By following the triplon gap
and comparing the energies of these candidate states, we
construct a quantum phase diagram. We then calculate spin
stiffness and staggered magnetization by doing QMC simu-
lations. All these calculations produce a mutually agreeable
phase diagram dominated by a quantum paramagnetic phase
best described as an HS phase.

III. TRIPLON ANALYSIS

The basic framework of triplon analysis is to first identify
such building blocks of the system which in some limiting
cases realize the singlet ground state locally independently,
and then formulate an effective theory in terms of the low-
energy triplet excitations of these building blocks to describe
the full system [23,26–28]. In this spirit, our ABC model can
be viewed either as a system of coupled dimers or coupled
hexagons. For instance, we can consider the ABC model (see
Fig. 1) as made of the A-type bonds coupled by B and C bonds
or as made of the AB hexagons coupled via C bonds. (The
other equivalent choices can be obtained by permuting A, B, C
cyclically.). As mentioned earlier, in the limit of JB = JC = 0,
the model realizes an exact DS ground state formed by the
direct product of the singlets on the A bonds. When JC = 0,
it similarly realizes a HS ground state exactly. Thus, we have
two ways of doing triplon analysis of the ABC model with
respect to the two natural quantum paramagnetic states, DS or
HS. Note that the exact DS state itself is a limit of an exact HS
state, e.g., the JB = 0 case of the AB hexagons is the same as
having independent A dimers. In pictorial terms (see Fig. 3),
the corners of the ternary diagram are the ends of its sides. It
requires that we formulate the triplon analysis for the HS case
in such a manner that, near the corners of the ternary diagram,

it is consistent with the triplon analysis with respect to the DS
state. Let us do it now and see what we learn about the extent
of the singlet phases as one moves inward into the ternary
diagram from its sides and corners.

A. Dimer singlet state

Assuming JA to be stronger than JB and JC , we satisfy the
Heisenberg interaction on the A bonds exactly and describe
the spin operators in terms of the singlet and triplet eigenstates
thereof. [The same is to be done with respect to B (or C)
bonds, when JB (or JC) is stronger than the rest.] A convenient
way to do this is to employ bond-operator representation, in
which one uses bosonic operators for the singlet and triplets
states of a bond [26,27]. It is simplified by treating the singlet
bond operator on every A dimer as a mean singlet amplitude,
s̄, for the DS phase. The dynamics of the triplet excitations
(triplons) in the DS phase is described using the triplet bond
operators.

The ABC model has three A bonds per unit cell (orange
bonds in Fig. 1). We label these bonds as j = I, II, III. Let α =
x, y, z denote the three components of a spin. The six spins in
a unit cell at position �R in the bond-operator representation (in
a basic approximated form) can be written as

Sα

2 �R ≈ s̄

2

(
tα†
�R,I

+ tα
�R,I

) ≈ −Sα

3 �R, (2a)

Sα

4 �R ≈ s̄

2

(
tα†
�R,II

+ tα
�R,II

) ≈ −Sα

5 �R, (2b)

Sα

6 �R ≈ s̄

2

(
tα†
�R,III

+ tα
�R,III

) ≈ −Sα

1 �R, (2c)

where tα
�R, j

and tα†
�R, j

are the triplet bond operators. The bond

operators are also required to satisfy the constraint, s̄2 +∑
α tα†

�R, j
tα
�R, j

= 1, to account for the physical dimension of the

Hilbert space on every A bond.
Since the interaction on the A bonds is treated exactly, we

obtain the following expression for that part of the ABC model
which comes from the A bonds, i.e., the ĤA of Eq. (1a), in
terms of the singlet amplitude and the triplet bond operators.

ĤA = JA

4

∑
�R

∑
j

(
−3s̄2 +

∑
α

tα†
�R, j

tα
�R, j

)
. (3)

The triplets on different A bonds interact and disperse on
the lattice due to ĤB and ĤC , i.e., Eqs. (1b) and (1c). We
use Eqs. (2) to rewrite ĤB and ĤC in terms of the triplon
operators. The constraint on the bond operators is satisfied on
average through a Lagrange multiplier λ0 by adding the term
λ0

∑
�R, j (s̄

2 + ∑
α tα†

�R, j
tα
�R, j

− 1) to the triplon Hamiltonian.

We find it convenient to write the triplon Hamiltonian
using canonical position and momentum operators: Q̂α

�R, j
=

1√
2
(tα†

�R, j
+ tα

�R, j
) and P̂α

�R, j
= i√

2
(tα†

�R, j
− tα

�R, j
). They follow the re-

lations [Q̂α
�R, j

, P̂α′
�R′, j′

] = iδ j, j′δα,α′δ �R, �R′ and (P̂α
�R, j

)2 + (Q̂α
�R, j

)2 =
2tα†

�R, j
tα
�R, j

+ 1. Their Fourier transformation is defined as

Q̂α
�R, j

= 1√
Nuc

∑
�k Q̂α

�k, j
ei�k. �R and P̂α

�R, j
= 1√

Nuc

∑
�k P̂α

�k, j
ei�k. �R, where

Nuc is the total number of unit cells, and the wave vector �k lies
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in the Brillouin zone drawn in Fig. 2. Moreover, (Q̂α
�k, j

)† =
Q̂α

−�k, j
, and likewise for P̂α

�k, j
.

We obtain the following effective Hamiltonian for the
triplon dynamics with respect to the DS state:

ĤtDS = εNuc + 1

2

∑
�k,α

{
λPα†

�k I3 Pα
�k + Qα†

�k V�k Qα
�k
}
. (4)

Here, λ = λ0 + JA
4 , ε = 3s̄2λ + 3JA

4 − 15
2 λ − 3JAs̄2, and I3 is

the 3×3 identity matrix; Pα
�k , Qα

�k and V�k are given below:

Pα
�k =

⎛
⎜⎝

Pα
�k,I

Pα
�k,II

Pα
�k,III

⎞
⎟⎠, Qα

�k =

⎛
⎜⎝

Qα
�k,I

Qα
�k,II

Qα
�k,III

⎞
⎟⎠, (5)

V�k = λI3 − JBs̄2

2

⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠

−JCs̄2

2

⎛
⎝ 0 eik3 eik1

e−ik3 0 e−ik2

e−ik1 eik2 0

⎞
⎠. (6)

Note that k1 = �k.�a1, k2 = �k.�a2 and k3 = k1 + k2. The eigen-
values of V�k are found to be

ω�k, j =
√

λ(λ − 2s̄2ζ�k, j ), (7)

where ζ�k,I = − 1
4 (JB + JC ) is �k independent, while

ζ�k,II = 1

8

[
JB + JC +

√
9J2

B − 6JBJC + 9J2
C + 8JBJC f 0

�k
]

and

ζ�k,III = 1

8

[
JB + JC −

√
9J2

B − 6JBJC + 9J2
C + 8JBJC f 0

�k
]

depend on �k through f 0
�k = cos k1 + cos k2 + cos k3. Knowing

these ω�k, j’s (the triplon dispersions of ĤtDS) gives the follow-
ing ground-state energy per unit-cell:

EgDS = ε + 3

2Nuc

∑
�k

∑
j

ω�k, j . (8)

Minimizing the EgDS with respect to s̄2 and λ leads to the
following equations:

λ = JA + λ

2Nuc

∑
�k, j

ζ�k, j

ω�k, j

, (9a)

s̄2 = 5

2
− 1

2Nuc

∑
�k, j

λ − s̄2ζ�k, j

ω�k, j

, (9b)

whose self-consistent solution determines the DS phase for
the ABC model.

Before solving these equations for λ and s̄2, let us also
formulate a theory of triplon dynamics with respect to the HS
state. Then we will present and discuss their findings together.

FIG. 4. Low-energy spectrum of a spin-1/2 hexagon with alter-
nating nearest-neighbor exchange interactions JA and JB; refer to
Appendix A. The lowest eigenvalue (thick black line) corresponds to
a unique singlet, |s〉, and the second lowest (dashed red) to a triplet,
|tm0〉. Then there are two degenerate triplets (dot-dashed blue, |tm1〉
and |tm1̄〉) crossed by another singlet (thin green). The other higher
energy states, not relevant for the triplon analysis in Sec. III B, are not
shown. The ABC Heisenberg model of Eq. (1) is a system of such AB
hexagons coupled via the exchange interaction JC .

