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The simple update (SU) and full update (FU) are the two paradigmatic time evolution algorithms for a
tensor network known as the infinite projected entangled pair state (iPEPS). They differ by an error measure
that is either, respectively, local or takes into account full infinite tensor environment. In this paper we test an
intermediate neighborhood tensor update (NTU) accounting for the nearest-neighbor environment. This small
environment can be contracted exactly in a parallelizable way. It provides an error measure that is Hermitian and
non-negative down to machine precision. In the two-dimensional quantum Ising model, NTU is shown to yield
stable unitary time evolution following a sudden quench. It also yields accurate thermal states despite correlation
lengths that reach up to 20 lattice sites. The latter simulations were performed with a manifestly Hermitian
purification of a thermal state. Both were performed with reduced tensors that do not include physical (and
ancilla) indices. This modification naturally leads to two other schemes: a local SVD update and a full tensor

update being a variant of FU.

DOLI: 10.1103/PhysRevB.104.094411

I. INTRODUCTION

Weakly entangled states are just a small subset in an
exponentially large Hilbert space but they are ubiquitous
as stationary ground or thermal states in condensed mat-
ter physics. They can be efficiently represented by tensor
networks [1,2], including the one-dimensional (1D) matrix
product state (MPS) [3], its two-dimensional (2D) general-
ization known as a projected entangled pair state (PEPS)
[4,5], or a multiscale entanglement renormalization ansatz
[6-9]. The MPS ansatz provides a compact representation
of ground states of 1D gapped local Hamiltonians [1,10,11]
and purifications of their thermal states [12]. It is also the
ansatz underlying the density matrix renormalization group
(DMRG) [13-16]. Analogously, the 2D PEPS is expected to
represent ground states of 2D gapped local Hamiltonians [1,2]
and their thermal states [17,18], though representability of
area-law states, in general, was shown to have its limitations
[19]. As a variational ansatz, tensor networks do not suffer
from the notorious sign problem plaguing the quantum Monte
Carlo methods. Consequently, they can deal with fermionic
systems [20-24], as was shown for both finite [25] and infinite
PEPS (iPEPS) [26,27].

The PEPS was originally proposed as an ansatz for ground
states of finite systems [28,29], generalizing earlier attempts
to construct trial wave functions for specific models [4]. The
subsequent development of efficient numerical methods for
infinite PEPS (iPEPS) [30-33], shown in Fig. 1(a), promoted
it as one of the methods of choice for strongly correlated
systems in 2D. Its power was demonstrated, e.g., by a solution
of the long-standing magnetization plateaus problem in the
highly frustrated compound SrCu,(BOs3), [34,35], establish-
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ing the striped nature of the ground state of the doped 2D
Hubbard model [36], and new evidence supporting gapless
spin liquid in the kagome Heisenberg antiferromagnet [37].
Recent developments in iPEPS optimization [38—40], contrac-
tion [41,42], energy extrapolations [43], and universality-class
estimation [44-46] pave the way towards even more com-
plicated problems, including simulation of thermal states
[47-62], mixed states of open systems [55,63], excited states
[64,65], or real-time evolution [55,66—70]. In parallel with
iPEPS, there is continuous progress in simulating systems
on cylinders of finite width using DMRG. This numerically
highly stable method that is now routinely used to investigate
2D ground states [36,71] was applied also to thermal states on
a cylinder [72-76]. However, the exponential growth of the
bond dimension limits the cylinder’s width to a few lattice
sites. Among alternative approaches are direct contraction
and renormalization of a three-dimensional tensor network
representing a 2D thermal density matrix [77-84].

