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Ferromagnetic Co2MnGa has recently attracted significant attention due to effects related to the nontrivial
topology of its band structure. However, a systematic study of canonical magnetogalvanic transport effects is
missing. Focusing on high quality thin films, here we systematically measure anisotropic magnetoresistance
(AMR) and its thermoelectric counterpart anisotropic magnetothermopower (AMTP). We model the AMR data
by free energy minimization within the Stoner-Wohlfarth formalism and conclude that both crystalline and
noncrystalline components of this magnetotransport phenomenon are present in Co2MnGa. The AMTP is, in
comparison to the AMR, large in relative terms, since the Seebeck coefficient �0 is small, which is discussed in
the context of the Mott rule and of phonon drag. A further analysis of AMTP components is presented.
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Electron transport phenomena in magnetically ordered ma-
terials span a vast range both historically and from the point
of view of complexity. While some of them which have been
known for a long time, such as the anisotropic magnetore-
sistance (AMR) [1], remain a subject of roughly constant
interest until today [2–4] others rose to prominence only re-
cently. Such is the case of the anomalous Nernst effect [5]
(ANE), for example, an outstanding member of the field of
spin caloritronics [6]. In a typical thin-film geometry with
magnetic field applied in the direction normal to the film plane
and a thermal gradient in the sample plane, the ANE signal is
detected in the other (perpendicular) in-plane direction. This
effect is particularly strong in ferromagnetic Co2MnGa [7]
(identified as a Weyl semimetal [8]) and having thus drawn
considerable interest it has been investigated in sufficient de-
tail already [9–11].

In this paper, we extend the discussion also to effects
which occur when magnetic field is applied in the sam-
ple plane. The studied thin film of the Heusler compound
Co2MnGa represents an ideal model system because of its
high crystalline quality, relatively strong magnetothermal re-
sponse, high Curie temperature (TC = 694 K), and high spin
polarization [12]. We study systematically the magnetother-
mal transport response when the magnetic field is rotated
in three perpendicular rotation planes. Along with AMR,
the anisotropic magnetothermopower (AMTP) is reported
and compared qualitatively. We discuss the applicability of
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a simple Stoner-Wohlfarth-based model (as used recently,
for example, in Ref. [3]; note that it can be used both
for ferromagnets and antiferromagnets) to the AMTP data
and compare the ratio of amplitudes of AMTP and AMR
in various samples and at different temperatures. We report
crystalline contributions to both AMR and AMTP and, in-
terestingly, some of these seem missing (or at least they are
significantly weaker) in the latter effect. Inconsistencies re-
lated to the straightforward application of the Mott rule to our
measurements suggest a sizable phonon [13] or magnon [14]
drag contribution to the thermopower.

This paper is structured as follows: in Sec I we compare
AMR and AMTP and provide some background on these two
effects. In Sec II, the formalism used for the data analysis
is introduced and sample fabrication and characterization are
described in Sec. III. Finally, experimental results are shown
and discussed in Sec. IV; an outlook and summary are given
in Sec. V.

I. INTRODUCTION

Both AMR and AMTP refer to voltage variation as a func-
tion of the angle between magnetization and the driving force
(electrical current j in case of AMR and temperature gradient
∇T in case of AMTP) or the angle between magnetization and
the crystal axes in the respective setting. Although they could
probe similar physical properties, there are many more reports
about AMR than about AMTP, mostly due to experimental
challenges in measuring AMTP. In the following, we give a
brief introduction of both.
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Since the original observation of AMR by Thomson [1]
the AMR is typically understood as a variation of longitudinal
resistance as a function of magnetization M direction [15]
�ρyy(ϕ) = CI cos 2ϕ, with ϕ denoting the angle between
current and magnetization. However, there is another level
of complexity in AMR. In 1938, the discussion of this ef-
fect was extended to the influence of crystalline symmetry.
Döring [16] carried out a symmetry-based AMR analysis [17]
of the resistivity tensor using a series expansion up to fourth
order in powers of the direction cosines of the magnetiza-
tion. These expansions contain AMR terms different from
the “noncrystalline” cos 2ϕ ones and such additional terms
are sometimes called “crystalline” AMR since they reflect
the crystal symmetry and not the symmetry breaking induced
by the electrical current direction. Consequently, unlike the
noncrystalline AMR, the crystalline AMR contributions can
be nonzero even if ϕ = π/2 remains constant (for example,
during the magnetic field rotation in the plane perpendicular
to j). Such a situation will be discussed in the experimental
setup sketched in Fig. 2(e) below.

AMTP is the thermoelectrical counterpart of AMR. The
basic phenomenon (voltage induced by a temperature gra-
dient) was discovered by Seebeck already in 1821, thus
establishing the field of thermoelectrics. Hints at its anisotropy
came much later [18], however, and since then AMTP
has attracted relatively small attention compared to AMR.
Nevertheless, increasing global demand for energetically sus-
tainable solutions [19] and the need of advanced microscopy
techniques [20] sparked new interest in this effect.

