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Determination of spin chirality using x-ray magnetic circular dichroism
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A threefold symmetric kagome lattice that has negative spin chirality can give a nonzero x-ray magnetic
circular dichroism (XMCD) signal, despite the total spin moment amounting to zero. In order to explain this,
I present here a rule for the rotational symmetry invariance of the XMCD signal. A necessary condition is the
existence of an anisotropic XMCD signal for the local magnetic atom, which can arise from a spin anisotropy
either in the ground state or the final state. The angular dependence of the XMCD as a function of the beam
direction has an unusual behavior. The maximum dichroism is not aligned along the spin direction, but depends
on the relative orientation of the spin with respect to the atomic orientation. Therefore, different geometries can
result in the same angular dependence, and the spin direction can only be determined if the atomic orientation
is known. The consequences for the x-ray magneto-optical sum rules are given. The integrated XMCD signals
are proportional to the anisotropy in the orbital moment and the magnetic dipole term, where the isotropic spin
moment drops out.

DOI: 10.1103/PhysRevB.104.094414

I. INTRODUCTION

X-ray magnetic circular dichroism (XMCD) has become
a versatile technique to interrogate ferro- and ferrimagnetic
magnetic materials [1]. Particularly huge XMCD signals are
observed in the soft x-ray region [2], facilitating us to extract
the expectation values of the element-specific spin and orbital
moments [3,4]. On the other hand, common wisdom has it that
there is no XMCD from antiferromagnetic (AFM) materials,
where the spin moments for the particular element cancel each
other [5].

Recently, Yamasaki et al. [6] conjectured the existence
of XMCD in the coplanar 120◦ AFM kagome network of
Mn3Sn. These authors ascribed the origin of the XMCD to
the magnetic dipole term 〈Tζ 〉. This term gives the anisotropy
of the spin distribution [4] and is contributing to the mag-
netocrystalline anisotropy energy [7]. Subsequently, Sasabe
et al. [8] performed cluster calculations for the XMCD at the
L2.3 absorption edge of Fe2+ d6 in a kagome lattice, thereby
theoretically confirming the presence of XMCD. However,
they also found XMCD for Mn2+ d5 in a kagome lattice,
which has a negligibly small 〈Tζ 〉, thereby dismissing it as the
origin of the effect.

Also the spin-polarized relativistic (SPR) Korringa-Kohn-
Rostoker (KKR) calculations for Mn3Ir and Mn3Ge by
Wimmer et al. [9] confirmed a nonzero XMCD. It has been
suggested that this is connected to a chirality-driven orbital
magnetic moment [10]. The scalar spin chirality is closely
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related to the emergent magnetic field, a natural concept in the
geometric theories of the Hall effect and orbital magnetization
[11]. It however requires a noncoplanar rather than a non-
collinear magnetic structure [12]. In noncoplanar structures,
the anomalous Hall effect (AHE) has been associated through
the Berry phase with spin chirality [13–16]. For diluted mag-
netic systems it was shown that if three spins S0, S1, and S2 are
noncoplanar, they contribute to the AHE with a term which
is proportional to the scalar chirality S0 · (S1 × S2) [14]. This
mechanism for AHE does not involve a spin-orbit interaction,
but requires only the existence of noncoplanar (chiral) spin
configurations.

The structure of a two-dimensional (2D) kagome lattice
with threefold symmetry axes is displayed in Fig. 1. The
dashed box marks a unit cell of the magnetic structure. In
the spin-oriented state the red, blue, and green atoms have
different spin directions. With the spin of each atom rotated
by 120◦, the AFM structure has no net spin moment. Naively,

FIG. 1. Structure of two-dimensional kagome lattice with three-
fold symmetry axes and corner-sharing triangles. Only the magnetic
atoms are shown. In the spin-oriented state the red, blue, and yellow
atoms have different spin directions. The dashed box indicates a unit
cell of the magnetic structure.
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one might then expect a zero XMCD, as is indeed so if the
structure has positive chirality (defined as spin and atomic
orientation having the same sense of rotation). However, this
is not necessarily true for negative helicity (defined as spin
and atomic orientation having opposite sense of rotation). As a
relevant example, Mn3S is a hexagonal AFM with space group
P63/mmc [17]. Below the Néel temperature TN ≈ 430 K,
the combination of intersite AFM and Dzyaloshinskii-Moriya
interactions leads to a 120◦ spin structure with a uniform
negative spin chirality of the in-plane Mn moments because
of geometrical frustration. It exhibits a large anomalous Hall
conductivity [18] and magneto-optic Kerr effect (MOKE) [19]
despite the absence of a net magnetic moment.