This paper readdresses the problem of real-/imaginary-
time evolution with iPEPS [55]. There are two most popular
simulation schemes: the simple update (SU) and full update
(FU). In both the time evolution proceeds by small time steps,
each of them subject to the Suzuki-Trotter decomposition. In
both after a Trotter gate is applied to a pair of nearest-neighbor
(NN) sites a bond dimension of the index between the sites is
increased by a factor equal to the rank of the gate. In order
to prevent its exponential growth with time the dimension is
truncated to a predefined value, D, in a way that minimizes
error incurred by the truncation. The two schemes differ by
a measure of the error: FU takes into account full infinite
tensor environment while SU only the bonds adjacent to the
NN sites. The former is expected to perform better in the
case of long-range correlations while the latter is, at least
formally, more efficient thanks to its locality. In this paper
an intermediate scheme is considered—a neighborhood tensor
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FIG. 1. Schematic SVD update (SVDU). In (a) an infinite square
lattice is divided into two sublattices with tensors A (lighter) and B
(darker). Their contraction is the iPEPS tensor network. The red lines
are physical indices. In (b) a two-site Suzuki-Trotter gate G is applied
to physical indices of every considered NN pair of tensors A and B.
Then the contraction is subject to a singular value decomposition
(SVD) between left and right indices separated by the dashed orange
line. The SVD of this dD? x dD? matrix, UAVT, is truncated to D
leading singular values. In (c) after the truncation new tensors are
obtained as A’ = U~/A and v/AV' = B’. This is just a schematic form
of SVDU. Its efficient implementation is explained in Fig. 2 together
with its upgrade to the neighborhood update (NTU) and full tensor
update (FTU).

update (NTU)—where the error measure is induced by the
sites that are NN to the Trotter gate. It is shown to compromise
the FU accuracy only a little for a price of small numerical
overhead over SU, hence it may turn out to be a reasonable
trade-off for many applications.

The neighborhood tensor update is a special case of a
cluster update [85] where the size of the environment is a vari-
able parameter interpolating between a local update and the
infinite FU. In the case of ground state calculations the cluster
update was thoroughly investigated in Refs. [86,87] where
an interplay between maximal achievable correlation length
and the cluster size was demonstrated. In NTU the cluster
includes the neighboring sites only to allow the error measure
to be calculated exactly with little numerical overhead over
SU. The calculation involves only tensor contractions that are
fully parallelizable. Its exactness warrants the error measure to
be a manifestly Hermitian and non-negative quadratic form.
This property is essential for stability of NTU and makes it
distinct from FU where an approximate corner transfer ma-
trix renormalization [2,33] often breaks the Hermiticity and
non-negativeness. In the case of long-range correlations the
small environment can, admittedly, make NTU converge with
the bond dimension more slowly than FU but this may be

compensated by its better numerical efficiency and stability
that allow NTU to reach higher bond dimensions.

At a more technical level, unlike in FU but similarly as in
Ref. [88], we define reduced tensors not before but after ap-
plication of the Trotter gate. Our reduced tensors do not have
any physical (and ancilla) indices. Unlike in Ref. [88], we
do not introduce any bond tensors in our iPEPS to avoid the
necessity of their inversion. This redefinition of the reduced
tensors naturally leads to two schemes that are complementary
to NTU: a local SVD update (SVDU) and a full tensor update
(FTU). The former is more local than SU, as it ignores even
the adjacent bonds environment, while the latter is a variant of
FU with the infinite but approximate environment.

Another technical modification, in the case of thermal
states represented by their purifications, is to make the pu-
rification manifestly Hermitian between physical and ancilla
degrees of freedom. The Hermitian purification is an iPEPS
in a space of Hermitian operators. An important symmetry is
protected thus enhancing stability and in general also numeri-
cal efficiency.

This paper is organized as follows. In Sec. II we provide a
detailed introduction to SVDU, NTU, and FTU that includes
the definition of reduced tensors. In Sec. III the algorithms are
applied to unitary real-time evolution after a sudden quench
of the 2D quantum Ising Hamiltonian. In Sec. IV we describe
the manifestly Hermitian thermal state purifications and in
Sec. V thermal states of the 2D quantum Ising model are
simulated by imaginary-time evolution of their purifications.
We summarize in Sec. VI.