B. Hexagonal singlet state

When JC = 0, the ABC model is a collection of indepen-
dent AB hexagons (see Figs. 1 and 3). So, when JC is nonzero
(but somewhat weaker than JA and JB), it is reasonable to for-
mulate a theory of the ABC model in terms of the eigenstates
of the AB hexagons. In doing so, we satisfy two interactions
(JA and JB) exactly, which certainly makes for a better case
than the dimer case of the previous section, where only one
interaction, JA, was exactly satisfied.

The exact eigenspectrum of the Heisenberg model of a
single AB hexagon is evaluated in Appendix A, of which the
lowest few eigenstates are plotted in Fig. 4. Here, the ground
state is a unique singlet, separated from the first excited state
(which is a triplet) by a finite energy. When these hexagons are
coupled via JC , one would expect the ground state of the full
model to be a HS state renormalized by triplet fluctuations but
protected by triplon gap. For sufficiently strong JC , either this
triplon gap will close, causing a phase transition to an ordered
antiferromagnetic phase, or another state may level cross.
What one minimally needs to carry out such an analysis is
the lowest singlet and triplet eigenstates. But as noted earlier,
the triplon analysis based on hexagonal states is desired to
be such that its approach to the dimer limit (for small JB or
JA) is appropriate. Figure 4 suggests that we should take into
consideration the next two degenerate triplets also, because
these two become degenerate with the lowest triplet (as for
three independent dimers) when JB tends to zero. Taking three
triplets considerably enhances the complexity of the triplon
analysis, but it does give us a theory that works very well.

These eigenstates are identified by their total spin and two
other quantum numbers, m and ν corresponding, respectively,
to the z component of the total spin and the threefold rotation
of the hexagon. The ν takes values 0,1, 1̄(= −1) (for the ro-
tation eigenvalues 1, ω, ω2, respectively), and m takes values
0,±1,±2, ±3. Refer to Appendix A for more details. Of the
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states presented in Fig. 4, we denote the singlet ground state as
|s〉 and its energy as Es; it belongs to m = 0, ν = 0 subspace.
The triplets are denoted as |tmν〉 with m = 0,±1. The lowest
energy triplet corresponds to ν = 0 with energy denoted as
Et0, and the next two triplets correspond to ν = 1, 1̄ with
energy Et1. Note that for JB/JA � 0.68, a higher energy singlet
becomes slightly lower in energy than Et1. But unlike the
triplets, this second singlet makes no direct matrix elements
(of the spin operators) with the singlet ground state. So, its
effect on a low-energy theory based on the hexagonal states is
negligible; we have checked this. Hence, we consider |s〉 and
|tmν〉 only (a total of ten states per hexagon) to formulate a
theory with respect to the hexagonal singlet ground state.

Like the bond operators employed for the dimer case, we
now introduce the bosonic operators, ŝ �R and t̂mν, �R, correspond-

ing to the hexagonal singlet and triplet states at position �R
[23]. Next we replace the singlet operator on every hexagon
by a mean amplitude s̄ that accounts for the hexagonal singlet
background. Then we write the six spins (labeled as l = 1
to 6) on an AB hexagon in terms of the triplet operators as
follows:

Sz
l �R ≈ s̄

[
C l

00

(
t̂00, �R + t̂†

00, �R
) + (

C l
01t̂01, �R + C l∗

01t̂01̄, �R + H.c.
)]

(10a)

S+
l �R ≈ s̄

[
C l

1̄0(t̂1̄0, �R − t̂†
10, �R) + C l

1̄1(t̂1̄1, �R − t̂†
11̄, �R)

+ C l∗
1̄1(t̂1̄1̄, �R − t̂†

11, �R)
]
. (10b)

Here, the coefficients C l
00, C l

01, etc. are the matrix elements
between the singlet and triplet states. Refer to Appendix A for
more details on this representation. The constraint in this case
is s̄2 + ∑

mν t̂†
mν, �Rt̂mν, �R = 1.

The ĤA + ĤB part of the ABC model in this representation
reads as

ĤA + ĤB ≈ Ess̄
2Nuc +

∑
�R,mν

Emν t̂†
mν, �Rt̂mν, �R, (11)

where Em0 = Et0 and Em1 = Em1̄ = Et1. The interaction be-
tween the AB hexagons comes from ĤC , which is now
reexpressed using the representation in Eqs. (10). More-
over, the constraint is taken into account by adding the term
λ

∑
�R(s̄2 + ∑

mν t̂†
mν, �Rt̂mν, �R − 1) to the Hamiltonian through a

Lagrange multiplier λ. By Fourier transforming the triplon
operators as, t̂mν, �R = 1√

Nuc

∑
�k ei�k· �Rt̂mν,�k , we finally get the fol-

lowing triplon Hamiltonian for the hexagonal singlet case:

ĤtHS = ε0Nuc +
∑

�k
	

†
�kH�k	�k . (12)

Here, ε0 = Ess̄2 + λs̄2 − 11λ
2 − 3

2 (Et0 + 2Et1), H�k is an
18×18 matrix in the Nambu basis given in Appendix B,
and 	

†
�k is the following row vector of triplon creation and

annihilation operators; 	�k is its Hermitian conjugate:

	
†
�k = (

t̂†
00,�k t̂†

10,�k t̂†
1̄0,�k · · · t̂01̄, �−k t̂11̄, �−k t̂1̄1̄, �−k

)
.

(13)
We diagonalize ĤtHS using Bogloliubov transformation,

and obtain nine triplon dispersions, 2εi�k , in terms of which

FIG. 5. Quantum phase diagram of the ABC Heisenberg antifer-
romagnet on kagome-honeycomb lattice from triplon analysis. It is
dominated by the spin-gapped hexagonal singlet phase on the three
sides, with a small region of Néel antiferromagnetic phase in the
middle, and small competing regions at the interfaces between the
hexagonal singlet phases.

the ground-state energy can be written as

EgHS = ε0 + 1

Nuc

∑
�k

9∑
i=1

εi�k . (14)

The following self-consistent equations for s̄2 and λ are ob-
tained by minimizing Eg, i.e., ∂Eg

∂ s̄2 = 0 and ∂Eg

∂λ
= 0:

λ = −Es − 1

Nuc

∑
�k

9∑
i=1

∂εi�k
∂ s̄2

, (15a)

s̄2 = 11

2
− 1

Nuc

∑
�k

9∑
i=1

∂εi�k
∂λ

. (15b)

C. Quantum phase diagram from triplon analysis

We solve Eqs. (9) and Eqs. (15) numerically. It gives us
the triplon dispersions and the ground-state energy with re-
spect to the DS and HS states, respectively. By comparing
their energies and by following the triplon gap, we obtain a
quantum phase diagram presented in Fig. 5. As anticipated,
in the middle it has a small region of Néel antiferromagnetic
phase, which is surrounded on all three sides by a quantum
paramagnetic phase described pretty well for the most part as
a hexagonal singlet phase (with respect to the AB, BC, or AC
hexagons in the three triangular parts of the ternary diagram).

For the concreteness of discussion, let us focus in Fig. 5
on the triangular region on the right-hand side, given by
0 � JC � 1/3

⋂
JA � JC

⋂
JB � JC . It is formed by joining

the top corner, right corner, and the centroid. (The other two
similar regions are related to this one by the cyclic permuta-
tion of JA, JB, JC .). In this region of the phase diagram, for
JC = 0, we have independent AB hexagons with the exact HS
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FIG. 6. Triplon dispersions in the gapped HS phase along the
symmetry directions shown in Fig. 2. The triplon energy gap comes
from the � point.

ground state having a finite energy gap to triplet excitations.
We find that for small nonzero JC , the triplon excitations of the
renormalized HS state are still gapped, and the mean singlet
weight per hexagon, s̄2, is close to 1. See Fig. 6 for triplon
dispersions in the gapped HS phase. We also find that closer
to the corners of the ternary diagram, the results from the
HS state triplon analysis correctly approach the DS case. See
Fig. 7 for the energies of the HS and DS states from triplon
analysis as a function of JB for JC = 0.1. For small values
of the interhexagon interaction (i.e., JC here), the HS state is
always lower in energy than the DS state. Hence, the model
clearly realizes the HS phase near the three sides of the ternary
diagram. This behavior from the AB hexagon side continues
up to JC ≈ 0.18.

For JC � 0.18, the DS state is found to become lower in
energy than the HS state, but only when either JA or JB is very
close to JC . This level crossing happens across the blue-dotted
lines in Fig. 5; also see the inset of Fig. 7. The gapped HS
phase with respect to the AB hexagons still holds good for the
most part, except very close to the interface with the AC (or
BC) hexagonal phase. At the interface between, say, the AB

FIG. 7. Ground-state energies of the hexagonal singlet (EgHS)
and the dimer singlet (EgDS) phases from triplon analysis for JC =
0.1. Inset shows a level crossing between the DS and the HS states
by varying JB for JC = 0.25. Such level crossings occur across the
blue dotted lines in Fig. 5.

