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Generalized model of MnSi-like spiral magnets
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A general, symmetry-allowed model of nearest-neighbor interactions for MnSi-like magnets is presented. A
left-handed helical magnet phase occurs within a large parameter space of the model, which is explored via
numerical simulation. The relations between microscopic features of the spiral structure and various model
parameters, including an external magnetic field, are determined and show good agreement with predictions
from free energy considerations. A skyrmion structure is stabilized near the boundary.
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I. INTRODUCTION

The B20 structure type of magnetic crystals is renowned
for displaying unusual magnetic structures and for applica-
tions in a number of different fields. These diatomic materials
belong to the noncentrosymmetric space group P213, which
supports helimagnetic phases, arising from the absence of
centrosymmetricity. As such, B20 materials have been at the
forefront in the study of helical magnets, where they were
among the first to be experimentally observed [1–3]. In recent
years there has been a resurgence of interest in these materials,
MnSi in particular, due to the finding of non-Fermi-liquid
behavior accompanied by partial magnetic order in the mag-
netic field–pressure–temperature phase diagram [4–12] and of
a skyrmion crystal phase [13].

MnSi, an intermetallic compound, undergoes a phase tran-
sition at Tc = 29 K into a left-handed helical spin structure
with wave vector k oriented along one of the 〈111〉 directions
with a wavelength of 18 nm [1–3]. Under an applied mag-
netic field greater than 100 mT, k rotates to align with the
field, and a conical spin structure is realized, where the cone
angle decreases with field strength [3,14]. A field-induced
ferromagnetic state appears above approximately 600 mT. The
skyrmion crystal phase has been reported in “phase A,” a
small pocket in the phase diagram just below Tc for small
magnetic fields (≈100–250 mT) [13,15]. A quantum phase
transition occurs under pressure with Pc = 14.6 kbar accom-
panied by non-Fermi-liquid behavior over a wide range of
temperatures [4–7,16,17].

As shown over 60 years ago, spiral magnetism arises from
competing ferromagnetic (FM) and antiferromagnetic (AFM)
interactions, which occur when there is more than one kind of
exchange path [18] or from antisymmetric exchange interac-
tions [known as the Dzyaloshinskii-Moriya (DM) interaction]
that exist in noncentrosymmetric crystals [19,20]. Over the
years these phenomenological models of MnSi have been
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augmented by various additions, including gradient terms,
same-site anisotropy, generalized forms of the DM interac-
tion, and coupling to external fields, in order to quantitatively
account for details of the helical structures (such as the wave
number and orientation) and the nature of the phase transition
to this state [21–25]. The earliest studies employed a contin-
uum approach to the magnetization which was later extended
to lattice spin models for general three-dimensional crystals
[12] and finally to the actual spin lattice for MnSi-type crystals
[25,26]; the latter studies describe quantitatively not only the
wave number of the helical spin state but also canting of the
spins and field or pressure dependence.

Recently, muon spin rotation (μSR) studies have revealed
more details of the magnetic structure in MnSi, includ-
ing canting and rotation of spins within the spiral structure
[27,28]. The main objective of this paper is to describe these
details within a generalized model for MnSi-type crystals,
constructed using only nearest-neighbor (NN) exchange inter-
actions and single-ion anisotropy. This model will be analyzed
via numerical simulations using the “effective field method”
(EFM) [29].

II. THE MODEL

The magnetic ions of B20 crystals occupy the 4a Wyckoff
position of the space group P213 (T 4, No. 198), forming a
trillium lattice as shown in Fig. 1. The four spin sites within a
cubic cell are

r1 = (x, x, x),

r2 = (−x + 1
2 ,−x, x + 1

2

)
,

r3 = (−x, x + 1
2 ,−x + 1

2

)
,

r4 = (
x + 1

2 ,−x + 1
2 ,−x

)
,

(1)

where the parameter x ≈ 0.138 for Mn in MnSi. In the fol-
lowing, a spin located at site ri in any cubic cell will be called
a #i spin.