II. ALGORITHMS

The algorithms considered in this paper are summarized in
Figs. 1-5. Figures 1(b) and 1(c) show the most basic SVDU in
a schematic form. After a two-site Trotter gate is applied to a
pair of nearest-neighbor iPEPS tensors, A and B, the resulting
network in Fig. 1(b) is SV decomposed into a pair of new
tensors A’ and B'. The dimension of their common bond index
is truncated to the original D by keeping only the D largest
singular values. The numerical cost of this scheme is oc D Its
equivalent but more efficient version is shown in Fig. 2. The
cost is cut down to o« D° by reduction to smaller matrices Ry p
before the SVD truncation. The truncation yields new reduced
matrices My p that are fused with fixed isometries Q4 p into
updated iPEPS tensors A" and B'.

The SVDU minimizes the Frobenius norm of the difference
between diagrams in Figs. 2(b) and 2(d). For this norm all di-
rections in the (Dr)?-dimensional space are equally important.
Thus, though formally cheap, the SVDU does not make opti-
mal use of the available bond dimension D which is wasted
to preserve accuracy in all directions including those that
are not important from the perspective of the infinite tensor
environment of the two sites. Even zero modes, which are not
important at all, instead of being truncated are preserved as
accurately as the dominant directions. On the positive side,
the SVDU is inverse-free.

A step beyond SVDU, whose cost is still D3, is the SU
[2]. In this scheme the iPEPS ansatz in Fig. 1(a) is generalized
by inserting its bonds with diagonal bond tensors A;, where
i is numbering four inequivalent bonds on the checkerboard
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FIG. 2. Efficient SVDU and beyond. In (a) the Suzuki-Trotter
gate G is applied to physical indices of NN tensors A and B as
in Fig. 1(b). Here the two-site gate is replaced by two tensors,
G4 and G, contracted by an index with dimension r. In (b) the
tensor contraction A - G4 is QR decomposed into Q4R,. Similarly
B - Gy = QpRp. Isometries Q4 g will remain fixed. In (c) after SVD,
RARY = U,SUL, S is truncated to D leading singular values. In
(d) matrices My = US'/? and M} = S'2U[ are made by absorbing
square root of truncated S symmetrically. In (e) in SVDU new iPEPS
tensors are obtained as A’ = Q4 - M4 and B’ = Qp - M ending the
story. In the FTU/NTU schemes matrices M, p are optimized in
full/neighborhood tensor environment (see Fig. 3) before being con-
tracted with isometries Q4 5 to make A’ and B'.

lattice. The Frobenius norm is replaced by a metric

gsu=1s01,®[ ]2 (1
J

where j runs over the six bonds stemming out from the con-
sidered pair of NN sites. These bonds are the nearesttensor
environment providing the nontrivial metric tensor that as-
signs different weights to different directions. SU can afford
the same bond dimension as SVDU but, in principle, can make
better use of it. A potential caveat is inversion of the bond
tensors: A; — Ai_l that has to be done after every gate.

In this paper we advocate a step beyond the SU where
a cluster of NN tensors, shown in Fig. 4(b), is the environ-
ment providing the metric. This NN cluster can be contracted
exactly, as outlined in Fig. 4, to yield metric g that is Her-
mitian and non-negative within machine precision. The cost
of optimal contraction is ocD® but, as it involves only matrix
multiplication, can be fully parallelized. The key advantage
of the metric in Fig. 4(e) over the local SVDU/SU are the
two NN bonds, parallel to the considered one, that connect the
left and right sides of the environment. They are essential to

FIG. 3. Full/neighborhood tensor update. In FTU the truncated
diagram in Fig. 2(d) is inserted in place of the two missing tensors in
the middle of the infinite PEPS in (a). In NTU the same truncated
diagram is inserted into a finite fragment of the iPEPS in (b). In
FTU/NTU the tensor network obtained after the truncated insertion
is compared with a similar network (a)/(b) but inserted with the exact
diagram in Fig. 2(b). In both schemes truncated matrices M, and Mp
are optimized to minimize norm of the difference between the two
networks: the one with the truncated insertion and the other with the
exact one.

prevent virtual loop entanglement from being built into the
iPEPS and parasite its bond dimension. We call the scheme a
NTU to distinguish it from a FTU, where the infinite environ-
ment in Fig. 4(a) provides the metric tensor.