Recent thermoelectric studies in solid state magnetism
focus mostly on the evaluation of � (the Seebeck coeffi-
cient [21]) or the ANE [6]. The Seebeck coefficient can
provide information about the charge carriers, such as con-
centration, effective mass, or dominant type (electrons or
holes), and ANE stirs interest due to the connection to band
structure topology [22] and better technological prospects in
thermoelectric energy harvesting [23]. In addition to the ANE,
the Seebeck coefficient anisotropy comes with the possibility
for its tensor components �xy and �yy to depend on the mag-
netic field direction: the AMTP, which is a direct analog to the
noncrystalline AMR and can be expressed as

�xy = SI sin 2ϕ accompanied by

��yy = SI cos 2ϕ, (1)

where ��yy is the difference between �yy and its average.
These relations pertinent to polycrystalline materials can be
straightforwardly derived by angular averaging the Seebeck
tensor as given by Eq. (3.31) in Ref. [24] and we also discuss
this relationship in Sec. III.

In contrast to ANE, the AMTP is rarely a topic of system-
atic studies; with few exceptions [24,25] reports are usually
limited to assume its existence (in longitudinal [20,26] or
transversal [18,27] geometry also known as the planar Nernst
effect) and the AMTP often assumes the role of an unwanted
artifact. The main reasons are the notorious difficulty to
precisely quantify the direction and amplitude of a thermal
gradient, and the small magnitude of the measured ther-
movoltages, typically near the resolution limit of common
laboratory equipment. This makes the AMTP experiment

significantly more challenging than a simple resistivity mea-
surement with a well-defined current direction. The thermal
gradient quantification is even more complex in thin-film
samples where the substrate acts as a heat sink. The lack
of detailed understanding of AMTP becomes obvious when
considering systems with various contributions to AMR. In
particular, very few reports show a more complex symmetry
of AMTP [24], the existence of a crystalline component in
the AMTP is not yet established, and a comparison between
the crystalline contributions to AMR and AMTP is entirely
missing. The understanding of AMTP is not only a funda-
mental scientific question, but it is equally important in order
to exclude various artifacts in experiments during which a
thermal gradient is unintentionally generated.

II. SAMPLE FABRICATION AND CHARACTERIZATION

The Co2MnGa thin-film samples are fabricated by mag-
netron sputtering on MgO(001) substrates using a multisource
Bestec UHV deposition system from Co, Mn, and MnGa
sputter targets. Prior to deposition the chamber base pres-
sure was less than 8 × 10−9 mbar while growth with total
growth rate of 0.58 Å/s was performed using an argon process
gas at a pressure of 3 × 10−3 mbar. Growth and postgrowth
annealing was performed at 500 ◦C. After the Co2MnGa
thin-film growth, 3 nm of Al were deposited at room tempera-
ture (RT) to prevent oxidation. Further details of the growth
procedure and sample characterization can be found else-
where [28]. Here, two samples showing highest crystal quality
with Co2MnGa thickness of 40 and 50 nm are studied. The
chemical composition and structural investigation conducted
by x-ray diffraction techniques showed Bragg peaks corre-
sponding to the material composition revealing a high degree
of atomic order similar to Refs. [9,28]. Figure 1(c) shows
the symmetric radial x-ray diffraction scans, which include
diffraction from lattice planes parallel to the substrate sur-
face. Given the epitaxial alignment of Co2MnGa(001)[110]
‖ MgO(001)[100], i.e., an in-plane 45◦ rotation, only the
00L Bragg peaks are visible in Fig. 1(c). Well-defined, nar-
row Bragg peaks evidence the good chemical homogeneity
and crystal quality. While bulk Co2MnGa has a cubic L21

crystal structure the thin films exhibit an epitaxial strain-
induced tetragonal distortion with slight contraction along
the out-of-plane [001] direction. The resulting c/a ratio is
around 0.99 [28]. Figure 1(d) shows x-ray reflectivity data
of Co2MnGa epilayers displaying Kiessig fringes from which
the thickness of 40 and 50 nm was obtained. The Kiessig
fringes extending beyond the measurement range bear witness
to a low surface and interface roughness which were deter-
mined to be below 7 Å by modeling using an extended Parratt
formalism [29].