The underlying point group of P213 is the tetrahedral group
T , which has 12 symmetry elements. The corresponding
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operations in the space group include pure and screw rota-
tions, but notably no inversion or reflections. None of the four
sites of the 4a Wyckoff position are invariant under any space
group operation (see Appendix for more details).

We will model magnetic interactions in B20 crystals by
finding the most general form of the nearest-neighbor ex-
change interaction that is invariant under all space group

operations. Each site has six nearest neighbors (NNs)
separated by a distance d = a

√
8x2 − 4x + 1/2 which gives

d ≈ 0.32a, where a = 4.558 Å is the lattice parameter. By
considering all bilinears of the form Sα

i Sβ
j (where Sα

i is the α

component of the magnetic moment at site i, and j is a NN of
i), it can be shown that these will combine to give 9 invariants
consisting of 12 bilinears each. These are

Hxx =
∑

n

Sx
1n

(
Sx

2n + Sx
2n′′′

) + (
Sx

3n + Sx
3n′′′

)
Sx

4n′ + Sz
1n

(
Sz

3n + Sz
3n′′

)

+ Sz
2n′′′

(
Sz

4n + Sz
4n′′

) + Sy
1n

(
Sy

4n + Sy
4n′

) + (
Sy

2n + Sy
2n′

)
Sy

3n′′ ,

Hyy =
∑

n

Sy
1Sy

2 + Sy
3Sy

4 + Sx
1Sx

3 + Sx
2Sx

4 + Sz
1Sz

4 + Sz
2Sz

3,

Hzz =
∑

n

Sz
1Sz

2 + Sz
3Sz

4 + Sy
1Sy

3 + Sy
2Sy

4 + Sx
1Sx

4 + Sx
2Sx

3,

Hxy
s,a =

∑

n

Sx
1n

(
Sy

2n ± Sy
2n′′′

) + Sy
1n

(
Sx

2n′′′ ± Sx
2n

) − (
Sx

3n ± Sx
3n′′′

)
Sy

4n′ − (
Sy

3n′′′ ± Sy
3n

)
Sx

4n′

+ Sz
1n

(
Sx

3n ± Sx
3n′′

) + Sx
1n

(
Sz

3n′′ ± Sz
3n

) − Sz
2n′′′

(
Sx

4n′′ ± Sx
4n

) − Sx
2n′′′

(
Sz

4n ± Sz
4n′′

)

+ Sy
1n

(
Sz

4n ± Sz
4n′

) + Sz
1n

(
Sy

4n′ ± Sy
4n

) − (
Sy

2n ± Sy
2n′

)
Sz

3n′′ − (
Sz

2n′ ± Sz
2n

)
Sy

3n′′ ,

Hyz
s,a =

∑

n

Sy
1Sz

2 + Sy
3Sz

4 + Sx
1Sy

3 + Sx
2Sy

4 + Sz
1Sx

4 + Sz
2Sx

3,

Hzx
s,a =

∑

n

Sz
1Sx

2 + Sz
3Sx

4 + Sy
1Sz

3 + Sy
2Sz

4 + Sx
1Sy

4 + Sx
2Sy

3, (2)

where n is a cubic lattice vector, n′ = n − (1, 0, 0), n′′ =
n − (0, 1, 0), and n′′′ = n − (0, 0, 1). The terms in Hyy and
Hzz have been abbreviated; their full forms are analogous to
those in Hxx. Likewise, the full forms of the terms in Hyz

s,a and
Hzy

s,a can be constructed similarly to Hxy
s,a. We also include the

Zeeman term

HZ = −H ·
∑

n,i

Sn,i, (3)

where H is an applied field. Lastly, we consider same-site
anisotropy terms at second and fourth order:

H2 =
∑

n,i

Sx
inSy

in + Sx
inSz

in + Sy
inSz

in,

H4 =
∑

n,i

|Sin|4.
(4)