This infinite environment is the same as in the popu-
lar FU scheme [2]. FU and FTU differ in the way the
iPEPS tensors are decomposed into isometries Q4 p and re-
duced tensors/matrices R4 p. In this paper both schemes serve
mainly as a benchmark. Their infinite environment takes into
account long-range correlations but calculation of the metric
tensor g requires an expensive corner transfer matrix renor-
malization group (CTMRG) [2] whose approximate character
makes it difficult to keep the metric tensor Hermitian and
non-negative. The CTMRG approximates the infinite envi-
ronment by finite tensors with indices of dimension x which
is a refinement parameter controlling quality of the approx-
imation. The approximation often results in a metric tensor
g4.p Which is not quite Hermitian and non-negative. This may
lead to numerical instabilities. In NTU the CTMRG is used
only for calculation of expectation values which can be done
less frequently and may require less precision than the Trotter
gates. The NTU metric tensor is manifestly Hermitian and
non-negative down to the machine precision.

With metric tensor g matrices M, and My are optimized
in order to minimize the norm squared of the difference be-
tween the two diagrams in Fig. 5(a), where RARg is the exact
(untruncated) product in Fig. 2(b). The error is measured with
respect to the metric in Figs. 4(d) and 4(e):

e = [MaM} — RoRS] g[MaM} — RARE]. ()
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FIG. 4. NTU. Norm squared of the matrix product, |M,M} ||2,
is shown in (e). Here g is a metric tensor obtained in (d).
The upper/lower free indices in diagram (d) correspond to the
upper/lower indices of g in (e). Diagram (d) is obtained by inserting
the two empty central sites in Fig. 3(b) with isometries Q4 and QOp
and then contracting the inserted (ket) network with its complex
conjugate (bra) through pairs of their corresponding indices, except
for the bond indices stemming from the two isometries along the
considered bond. This is done is steps (a)—(d). In (a) double iPEPS
tensors are defined. Edge double tensors are obtained by contracting
pairs of corresponding external bra and ket indices, as exemplified in
(b). In (c) double isometries are defined. The double isometries and
edge tensors are assembled in (d). The cost of their contractions can
be optimized to scale like D3.
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FIG. 5. Optimization in NTU/FTU. In (a) matrices M4, Mg are
optimized for their product, MsML, to be the best approximation to
the exact product, R4R%. The error is measured with the metric in
Fig. 4(e). In (b) reduced metric tensor g4 for matrix M,. In (c) re-
duced source term J4 for matrix My. In (d) a product of converged
matrices is subject to a SVD, MaMp = UsSU[, after which new
balanced matrices, My = UsS'/? and M} = S'2UT’, are formed by
absorbing singular values S in a symmetric way. However, iterative
optimization of the matrices is not symmetric. Before optimization
with respect to M, the matrices are “tilted” as My = U,S and Mg =
Ul and vice versa [88].

For a fixed Mj it becomes a quadratic form in My:

£ =MgaMy — MiJy — JIMy + e4, 3)
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where g4, J4, and &4 depend on the fixed Mp [see Figs. 5(b)
and 5(c)]. The matrix is optimized as

My = pinv(ga)Ja, (€)]

where tolerance of the pseudoinverse can be dynamically ad-
justed to minimize e. Thanks to the exactness of g in NTU, the
optimal tolerance is usually close to machine precision. This
optimization of M, is followed by a similar optimization of
Mp. The optimizations are repeated in a loop,

—)MA—>M3 —, (5)

until convergence of e. Except for SVD of small matrices,
RARY and MyM}, NTU is fully parallelizable.

III. UNITARY EVOLUTION AFTER A SUDDEN QUENCH

To begin with we consider a sudden quench in the trans-
verse field quantum Ising model on an infinite square lattice:

Hgr = — Z ojo; — tho])-‘. (6)
(43" J

At zero temperature the model has a ferromagnetic phase with

nonzero spontaneous magnetization (o*) for magnitude of the

transverse field, |4,|, below a quantum critical point located at

h. = 3.04438(2) [89].