Magnetization of these epilayers was measured in a su-
perconducting quantum interference device magnetometer, as
shown in Fig. 1(b). The magnetic moment at saturation of
about 4 μB/f.u. is consistent with literature (saturation mag-
netization Msat = 720 kA/m) [9,11]. The films were patterned
into 40-μm-wide Hall bars by optical lithography and by a
combination of HCl and Ar/O2 plasma etching. A schematic
image of the sample is shown in Fig. 1(a). After the etching,
on-chip heater and thermometers were fabricated in a liftoff
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FIG. 1. Sample characterization. (a) Schematic image of the sample. The white areas are Co2MnGa. Vyy (AMR) are the contacts used
for measuring voltage in the AMR experiment, while the current I was applied between Vyy (AMTP). In the AMTP experiment, the voltage
was measured at Vyy (AMTP). The width of the conducting channel is 45 μm. The length is 970 μm between the contacts of Vyy (AMR) and
1335 μm between Vyy (AMTP). The red and green colored areas are Pt wires which are used in the AMTP experiments as on-chip heaters
(red) and thermometers (green). (b) Superconducting quantum interference device measurement of magnetization M: hard (out-of-plane) and
easy-direction M(H ) at T = 100 and 300 K. The inset shows M(T ) at saturation, with saturated magnetic moment approaching 4μB per
formula unit. (c) X-ray diffraction radial scans of Co2MnGa films with 40- and 50-nm thickness. Bragg peaks labeled by an asterisk (*)
originate from the 00L series of the MgO substrate, while Bragg peaks of Co2MnGa are labeled by their Miller indices. (d) X-ray reflectivity
pattern of the 40- and 50-nm-thick Co2MnGa films. Experimental data are shown as data points, while the solid line represents a model fit
based on the extended Parratt formalism and both x-ray plots have the 50-nm sample data shifted in vertical direction for clarity.

process with 30 nm of sputtered Pt. Platinum wires, high-
lighted as red areas in Fig. 1(a), at the top of the Hall bar serve
as an on-chip heater, while platinum wires at the side work as
an on-chip thermometer (green areas).

A. Experimental setup

In the AMR experiments, a sufficiently strong magnetic
field (μ0H = 1.5 T stronger than both μ0Msat ≈ 0.9 T and
the anisotropy field ku(Msat )−1 ≈ 0.6 T) is rotated in three
rotation planes called XY , ZY , and ZX planes as shown in
Figs. 2(a), 2(c) and 2(e). Current I = 0.2 mA (corresponding
to current density 1.2 × 104 A/cm2) is applied along the y
axis. At each step of the magnetic field rotation, resistivity
data are collected for I = +0.2 and −0.2 mA and averaged,
in order to cancel out the thermoelectric contributions, which
occur in the form of voltage offsets. The experiments are

conducted at different temperatures between 10 and 300 K.
The data are shown as symbols in Fig. 2.

In the AMTP experiments, magnetic field is rotated in the
same rotation planes XY , ZY , and ZX . The experiments are
conducted at several temperatures between 100 and 300 K;
at lower temperatures the AMTP signal decreases below the
resolution owing to the decrease of entropy.

The thermometers are first calibrated by sweeping the
temperature of the cryostat from low temperature to room
temperature and using a Cernox thermometer in the cryostat
as a reference. At each studied temperature, a constant current
of Ithermom = 0.1 mA is applied on the on-chip thermome-
ters (platinum wires, highlighted green in Fig. 1), while the
measured voltage serves as a measure of the temperature.
The thermal gradient is generated by Joule heating of the
on-chip heater. We typically apply a current of Iheater = 17.5
mA. The on-chip thermometry allowed us to determine the
thermal gradient ∇T , which is 0.4 K/mm at T = 100 K and
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FIG. 2. Results of the AMR and AMTP measurement (crosses) and fitting (continuous lines) in the 50-nm sample at 300 K (AMR) and
250 K (AMTP). [(a),(c),(e)] Schematic sketch of the magnetic field rotation in the XY, ZY, and ZX plane with respect to the coordinate system
and the sample. [(b),(d),(f)] AMR (blue, left y axes) and AMTP (orange, right y axes) results.

0.5 K/mm at 200–300 K [9]. In order to reduce noise, the
magnetic field was rotated several times and at each rotation
step several voltage measurements were taken. The presented
data are thus averaged over several magnetic field rotations.
Since the thermal gradient takes a long time to stabilize, it
was not reversed at each step of the rotation as in the case of
the AMR.

III. PHENOMENOLOGICAL MODEL

The phenomenological model used in this paper was pre-
viously employed by Limmer et al. [30,31] for AMR in (Ga,
Mn)As and extended to AMTP in the same material system
by Althammer [24] and we present a brief summary here.
Similar schemes are used also in the context of AMR in
antiferromagnets [3].

The coordinate system is chosen as follows: z is the surface
normal vector, which is in the [0 0 1] direction; electric field
and thermal gradient are applied along [1 1 0] denoted by y;

and x = y × z. A microscope image of the Hall bar with the
coordinate system is shown in Fig. 1(a).