Computational studies typically use fewer parameters by
taking specific combinations of the terms given in (2). For
example, the NN Heisenberg exchange interaction is

∑

〈i, j〉
Si · S j = Hxx + Hyy + Hzz. (5)

The NN Dzyaloshinskii-Moriya (DM) interaction is
∑

〈i, j〉
Di j · (Si × S j ), (6)

where the DM vectors Di j are constrained by the symmetry of
the lattice. The DM interaction corresponds to the three anti-
symmetric (subscript a) terms in (2); in fact, comparison with
these terms yields the minimal constraints on the DM vectors.
For example, examining the terms in Hxy

a yields Dz
1n2n =

−Dz
1n2n′′′ = −Dz

3n4n′ = Dz
3n′′′4n′ = −Dy

1n3n = Dy
1n3n′′ · · · . The

DM vectors are often further constrained by taking the DM
term to be Hxy

a + Hyz
a + Hzx

a . The symmetric terms Hαβ
s are

usually omitted altogether.
In our simulations, we consider a free energy constructed

using all nine of the exchange terms (2) and the two same-site
anisotropy terms (4), for a total of 11 independent interaction
constants, as well as the Zeeman term (3):

F = J xxHxx + J yyHyy + J zzHzz + J xy
s Hxy

s + J xy
a Hxy

a

+ · · · + J2H2 + J4H4 + HZ . (7)

III. MAGNETIC ORDER PARAMETERS

The helical magnet phase of MnSi is marked by the ap-
pearance of a left-handed spiral oriented along one of the four
equivalent 〈111〉 directions. From here on, we will assume
that the helices are oriented in the particular direction [111].
Perpendicular to [111] are alternating planes of #1 spins and
of #2, 3, and 4 spins, which we label 1 and 2-3-4, respec-
tively (see Fig. 1). Moving along the [111] direction, the
distance between a 1-plane and the following 2-3-4-plane is
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FIG. 1. The crystal structure of P213 crystals with x = 0.138—
the lattice parameter associated with MnSi. The spins form triangular
lattices in planes perpendicular to the cubic diagonals; for the [111]
direction considered here, there are alternating layers of #1 spins
(red) and #2, 3, and 4 spins (blue). The distance from layer 1a to 1d is√

3a, one cubic diagonal along the [111] direction. Nearest neighbors
are connected by lines.

(1 − 4x)a/
√

3 = 0.259a, and the distance between a 2-3-4-
plane and the next 1-plane is 4xa/

√
3 = 0.319a.

In order to classify magnetic structures, we define
magnetic order parameters associated with k || [111].
The little group of this wave vector is C3, a subgroup of
the crystallographic point group T . The three representations
that belong to k || [111], labeled F1, F2, and F3, are derived
from the three representations of C3. All three are one
dimensional; F2 and F3 are related by time reversal.

The 12-dimensional basis of 4 spins within a unit cell and
3 spatial dimensions generates a (reducible) representation
belonging to k || [111], 4F1 ⊕ 4F2 ⊕ 4F3; that is, there are four
copies of each irreducible representation. The basis is

F (1)
1 = Sx

1k + Sy
1k + Sz

1k, (8)

F (1)
2 = Sx

1k + εSy
1k + ε2Sz

1k, (9)

F (1)
3 = Sx

1k + ε2Sy
1k + εSz

1k, (10)

F (2)
1 = Sx

2k + Sy
4k + Sz

3k, (11)

F (2)
2 = Sx

2k + εSy
4k + ε2Sz

3k, (12)

F (2)
3 = Sx

2k + ε2Sy
4k + εSz

3k, (13)

F (3)
1 = Sy

2k + Sz
4k + Sx

3k, (14)

F (3)
2 = Sy

2k + εSz
4k + ε2Sx

3k, (15)

F (3)
3 = Sy

2k + ε2Sz
4k + εSx

3k, (16)