From the viewpoint of XMCD several questions remain to
be addressed: What is the origin of the nonzero XMCD in the
threefold symmetric AFM structure? Is this effect also present
for other n-fold AFM structures, notably skyrmions? Can the
XMCD be used to deduce the spin direction? What roles are
played by the orbital moment and the magnetic dipole term of
the atoms? These questions will be answered in the following.

II. OCCURRENCE OF XMCD

A. Angular dependence

In x-ray absorption spectroscopy (XAS) at the L2.3 edge
of a 3d transition metal a 2p core electron is excited into an
unoccupied 3d state. The participation of the core hole makes
that the excitation process is localized, i.e., restricted to the
excited atom in the ligand field of the neighboring atoms. The
XMCD is obtained as the difference between two XAS spectra
with opposite light helicities.

A general description of the angular dependence of the
XMCD in three dimensions can be found elsewhere [20,21],
but as the minimal model to study the coplanar case two
dimensions are sufficient. For an isotropic system the XMCD
signal is proportional to P̂ · Ŝ, where P̂ is the light helicity
vector, which is always along the beam direction, and Ŝ is
the spin vector. In a lower than octahedral environment of the
atom the XMCD will be anisotropic with respect to the atomic
axes. With the spin Ŝ in the x-y plane the XMCD spectrum can
then be written as

IXMCD = Ix(P̂ · x̂)(x̂ · Ŝ) + Iy(P̂ · ŷ)(ŷ · Ŝ), (1)

where Ix and Iy are the energy-dependent XMCD signals for
P̂ ‖ Ŝ along the local x̂ and ŷ directions of the excited atom,
respectively. The intensity I ≡ I (E ) is at an arbitrary photon
energy.

The intensity of each peak in the XMCD multiplet can
have a different angular dependence. Equation (1) accounts
for this by using a linear combination of so-called funda-
mental spectra. For electric-dipole transitions in a 2D system
there can be only two fundamental spectra, which we take
as Ix(E ) and Iy(E ) (for electric-quadrupole transitions there
would be more than two spectra). Specifically, the ratio Ix/Iy

will change as a function of photon energy E . An example of
the angular dependence of the XMCD in uniaxial symmetry
described by two fundamental spectra can be found in Ref.
[21].

x'

y'

x

y
P

S

α

μ

γ

FIG. 2. Definition of the angles in the reference frame. The local
atom (gray disk) is oriented along x, which makes an angle α with the
x′ axis of the laboratory frame. The spin direction Ŝ and the helicity
vector P̂ of the circularly polarized x rays are at an angle μ and γ ,
respectively, with respect to x′.

With the beam direction fixed, each individual atom k in
the kagome unit cell has a different orbital orientation and spin
direction. It is assumed that in the local frame each atom has
the same absorption coefficient. The atom k is oriented along
the local x axis, which makes an angle αk with the laboratory
axis x′, so that Eq. (1) can be recast as

Ik
XMCD = Ix cos(γ − αk ) cos(μk − αk )

+ Iy sin(γ − αk ) sin(μk − αk ), (2)

where γ and μk are the angles of P̂ and Ŝ, respectively, with
respect to x′ (see Fig. 2). Indeed, Eq. (2) obeys the correct
symmetry properties

Ik
XMCD(γ + π ) = −Ik

XMCD(γ ),

Ik
XMCD(μk + π ) = −Ik

XMCD(μk ),

Ik
XMCD(αk + π ) = +Ik

XMCD(αk ),

for reversal of the light direction, spin direction, and atomic
orientation, respectively.

In the absence of anisotropy (Ix = Iy), Eq. (2) reduces to
Ik
XMCD = Ix cos(γ − μk ), which summed over k for an AFM

lattice yields a net zero XMCD. Thus, it can already be stated
that some form of anisotropy would be a necessary condition
to have a nonzero total XMCD.