FIG. 8. Triplon gap of the AB-hexagonal singlet state along fixed
JB lines for JC ∈ [0, JB].

and AC hexagonal phases, the B and C bonds would naturally
compete to partner with the A bonds to form the respective
HS state. So, when the exchange interactions of comparable
values on B and C bonds are strong enough, it is possible
that it is favorable for neither of them to partner with A.
This is what this level crossing seems to be hinting at. In the
present analysis, the DS state of A dimers happens to offer an
alternative for the B and C bonds to be treated freely and not
bound to A [29]. But it does not exclude the possibility of an
alternate description of this competing cross-over region.

At JC = 0.23, we for the first time find the HS phase to
become gapless along the JA = JB line. This closing of the
triplon gap (at the � point in the Brillouin zone) is found to
occur in a continuous manner. See Fig. 8 for the triplon gap
in the HS phase. For JC > 0.23, we get a finite region of the
gapless HS phase in the middle. It is common knowledge that
the gapless triplons describe magnetic order [26,28]. Hence,
what we find here is a quantum phase transition from the
gapped hexagonal singlet phase to the Néel antiferromagnetic
phase. The thick black line in Fig. 5 is the boundary of this
quantum phase transition.

Upon increasing the JC further, there comes a stage at JC ∼
0.27, when the gapped HS phase is lost. Now the competing
region described here as a gapped DS phase is found to be
directly crossed by the Néel state (e.g., at JA = 0.41 along
JB = JC line). This level crossing (shown by the red dashed
lines in Fig. 5) is obtained by comparing the energy of the DS
(and the HS) state with that of the Néel state from spin-wave
theory; see Appendix C for spin-wave calculation. It ought
be pointed out here that, pretty much where the DS state is
crossed by the Néel state, the HS state (although energeti-
cally slightly ill-favored here) still exhibits a continuous phase
transition to the Neel phase. These small competing regions
appear to be more complex.

IV. QUANTUM MONTE CARLO SIMULATION

To challenge and confirm the quantum phase diagram ob-
tained from triplon analysis, we also employ the QMC method
to study this problem. We are able to do so because our ABC
Heisenberg model on kagome-honeycomb lattice is bipartite
and unfrustrated, and hence amenable to QMC approach.
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FIG. 9. The spin-stiffness data (pale yellow circles) from QMC
calculations plotted together with the quantum phase diagram from
triplon analysis (Fig. 5). The radii of the circles indicate the strength
of the Néel order.

We use the well-known stochastic series expansion (SSE)
formulation of QMC [30,31], which is exact albeit stochastic.
Within this framework, the physical quantities such as the
staggered magnetization, ms, and the spin stiffness, Ds, can
be calculated. The latter is defined as Ds = 1

N
∂2F (φ)

∂φ2 , where
F is the free energy of the system, N is the total number of
spins (sites) of the honeycomb lattice, and φ is the twist angle
imposed on the periodic boundary condition. This quantity
is considered to be a clean marker of the transition from
an ordered (Ds 
= 0) to disordered phase (Ds = 0). Within
the SSE simulations, the spin stiffness is extracted using the
winding number fluctuations as established in Ref. [30]. The
former quantity, defined as ms = 〈ms〉 = 1

N

∑
i〈Sz

i,u − Sz
i,v〉, is

the order parameter of the Néel phase. Here, i is summed over
the two-site unit cells of the honeycomb lattice, and u and v

denote the two sublattices. In the QMC simulations for finite
size systems, what we calculate is the average value, 〈m2

s 〉,
which in the thermodynamic limit gives the square of the Néel
order parameter (i.e., m2

s ).
In Fig. 9, we present the stiffness data from our QMC

calculations for a large lattice of N = 864 sites at a low
temperature, β = 1/T = 50. Juxtaposed with the quantum
phase diagram obtained from triplon analysis, the Néel phase
obtained by spin stiffness exhibits remarkable agreement. The
overall shape and extent of the region with Ds 
= 0 is not only
qualitatively consistent with the phase boundary from triplon
analysis but is also quantitative. This shows how good the
proposed triplon description is for this model, even by such
direct comparison with a large but finite size data.

We improve the phase boundary obtained from QMC by
doing a systematic finite size scaling of Ds and m2

s along the
JA = JB line. Doing it for the whole phase diagram would be
too tedious to extract their thermodynamic limit (TL) behav-
iors. While we consider an inverse temperature of β = 50 for
Ds, a slightly higher temperature of β = 20 is taken for 〈m2

s 〉,

FIG. 10. Thermodynamic limit extrapolations of the spin stiff-
ness, Ds, and staggered magnetization, m2

s , from QMC simulations
are plotted as a function of JC along the JA = JB line. They produce
a region of Néel phase that is consistent with triplon analysis (blue
arrow).

whose approach to TL is found to be slower (and harder)
than that of Ds. The extrapolated values and error bars are
obtained by the linear fits of Ds and m2

s with respect to 1/
√

N
[32]. These TL values of the two quantities, presented in
Fig. 10 as a function of JC , show an even closer agreement
on the boundary of the Néel phase. When JC goes from 1/3
(centroid) to 0 (AB hexagon side), the extrapolated values
of both Ds and ms go continuously to zero at JC = 0.23(5),
which is precisely the critical point from the HS state triplon
analysis. This is remarkable. The agreement is generally quite
close along the black portion of the phase boundary in Fig. 9.
Across the red segments of the phase boundary (where the
HS, DS and Néel phases all seem to be competing), the QMC
estimate exceeds just a little beyond the phase boundary from
theory. For example, along the JA = JB line, as JC goes from
1/3 (centroid) to 1 (C dimer corner), the extrapolated values
of Ds and m2

s vanish together at JC = 0.42(2), only a little
beyond the point 0.41 on the red segment from theory. It
is thus evident that the HS state triplon analysis provides a
very good theory of this model to describe the thermodynamic
properties, even if the tiny competing regions (not identified
by our SSE calculations) leave room for some improvements.

V. MAGNETIZATION PLATEAUS

A notable feature of Cu2(pymca)3(ClO4) is that its mag-
netization due to external magnetic field exhibits plateaus at
M/Msat = 1/3 and 2/3 [17]. Of these, the plateau at 1/3 is
much wider compared to the one at 2/3. (We denote the mag-
netization along the field as M and the saturated magnetization
as Msat.) Prompted by this behavior, we make a study of the
magnetization in the ABC model on a kagome-honeycomb
lattice,

ĤABC − hext

∑
�R

6∑
l=1

Sz
l, �R, (16)

in the presence of an external magnetic field, hext. It cor-
rectly gives us the magnetization plateaus, reveals to us the
underlying mechanism, and identifies the regions in the phase
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FIG. 11. Level-crossing diagram of an AB hexagon. The energy
levels with magnetic quantum number m = 1, 2, 3 cross the zero-
field singlet ground state and amongst themselves with increasing
magnetic field, hext. They form the basis for a theory of magnetization
plateaus in Secs. V A and V B. The states with m = −3, −2, −1, 0,
whose energies increase or stay constant with hext, are not quite
relevant and not shown.

diagram in which either one or both plateaus occur; see
Fig. 12.

Consider first the eigenstates of a single AB hexagon.
Figure 11 shows how they compete as a function of hext. The
most notable feature of this level-crossing diagram is that, as
hext is increased from zero, the ground state of the hexagon
successively changes from a singlet, |s〉, to a triplet, |t10〉, to a
quintet, |q20〉, to the fully polarized heptet state, |h30〉; see Ap-
pendix A for the hexagon’s eigenstates. Correspondingly, the
M/Msat of the hexagon increases in steps from 0 to 1/3 to 2/3
to 1. Notice that |t10〉 remains the ground state over a wider
range of hext as compared to |q20〉, i.e., the magnetization stays
at 1/3 over a wider range of the magnetic field as compared
to 2/3. All this is remarkably like the plateaus observed in
Cu2(pymca)3(ClO4). Hence, for Eq. (16), we derive and study
the effective models in terms of the hexagonal eigenstates
relevant for M/Msat = 0, 1/3, 2/3, 1.

For the nonmagnetic case, the reference state is the hexag-
onal singlet state, |s〉. It was the reference state for triplon
analysis in Sec. III B. We do the same analysis again, but with
a nonzero hext. It gives us the critical field at which the non-
magnetic ground state gives way to nonzero magnetization.
The fully saturated magnetic state is a trivial eigenstate of the
ABC model. Its stability against a spin-flip excitation deter-
mines the saturation field, which turns out to be JA + JB + JC .
The theories of the magnetization plateaus at 1/3 and 2/3 are
presented in the following subsections.