The basic simplifying assumption is that magnetization M
is saturated (which is plausible given the very narrow hys-
teresis loop shown in Fig. 1(b)). In other words, we describe
effectively only a single homogeneously magnetized domain.
The Stoner-Wohlfarth (SW) model [32] can then be used to
infer the magnetization direction m = M/Msat (here, Msat is
the saturation magnetization) for any given applied magnetic
field H by minimizing the free energy density F . We note that
this approach is capable of reproducing hysteresis effects but
these never occur in the parameter range of interest here. Both
the Zeeman energy and magnetic anisotropies contribute to F
and the latter in Co2MnGa shows a cubic anisotropy kc and
a uniaxial anisotropy ku which is expected due to demagne-
tization energy and substrate-induced strain. With μ0 being
the vacuum permeability, we use F = −μ0H · M + kum2

z
because the cubic anisotropy can be neglected (ferromagnetic
resonance measurements [33] show that it is two orders of
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magnitude smaller than the applied magnetic field). The mag-
netization direction is obtained in this fashion, since due to the
strong magnetic anisotropy the magnetization M is not at all
angles of the field rotation parallel to the magnetic field H.

The resistivity tensor is obtained by making a series expan-
sion in powers of cartesian components of m up to the fourth
order. This ansatz was first developed by Birss and applied,
for example in Ref. [31], to (Ga, Mn)As. The tensor writes as

ρi j (m) = ρ
(0)
i j + ρ

(1)
i jk mk + ρ

(2)
i jkl mkml + ρ

(3)
i jklmmkmlmm

+ ρ
(4)
i jklmnmkmlmmmn + · · · (2)

where ρ
(0)
i j , ρ

(1)
i jk , ρ

(2)
i jkl , ρ

(3)
i jklm, and ρ

(4)
i jklmn are the expansion

coefficients and magnetization direction components mn ∈
{m[100], m[010], m[001]}.

The number of independent parameters is reduced owing
to mkml = mlmk , the Onsager relation ρi j (m) = ρji(−m), and
Neumann’s principle [34] pertaining to the crystal symmetry.
The last mentioned is tetragonal in our case, whereas the
tetragonal axis is in z direction, since the thin-film samples
are strained by the MgO substrate (see Sec. II). The complete
form of the resistivity tensor is not needed for the further
process and can be found in the Appendix. The longitudinal
resistivity ρlong is obtained by projecting the resistivity tensor
ρ along the current direction by making use of Ohm’s law
E = ρ · J and Elong = j · E, where J is the current density
vector and j = J/J is the corresponding unit vector, in our
case j = 1√

2
(1, 1, 0) = y. The projection writes as

ρlong = ρyy = j · ρ · j. (3)

The longitudinal resistivity ρyy in our configuration is there-
fore given by

ρyy = ρ0 + ay2 · m2
y + az2 · m2

z + ay4 · m4
y + az4 · m4

z

+ azy2 · m2
z · m2

y , (4)

where ρ0 is the offset resistivity; ay2 and az2 are the coeffi-
cients of the lowest-order AMR terms; ay4, azy2, and az4 are
the coefficients of the higher-order AMR terms; and my and
mz are the y and z component of m in the coordinate system
{x, y, z} as introduced above.

The derivation of the longitudinal Seebeck coefficient �yy

is analogous to the resistivity. The only difference is here that
the Onsager relation connects the Seebeck tensor with the
Peltier tensor and thus cannot be used to reduce the number
of independent parameters. Hence, �yy contains an additional
term:

�yy = �0 + sy2 · m2
y + sz2 · m2

z + szyx · mz · my · mx

+ szy2 · m2
z · m2

y + sy4 · m4
y + sz4 · m4

z , (5)

where analogously �0 is the magnetization-direction-
independent Seebeck coefficient; sy2 and sz2 are the coeffi-
cients of the lowest-order AMTP terms; and sy4, sz4, szy2,
and szyx are the coefficients of the higher-order AMTP terms.
Since the magnetic field is going to be rotated in either the XY ,
the ZY, or the ZX plane and amongst the anisotropies only the
out-of-plane uniaxial term is significant, one of the mi is in
every plane expected to be zero (e.g., mx in the ZY plane),
and the term mz · my · mx is expected to be zero in each of

our rotation planes and is thus ignored. Hence, the AMR and
AMTP formulas contain the same terms in our measurement
setup. We note that for polycrystals only the first two terms
in Eq. (5) remain and, moreover, 1

2 sy2 = SI in Eq. (1). In other
words, all other terms in Eq. (5) can be classified as crystalline
AMTP.

In the following, we will analyze experimental AMR and
AMTP data using Eqs. (4) and (5) combined with the SW
model which provides a link between external magnetic field
and magnetization m = (mx, my, mz ) that enters those equa-
tions. The final results of the fitting procedure are depicted
in Fig. 2. It will be shown in Fig. 3 that for AMR all terms
in Eq. (4) need to be retained lest the quality of fits deteri-
orate significantly in some measurement configurations. On
the other hand, the last three terms of Eq. (5) are not needed
for a good fit of AMTP; szyx cannot be inferred from our data
as already mentioned.