The magnetic unit cell of the kagome lattice, shown in
Fig. 1, can have different spin chiralities as depicted in Fig. 3.
Starting from the x′ axis, the three atoms and their spins,
with angles αk and μk , are labeled k = 0, 1, 2 in the coun-
terclockwise convention, and colored red, blue, and green,
respectively. Taking α0 = 0◦, examples are shown with μ0 =
0◦, 20◦, and 90◦. In the case that α0 	= 0◦ we are free to rotate
the unit cell to α0 = 0◦, i.e., align along the x′ axis. For posi-
tive chirality (h = 1) the atomic orientation and spin direction
in Fig. 3 follow the same sense of rotation, increasing by 120◦
between the respective atoms in the triangle. In contrast, for
negative chirality (h = −1) the spin direction has the opposite
sense of rotation as the atomic orientation.

For positive chirality, the threefold rotational symmetry
of the structure leads to a vanishing total XMCD. For, e.g.,
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FIG. 3. Magnetic unit cells oriented along α0 = 0◦ with posi-
tive chirality (h = 1) for (a) μ0 = 0◦ (A2 phase), (b) μ0 = 20◦, and
(c) μ0 = 90◦ (A1 phase), and with negative chirality (h = −1) for
(d) μ0 = 0◦, (e) μ0 = 20◦, and (f) μ0 = 90◦.

Figs. 3(a) and 3(c), Eq. (2) gives for the atom k,

Ik
XMCD = Ix cos(γ − αk ) for μk = αk,

Ik
XMCD = Iy sin(γ − αk ) for μk = αk + 90◦, (3)

respectively. Since γ is fixed with respect to x′ whereas αk is
summed over k, the total XMCD amounts to zero. However,
for negative chirality the combination of atomic orientation
and spin direction lacks rotational symmetry. For complete-
ness the symmetry properties of the spin vectors are given in
the Appendix, although no explicit use will be made of group-
theoretical arguments. Instead a more transparent analytical
derivation is given.

B. General derivation

Equation (2) can be recast into a sum over an isotropic and
an anisotropic part as

Ik
XMCD = 1

2
(Ix + Iy) cos(γ − μk )

+ 1

2
(Ix − Iy) cos(γ + μk − 2αk ). (4)

Both chiralities can be captured by taking the angles for atom
k as

αk = α0 + 2π

3
k,

μk = μ0 + 2π

3
kh, (5)

where h = +1 and −1 for positive and negative chirality,
respectively. This gives

Ik
XMCD =1

2
(Ix + Iy) cos

(
γ − μ0 − 2π

3
kh

)

+1

2
(Ix − Iy) cos

[
γ + μ0 − 2α0 + 2π

3
k(h − 2)

]
.

(6)

Summing over k = 0, 1, 2 yields our key result, the total
XMCD over the unit cell,

I total
XMCD = 0 for h = +1,

I total
XMCD = 3

2 (Ix − Iy) cos(γ + μ0 − 2α0) for h = −1, (7)

where γ , μ0, and α0 have fixed values in the laboratory frame.
Not surprisingly, the isotropic part has dropped out.

It can be immediately verified from Eq. (7) that if α0 and
μ0 are increased by 120◦ and −120◦, respectively, then the
intensity remains unchanged. Therefore, the anisotropic part
for each of the three atoms is the same, so that the total XMCD
is 3× the individual atom contribution.

Equation (7) shows that for negative chirality the total
XMCD does not vanish unless the XMCD of the local atom is
isotropic (Ix = Iy) or when γ = 2α0 − μ0 ± 90◦, which cor-
responds to the zero crossings between positive and negative
dichroism.

Further insight can be gained from a graphical illustration
of the angular dependence of the XMCD as a function of the
incident beam angle γ . Choosing for convenience Ix > Iy in
Eq. (6), Fig. 4 shows angular plots with the lattice oriented at
α0 = 0◦. The red, blue, and green curves give the XMCD for
each of the three magnetic atoms with spin directions shown
by the color-coded arrows. The corresponding magnetic unit
cell is shown in the inset on the left.

Figure 4(a) shows a unit cell with positive helicity (h = 1)
and μ0 = 20◦. It demonstrates the threefold rotational sym-
metry of the angular dependence, whereby the total XMCD
vanishes.