F (4)
1 = Sz

2k + Sx
4k + Sy

3k, (17)

F (4)
2 = Sz

2k + εSx
4k + ε2Sy

3k, (18)

F (4)
3 = Sz

2k + ε2Sx
4k + εSy

3k, (19)

where ε = exp 4π i/3 = − 1
2 − i

√
3

2 and ε2 = ε∗. Sα
ik are the

Fourier transforms of the spins,

Sα
ik = 1

N1/2

∑

n

exp(−ik · rin )Sα
in, (20)

where rn is the nth lattice vector and N is the total number of
cells. The physical spins are Sα

in; that is,

Sα
ik = 1

N1/2

∑

k

Sα
ik exp(ik · rin ). (21)

There is no sum over wave number in this expression when k
is the only wave vector present in the structure.

The helical magnet phase of MnSi is marked by the ap-
pearance of a left-handed spiral, which corresponds to an
order parameter that transforms as F3, i.e., one or more of
the F (i)

3 are nonzero while F (i)
2 = 0. That is, the spins precess

in a clockwise direction with respect to the [111] direction.
Since F1 is compatible with F3 (in the sense that no additional
symmetries are broken by F1), there is no requirement that F (i)

1
be vanishing.

The spin arrangements associated with a F3 order param-
eter are in general quite complicated; here, we make some
simplifying assumptions based on experimental observations.
First, we assume that the magnitude of individual spins is
fixed. If F (1)

3 is present and not F (1)
2 , then this constraint forces

F (1)
1 to be absent in order for spin #1 to have fixed length. This

means that spin #1 must be perpendicular to the [111] axis,
i.e., no canting of this spin toward [111] is expected, as seen
in experiment.

If we also assume that spins #2, 3, and 4 have the same
magnitudes, then the relative magnitudes of the various order
parameters will be constrained, but there is no requirement
that F (i)

1 must vanish if F (i)
3 is present and not F (i)

2 for i =
2, 3, 4. However, in experiments it is observed that spins #2,
3, and 4 lie perpendicular to k in ferromagnetic arrangements
within each 2-3-4-plane [27]. In this arrangement, if F (i)

2 van-
ishes, then F (i)

1 also vanishes and the components of F (i)
3 are

related by F (2)
3 = ε2F (3)

3 = εF (4)
3 .

Even with all these constraints imposed, there remains
a free parameter accessible by experiment: the relative ori-
entation of spins in a 1-plane with respect to the nearest
2-3-4-plane [27]. The spins precess in a left-handed sense for
a distance d along the [111] direction by an angle kd rad,
where k = 0.35 nm−1. The precession angle between planes
of the same type is therefore ka/

√
3 rad or 5.28◦. According

to this simple picture, the precession angle between a 2-3-
4-plane and the next 1-plane would be 2.913◦; however, this
angle is measured to be only 0.86◦ [27]. The phase difference
φ = −2.04◦ (−0.0356 rad) can be considered as a model-
dependent parameter. The angle φ is illustrated in Fig. 2.

The only constraint we enforce in our numerical simula-
tions is that all four spins have constant, equal magnitudes.
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FIG. 2. Illustration of the angle φ. Layers 2-3-4c and 1d from
Fig. 1 are viewed from above the [111] axis. The gray arrows on
the 2-3-4 sites (blue) are for reference. The gray arrow on the red
site indicates the orientation of the spin which would be expected
considering only the helical wave vector and the distance between
layers, i.e., the gray arrow on site #1 (red) is rotated by an angle
2.913◦ with respect to the gray arrows on sites #2, 3, and 4. The
red arrow shows how the angle φ is defined: It is the deviation of
the actual orientation of spin #1 from the expected orientation. This
angle has been observed to be φ ≈ −2◦ (note that it is negative, while
in the figure a much larger, positiveφ ≈ 35◦ is shown for clarity).