Here we simulate unitary evolution after a sudden quench
at time ¢ = 0 from infinite transverse field down to a finite
hy. After t = 0 the fully polarized ground state of the ini-
tial Hamiltonian is evolved by the final Hamiltonian with
h, = 2h,, h., h./10. The same quenches were simulated with
FU [55] and neural quantum states [90]. Our present results
obtained with SVDU, NTU, and FTU are shown in Fig. 6. As
a benchmark we also show the FU results with D = 8 up to
times where they appear converged with this bond dimension.

The evolution with the weakest h, = h./10 remains
weakly entangled for a long time and can be extended to long
simulation times by any iPEPS method. This is not surpris-
ing given that for 4, = 0, when the Hamiltonian is classical,
exact evolution can be represented with mere D = 2. All the
considered simulation schemes reproduce the exact D = 2
evolution for A, = 0. The quenches to h, = 2h,, h. are more
challenging as they create a lot of entanglement.

We show SVDU, NTU, and FTU results with, respectively,
D = 12,12, 8. These bond dimensions require similar simu-
lation time as FU with D = 8. All simulations, except FU, are
terminated when the energy per site deviates by more than
0.01 from its initial value. For all three 4, NTU provides
longer evolution time than SVDU, as expected. The relation
between FTU and other schemes is not quite systematic be-
cause, unlike the other schemes, FTU often ends by a sudden
crash that makes its evolution time somewhat erratic. Nev-
ertheless, in the most challenging quench to the critical point,
h, = h., FTU outperforms the other schemes. This is expected
as in this case correlation range developed after the quench is
the longest (see Fig. 7).

The sudden quench benchmark encourages applications of
NTU to other time-dependent problems. The first in row is
the Kibble-Zurek linear quench. It was simulated by NTU
in Ref. [91] where its results were corroborated by neural

(a)
0.95

ib/ 0.9
h, = h.
0.85 -
0.8
0 0.5 1
t
15
(b) o FUD=28
N e SVDU D =12
0.8 — NTUD =12
- =FTUD =28
0.6
'
&
0.4r -~
--
0
0 1 2 3 4 5

FIG. 6. Sudden quench. Unitary evolution of the transverse mag-
netization (o*) after a sudden quench from a fully polarized state.
We show three bunches of curves corresponding to evolution with
hy = 2h¢, he in (a) and h, = h./10 in (b). Each curve is terminated
when the energy per site deviates by 0.01 from its initial value. The
squares are data from FU simulations [55]. They extend up to the
time where for D = 8 they appear converged in D (for h, = 2h,, h.)
or up to t = 7 /2 where they were terminated (for s, = h./10). Here
we use the same time step, dt = 0.01, as for FU [55], and the
same second order Suzuki-Trotter scheme and environmental bond
dimension: y = 4D.

networks [90] and matrix product states. However, the NTU
method was not exposed there and here it is presented in
detail.

IV. SIMULATION OF THERMAL STATES

In a series of tautologies a thermal state, p(8) = e #¥,

can be written as p(8) = p(8/2)p(B/2), where p(B8/2) is
obtained by imaginary-time evolution,

pl(B +dp)/2] = e PHIA p(B/2) (e PRI (T)

starting from p(0) =1. We represent this p(8/2) by
an iPEPO. ¢~PH/* is approximated by a Suzuki-Trotter
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FIG. 7. Sudden quench. Connected correlation function, Cx =

(o705, r) — (07){0), ) at different times after the sudden quench to
he = he.

decomposition into a product of Trotter gates. p[(8 + dB)/2]
would be manifestly Hermitian if it were not necessary to
truncate the bond dimension after each Trotter gate.