Figure 4(b) shows a unit cell with negative helicity and
μ0 = 0◦. Here, the magnitude of the XMCD for the red atom
is larger than that for the blue and green atoms, which is due to
their different value for the angle |μk − αk|. The total XMCD
is shown by the thick black curve, and since α0 = μ0 = 0◦
this gives I total

XMCD = 3
2 (Ix − Iy) cos γ , which has a maximum at

γ = 0◦.
It becomes interesting when μ0 	= 0, in which case the

maximum dichroism is no longer oriented along S0 (the red
arrow) since γ = −μ0. Figure 4(c) shows a unit cell with
μ0 = 90◦. The magnitude of the XMCD for the red atom
is smaller than that for the blue and green ones. The total
XMCD is I total

XMCD = − 3
2 (Ix − Iy) sin γ with the maximum at

γ = −90◦.
Both examples in Figs. 4(b) and 4(c) are consistent with the

cluster calculations for the L2,3 XMCD of Fe2+ d6 and Mn2+

d5 in a kagome lattice, which were carried out by Sasabe et al.
[8] using a fixed geometry.

Finally, Fig. 5 for h = −1 and μ0 = 20◦ reveals the in-
tricacies of the anisotropy in the XMCD signal. For each of
the atoms the angular dependence of the XMCD, shown in
Fig. 5(a), is separated into its isotropic and anisotropic part.
The isotropic part in Fig. 5(b) shows a threefold rotational
symmetry and thus has no total XMCD. In the anisotropic
part shown in Fig. 5(c), all three atoms give the same angular-
dependent intensity, which is shown by the brown curve, and
together these add up to the black curve. The total XMCD
is 3

2 (Ix − Iy) cos(γ + 20◦), with a maximum at γ = −μ0 =
−20◦, thus at the opposite site of the x′ axis than S0.
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FIG. 4. The magnetic unit cell, oriented at α0 = 0◦, is shown
in the inset at the left. The main image shows the angular depen-
dence of the XMCD as a function of γ . The red, blue, and green
curves give the XMCD for the three magnetic atoms with their
spin directions shown by the color-coded arrows. The total XMCD
is given by the thick black curve. The plots have been obtained
from Eq. (6) for Ix = 4, Iy = 2.5, and the solid and dashed curves
correspond to positive and negative signals, respectively. (a) Positive
helicity (h = 1) with μ0 = 20◦, which gives a total XMCD = 0.
(b) Negative helicity (h = −1) with μ0 = 0◦, which gives a total
XMCD = 3

2 (Ix − Iy ) cos γ , with maximum at γ = −μ0 = 0◦, i.e.,
along +x′. (c) Negative helicity with μ0 = 90◦, which gives a total
XMCD = − 3

2 (Ix − Iy ) sin γ , with maximum at γ = −μ0 = −90◦,
i.e., along −y′.

For a nonaligned lattice orientation (α0 	= 0◦), the max-
imum of the dichroism is found at γ = 2α0 − μ0. In the
experiment, one can only determine the spin direction within
this constraint, whereby different geometries can result in the
same angular dependence. For instance, rotating the x′ axis by
90◦ in Fig. 4(c) so that α0 = 90◦ and μ0 = 180◦ or rotating
the x′ axis by 20◦ in Fig. 5(a) so that α0 = 20◦ and μ0 = 40◦
gives in both cases exactly the same angular dependence as in
Fig. 4(b) for α0 = μ0 = 0◦.

FIG. 5. (a) The angular dependence as a function of γ for nega-
tive helicity with μ0 = 20◦. The description of the plot is as in Fig. 4.
The total XMCD = 3

2 (Ix − Iy ) cos(γ + 20◦), which has a maximum
for γ = −μ0 = −20◦, thus at the opposite site of the x′ axis than S0

(red arrow). The lower panel shows the decompostion of the XMCD
in isotropic and anisotropic part. (b) The isotropic part of the XMCD,
which shows no total signal. (c) The anisotropic part, where all three
magnetic atoms have the same angular dependence, shown by the
brown curve, and which together add up to the black curve.

Hence, the angular dependent intensity as a function of the
beam direction can be used to obtain the spin direction as long
as the atomic orientation is known. Note that this also means
that in the experiment particular care should be taken with the
azimuthal alignment of the sample.