IV. RESULTS

Experimental data (symbols) and fits using the phe-
nomenological model (lines) for both AMR and AMTP in the
50-nm sample are shown in panels (b), (d), and (f) of Fig. 2.
While the AMR and AMTP data, with suitable scaling, seem
alike in panels (b) and (d), the rotation of M in the plane
perpendicular to j [see Fig. 2(f)] gives a different picture.
We elaborate on this finding below and only note here that,
in the latter configuration, noncrystalline terms [15] do not
contribute to the measured AMR and AMTP which will now
be discussed separately.

A. Anisotropic Magnetoresistance (AMR)

The phenomenological fit to AMR data (blue crosses in
Fig. 2) takes into account the uniaxial magnetic anisotropy ku,
lowest-order terms ay2 and az2, and also higher-order AMR
terms ay4, az4, and azy2. Equation (4) combined with ku of the
SW model resulted in a very good agreement between the data
and model. On the other hand, fits omitting the higher-order
crystalline terms (specifically, ay4, az4, and azy2) shown on the
left of Fig. 3 lead to a clear trace of the omitted terms in the
residuals. Such a reduced form of Eq. (4) does not allow one
to reproduce the data well, even when a cubic magnetization
anisotropy is included in the SW model (not shown). The
obtained AMR parameters corresponding to T = 300 K (RT)
are shown in Table I.

Inferred RT values of ku (438 and 416 kJ/m3 for the 40-
and 50-nm sample, respectively) are in a good agreement
with ferromagnetic resonance measurements carried out
independently [33] and the temperature dependence of such a
magnetic anisotropy [see Fig. 4(a)] is consistent [35] with that
of the magnetization [see Fig. 1(b)]. Turning our attention to
the transport coefficients, the largest of the AMR parameters
is the in-plane lowest-order one: ay2. It is negative, which
reflects that the resistivity is smaller for m ‖ j than for m ⊥ j,
a situation commonly referred to as negative AMR [36]. This is
opposite to what is found in more common ferromagnets such
as iron, nickel, cobalt, and their alloys [37] and, more impor-
tantly, it is also consistent with the finding of Sato et al. [38],
who found a negative AMR ratio (ρ‖ − ρ⊥)/ρ⊥ in Co2MnGa
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FIG. 3. (a), (c), (e) Data from Fig. 2 where AMR (AMTP) is fitted by Eq. (4) [Eq. (5), respectively] with second-order terms only; a lower
quality, compared to Fig. 2(f), of the AMR fit in the bottom panel is clearly apparent but systematic deviations can also be observed for the XY
and ZY rotations. (b), (d), (f) The difference of the experimental data and fits on the left (fit residuals); see text for a detailed discussion.

for current along [1 1 0]. Some other ferromagnetic systems,
(Ga,Mn)As for instance [15], carry negative AMR too.

The temperature dependences of the AMR parameters are
shown in Fig. 4. Their trends for the 50-nm sample are
similar to those of the 40-nm sample except for the out-of-
plane lowest-order az2 parameter; even so, both data sets in
Fig. 4(e) seem to have a minimum slightly below RT. Accord-
ing to the absolute value, the magnitudes of the parameters in
descending order are as follows for the example of the 40-nm
sample at RT: |ay2| > |az4| > |az2| > |ay4| > |azy2|.

Such observations, however, lack any universal validity.
Trends regarding the order of magnitude or the sign of the

coefficients can be observed, yet they cannot be general-
ized. This is also confirmed by results of similar studies in
Co2FeAl [24] and in (Ga, Mn)As [24,30,31]. Hence, there are
always exceptions to a rule: |ay2| is usually the largest of the
AMR coefficients (but not for very thin samples [39]) and ay4

is in most cases positive (but not at very low temperatures in
the 50-nm sample) to give two examples. Since our model is
phenomenological and the microscopic origins of the AMR
mechanisms are not fully understood for Co2MnGa, an expla-
nation of the observed behavior remains an open question.

Attempts to identify the underlying mechanisms of AMR
in related materials have been undertaken by Kokado and

TABLE I. Fitted AMR and AMTP parameters at room temperature.

AMR quantity (μ� cm) 40 nm 50 nm 40 nm 50 nm AMTP quantity (μV/K)

ρ0 185.2 186.0 −15.57 −6.61 �0

ay2 −0.730 −0.267 −0.216 −0.248 sy2

az2 −0.229 0.046 0.270 0.283 sz2

ay4 0.155 0.064 sy4

az4 −0.242 −0.106 sz4

azy2 0.008 0.008 szy2
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FIG. 4. Temperature evolution of the parameters obtained by the phenomenological fit to AMR data. (a) Uniaxial magnetic anisotropy and
(b–f) parameters for AMR defined in Eq. (4).