In order to preserve the Hermitian symmetry, in Fig. 8
we introduce a manifestly Hermitian parametrization of the

FIG. 8. As the dimension of the Hilbert space at every lattice
site is d, there is a basis of d*> Hermitian operators O numbered
by index a = 1, ..., d*. Bach of them is a d x d Hermitian matrix.
For the spin-1/2 with d =2 we choose 0! = o*, 0> =0¢”, 0° =
0%, O* = 1. Therefore, the manifestly Hermitian iPEPO p(8/2) can
be represented by the network in (b) which is a contraction of the
basic elements in (a): at every lattice site real rank-5 iPEPS tensor,
either A or B, has four bond indices of dimension D—to be contracted
with similar tensors on its four NN sites—and an index of dimension
d? contracting it with tensor O which a list of all the d> Hermitian
operators. When contracted through their bond indices the rank-6
tensors in (a) make the iPEPO in (b)—a tensor network representa-
tion of a Hermitian operator between bra and ket indices. In actual
computations we are dealing only with the top part of (b) which is an
iPEPS p made of real tensors. Its physical indices have dimension d?
in the basis of the Hermitian operators.

087 ), =29 h =5.10

O 1
1.2 1.3 1.4 15 1.6 1.7 1.8
B

FIG. 9. Thermal states by SU and FU. Comparison of thermal
states obtained by SU and FU evolution of a thermal state purification
for h, = 2.9 and h, = 5 x 10~*. With increasing D the SU magneti-
zation curve moves slowly towards the converged FU magnetization
with D = 5, 6 but even for the largest D = 14 it is still far from it.
All data in this figure come from Ref. [55].

infinite projected entangled pair operator iPEPO) p(8/2). In
effect, the iPEPO p is represented by an iPEPS p made of real
tensors. In addition to manifestly preserving the symmetry,
which may improve numerical stability, this real parametriza-
tion should speed up floating number computations by a factor
of 4.

In the next section we test the algorithm in the 2D quantum
Ising model, where the nontrivial nearest-neighbor two-site
Trotter gate is

ST o 11y + anh(dB oo =G (®)

Under its action the basis operators 0‘}0?,, defined in Fig. 8,
transform as

GO"0'G' =) G070 9)
a't’

Therefore, the action of the gate G on the iPEPO, GpGT, is
equivalent to contracting the iPEPS p with the tensor Gg/bb,.
The upper indices of the latter, a and b, are contracted with the
physical indices of the iPEPS on sites j and j’, respectively,
as shown in Fig. 1(b). The SVDU, NTU, and FTU algorithms
follow as in Sec. II.

V. 2D QUANTUM ISING MODEL AT FINITE
TEMPERATURE

The Hamiltonian of the quantum Ising model with a longi-
tudinal bias on an infinite square lattice is

H =Hy — thaz. (10)
J

Here Hg is the transverse field quantum Ising model (6)
and h, is a longitudinal field providing a tiny symmetry-
breaking bias that allows for smooth evolution across a
finite-temperature phase transition by converting it into a
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FIG. 10. Thermal states by SVDU, NTU, and FTU. In (a) ther-
mal states obtained with FTU and SVDU for A, = 2.9, which is very
close to the quantum critical h, = 3.04438(2) [89], with a weak
bias 4, =5 x 10™*. The FTU and FU appear converged for bond
dimension D =5 and they serve as a benchmark for SVDU and
NTU. SVDU gets close to the benchmark as its D grows from 3 to
6 but for D = 7 it drifts away from it. NTU gets close to FTU/FU
for D=7...9. In (b) the same as in (a) but with a stronger bias
h, = 1072, Again, FTU appears converged for D = 5 and serves as
a benchmark for SVDU and NTU. SVDU converges towards the
benchmark as D is increased to 6. For D = 7 it drifts up from it but
much less than for the weaker bias in panel (a). NTU is converged to
FTU for D > 6.

smooth crossover. For zero longitudinal field and A, < h, the
model has a second-order phase transition at a finite temper-
ature, 7;(h,), belonging to the 2D classical Ising universality
class. For i, = 0 it becomes the 2D classical Ising model with
7.(0) = 2/1In(1 + v/2) ~ 2.27.