We find that spins in the 2-3-4-planes do not always lie
perpendicular to k. Generally, they precess within different
planes, which gives rise to another model-dependent param-
eter, the angle γ (2), which we define as the angle between
the [111] plane and the actual plane of the spins, which is
different for each of spins #2, 3, and 4 (i.e., they are not
ferromagnetically aligned within each 2-3-4-plane). In fact,
the plane of each spin Si will cant toward τi, where

τ2 = [1̄11̄],

τ3 = [1̄1̄1],

τ4 = [11̄1̄],

(22)

as illustrated in Fig. 3.
We also define the angle γ (1) which measures the canting

of spin #1 away from the [111] plane. The angles γ (1) and
γ (2) have not been measured in experiment, but they have
been predicted by analysis of the free energy [26]. In our
simulations, γ (1) and γ (2) are measured as the average canting
away from the [111] plane.

IV. RESULTS

The EFM is a computational method used for determining
the spin configuration of a system as T → 0 by finding local
minima of the free energy in classical and semiclassical sys-
tems with pairwise interactions. The method uses an iterative
algorithm which, in each step, scans all spins in a random

FIG. 3. Illustration of the angle γ (2) (shown as γ in the figure).
Layer 2-3-4b of Fig. 1 is shown. When γ (2) is zero, each spin lies in
a plane that is normal to [111] (shown as black arrows). The actual
planes of the spins are perpendicular to the red arrows and are tilted
by an angle γ (2) towards the planes perpendicular to τi (gray arrows).

order. For each spin site, a local field is calculated,

Hα
i = −

∑

j,β

J α,β
i, j Sβ

j , (23)

where S j are the spins with which Si interacts and J α,β
i, j is

the total of all interaction constants for Sα
i and Sβ

j . The spin
located at i is then reoriented, either fully or partially, in the di-
rection of this field. This process is repeated many times until
a local minimum is found. Since the algorithm has no process
by which a given spin can increase its interaction energy, it
is likely that the final lattice configuration will not be the
global minimum. This is remedied by running the algorithm
a large number of times with randomly generated starting
configurations. From this set of simulations, only those which
produce the lowest energy are selected.

Since we are primarily interested in modeling the helical
phase, we begin by considering a set of interaction constants
which yields such a configuration, and then we vary those
parameters in order to discern their individual effect on the
magnetic structures. For each simulation, we measure the
wave number k, the phase difference φ, the out-of-plane cant-
ing angle γ (with respect to the [111] plane), and the relative
size of the magnetic order parameters |F ( j)

i |. All simulations
were performed on a system with 23 × 23 × 23 cells (large
enough to contain one full wavelength of the helix) with
48 668 spins in total. In order to find an incommensurate k,
periodic boundary conditions were not imposed.

A. Reduced model

We begin by examining a model with only two parameters,
J and D, defined by

J = J xx = J yy = J zz, (24)

D = J xy
a = J yz

a = J zx
a , (25)

corresponding to the Heisenberg exchange interaction and
a simplified DM interaction where all components of the
DM vector are ±D. In all simulations, we used J2 = −J/2,
J4 = J/2 with all other constants being zero. The sign of D is
negative, yielding a left-handed spiral.
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FIG. 4. Average wave vector k as a function of |D|/J . For
|D|/J < 0.6 a linear fit is shown (red; dashed curve). For |D|/J >

0.6 a logarithmic fit is shown (blue; dot-dashed curve).

The wavelength was measured using the average rotation
between unit cells along [111]. As shown in Fig. 4, for small
|D|, we find a linear relationship between wave number k
and |D|, as predicted from free energy considerations [21].
Nonlinear deviations occur for |D|/J � 0.6. The measured
wavelength is λ = 18 nm = 22.8

√
3a, which is 22.8 unit cells

along the 〈111〉 direction. The corresponding wave number is
k = 0.276/(

√
3a), which occurs for |D|/J ≈ 0.3.