Tsunoda [40] whereas the focus was on electron scattering.
They used a two-current model, taking into account s-to-s and
s-to-d scattering. The Hamiltonian of the localized d states
includes spin-orbit interaction, an exchange field, and a crystal
field of cubic or tetragonal symmetry, where the tetragonal
distortion is in the [0 0 1] direction. They found that the ay4

contribution (C4 in their notation) appears under a tetragonal
symmetric crystal field, but almost vanishes under cubic sym-
metry. This is consistent with other studies that reported that
a fourfold contribution (ay4 in our notation) is not needed to
describe the in-plane AMR. However, thin films are expected
to be strained by the substrate and thus to show some tetrago-
nality, which leads to a nonzero ay4 contribution. On the other
hand, the strain is different in each sample. Thus, studies that
reported a twofold in-plane AMR (i.e., ay4 = 0) might have
samples with relatively low strain, which are almost cubic.

B. Anisotropic Magnetothermopower (AMTP)

To fit the AMTP data, we used a procedure analogous to
fitting AMR except for the anisotropy constant ku: this pa-
rameter has already been determined before and we now kept
it fixed. Note that due to the on-chip heating the actual tem-
perature might be slightly different than indicated. However,
since the change of ku with temperature is small, it does not
change the accuracy of our approach. Given our measurement
geometry, mxmymz = 0 at all times, hence Eq. (5) contains

the same terms as Eq. (4) and, in particular, we started with
the lowest-order terms sy2 and sz2. Only these lowest-order
parameters and the magnetic anisotropy were needed to obtain
good fits to the AMTP data, which is a pronounced difference
to the AMR. A reason for this difference could be the noise
which is stronger in the AMTP data as compared to the AMR.
We have not been able to achieve as good resolution as in the
case of the AMR. However, the noise allows us to determine a
maximum value of possible higher-order terms, which need
to be smaller than the noise. In absolute terms, the noise
is of the order of magnitude 0.10 μV/K and below, which
implies that the higher-order contributions in (4) are smaller
than about one fifth of the lowest-order ones (see Table I).
This is not only a striking difference to AMR in our samples,
where lower- and higher-order coefficients are in the same
order of magnitude, but also to the analysis of AMTP in
(Ga,Mn)As by Althammer [24], where the existence of the
higher-order AMTP parameter is reported. In relative terms,
the noise shown in Fig. 3 (as residuals after subtracting the
fits from experimental data) is large, which is a consequence
of difficulties in controlling the temperature gradient under
experimental conditions. The temperature evolution of the
AMTP parameters as well as a comparison to the lowest-order
AMR parameters are shown in Fig. 5(b). Compared to a di-
lute magnetic semiconductor example [Table 3.3 in Ref. [24]
reporting on (Ga,Mn)As is, to the best of our knowledge, the
only quantitative analysis of AMTP components available in
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FIG. 5. (a) Longitudinal Seebeck coefficient �0 and resistivity ρ0 as a function of the temperature. The different samples are distinguished
by the shape of symbols. The absolute value of the Seebeck coefficient of the 50-nm sample is monotonously increasing with temperature. There
is a sign change at low temperatures. The Seebeck coefficients at T = 300 K for the 50- and 40-nm sample (green square) are of comparable
magnitude. (b) Comparison of the AMTP and the corresponding AMR parameters in the 50-nm sample as a function of temperature. AMR
and AMTP are distinguished by line style. The m2

y contributions are in shades of orange; the m2
z contributions are in shades of green. They do

not seem to follow any common trend. Error bars of AMTP and AMR parameters in (b) (implied by the fitting procedure) are too small to be
visually resolved.

literature], sy2 and sz2 are smaller in absolute terms but larger
relative to �0 in Co2MnGa.

In Fig. 5(a), the Seebeck coefficient �0 is shown as a func-
tion of temperature. In literature, the Seebeck coefficient of
Co2MnGa ranges between approximately −2 and −30 μV/K
at RT, whereas no clear trend is recognizable and the present
measurements fall within this range: we find �0 for both
samples close to −15 μV/K. The Seebeck coefficient of the
50-nm sample is increasing in absolute value with increasing
temperature, as expected from previously published experi-
ments [41,42].

As mentioned in Sec. I, the sign of �0 is attributed to
the dominant charge carrier type, which are electrons for
�0 < 0. A negative Seebeck coefficient is reported not only in
Co2MnGa, but in Co-based Heusler compounds in general [7].
The sign change of �0 would mean that the dominant charge
carrier type switches from electrons to holes for decreasing
temperatures. This was shown to occur in other materials
depending on the doping [43]. However, other scenarios are
also plausible, which we discuss in the next subsection, and
we now turn our attention to the AMTP.