C. Unit cell with multifold axis

Next, we consider whether a unit cell with n-fold rotational
symmetry, Cnv (n � 2), can have a nonvanishing total XMCD.
Replacing 2π

3 by 2π
n in Eq. (6) and summing k from 0 to

n − 1 gives that I tot
XMCD = 0 except for the above-treated case

of (n = 3, h = −1). This also applies to n = 6, which can
be considered as the sum of two lattices with n = 3 that are
rotated 60◦ with respect to each other. According to Eq. (7)
the XMCD of these two unit cells have opposite signs and
thus cancel each other out.

Skyrmions in crystalline lattices of B20-type compounds
have sixfold symmetry axes and skyrmions in metallic multi-
layers might be regarded as having (n → ∞)-fold symmetry,
so that none of these will qualify for any total XMCD. How-
ever, resonant elastic x-ray scattering (REXS) has shown to
be able to unambiguously resolve the chirality, owing to the
interference effects between the different sites [22].
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III. SPIN AND ORBITAL GROUND STATE MOMENTS

A. Orbital moment

According to the orbital magnetic sum rule the expectation
value of the ground state orbital moment 〈Lζ 〉 is proportional
to the energy-integrated XMCD signal along the ζ direction
[3,23]. For the atom k the angular dependence is

〈Lk〉 = 1
2 [〈Lx〉 + 〈Ly〉] cos(γ − μk )

+ 1
2 [〈Lx〉 − 〈Ly〉] cos(γ + μk − 2αk ), (8)

which agrees with Eq. (35) of Ref. [20]. Since this has the
same angular dependence as the XMCD signal in Eq. (4), it
can only be nonzero for a threefold lattice with negative chi-
rality. Summation over k gives the total angular dependence
for h = −1 as

〈Ltotal〉 =
∑

k

〈Lk〉 = 3

2
[〈Lx〉 − 〈Ly〉] cos(γ + μk − 2αk ).

(9)

Importantly, the obtained quantity is given by the anisotropy
in the atomic orbital moment and not by the orbital moment
itself.

B. Magnetic dipole term

A second sum rule relates the effective spin moment 〈Seff,ζ 〉
along the ζ direction of a 3d metal to the energy-integrated
XMCD intensity over the L3 absorption edge minus twice
that over the L2 edge [4,23]. 〈Seff,ζ 〉 = 〈Sζ 〉 + 7

2 〈Tζ 〉, where
〈Tζ 〉 is the expectation value of the magnetic dipole term
T = Ŝ − 3r̂(r̂ · S), with r̂ the position unit vector [4]. While
the spin moment S is isotropic, T gives the anisotropy of the
spin moment due to the coupling with the charge quadrupole
moment and spin-flip terms. In agreement with Eq. (39)
of Ref. [20], 〈T 〉 has the same angular dependence as the
anisotropic orbital moment, so that for h = −1,

〈Seff〉 =
∑

k

〈
Sk

eff

〉 = 21

4
[〈Tx〉 − 〈Ty〉] cos(γ + μk − 2αk ),

(10)

where the isotropic spin moment has dropped out. If T is taken
as a quadrupole moment along the x axis, then 〈Ty〉 = − 1

2 〈Tx〉.
It should be stressed that, contrary to an earlier proposition

[6], the presence of T is not the unique origin of a nonzero
total XMCD for negative chirality structures (see also Sec. I).
The sum rule measures 〈T 〉 in the initial state and this can
be zero, such as for the Hund’s rule ground state of Mn 3d5.
The anisotropy in the XMCD is then caused by the extra d
electron in the final state. For instance, anisotropic spectra for
an isotropic ground state have been reported for Ti 3d0 →
2p53d1 [24].

IV. CONCLUSIONS

It is shown most generally using a straightforward ana-
lytical derivation as well as by graphical illustration that a
triangular structure with negative spin chirality allows the ex-
istence of a nonzero total XMCD, despite the fact that the total

spin moment vanishes. A necessary condition is an anisotropic
XMCD signal (Ix 	= Iy) for the local atom.

The nonzero XMCD for negative spin chirality can be un-
derstood in a simple way: The anisotropic part of the XMCD
signal depends on the angle (2αk − μk ) with respect to the
incident beam direction. This angle is invariant (±360◦) for a
threefold rotation in which αk and μk are rotated by 120◦ and
−120◦, respectively (see Fig. 2 for the angle description). This
only holds for threefold symmetric lattices, and a zero value
is returned for any other n-fold symmetry.