In all simulations in this section we use d 8 = 0.0025 and
the second-order Suzuki-Trotter decomposition. The data are
converged in the environmental bond dimension which is set
at y = 40. Finally, in all FTU simulations we begin with a
short SVDU evolution stage up to 8 = 0.1. This avoids deal-
ing with zero modes which arise when the bond dimension is
too big [62].

h, = 2.5, h, =5-10~

061
5-04r
L SVDU D =3
o SVDUD=4
o SVDUD=5
NTU D =2
0.2 — NTUD=3
— NTUD=4
——NTUD=5
— —FTUD=5
0 1
0.6 0.7 0.8 0.9 1
B

FIG. 11. Thermal states by SVDU, NTU, and FTU. Thermal
states for h, = 2.5, which is further away from the quantum critical
he = 3.04438(2) [89], with a weak bias i, = 5 x 10~*. FTU appears
converged for bond dimension D = 5 which serves as a benchmark
for SVDU and NTU. SVDU gets close to the benchmark as its D
grows up to 5. For D = 6, 7, 8 it slightly drifts up from it but not in
an appreciable way. NTU is converged for D > 5.

First we consider &, = 2.9, which is very close to h. =
3.044 38(2)[89], where the critical temperature is estimated as
T.(2.9) = 0.6085(8) [92]. Due to strong quantum fluctuations
this is almost four times less than the Onsager’s 7,.(0). We
generate thermal states across this transition with a bias field
h, =5 x 10~*, which is one of the weakest biases considered
in Ref. [55] where the same states were obtained with SU
and FU schemes. The SU data [55] in Fig. 9 show that under
these extreme conditions SU is not able to converge to the
converged FU results (with D =5, 6) even for the largest
considered bond dimension D = 14. Pushing the simulations
beyond D = 14 becomes more costly than the more accurate
FU and thus becomes impractical [55].

Figure 10(a) shows new FTU results which are converged
for D = 5 similarly as the old FU. Quite remarkably, as the
bond dimension in SVDU is increased from D =3 up to a
mere D = 6, which is still very cheap for this local update, the
results get closer to the converged FTU results than the SU
ones with D = 14. For D = 6 a maximal correlation length
& &~ 15 is achieved at 8 = 1.44...1.48, which is more than
might have been expected from a local update. However, this
record is a warning sign that anticipates the following decline
in accuracy as the bond dimension is increased further be-
yond D = 6. The decline is most visible for § = 1.44...1.48
where the record long correlations make the local update
method the most problematic. The same Fig. 10(a) shows
results from NTU as they slowly converge for D =7,...,9.
The converged NTU curve slightly differs from the FTU one
but much less than the SVU results.

In order to see how SVDU and NTU perform under less
severe conditions, in Fig. 10(b) we show results for the same
hy = 2.9 but with a stronger bias 4, = 1072. Again, D = 5 is
enough to converge FTU. With D growing from 3 to 6 the
SVDU gets much closer to the converged FTU benchmark
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FIG. 12. Critical temperature from NTU. Pseudocritical temper-
ature 7*—obtained as the temperature where magnetization (o°)
is the steepest as a function of S—in function of bias /4, is fitted
with the power law in (11) for A, = 2.9 in (a) and h, = 2.5 in (b).
Corresponding quantum Monte Carlo estimates for 7, are marked
with red stars. In (a) SU estimate [55] is shown as a magenta star.
T.’s estimated for different bond dimensions and their error bars are
listed in Tables I and II.

than for the weaker bias. Beyond D = 6 some decline in
accuracy is observed but it is much less significant than for
the weaker bias. The better convergence can be explained by
a much shorter correlation length which peaks at £ ~ 4 near
B = 1. The same correlation length explains why the NTU
magnetization curves with D > 6 coincide with the FTU one.

In order to see if the correlation length is the sole factor de-
termining quality of the SVDU/NTU convergence, we move
away from the quantum critical point down to i, = 2.5 and
consider again the weaker bias i, =5 x 107*. The critical
temperature is 7,.(2.5) = 1.2737(6)[92], which is a little more
than half of 7.(0) indicating that quantum fluctuations are
much less influential than for 4, = 2.9 but still significant.
The results are shown in Fig. 11. Again, FTU is converged
for D =5 and SVDU is the closest to the FTU benchmark

TABLE 1. Comparison of 7, and 1/B8 obtained with NTU for
h, = 2.9 and the bias in the range 0.0005 < &, < 0.01. For compar-
ison we also list the SU and FU results [55]. The quantum Monte
Carlo estimate [92] is shown as a benchmark. In brackets we show
95% confidence intervals.