A. Theory of 1/3 plateau

In the independent hexagon limit of the ABC model, say
for JC = 0, the 1/3 plateau is described by a unique state
wherein every AB hexagon is in the triplet state, |t10〉. For a
nonzero JC , this ideal reference state would quantum fluctuate
and get renormalized. Thus, the 1/3 plateau would exist as
long as the energy gap to these fluctuations is nonzero. The
minimal set of hexgonal eigenstates required to do a theory

of the 1/3 plateau is {|s〉, |t10〉, |q20〉}. It can be enlarged by
also including |q21〉 and |q21̄〉 from the quintets in ν = 1, 1̄
sectors (see Appendix A), which interact directly with |t10〉.
It improves the result slightly, especially around JA = JB line;
qualitatively, the two give same results.

As in Sec. III, we associate boson operators ŝ†
�R, t̂†

10, �R
and q̂†

2ν, �R to the respective kets of the AB hexagon at

position �R. With a simplifying approximation, t̂10, �R ≈ t̄ ,
we describe the reference state by a mean amplitude, t̄ ,
for every AB hexagon to be in the state |t10〉. Thus, the AB
part of the model in Eq. (16), including the magnetic field
term, can be written as ĤA + ĤB − hext

∑
�R
∑6

l=1 Sz
l, �R ≈∑

�R [Esŝ
†
�Rŝ �R + (Et0 − hext )t̄2 + (Eq0 − 2hext )q̂

†
20, �Rq̂20, �R +

(Eq1 − 2hext )(q̂
†
21, �Rq̂21, �R + q̂†

21̄, �Rq̂21̄, �R)], where Es, Et0, Eqν

(for ν = 0, 1, 1̄) denote the eigenvalues of |s〉, |t10〉,
|q2ν〉, respectively, and Eq1̄ = Eq1. We also add to it
λ

∑
�R(t̄2 + ŝ†

�Rŝ �R + ∑
ν q̂†

2ν, �Rq̂
2ν, �R − 1) to meet the constraint

on average through Lagrange multiplier λ. The interaction
between the AB hexagons through ĤC is expressed using
the representation in Eq. (D1) for the spins of every AB
hexagon. Putting these together in Eq. (16), and doing
the Fourier transformation, ŝ �R = 1√

Nuc

∑
�k ŝ�k ei�k· �R and

q̂2ν, �R = 1√
Nuc

∑
�k q̂2ν,�k ei�k· �R, we get the following effective

Hamiltonian for 1/3 plateau:

Ĥ ( 1
3 ) = ε

( 1
3 )

0 Nuc +
∑

�k
	

( 1
3 )†

�k H( 1
3 )

�k 	
( 1

3 )

�k . (17)

For ε
( 1

3 )
0 and H( 1

3 )

�k , see Appendix D. The 	
( 1

3 )

�k is a Nambu

column vector whose adjoint, 	
( 1

3 )†

�k , is given below:

	
( 1

3 )†

�k = (ŝ†
�k q̂†

20,�k q̂†
21,�k q̂†

21̄,�k ŝ �−k q̂20, �−k q̂21, �−k q̂21̄, �−k ). (18)

The Bogoliubov diagonalization of Eq. (17) gives four

quasiparticle dispersions, 2ε
( 1

3 )

j,�k . The ground-state energy

per unit-cell of Ĥ ( 1
3 ) can be written as E ( 1

3 )
g = ε

( 1
3 )

0 +
1

Nuc

∑
�k
∑4

j=1 ε
( 1

3 )

j,�k . Minimizing E ( 1
3 )

g with respect to t̄2 and λ

gives the following self-consistent equations:

λ = hext − Et0 + 3

2
JCχ − 1

Nuc

∑
�k

4∑
j=1

∂ε
( 1

3 )

j,�k
∂ t̄2

, (19a)

t̄2 = 3 − 1

Nuc

∑
�k

4∑
j=1

∂ε
( 1

3 )

j,�k
∂λ

. (19b)

By solving these equations for λ and t̄2, we determine
the quasiparticle energy gap and hence the 1/3 plateau. The
results from this calculation are discussed in Sec. V C.

B. Theory of 2/3 plateau

We can do a minimal theory of 2/3 plateau in terms
of the states {|t10〉 , |q20〉 , |h30〉}, or a more general one by
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also considering two other triplet states, |t11〉 and |t11̄〉. The
plateau region obtained from both calculations is pretty much
the same. So, we describe only the minimal theory. Let
t̂†
10, q̂†

20, ĥ†
30 be the boson operators corresponding to the kets

|t10〉 , |q20〉, |h30〉, respectively. With |q20〉 as the reference
state on the 2/3 plateau, we approximate q̂20 by a mean
amplitude q̄. Thus, in Eq. (16), ĤA + ĤB − hext

∑
�R,l Sz

l, �R +
constraint ≈ [(Eq0 − 2hext + λ)q̄2 − λ]Nuc+

∑
�R[(Et0−hext+

λ)t̂†
10, �Rt̂

10, �R + (Eh0 − 3hext + λ)ĥ†
30, �Rĥ

30, �R]; λ is the Lagrange

multiplier. We write ĤC using Eq. (E1). The final effective
Hamiltonian in the �k space describing triplon and hepton
fluctuations with respect to the 2/3 plateau can be written as

Ĥ ( 2
3 ) =

∑
�k

[
Dt,�k t̂†

10,�kt̂10,�k + Dh,�k ĥh,�k ĥ†
30,�k

+ F�k
(
t̂†
10,�kĥ†

30,−�k + H.c.
)] + ε

( 2
3 )

0 Nuc, (20)

where Dt,�k , Dh,�k , F�k , and ε
( 2

3 )
0 are given in Eqs. (E2).

Diagonalization of Ĥ ( 2
3 ) gives the following two quasipar-

ticle dispersions:

ε
(±)
�k = ± (Dh,�k − Dt,�k )

2
+

√
(Dt,�k + Dh,�k )2

4
− F 2

�k . (21)

The ground-state energy per unit cell of Ĥ ( 2
3 ) is given by

E ( 2
3 )

g = ε
( 2

3 )
0 + 1

Nuc

∑
�k ε

(+)
�k . Its minimization with respect to λ

and q̄2 leads to the equations

λ = 2hext − Eq0 − 3JCχ̃ − 1

Nuc

∑
�k

∂ε
(+)
�k

∂ q̄2
, (22a)

q̄2 = 2 − 1

Nuc

∑
�k

∂ε
(+)
�k

∂λ
, (22b)

whose self-consistent solution gives the region of 2/3 magne-
tization plateau described below.

C. Results and implications for Cu2(pymca)3(ClO4)

For a given (JA, JB, JC ) in the ternary phase diagram (refer
to Fig. 5), we compute the quasiparticle energy gap for the 1/3
plateau by solving Eqs. (19) for different values of hext, and
find the range of hext over which this energy gap stays nonzero.
As long as this range has a finite width, we have a 1/3 plateau
but when it shrinks to zero, the 1/3 plateau ceases to exist.
By scanning over the ternary diagram and the magnetic field,
we obtain the region of existence of the 1/3 plateau. We do
likewise for the 2/3 plateau by solving Eqs. (22).

The regions of existence of the magnetization plateaus thus
obtained are shown in Fig. 12. The 1/3 plateau is found to
exist inside the orange-colored bounded regions adjoining the
three sides of the ternary diagram. For instance, along the
JA = JB line, the 1/3 plateau exists for 0 � JC � 0.18; along
the JB = 0.2 line, it occurs for 0 � JC � 0.102 and 0.698 �
JC � 0.8. Inside these regions of the 1/3 plateau, we also find
the 2/3 plateau to occur in the smaller regions adjacent to

(AC-hexagons)

(B
C

-h
ex

ag
on

s)

(AB-hexagons)

1/3 plateau

1/3 and 2/3 plateaus

(A
-d

im
er

s)

(C
-dim

ers)

(B-dimers)

FIG. 12. Regions of existence of the magnetization plateaus
in the phase diagram. The 1/3 plateau occurs everywhere inside
the regions filled with orange color. No magnetization plateaus
occur outside these regions. Inside the 1/3 plateau regions, be-
low the purple lines, the 2/3 plateau also exists. The little black
marks just below the purple lines denote the estimated position of
Cu2(pymca)3(ClO4).

the sides of the ternary diagram, bounded by the arc-shaped
purple lines, as shown in Fig. 12. Along the JA = JB line,
the 2/3 plateau occurs for JC between 0 and 0.088; along
JB = 0.2, it occurs for 0 � JC � 0.061 and 0.739 � JC � 0.8.