Figure 5 shows the phase difference φ (defined at the end of
Sec. III) as a function of |D|/J . φ is the average of phase dif-
ferences measured between a 1-plane and a 2-3-4-plane. There
is a linear relation between φ and |D|/J , as predicted from free
energy considerations [26]. The value of |D|/J ≈ 0.3 yields
a phase difference φ ≈ −0.07 rad, which is approximately
twice as large as the measured value [27].

Figure 6 shows the angles γ (1) and γ (2) (defined at the
end of Sec. III) as a function of |D|/J . In our simulations,
γ (2) is measured by assuming that all spins associated with
a given position rotate within the same plane and measuring
the angle between the [111] axis and the normal vector of this
plane. γ (1) is the average of angles measured for each spin.
The canting of spins in a 1-plane (γ (1)) is always small, which
correlates with a vanishing F1 order parameter, as shown in

FIG. 5. Phase difference φ as a function of |D|/J . A linear fit is
shown.

FIG. 6. The average out-of-plane angle γ (1) for the 1-plane
(black squares) and γ (2) for the 2-3-4-plane (purple circles). In the
2-3-4-planes, the spins of the same # in a given layer have the same
orientation.

Fig. 7. However, the canting of the spins in a 2-3-4-plane
increases with |D|/J , as expected from the free energy consid-
erations [26]. Using the value |D|/J ≈ 0.3 (determined from
our measurements of k), we estimate that γ ≈ 4.6◦ for the
2-3-4-plane in MnSi.

Figure 7 shows magnetic order parameters, calculated by
taking the absolute value of the functions F ( j)

i defined in
Eqs. (8)–(19), as a function of |D|/J. The summations are
calculated using the assumption that k || [111], with the mag-
nitude of k determined by our simulations (see Fig. 4).

In order to make it easier to compare the relative sizes of
the order parameters, the plots in Fig. 7 have been normalized
at each value of |D|/J such that the highest value is 1. In
fact, the scale of each plot decreases with |D|/J , indicating
a transfer of weight to other values of k with increasing |D|/J .
This is most likely due to the finite size and nonperiodic
boundary conditions of our simulation.

Figure 7 shows that at larger wavelengths (small |D|/J)
there is a mixture of F2 and F3 order parameters, corre-
sponding to right-handed and left-handed structures, but the

FIG. 7. The averaged magnetic order parameters derived from
Eqs. (8)–(19) as a function of |D|/J . The plots are normalized such
that the maximum size of any order parameter at each value of |D|/J
is always 1.
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FIG. 8. Example of a skyrmion spin configuration for |D|/J =
2.00. The hue of the arrow varies with the angle within the [111]
plane, while the brightness represents the magnitude of the out-of-
plane angle (darker arrows have a larger out-of-plane angle).

right-handed part quickly decreases with respect to the left-
handed part as the wavelength decreases. At |D|/J ≈ 0.3,
the left-handed component is five times larger than the right-
handed component, and all four parts of the left-handed order
parameter are present, but not equal.

There is a slight increase in F1 order parameters with
larger values of |D|/J . This coincides with the appearance
of isolated Bloch-type skyrmions in our simulations around
|D|/J ≈ 1.6. An example is shown in Fig. 8. When present,
skyrmions always appear near the simulation boundary as a
small tunnel approximately oriented along the k || [111] di-
rection with a length of only a few layers.

B. Individual model terms

In this section, we examine the effects of each independent
interaction constant. As the starting point, we use a set of
parameters which yield a left-handed helix: J = 1, D = −0.5,
J2 = −0.5, J4 = 0.5, with all other constants vanishing. We
vary the nine interaction constants around this point in order to
examine the dependence of k, φ, and γ on these parameters. In
the following, we present those results where the dependence
on individual parameters is most pronounced. Complete de-
tails of all of the simulations may be found in Ref. [30].

Figure 9 shows the dependence of the out-of-plane angles
γ (1) and γ (2) on the three symmetric exchange parameters
J xx, J yy, and J zz. For both angles we note the strongest
dependence on J zz, while J xx yields nearly constant results.
For γ (1), the slopes of the lines for J zz and J yy have the
opposite sign.