The extrema of the total dichroism are found at γ = 2α0 −
μ0 and 2α0 − μ0 + 180◦. Thus, for α0 	= 0 the maximum
dichroism is not aligned along the spin direction, but also
depends on the relative orientation with respect to the atomic
orientation. This also implies that if in the experimental setup
we do not know α0, then a particular spin direction has no
unique angular dependence.

By the x-ray magneto-optical sum rules, the orbital and
spin moments are proportional to the integrated intensities of
the XMCD. Because the total XMCD of the threefold lattice
is related to the anisotropic XMCD of the single atom, the
integrated intensities yield the anisotropic part of the orbital
and effective spin moment, which correspond to 〈Lx〉 − 〈Ly〉
and the magnetic dipole term, respectively. Both display the
same angular dependence as the total XMCD. Note that even
when the energy-integrated XMCD is zero, the XMCD signal
can still be positive and negative in equal amounts across
the photon energy range of the absorption edge. Therefore,
the presence of an anisotropic orbital moment or a magnetic
dipole term is not conditional for a nonzero XMCD signal.
For instance, in the x-ray transition 3d5 → 2p53d6 the final
state can induce an anisotropy in the XMCD spectrum, while
the orbital moment and magnetic dipole term in the Hund’s
rule ground state 3d5 are zero.

While the presented results confirm earlier cluster calcula-
tions [8] and SPR-KKR calculations [9] in fixed geometries,
here we developed a general rule under which this effect
occurs without the need for any detailed spectral calculations.
Importantly, we showed that the effect exists in a coplanar
geometry and that noncoplanar spin moments are not required
for its existence.

We have not discussed the situation in three dimensions, in
which case Eq. (1) also contains a term Iz(P̂ · ẑ)(ẑ · Ŝ). If the
spin S of each atom is in plane, then this term is zero, and for
the other terms we can simply take the in-plane components
of P. If S also has an out-of-plane component, then there are
three fundamental spectra, which makes an analytical analysis
more cumbersome, and beyond the scope of the paper. A
numerical calculation would then be more appropriate. Exper-
imentally, one might be able to perform measurements with P̂
at different angles of incidence, especially P‖z, to determine
the XMCD contribution from the spin component along the z
direction.

Our findings are useful because antiferromagnets have
unique attributes that are not found in ferromagnets, such as
high-frequency dynamics, robustness against external pertur-
bations, and absence of stray field, giving rise to new patterns
of antiferromagnetic spintronics [25,26] and topological anti-
ferromagnetic spintronics [12].
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TABLE I. Irreps for the AFM spin structures shown in Fig. 3 with
the three basis vectors Sk = (cos μk, sin μk ), which are the spins in
counterclockwise order located on the red, blue, and green atoms,
respectively.

Figure h μ0 Irreps S0 S1 S2

3(a) +1 0◦ S⊥(A2) (1,0) (− 1
2 , 1

2

√
3) (− 1

2 , − 1
2

√
3)

3(c) +1 90◦ S(A1) (0,1) (− 1
2

√
3, − 1

2 ) ( 1
2

√
3,− 1

2 )

3(d) −1 0◦ S2,AF(E ) (1,0) (− 1
2 , − 1

2

√
3) (− 1

2 , 1
2

√
3)

3(f) −1 90◦ S1,AF(E ) (0,1) ( 1
2

√
3, − 1

2 ) (− 1
2

√
3,− 1

2 )

APPENDIX: SPIN CONFIGURATIONS ON TRIANGLE

The AFM spin structures in Fig. 3 are subjected to the
point group symmetry C3v , and their irreps and basis vectors

TABLE II. Character table for the point group symmetry C3v ,
with the conjugacy classes under the e identity operator, C3 rotations,
and σv reflections. The irreps A1, A2, and E are in Mulliken notation.

C3v e C3 σv

A1 1 1 1
A2 1 1 −1
E 2 −1 0

are given in Table I. The labeling follows the notation in
Refs. [27,28]. The character table for the group C3v is given in
Table II. Note that the spin is an axial vector. Kramers theorem
tells that by time reversal each triangular structure can also
have all its spins reversed. For negative helicity the two irreps
E share the same symmetry properties and can be mixed.
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