A notable feature of our findings is that the 2/3 plateau
always occurs with the 1/3 plateau or the 1/3 plateau alone
exists. It puts a constraint on the exchange interactions in
Cu2(pymca)3(ClO4), which exhibits both plateaus. We also
find the width of the 2/3 plateau to always be smaller than
that of the 1/3 plateau, consistent with the observed behavior
in Cu2(pymca)3(ClO4). Note that the region of the 1/3 plateau
lies strictly inside the zero-field hexagonal-singlet phase. This
is an interesting fact of our theory, which unambiguously
implies that, because Cu2(pymca)3(ClO4) exhibits a 1/3 mag-
netization plateau, therefore, in the absence of magnetic field,
it must have the hexagonal-singlet ground state.

We check these findings by doing QMC simulations of the
ABC model in magnetic field. In Fig. 13, we present the QMC
data for 384 spins at a low enough temperature (β = 100)
along the JA = JB line. The inset of this figure shows the
evolution of M vs hext with JC . For smaller JC values, our
QMC data exhibits plateaus at 1/3 as well as 2/3. Upon
increasing JC , first the 2/3 plateau tends to vanish around
0.09 and then the 1/3 plateau disappears around 0.185, in
agreement with our theory. The positions and the widths of
the plateaus obtained from QMC simulations are also com-
pared with the critical fields calculated from theory. One such
comparison for JC = 0.06 presented in Fig. 13 looks pretty
good. We have made similar checks also along directions
other than JA = JB, and the theory is found to be consistent
with the QMC numerics.
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FIG. 13. Magnetization versus magnetic field along JA = JB line
in the phase diagram. The blue curve with plateaus at 1/3 and 2/3
is the QMC data for JC = 0.06, and the vertical grey lines are the
critical fields from theory. Inset: Evolution of the plateaus with JC

increasing from 0.04 to 0.2.

We also estimate the exchange interactions for
Cu2(pymca)3(ClO4) and find that the experimental data
of magnetization in Ref. [17] is best described for
JC = 0.075 and JA ≈ JB, with an interaction strength of
JA + JB + JC ≈ 66 T (94.4 K). See Fig. 14 for a comparison
of the experimental data with the magnetization produced
by our QMC simulations for the estimated interactions of
values JC = 5 T (7.1 K) and JA = JB = 30.5 T (43.7 K); the
two compare nicely with a particularly good match along
the ramps on either side of the 1/3 plateau. This value
of JA(JB) is the same as considered in Ref. [17], but our
slightly weaker value of JC presents a better match [33].
Note that the other close-by estimates such as (JA, JB, JC ) =

(M
/M

sa
t)

×
(g

/2
)

T = 1.4K

hext (T)

FIG. 14. Comparison of the magnetization measured for
Cu2(pymca)3(ClO4) (the experimental data of Ref. [17]) with the
magnetization calculated by using QMC method at 1.4 K for the es-
timated interactions, (JA, JB, JC ) = (43.7 ± 0.8, 43.7 ∓ 0.8, 7.1) K.
The calculated magnetization is multiplied by g/2 (with a Landé g
factor of g = 2.13 for the material) to have the same Msat as for the
measured data.

(0.471, 0.454, 0.075) ≡ (31, 30, 5) T ≡ (44.5, 42.9, 7.1) K
also produce the same match, but going farther away from
the JA = JB line clearly spoils it. The choices of JC = 0.075
and JA + JB + JC = 66 T are found to be less flexible in the
search for the best match, and so are our best choices.

Notably, this estimate puts Cu2(pymca)3(ClO4) just in-
side the region of two plateaus, close to its boundary with
the one plateau region; the black marks just below the pur-
ple lines in Fig. 12 denote the estimated position(s) of this
material in the phase diagram. It makes the 2/3 plateau in
Cu2(pymca)3(ClO4) highly susceptible to small changes in
the interactions and points to a real possibility of making the
2/3 plateau disappear continuously, say, by applying pressure.
This is an interesting prediction for the experimentalists to
investigate.

While the key features of the magnetization behavior of
Cu2(pymca)3(ClO4) are described well by the antiferromag-
netic Heisenberg model on a kagome-honeycomb lattice, the
following differences visible in Fig. 14 still remain to be
understood. The experimental data does not saturate even up
to a field of 70 T where the calculated magnetization at 1.4 K
saturates. The experimental magnetization exhibits a slow but
steady growth well before 17 T (the estimated critical field
where the nonmagnetic state gives way to magnetization; it
corresponds to the zero-field spin-gap of 24.5 K). This con-
spicuous variation of magnetization is also seen on the 1/3
plateau; presumably, the same also weakens the already small
2/3 plateau. Moreover, a plateaulike tendency is noted above
2/3. These differences between the measured and the calcu-
lated magnetization suggest that there are other interactions at
work in this compound, in addition to but subdominant to the
exchange interactions considered here.

VI. CONCLUSION

The quantum phase diagram of an antiferromagnetic spin-
1/2 Heisenberg model on a kagome-honeycomb lattice is
obtained by a combined study based on triplon analysis and
QMC simulations. The findings from the two approaches are
mutually consistent both qualitatively and quantitatively. In-
terestingly, while the model is unfrustrated and bipartite, its
phase diagram is dominated by a quantum paramagnetic phase
that is best described as a hexagonal singlet state. The Néel
antiferromagnetic order appears only in a small region around
the uniform honeycomb case. The model is studied further in
an external magnetic field to understand the magnetization be-
havior observed in Cu2(pymca)3(ClO4). To this end, a theory
of the magnetization plateaus is developed and confirmed by
the QMC simulations. It leads to identifying the regions of one
(1/3), two (1/3 and 2/3), or no plateaus in the phase diagram,
and discovers an existential relation between the plateaus and
the zero-field hexagonal singlet ground state. The occurrence
of a 1/3 plateau in Cu2(pymca)3(ClO4) is thus proof that this
compound has a gapped hexagonal-singlet ground state in the
absence of the magnetic field. An estimation of the exchange
interactions places Cu2(pymca)3(ClO4) near the boundary of
the two-plateau region. It implies that a small change in the
exchange interactions may cause the 2/3 plateau to disap-
pear. There is a scope for investigating this quantum phase
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transition in Cu2(pymca)3(ClO4) by an interplay between
pressure and magnetic field.
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APPENDIX A: HEISENBERG PROBLEM AND TRIPLON
REPRESENTATION ON A SINGLE AB-HEXAGON

The Hamiltonian of a single spin-1/2 AB hexagon can be
written as

ĥAB = JA(�S2 · �S3 + �S4 · �S5 + �S6 · �S1)

+ JB(�S1 · �S2 + �S3 · �S4 + �S5 · �S6). (A1)

The total spin, Stotal, and its z component, Sz
total, are two

conserved quantities of this Hamiltonian. Let the quantum
number corresponding to Sz

total be m, in terms of which the
Hilbert space of six spin-1/2’s, {|↑〉, |↓〉}⊗6, can be sectorized
into seven parts for m = 0,±1,±2,±3. Here, |↑〉 and |↓〉 are
the eigenstates of an individual Sz operator, with eigenvalues
1
2 and − 1

2 , respectively. This Hamiltonian also has a three-
fold rotational symmetry, R 2π

3
. Furthermore, [Sz

total,R 2π
3

] =
0. Hence, the basis states in each fixed m sector can be further
grouped into smaller sectors using the rotational quantum
number, ν = 0, 1, 1̄ corresponding, respectively, to the three-
fold rotation eigenvalues 1, ω, ω2. Here, 1̄ stands for −1. We
write the ĥAB in matrix form in each of these (m, ν) subspaces
separately and find the complete eigenspectrum for different
values of JB/JA varying from 0 to 1.

The ground state of ĥAB is a nondegenerate unique singlet
state (i.e., Stot = 0) in the eight-dimensional (m, ν) = (0, 0)
subspace. See Table I for the basis states with m = 0. Let us
denote this state as |s〉 and call the corresponding ground state
energy as Es.