Figure 10 shows the dependence of k, φ, and γ (2) on
the antisymmetric exchange constants J i j

a . The wave-number
results are similar to what is shown in Fig. 4, except for
the variation of J zx

a , which has a linear dependence of the
opposite sign. The plots for φ and γ

(2)
2 also display linear

dependence similar to what is shown in Figs. 2 and 3, except

FIG. 9. The out-of-plane angles γ (1) and γ (2) as a function of in-
dividual symmetric (Heisenberg-like) coupling constants. The black
square represents the |D| = 0.50 result.

for the parameter J xy
a , where the dependence is almost flat. It

is clear from the plots that all three measurable quantities are
sensitive to the tuning of the three antisymmetric exchange
constants, especially the phase difference φ, which varies by
as much as 50% in the (limited) range shown in the plot.

The independent variation of the antisymmetric interaction
constants was analyzed by Chizhikov and Dmitrienko [26],
who used the notation (Dx, Dy, Dz ) ≡ (J zx

a ,J xy
a ,J yz

a ). They
found

k = 2(Dx − 2Dy − Dz )

3J
, (26)

φ ∝ Dx + Dz

J
, (27)

γ ∝ − (Dx + Dz )

J
, (28)

in rough agreement with the results shown in Fig. 10. In
particular, these results predict the flatness of the plots for
φ and γ (2) with respect to the parameter J xy

a , as well as the
relative sizes and signs of the slopes of the plots for k.

It is worth noting that, although it begins with a
four-parameter model, Ref. [26] finds the other five inde-
pendent nearest-neighbor interaction terms as renormalized
corrections to the free energy. First there is a small
correction to the Heisenberg interaction constant −J →
−J + D2

12J with separate, additional contributions to each
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FIG. 10. Wave number k, angle φ, and out-of-plane angle γ (2)

as functions of the antisymmetric coupling constants J i j
a . The black

square is the |D| = 0.50 result. In the bottom plot the error bars are
too small to be seen.

of the components in (J xx,J yy,J zz ): −1
6J (2D2

z − D2
x −

D2
y , 2D2

x − D2
y − D2

z , 2D2
y − D2

x − D2
z ). The other symmet-

ric interaction constants also appear as (J yz
s ,J zx

s ,J xy
s ) ≡

−1
2J (DxDy, DyDz, DzDx ). However, the analysis of the k, φ, and
γ in Ref. [26] does not consider these contributions.

C. Applied field

We also performed numerical simulations of the model
under an applied magnetic field, where the field is scaled
according to Eq. (3). As in Sec. IV B, the model is set to the
parameters J = 1, D = −0.5, J2 = −0.5, J4 = 0.5, with all
other constants vanishing. Figure 11 shows the out-of-plane

FIG. 11. The out-of-plane canting of individual sublattices as
a function of applied field. The lines are fits to the function c +
arcsin(aH ).

canting of the spins as a function of an applied field in the
[111] direction. As expected, with increasing field, canting
toward the field direction increases as arcsin(H ), and there
is little difference between γ (1) and γ (2). Extrapolating the
fit, complete alignment of the moments with the field occurs
when H ∼ 1.

Figure 12 shows how the components of the order pa-
rameter evolve as a function of an applied field in the [111]
direction. The F1 components increase with increasing field,
until they become the dominant contribution, in rough corre-
spondence with the out-of-plane canting shown in Fig. 11.