Method D T, 1/Bs

SU [55] 12 0.704(11) 0.85(11)
NTU 5 0.5858(28) 0.586(7)
NTU 6 0.5995(38) 0.606(11)
NTU 7 0.6021(21) 0.611(6)
NTU 8 0.6084(42) 0.611(13)
NTU 9 0.6089(40) 0.618(14)
FU [55] 5 0.6100(7) 0.571(3)
QMC [92] 0.6085(8)

Exact 8/15 ~ 0.533

for D = 6 and slightly drifts up for D =7, 8 but this time
the difference between SVDU and FTU is negligible: SVDU
with D =5,6,7, 8 are practically converged to the bench-
mark though they have some scatter. The correlation length
calculated at 8 = 0.76 is & =~ 22, i.e., the longest of the three
examples. In spite of this it does not prevent convergence of
either SVDU or NTU: NTU is converged already for D = 5.
This is not quite surprising as the model at s, = 2.5 is more
classical than at 4, = 2.9 and for a purely classical model at
h, =0 a mere D = 2 would be enough to represent thermal
states exactly.

The convergence of the NTU results encourages us to
attempt estimation of critical temperature 7;(h,) from magne-
tization curves—(o'®) in function of B—obtained for different
h (see Ref. [55] for more details of the procedure). For each /4,
we find a pseudocritical temperature, 7 *(h;), where the slope
of the magnetization in function of B is the steepest. Then we
make a fit:

T*(h,) = T, + AhV/P°, (11)

where B, 8 are critical exponents. Treating T,., A, and 1/88 as
fitting parameters we obtain estimates of critical temperatures
T. for hy, = 2.9 and h, = 2.5 that are listed in Tables I and II,

TABLE II. Comparison of 7, and 1/86 obtained with NTU for
h, = 2.5 and the bias in the range 0.00035 < &, < 0.0056. For
comparison we also list the FU result [55]. The quantum Monte Carlo
estimate [92] is shown as a benchmark. In brackets we show 95%
confidence intervals.

Method D T. 1/B8
NTU 2 1.2820(10) 0.576(13)
NTU 3 1.2430(20) 0.570(9)
NTU 4 1.2450(20) 0.573(11)
NTU 5 1.2740(20) 0.578(14)
NTU 6 1.2740(15) 0.579(13)
FU [55] 5 1.2745(7) 0.549(4)
QMC [92] 1.2737(6)

Exact 8/15 ~ 0.533
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respectively. The best fits (11) are shown in Fig. 12. For both
values of transverse field NTU yields estimates of 7, that are
consistent with those from FU [55] and quantum Monte Carlo
[92] although their convergence requires higher D than FU.
The error bars are wider than for FU and the exponent, 1/88,
is more overestimated.

VI. CONCLUSION

We considered three evolution algorithms that can be or-
dered according to their increasing size of tensor environment
that is taken into account when optimizing tensors: SVDU,
NTU, and FTU. In general, the increasing size translates to
faster convergence with bond dimension D. On this scale the
traditional SU sits between SVDU and NTU while FTU is a
variant of FU:

SVDU < SU < NTU < FTU ~ FU.

The increasing environment correlates with increasing numer-
ical cost. However, in the latter respect NTU is in practice
not much more expensive than SU. Although formally its cost
of calculating the neighborhood environment scales like D8,
as compared to the leading cost of D> for SU, the D? is a
fully parallelizable tensor contraction while the D’ is a non-
parallelizable SVD. When compared with FTU/FU, on the
other hand, NTU convergence with D is in general slower but,
thanks to the numerically exact environment, it offers more
stability/efficiency for higher D that allows one to compensate
for the limitations of the small environment. Therefore, for
many applications NTU may be an attractive alternative for
SU and FU alike.
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