The first excited state of ĥAB is a triplet (i.e., Stot = 1).
The three eigenstates forming this triplet come from the ν = 0
sectors of the m = 0,±1 subspaces. For the basis states cor-
responding to m = 1, see Table II. Next in the spectrum, we
find two more triplets. Of these, one set of triplet comes
from ν = 1 and m = 0, 1, 1̄; the second triplet is formed in
the subspaces given by ν = 1̄ and m = 0, 1, 1̄. Let the nine
eigenstates in these three triplets be denoted as |tmν〉. The
energy corresponding to |tm0〉 is denoted as Et0 and is shown
by dashed red line in Fig. 4. This energy level remains the
second lowest all along JB/JA = 0 → 1. The triplets |tm1〉
and |tm1̄〉 are degenerate and have the energy Et1 shown by
dot-dashed blue line in Fig. 4. The Et1 is the third lowest
up to JB/JA = 0.685, beyond which another unique singlet
becomes lower. This singlet excited state is formed in the
(m, ν) = (0, 0) subspace, shown by the thin green line in
Fig. 4.

TABLE I. The 20-dimensional m = 0 subspace of an AB
hexagon is sectorized into one 8-dimensional and two 6-dimensional
subspaces corresponding to ν = 0 and 1, 1̄ respectively.

ν Basis states for m = 0

|↑↓↑↓↑↓〉, |↓↑↓↑↓↑〉,
0 1√

3
(|↑↑↑↓↓↓〉 + |↑↓↓↓↑↑〉 + |↓↓↑↑↑↓〉),

1√
3
(|↑↑↓↑↓↓〉 + |↓↑↓↓↑↑〉 + |↓↓↑↑↓↑〉),

1√
3
(|↓↓↑↓↑↑〉 + |↑↓↑↑↓↓〉 + |↑↑↓↓↑↓〉),

1√
3
(|↑↓↓↑↓↑〉 + |↓↑↓↑↑↓〉 + |↓↑↑↓↓↑〉),

1√
3
(|↓↓↓↑↑↑〉 + |↓↑↑↑↓↓〉 + |↑↑↓↓↓↑〉),

1√
3
(|↓↑↑↓↑↓〉 + |↑↓↑↓↓↑〉 + |↑↓↓↑↑↓〉).

1√
3
(ω |↑↑↑↓↓↓〉 + ω2 |↑↓↓↓↑↑〉 + |↓↓↑↑↑↓〉),

1 1√
3
(ω |↑↑↓↑↓↓〉 + ω2 |↓↑↓↓↑↑〉 + |↓↓↑↑↓↑〉),

1√
3
(ω |↓↓↑↓↑↑〉 + ω2 |↑↓↑↑↓↓〉 + |↑↑↓↓↑↓〉),

1√
3
(ω |↑↓↓↑↓↑〉 + ω2 |↓↑↓↑↑↓〉 + |↓↑↑↓↓↑〉),

1√
3
(ω |↓↓↓↑↑↑〉 + ω2 |↓↑↑↑↓↓〉 + |↑↑↓↓↓↑〉),

1√
3
(ω |↓↑↑↓↑↓〉 + ω2 |↑↓↑↓↓↑〉 + |↑↓↓↑↑↓〉).

1√
3
(ω2 |↑↑↑↓↓↓〉 + ω |↑↓↓↓↑↑〉 + |↓↓↑↑↑↓〉),

1̄ 1√
3
(ω2 |↑↑↓↑↓↓〉 + ω |↓↑↓↓↑↑〉 + |↓↓↑↑↓↑〉),

1√
3
(ω2 |↓↓↑↓↑↑〉 + ω |↑↓↑↑↓↓〉 + |↑↑↓↓↑↓〉),

1√
3
(ω2 |↑↓↓↑↓↑〉 + ω |↓↑↓↑↑↓〉 + |↓↑↑↓↓↑〉),

1√
3
(ω2 |↓↓↓↑↑↑〉 + ω |↓↑↑↑↓↓〉 + |↑↑↓↓↓↑〉),

1√
3
(ω2 |↓↑↑↓↑↓〉 + ω |↑↓↑↓↓↑〉 + |↑↓↓↑↑↓〉).

TABLE II. The 15-dimensional m = 1 subspace of an AB
hexagon is reduced into three 5-dimensional subspaces, one each for
ν = 0, 1, 1̄.

ν Basis states for m = 1

1√
3
(|↑↑↑↓↑↓〉 + |↑↓↑↓↑↑〉 + |↑↓↑↑↑↓〉),

0 1√
3
(|↑↑↑↓↓↑〉 + |↑↓↓↑↑↑〉 + |↓↑↑↑↑↓〉),

1√
3
(|↑↑↓↑↑↓〉 + |↓↑↑↓↑↑〉 + |↑↓↑↑↓↑〉),

1√
3
(|↑↑↓↑↓↑〉 + |↓↑↓↑↑↑〉 + |↓↑↑↑↓↑〉),

1√
3
(|↑↑↑↑↓↓〉 + |↑↑↓↓↑↑〉 + |↓↓↑↑↑↑〉).

1√
3
(ω |↑↑↑↓↑↓〉 + ω2 |↑↓↑↓↑↑〉 + |↑↓↑↑↑↓〉),

1 1√
3
(ω |↑↑↑↓↓↑〉 + ω2 |↑↓↓↑↑↑〉 + |↓↑↑↑↑↓〉),

1√
3
(ω |↑↑↓↑↑↓〉 + ω2 |↓↑↑↓↑↑〉 + |↑↓↑↑↓↑〉),

1√
3
(ω |↑↑↓↑↓↑〉 + ω2 |↓↑↓↑↑↑〉 + |↓↑↑↑↓↑〉),

1√
3
(ω |↑↑↑↑↓↓〉 + ω2 |↑↑↓↓↑↑〉 + |↓↓↑↑↑↑〉).

1√
3
(ω2 |↑↑↑↓↑↓〉 + ω |↑↓↑↓↑↑〉 + |↑↓↑↑↑↓〉),

1̄ 1√
3
(ω2 |↑↑↑↓↓↑〉 + ω |↑↓↓↑↑↑〉 + |↓↑↑↑↑↓〉),

1√
3
(ω2 |↑↑↓↑↑↓〉 + ω |↓↑↑↓↑↑〉 + |↑↓↑↑↓↑〉),

1√
3
(ω2 |↑↑↓↑↓↑〉 + ω |↓↑↓↑↑↑〉 + |↓↑↑↑↓↑〉),

1√
3
(ω2 |↑↑↑↑↓↓〉 + ω |↑↑↓↓↑↑〉 + |↓↓↑↑↑↑〉).
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Next we derive a representation of the six spins
of the hexagon in terms of the singlet ground state
and the three triplets, i.e., a total of ten eigenstates:
{|s〉 , |t00〉 , |t10〉 , |t1̄0〉 , |t01〉 , |t11〉 , |t1̄1〉 , |t01̄〉 , |t11̄〉 , |t1̄1̄〉}. We
ignore the singlet excited state mentioned above because it
doesn’t form a matrix element with the singlet ground state.
We also ignore all the other higher energy eigenstates because
we want to develop a description that is essentially minimal.

For the ten low-energy eigenstates identified above, we
introduce ten bosonic operators as follows:

|s〉 = ŝ† |0〉 ,

|tmν〉 = t̂†
mν |0〉 . (A2)

Here, the creation of a boson by applying ŝ† on the vacuum
|0〉 corresponds to having the singlet ground state |s〉 on the
hexagon; likewise for t̂†

mν . Since the auxiliary bosonic Fock
space is infinite dimensional, the bosons are required to sat-
isfy the constraint, ŝ†ŝ + ∑

m,ν t̂†
mν t̂mν = 1, to conform to the

dimension of the spin Hilbert space.
We can write the six spins of a hexagon in terms of these

ten eigenstates. This is a reasonable approximation to formu-
late an effective low-energy theory. We evaluate the matrix
elements of every component of the six spins (l = 1, 6) and
write the spin operators in the bra-ket notation. Every term in
the bra-ket notation is then made to correspond to a bilinear
(of one creation and one annihilation operators) in the bosonic
representation. For instance, 〈s|Sz

l |tmν〉|s〉〈tmν | corresponds to
〈s|Sz

l |tmν〉ŝ†t̂mν . In a physically motivated simplification of this
representation, we treat ŝ and ŝ† in mean-field approximation
by the mean singlet amplitude s̄. This s̄ is meant to describe
the mean-field HS state on the full lattice. Finally, we keep
only those terms which are directly coupled to s̄, i.e., the
terms which make the HS state quantum fluctuate directly
through triplet excitations. With these simplifications, we get
the following triplon representation of the spins on a hexagon,

Sz
l ≈ s̄

[
C l

00(t̂00 + t̂†
00) + (

C l
01t̂01 + C l∗

01t̂01̄ + H.c.
)]

, (A3)

S+
l ≈ s̄

[
C l

1̄0(t̂1̄0 − t̂†
10) + C l

1̄1(t̂1̄1 − t̂†
11̄

) + C l∗
1̄1(t̂1̄1̄ − t̂†

11)
]
,

(A4)

where C l
00 = 〈s| Sz

l |t00〉, C l
01 = 〈s| Sz

l |t01〉, C l
1̄0 = 〈s| S+

l |t1̄0〉,
and C l

1̄1
= 〈s| S+

l |t1̄1〉 are the matrix elements in terms of
which the other matrix elements can be expressed as C l

mν =
C l∗

mν̄ and C l
mν = C l

m̄ν . Moreover, the coefficients corresponding
to the third and fifth spins are related to that of the first spin as:

TABLE III. The six m = 2 basis states grouped into three 2-
dimensional subspaces corresponding to ν = 0, 1, 1̄.