V. DISCUSSION AND CONCLUSIONS

The computational results of the simplified two-parameter
model discussed in Sec. IV A provide a qualitative description
of the helical magnet phase of MnSi but fail to describe it in
detail: The measured values of k and φ cannot be consistently
explained within a two-parameter model of symmetric and
antisymmetric interactions. Our numerical simulations using
the full model, presented in Sec. IV B, demonstrate that an

FIG. 12. Magnetic order parameters vs applied field in the [111]
direction. The magnitudes are normalized within a single value of H
such that the maximum is always 1.0.
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TABLE I. The 12 point-group symmetry operations of the space group P213. The action of each operation on the magnetic ion positions
is given in the third, fourth, fifth, and sixth columns. The three-digit subscript is the translation with respect to a reference unit cell at 000. The
seventh column lists the coordinate transformations.

Operation No. Symmetry operation S1000 S2000 S3000 S4000 (x, y, z)

(1) 1 S1000 S2000 S3000 S4000 (x, y, z)
(2) 2

(
0, 0, 1

2

)
1
4 , 0, z S2000 S1001 S401̄1

S301̄0
(x̄, ȳ, z)

(3) 2
(
0, 1

2 , 0
)

0, y, 1
4 S3000 S41̄00

S1010 S21̄10
(x̄, y, z̄)

(4) 2
(

1
2 , 0, 0

)
x, 1

4 , 0 S4000 S3101̄
S2001̄

S1100 (x, ȳ, z̄)
(5) 3+ x, x, x S1000 S4000 S2000 S3000 (z, x, y)
(6) 3+ x̄ + 1

2 , x, x̄ S4000 S1100 S3101̄
S2001̄

(z, x̄, ȳ)

(7) 3+ x + 1
2 , x̄ − 1

2 , x̄ S2000 S301̄0
S1001 S401̄1

(z̄, x̄, y)

(8) 3+ x̄, x̄ + 1
2 , x S3000 S21̄10

S41̄00
S1010 (z̄, x, ȳ)

(9) 3− x, x, x S1000 S3000 S4000 S2000 (y, z, x)
(10) 3− ( − 1

3 , 1
3 , 1

3

)
x + 1

6 , x̄ + 1
6 , x̄ S3000 S1010 S21̄10

S41̄00
(ȳ, z, x̄)

(11) 3− (
1
3 , 1

3 , − 1
3

)
x̄ + 1

3 , x̄ + 1
6 , x S4000 S21̄00

S1100 S3101̄
(y, z̄, x̄)

(12) 3− (
1
3 , − 1

3 , 1
3

)
x̄ − 1

6 , x + 1
3 , x̄ S2000 S40!̄1

S301̄0
S1001 (ȳ, z̄, x)

appropriate tuning of the parameters of the more general
model could reproduce those experimentally measured values.
Also, in our simulations, we have measured other features of
the spin configuration in the helical phase that are potentially
experimentally accessible—the out-of-plane angles γ (1) and
γ (2). Our results are in good agreement with the free energy
analysis of Ref. [26]. Furthermore, an additional measure-
ment, the canting of individual spins towards their τi axes
[Eq. (21)], could also be obtained from our results.

We have also shown—at least within the limits of our
finite-sized simulation—the extent to which the helical phase
is contained within a single kind of order parameter (the F3

order parameter), and the relative weight of the four separate
contributions to F3. Their evolution under an applied field was
also presented. These details can provide a different point of
comparison for measurements on the helical phase.

To summarize, we have considered a generalized,
symmetry-allowed model with 11 free parameters—9 nearest-
neighbor interaction constants and 2 same-site anisotropy
constants—to describe the helical magnet phase in MnSi-
like crystals. Experimental observations greatly constrain the

parameter space of this model, as shown in the earliest
theoretical studies, which derived the relationship between
symmetric and antisymmetric (DM) interaction constants and
the spiral wavelength. Recent experiments have uncovered
details concerning the orientation of individual magnetic mo-
ments in the magnetic spirals; those findings can be explained
by the more detailed model we have considered here.
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APPENDIX: CRYSTAL SYMMETRY

The nine nearest-neighbor interaction terms of the free en-
ergy are invariant under the symmetry operations (translations
and rotations) of the space group P213. The actions of the
rotations on the magnetic ions at positions #1–4 are listed in
Table I.
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