We notice that neither sy2 nor sz2, the temperature depen-
dence of which is shown in Fig. 5(b), can be correlated to
their AMR counterparts. While az2 is decreasing with increas-
ing temperature and the dependence of ay2 is nonmonotonic,
the AMTP parameters exhibit very different dependence, al-
though they were measured on exactly the same device in
the same structure. At T = 250 K in both AMTP parameters,
there is an outlier. This might be due to a thermal offset
variation. Together with the sign change of sz2 the lack of
correlation between the AMR and AMTP is evident. This is
in striking contrast to the transversal transport measured in
the same material [11]. In that study the AHE and ANE were
measured simultaneously and clear correlation was observed
including the presence of outliers.

From our paper it appears that, comparing the lowest-
order parameters, no common trend can be found between

the AMR parameters and their respective AMTP counterpart
when looking at the temperature dependence. Moreover, in
case of the ZX rotation [see Fig. 2(f)], even the raw angular
sweep data are clearly very different: the fourth-order terms
can be basically seen by the naked eye in the AMR while in
the AMTP they are apparently absent and no such terms can
be identified in the residuals on the right panels of Fig. 3. In
the systematic study of AMR and AMTP in (Ga, Mn) As by
Althammer, higher-order contributions have been found for
both effects, but the parameters did not appear to be correlated
with each other. Since the amount of data in this and all
past studies is relatively small, further studies are desirable
to investigate if any correlation between AMR and AMTP
coefficients exists.

The fact that in two different systems the AMR and the
AMTP follow different trends is, however, a strong indication
that there might be a more fundamental reason behind this dis-
crepancy such as the suppressed role of anisotropic scattering
in the AMTP, which calls for further investigation; below, we
discuss one possible direction of such tentative research.

C. Mott rule and phonon drag

Electron and heat transport linear response coefficients are
tensorial quantities which obey Onsager relations [44] and
combine into the Seebeck coefficient �0. To see this, we
rewrite the electron transport equation as

E = ρj + �0∇T

and set j = 0. Under the assumption of elastic scattering, the
Mott rule holds (still in the tensorial sense):

�0 = −eL0T ρσ ′ = eL0T ρ ′σ, (6)

where ρσ = 1 and the prime denotes the derivative with
respect to energy E at chemical potential. For semicon-
ductors, this derivative can be straightforwardly accessed
through carrier-density-dependent conductivity [45] but no
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such possibility is obvious in our metallic system. However,
when resistivity is broken down into a magnetization-
independent background ρ0 and a small correction �ρ that
effectively constitutes the AMR, the following observation is
possible.

Let us first assume that ρ, which depends both on E and
M, can be written as

ρ(E , M) = ρ0(E ) + �ρ(M). (7)

Equation (6) can then be rewritten as �0 = eL0T ρ ′
0σ and

since ρ0 is a scalar quantity it essentially implies that AMTP
is proportional to the AMR (tensors �0 and σ are proportional
through a scalar factor). In terms of data shown in Fig. 2,
this could seem to imply that dominant noncrystalline con-
tributions of AMR (XY and ZY rotations) indeed follow while
the more delicate and smaller crystalline terms (ZX rotation)
break the assumption (7) and give different AMR and AMTP
angular dependences.

On a careful inspection, however, we notice that AMR and
AMTP amplitudes in Figs. 2(b) and 2(d) are not proportional
the same way as the average ρ and �0 (this is made ex-
plicit by scaling of the vertical axes on the left three panels
in Fig. 3). While the assumption (7) may be not accurately
fulfilled (specifically, the �ρ term is unlikely to be perfectly
energy independent), there is also another possibility to ex-
plain this discrepancy. We note that thermopower is strongly
temperature dependent (data in Fig. 5(a) show that it changes
almost by a factor of 3 between 250 and 300 K) and at the
same time ρ0 changes only at the order of percent in the same
temperature interval.

This explanation is related to the phonon drag contribution
to thermopower which is not included in the Mott formula (6).
In semiconductors, this contribution can easily exceed (see
Fig. 12 in Protik and Broido [13]) the electronic thermopower
or, in other words, it can reach the level of 100 μV/K. It is
therefore plausible that the measured (relatively small) value
of �0 is the result of competition of two (large, relative to
�0) contributions: the usual electronic contribution related
to the Fermi-Dirac factor fFD(E ) depending on temperature
and the phonon drag contribution caused by electron-phonon
interaction. Once the phonon drag contribution would be re-
moved from the measured �0, the amplitude-to-average ratio
of AMTP drops to the same level as for the AMR; here, we
again refer to Figs. 2(b) and 2(d) consistent with proportion-
ality of AMR and AMTP implied by the Mott formula under
assumption (7). This way, our measurements suggest a sizable
phonon drag effect in the thermopower of Co2MnGa. Alter-
natively, magnon drag could be at work [14,46]. Regarding
Fig. 2(f) we note that the lack of proportionality of AMR and
AMTP can be traced back to sizable higher-order crystalline
contributions to AMR, which seem to be absent (or much
smaller) for AMTP. This cannot be explained by a phonon or
magnon drag contribution, but rather must stem from the mi-
croscopic processes themselves. A profound theoretical study
is desirable aiming to unravel symmetries of the AMTP, as it
was done in AMR, for example, in Ref. [40].