ν Basis states for m = 2

0 1√
3
(|↑↑↑↑↑↓〉 + |↑↑↑↓↑↑〉 + |↑↓↑↑↑↑〉),

1√
3
(|↑↑↑↑↓↑〉 + |↑↑↓↑↑↑〉 + |↓↑↑↑↑↑〉).

1 1√
3
(ω |↑↑↑↑↑↓〉 + ω2 |↑↑↑↓↑↑〉 + |↑↓↑↑↑↑〉),

1√
3
(ω |↑↑↑↑↓↑〉 + ω2 |↑↑↓↑↑↑〉 + |↓↑↑↑↑↑〉).

1̄ 1√
3
(ω2 |↑↑↑↑↑↓〉 + ω |↑↑↑↓↑↑〉 + |↑↓↑↑↑↑〉),

1√
3
(ω2 |↑↑↑↑↓↑〉 + ω |↑↑↓↑↑↑〉 + |↓↑↑↑↑↑〉).

C3
mν = ω2νC1

mν and C5
mν = ωνC1

mν . Similarly, the coefficients
corresponding to the fourth and sixth spins are related to that
of the second spin as: C4

mν = ω2νC2
mν and C6

mν = ωνC2
mν .

Next we describe the quintet (Stot = 2) and the heptet
(Stot = 3) eigenstates; they would be required for the the-
ory of magnetization in Sec. V. The heptet eigenstates,
denoted as |hm0〉, are unique and symmetric under rotation.
The fully polarized |↑↑↑↑↑↑〉 is the |h30〉 with eigenvalue
3(JA + JB)/4; the other |hm0〉 states can be generated from
it by the repeated application of S−

tot. There are a total
of five different quintets denoted as |qm0〉 with eigenvalue
Eq0 = −(JA + JB)/4, |qm1〉 and |qm1̄〉 with same eigen-

value Eq1 = [
3(JA + JB) −

√
17J2

A − 14JAJB + 17J2
B

]
/8, and

|q′
m1〉 and |q′

m1̄
〉 with eigenvalues E ′

q1 = [
3(JA + JB) +√

17J2
A − 14JAJB + 17J2

B

]
/8. Of these, the m = 2 states

can be written in terms of the basis states given in
Table III. For instance, |q20〉 = (|↑↑↑↑↑↓〉 + |↑↑↑↓↑↑〉 +
|↑↓↑↑↑↑〉 − |↑↑↑↑↓↑〉 − |↑↑↓↑↑↑〉 − |↓↑↑↑↑↑〉)/

√
6 is

an antisymmetric linear superposition of the two states in
the ν = 0 sector; the m = 2 eigenstates for ν = 1, 1̄ can be
obtained from the corresponding 2×2 matrices for ĥAB.

APPENDIX B: HAMILTONIAN MATRIX
AND BOGOLIUBOV DIAGONALIZATION

FOR THE HS STATE TRIPLON DYNAMICS

The H�k in Eq. (12) is an 18×18 matrix in the Nambu basis.

We can write it as H�k =
(M�k W�k
W†

�k M∗
−�k

)
, where M�k and W�k

are two 9×9 matrices given below.

M�k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D�k
00 0 0 A�k

0001 0 0 A−�k∗
0001 0 0

0 D�k
00 0 0 A�k

1011 0 0 A−�k∗
1011 0

0 0 D�k
00 0 0 A�k

1011 0 0 A−�k∗
1011

A�k∗
0001 0 0 D�k

01 0 0 A�k
0101̄ 0 0

0 A�k∗
1011 0 0 D�k

11 0 0 A�k
1111̄ 0

0 0 A�k∗
1011 0 0 D�k

11 0 0 A�k
1111̄

A−�k
0001 0 0 A�k∗

0101̄ 0 0 D�k
01 0 0

0 A−�k
1011 0 0 A�k∗

1111̄ 0 0 D�k
11 0

0 0 A−�k
1011 0 0 A�k∗

1111̄
0 0 D�k

11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B1a)
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W�k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B�k
00 0 0 A−�k∗

0001 0 0 A�k
0001 0 0

0 0 B�k
101̄0

0 0 −A−�k∗
1011 0 0 −A�k

1011

0 B−�k
101̄0

0 0 −A−�k∗
1011 0 0 −A�k

1011 0

A�k∗
0001 0 0 B�k∗

01̄
0 0 B�k

0101̄
0 0

0 0 −A�k∗
1011 0 0 −A�k

1111̄
0 0 B�k

111̄1̄

0 −A�k∗
1011 0 0 −A−�k

1111̄
0 0 B�k

111̄1̄ 0

A−�k
0001 0 0 B−�k

0101̄
0 0 B01̄ 0 0

0 0 −A−�k
1011 0 0 B−�k

111̄1̄
0 0 −A�k∗

1111̄

0 −A−�k
1011 0 0 B−�k

111̄1̄
0 0 −A−�k∗

1111̄
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B1b)

The elements of these matrices are given as follows:

D�k
00 = λ + Et0

2
+ JCs̄2C1

00C2
00 f 0

�k ,

D�k
01 = λ + Et1

2
+ JCs̄2Re

(
ωC1

01C2∗
01γ 0

�k
)
,

D�k
11 = λ + Et1

2
+ JCs̄2

2
Re

(
ωC1

1̄1C
2∗
1̄1γ 0

�k
)
, (B2a)

A�k
0001 = JCs̄2

2

(
C1

00C2
01γ�k + ωC1

01C2
00γ−�k

)
,

A�k
1011 = JCs̄2

4

(
C1

1̄0C
2
1̄1γ�k + ωC1

1̄1C
2
1̄0γ−�k

)
,

A�k
0101̄ = JCs̄2

(
C1

01C2
01 f�k

)∗
,

A�k
1111̄ = JCs̄2

2

(
C1

1̄1C
2
1̄1 f�k

)∗
, (B2b)

B�k
00 = JCs̄2C1

00C2
00 f 0

�k ,

B�k
01̄ = JCs̄2C1

01C2
01 f�k,

B�k
101̄0 = −JCs̄2

2
C1

1̄0C
2
1̄0 f�k,

B�k
0101̄ = JCs̄2Re

(
ωC1

01C2∗
01γ 0

�k
)
,

B�k
111̄1̄ = −JCs̄2

2
Re

(
ωC1

1̄1C
2∗
1̄1γ 0

�k
)
, (B2c)

where

f 0
�k = cos k1 + cos k2 + cos k3,

f�k = cos k1 + ω2 cos k2 + ω cos k3,

γ 0
�k = e−ik1 + e−ik2 + eik3 ,

γ�k = ωeik1 + ω2eik2 + e−ik3 (B3)

for k1, k2, k3 defined in the main text [see below and Eq. (6)].
To diagonalize the triplon Hamiltonian HtHS of Eq. (12), as

per the prescription due to Bogoliubov, we first multiply H�k
with the matrix

� =
(
I9 0
0 −I9

)
(B4)

from the left-hand side; here I9 is a 9×9 identity matrix.
We then diagonalize the matrix �H�k . Its eigenvalues come
in pairs, i.e., for every positive eigenvalue there occurs a

negative eigenvalue with same magnitude. Of these, the posi-
tive eigenvalues are the triplon dispersions εi�k in Eq. (14).

APPENDIX C: SPIN-WAVE ANALYSIS
OF THE ABC MODEL

Consider the perfect Néel antiferromagnetic state on the
kagome-honeycomb lattice. In a unit cell (say, AB hexagon)
at position �R, the odd-numbered spins, assumed to be aligned
in the +z direction, can be written in the Holstein-Primakoff
representation as

Sz
1, �R = S − â†

1, �Râ
1, �R, S+

1, �R ≈
√

2Sâ
1, �R, (C1a)

and likewise for �S3, �R and �S5, �R. Correspondingly, the even-
numbered spins are pointed along the −z direction. Hence,
in the Holstein-Primakoff representation,

Sz
2, �R = −S + â†

2, �Râ
2, �R, S+

2, �R ≈
√

2Sâ†
2, �R (C1b)

and likewise for �S4, �R and �S6, �R. We apply this to the ABC model
[Eq. (1)], together with the Fourier transformation, âl, �R =

1√
Nuc

∑
�k ei�k· �Râl,�k for l = 1 to 6. We finally get the following

spin-wave Hamiltonian:

ĤSW = −3S(S + 1)(JA + JB + JC )Nuc + S

2

∑
�k

�
†
�kh�k��k,

(C2)
where �

†
�k = (

â†
1,�k â†

2,�k · · · â†
6,�k â

1,−�k â
2,−�k · · · â

6,−�k
)

is a

Nambu row vector, and h�k = (A�k B�k
B�k A�k

)
is a 12×12 matrix with

A�k = (JA + JB + JC ) I6 and

B�k =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 JB 0 JCeik2 0 JA

JB 0 JA 0 JCeik3 0
0 JA 0 JB 0 JCeik1

JCe−ik2 0 JB 0 JA 0
0 JCe−ik3 0 JA 0 JB

JA 0 JCe−ik1 0 JB 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(C3)

for the same k1, k2 and k3 as defined near Eq. (6). By do-
ing Bogoliubov diagonlization of ĤSW, we get six spin-wave
dispersions, El�k , and the following expression for the ground
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state energy per unit-cell:

EgSW = −3S(S + 1)(JA + JB + JC ) + S

2Nuc

∑
�k

6∑
l=1

El�k

(C4)

Using this, we calculate the spin-wave energy of the ABC
model for S = 1/2.

APPENDIX D: HAMILTONIAN MATRIX AND OTHER
DETAILS CONCERNING THE THEORY OF 1/3 PLATEAU

The spins of an AB hexagon can be represented in the
reduced subspace, {|s〉 , |t10〉 , |q20〉 , |q21〉 , |q21̄〉}, as

Sz
l, �R ≈ Cl

1010 t̄2 + Cl
2020 q̂†

20, �Rq̂20, �R

+Cl
2121

(
q̂†

21, �Rq̂21, �R + q̂†
21̄, �Rq̂21̄, �R

)
, (D1a)

S+
l, �R ≈ t̄

(
Cl

s ŝ �R + Cl
20q̂†

20, �R + Cl
21q̂†

21, �R + Cl∗
21q̂†

21̄, �R
)
, (D1b)

where l = 1 to 6 is the spin label and the coefficients Cl
20, Cl

21,
Cl

2020, etc. are the matrix elements defined below:

Cl
1010 = 〈t10| Sz

l |t10〉 , Cl
2020 = 〈q20| Sz

l |q20〉 ,

Cl
2121 = 〈q21| Sz

l |q21〉 , Cl
s = 〈t10| S+

l |s〉 ,

Cl
20 = 〈q20| S+

l |t10〉 , Cl
21 = 〈q21| S+

l |t10〉 .

Moreover, C1
1010 = C3

1010 = C5
1010 and C2

1010 = C4
1010 = C6

1010;
same is true for Cl

2020 and Cl
s . These are real coefficients. The

complex coefficients are C3
21 = ωC1

21, C5
21 = ω2C1

21, and C4
21 =

ωC2
21, C6

21 = ω2C2
21.

The constant term, ε
( 1

3 )
0 , in Eq. (17) is given by

ε
( 1

3 )
0 = (Et0 − hext + λ)t̄2 − 3

2
JCt̄2

(
χ ( 1

3 ) − 2t̄2C1
1010C

2
1010

)
− 1

2
(Es + Eq0 + 2Eq1) + 3(hext − λ), (D2a)

χ ( 1
3 ) = C1

1010

(
C2

2020 + 2C2
2121

) + C2
1010

(
C1

2020 + 2C1
2121

)
,

(D2b)

χ = χ ( 1
3 ) − 4t̄2C1

1010C
2
1010, (D2c)

and the 8×8 Hamiltonian matrix in the Nambu basis can be

written as H( 1
3 )

�k =
(

M( 1
3 )

�k W ( 1
3 )

�k

W ( 1
3 )†

�k M( 1
3 )∗

−�k

)
, with

M( 1
3 )

�k =

⎛
⎜⎜⎜⎜⎜⎝

D�k
s 0 0 0

0 D�k
20 A�k

2021 A−�k∗
2021

0 A�k∗
2021 D�k

21 A�k
2121̄

0 A−�k
2021 A�k∗

2121̄ D�k
21̄

⎞
⎟⎟⎟⎟⎟⎠, (D3a)

W ( 1
3 )

�k =

⎛
⎜⎜⎜⎜⎜⎝

0 B�k
s,20 B−�k∗

s,21̄
B�k

s,21̄

B−�k
s,20 0 0 0

B�k∗
s,21̄ 0 0 0

B−�k
s,21̄

0 0 0

⎞
⎟⎟⎟⎟⎟⎠, (D3b)

where

D�k
s = λ + Es

2
+ JCt̄2

2
C1

s C2
s f 0

�k ,

D�k
20 = λ + Eq0 − 2hext

2
+ JCt̄2

2
C1

20C
2
20 f 0

�k

+3JCt̄2

2
(C1

1010C
2
2020 + C1

2020C
2
1010),

D�k
21 = λ + Eq1 − 2hext

2
+ JCt̄2

2
Re

(
ω2C1

21C
2∗
21 γ 0

−�k
)

+3JCt̄2

2
(C1

1010C
2
2121 + C1

2121C
2
1010),

D�k
21̄ = λ + Eq1 − 2hext

2
+ JCt̄2

2
Re

(
ωC1∗

21C2
21γ

0
−�k

)
+3JCt̄2

2

(
C1

1010C
2
2121 + C1

2121C
2
1010

)
,

A�k
2021 = JCt̄2

4

(
C1

20C
2∗
21 γ�k + C1∗

21C2
20γ−�kω

)
,

A�k
2121̄ = JCt̄2

2
C1

21C
2
21 f�k,

B�k
s,20 = JCt̄2

4

(
C1

s C2
20γ

0
−�k + C1

20C
2
s γ 0

�k
)
,

B�k
s,21̄ = JCt̄2

4

(
C1

s C2∗
21 γ�k + C1∗

21C2
s γ−�kω

)
.

APPENDIX E: DETAILS OF THE THEORY
OF 2/3 PLATEAU

The simplified representation of the spins in a hexagonal
unit cell in the subspace, {|t10〉 , |q20〉 , |h30〉}, relevant for 2/3
plateau:

Sz
l, �R = Cl

2020q̄2 + Cl
1010t̂†

10, �Rt̂10, �R + Cl
3030ĥ†

30, �Rĥ30, �R,

S+
l, �R = q̄

(
Cl

10t̂10, �R + Cl
30ĥ†

30, �R
)
. (E1)

Here, Cl
1010, Cl

2020, and Cl
10 are same as defined in

Appendix D. Moreover, Cl
3030 = 〈h30| Sz

l |h30〉 = 1
2 for l =

1 to 6, and Cl
30 = 〈h30| S+

l |q20〉 take the following values:
C1

30 = C3
30 = C5

30 = 1√
6

and C2
30 = C4

30 = C6
30 = − 1√

6
.

The constant term and the coefficients in Ĥ ( 2
3 ) are

Dt,�k = λ + Et0 − hext + JCq̄2C1
10C

2
10 f 0

�k
+3JCq̄2

(
C1

2020C
2
1010 + C1

1010C
2
2020

)
, (E2a)

Dh,�k = λ + Eh0 − 3hext + JCq̄2C1
30C

2
30 f 0

�k
+3JCq̄2

(
C1

2020C
2
3030 + C1

3030C
2
2020

)
, (E2b)

F�k = JCq̄2

2
|C1

10C
2
30γ

0
�k + C1

30C
2
10γ

0
−�k|, (E2c)

ε
( 2

3 )
0 = (Eq0 − 2hext + λ)q̄2 + 3JCq̄4 C1

2020C
2
2020

−3JCq̄2
(
C1

2020C
2
3030 + C1

3030C
2
2020

)
−Eh0 + 3hext − 2λ, (E2d)

χ̃ = 2q̄2C1
2020C

2
2020 − (

C1
2020C

2
3030 + C1

3030C
2
2020

)
. (E2e)
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