V. SUMMARY

In this paper, we compared the AMR and AMTP in two
Co2MnGa thin-film samples using a simple free energy den-
sity and phenomenological symmetry-based models for AMR
and AMTP based on a series expansion in powers of the
magnetization direction vector m. We showed that nonzero
resistivity contributions up to fourth order are necessary
for a sensible modeling of the AMR, where in the AMTP
only lowest-order contributions are necessary. The AMR and
AMTP are not showing any trends in common, which is
consistent with previous studies in (Ga, Mn)As. Neverthe-
less, we experimentally confirm the presence of a crystalline
contribution to the AMTP. It appears that the universal Mott
rule validity is broken due to a discrepancy of the symmetries
of AMR and AMTP in one rotation plane. This discrepancy
was discussed in terms of a significant phonon (magnon) drag
contribution to thermopower.

The results of this paper call for further enquiry: First of all,
we need to broaden our understanding about the origins and
governing influences in AMR, but also in AMTP. Theoretical
studies discussing influences in AMTP similar to those about
AMR are desirable. Experimental studies using sets of sam-
ples which are systematic with respect to strain, composition,
or other influences can help us also along this way.
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APPENDIX: NOTES ON DERIVATION
OF EQS. (4) AND (5)

Comments on the full form of ρ (i) in Eq. (2) are given
here, from which Eq. (4) can be derived. A more detailed
description can be found in Appendix A.1 of the thesis [39]
of one of the authors. Only terms corresponding to cubic
symmetry are included and summation over repeated indices
(Einstein notation) is implied. Note that the underlying co-
ordinate system is equivalent to the one applied in Eq. (2);
thus, mn ∈ {m[100], m[010], m[001]}. We skip ρ

(1)
i jk , which does

not appear in ρlong in the in-plane geometry (it corresponds to
the anomalous Hall effect). The lowest nontrivial order thus
becomes

ρ
(2)
i jkl mkml = C1

⎛
⎜⎝

m2
x 0 0

0 m2
y 0

0 0 m2
z

⎞
⎟⎠

+ C2

⎛
⎜⎝

0 mxmy mxmz

mxmy 0 mymz

mxmz mymz 0

⎞
⎟⎠.
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The third-order terms, ρ
(3)
i jklm, again do not contribute in Eq. (3), and the fourth-order terms ρ

(4)
i jklmnmkmlmmmn become

E1

⎛
⎜⎜⎝

m4
x 0 0

0 m4
y 0

0 0 m4
z

⎞
⎟⎟⎠ + E2

⎛
⎜⎜⎝

m2
ym2

z 0 0

0 m2
xm2

z 0

0 0 m2
xm2

y

⎞
⎟⎟⎠ + E3

⎛
⎜⎜⎝

0 mxmym2
z mxmzm2

y

mxmym2
z 0 mymzm2

x

mxmzm2
y mymzm2

x 0

⎞
⎟⎟⎠.

Additional terms appear when lower symmetry is assumed, which is in our case due to the tetragonal distortion along the
ẑ = [001] axis of the thin-film samples. The following zeroth-order and second-order terms add to the resistivity tensor in the
case of tetragonal symmetry:

⎛
⎜⎜⎜⎝

0 0 0

0 0 0

0 0 a

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

c3m2
z 0 c2mxmz

0 c3m2
z c2mymz

c2mxmz c2mymz c1m2
z

⎞
⎟⎟⎟⎠.

Under tetragonal symmetry, the fourth-order terms are supplemented by
⎛
⎜⎜⎜⎝

e2m2
ym2

z + e4m4
z e3mxmym2

z e6mxm2
ymz + e7mxm3

z

e3mxmym2
z e2m2

xm2
z + e4m4

z e6m2
xmymz + e7mym3

z

e6mxm2
ymz + e7mxm3

z e6m2
xmymz + e7mym3

z e5m2
xm2

y + e1m4
z

⎞
⎟⎟⎟⎠.

In a similar (yet distinct) manner, the Seebeck tensor can be expanded (see Appendix B.1 of Ref. [39]). In the case of
tetragonal symmetry, to which Eq. (5) applies, several additional terms appear but they do not contribute to �yy except for

D7mxmymz

⎛
⎜⎜⎝

−1 0 0

0 1 0

0 0 0

⎞
⎟⎟⎠,

which gives rise to the last term in Eq. (5). Therefore even in our setup, ρyy and �yy allow in principle for a different functional
form albeit not with our constraint to XY, YZ, and XZ rotations of magnetic field. Further information can be found in Ref. [24]
or in the Appendix of Ref. [39].
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