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The development of reliable and flexible machine learning based interatomic potentials (ML-IPs) is becoming
increasingly important in studying the physical properties of complex condensed matter systems. Besides the
structure descriptor model for total energy decomposition, the trial-and-error approach used in the design of
the training dataset makes the ML-IP hardly improvable and reliable for modeling materials with chemical
bond hierarchy. In this work, a dual adaptive sampling (DAS) method with an on the fly ambiguity threshold
was developed to automatically generate an effective training dataset covering a wide temperature range or a
wide spectrum of thermodynamic conditions. The DAS method consists of an inner loop for exploring the local
configuration space and an outer loop for covering a wide temperature range. We validated the developed DAS
method by simulating thermal transport of complex materials. The simulation results show that even with a
substantially small dataset, our approach not only accurately reproduces the energies and forces but also predicts
reliably effective high-order force constants to at least fourth order. The lattice thermal conductivity and its
temperature dependence were evaluated using the Green-Kubo simulations with ML-IP for CoSb3 with up to
third-order phonon scattering, and those for Mg3Sb2 with up to fourth-order phonon scattering, and all show
good agreements with experiments. Our work provides an avenue to effectively construct a training dataset for
ML-IP of complex materials with chemical bond hierarchy.
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I. INTRODUCTION

Interatomic potentials with validated parametrization have
important applications in simulating various physical proper-
ties in condensed matter physics, materials science, and even
chemistry [1]. Density functional theory (DFT) calculations
can accurately describe interatomic interactions, but usually
require large computational resources and show nonlinear
scaling of computational time which makes the simulation
of large-scale complex systems a big challenge. Countless
types of effectively parametrized potentials have been de-
veloped over the decades such as Tersoff potentials [2] and
embedded atom method (EAM) potentials [3]. Although the
calculations based on those empirical interatomic potentials
could be fast, the reliability hardly meets the needs of complex
materials simulation in scientific and industrial applications
[4], let alone the severe limit and difficulty in universality
of interatomic potential for complex systems with multiple
compositions. Recently, machine learning based interatomic
potential (ML-IP) has been proposed to compensate for the
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disadvantages of DFT and empirical force fields, which have
been shown to be computationally efficient but with accuracy
comparable to DFT results [5–7]. The ML-IP, also known as
mathematical potential, has a large number of fitting param-
eters compared to empirical interatomic potentials [4]. These
fitting parameters need to be learned from DFT computational
data. The generation of the training dataset for ML-IP has
attracted intense interest [8–10], since it is required for the
training dataset to fully cover the configuration space for
targeted application scenarios to guarantee the high accuracy
of ML-IP. Consequently, a large training dataset will be gener-
ated if an inefficient sampling method is adopted, which will
further hinder the application of ML-IP.

In order to realize efficient sampling, a class of active learn-
ing based sampling methods has recently been proposed to
design a training dataset for ML-IP [8–10]. The active learn-
ing based methods usually explore the configuration space
in an iterative manner. In each iteration loop, the structures
are first sampled using molecular dynamics (MD) simulation
under specific thermodynamic conditions, then some struc-
tures which are believed to substantially improve the accuracy
of ML-IP are selected for DFT calculations, and finally the
DFT calculation data are added to the training dataset to
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refine the potential. Different query strategies, such as query
by committee [8,10–12], predictive variance [13,14], and the
D-optimality criterion [9,15–17], have been used to design
training datasets on the fly. The predictive variance and the
D-optimality criterion are adopted in Gaussian process based
potentials [13,14] and moment tensor potentials [9,15–17],
respectively. The query by committee strategy, which selects
the training structures with high ambiguity in the energy
and/or forces predicted by an ensemble of independently
trained potentials, has been investigated in several neural net-
work based potentials [8,10–12]. A threshold for ambiguity
usually needs to be set, which is a quantity characterizing
the extent of disagreement of predicted energy and/or forces
over several independently trained potentials [8,10–12]. The
setting of the threshold is of vital importance to the success
of the sampling method [10]. If the threshold is too low,
too many structures will be added into the training dataset,
rendering an increase of computational cost; if the threshold
is too high, the active learning iterations will be terminated
prematurely, and the accuracy of ML-IP will be greatly af-
fected. It is challenging to set a suitable threshold value,
especially for complex applications covering a wide spectrum
of thermodynamic conditions. For example, the threshold is
recommended to be a value slightly higher than the training
accuracy achievable by ML-IP [10]. However, the training
accuracy of ML-IP is closely related to the training structures;
e.g., the training accuracy of ML-IP decreases with increasing
sampling temperature [16] or decreases with increasing dis-
order of the structures [9,18]. Therefore, an efficient sampling
method that can adaptively update the ambiguity threshold for
different thermodynamic conditions is of great importance for
complex applications.

Simulating thermal transport is one of the typical applica-
tions of ML-IP, since thermal transport plays an important role
in many fields such as thermoelectrics [19–21], and thermal
management composites [22]. The quantitative prediction of
the lattice thermal conductivity of complex materials, such
as those with chemical bond hierarchy [23–27], remains
challenging even for DFT calculations. Simulating phonon
thermal transport has inherently multilevel complexity be-
cause it requires not only accurate phonon spectra from
the second-order force constants but also reliable nonlinear
phonon-phonon interactions from third-order and even fourth-
order force constants [28–31] covering a wide temperature
range. Therefore, thermal transport can be used to test the
efficiency and accuracy of sampling methods. Recent studies
of ML-IP in thermal transport have focused on materials with
third-order anharmonicity where the lattice thermal conduc-
tivity follows the traditional T −1 relationship [16,18]. It may
be appropriate to generate a training dataset at one arbitrarily
given temperature for these materials [16,32,33] only if effec-
tive third-order force constants barely vary with temperature.
However, it is not adequate to sample at a single temperature
in materials with chemical bond hierarchy, as the displace-
ment pattern of the atoms at high temperatures is completely
different from that at low temperatures [23,27]. For example,
these structures with large displacements which are rarely
observed under MD at low temperatures must be added to
the training dataset to achieve stable MD simulations [34].
One could also simply combine ab initio MD trajectories of

different temperatures as the training dataset [18], but this has
been found to have many drawbacks, such as a large number
of training structures (e.g., 10 000 structures for crystalline Si
[18]) and unstable dynamics [9,34].

In this work, we develop a dual adaptive sampling (DAS)
method for generating ML-IP training datasets in materials
with chemical bond hierarchy and apply this method in ther-
mal transport to test its efficiency and reliability. Our method
can accurately predict not only the energies and forces, but
also the lattice thermal conductivity of complex materials,
while reducing the number of training structures. The rest
of the paper is organized as follows. In Sec. II, we give a
detailed description of the DAS method and the training error
estimation of the ML-IP. In Sec. III, we show a comparison
of lattice thermal conductivity results calculated by the Boltz-
mann transport equation method and the Green-Kubo method
with the obtained ML-IP for CoSb3 and Mg3Sb2, and also a
comparison of the theoretically calculated thermal conductiv-
ity with the experimental values. In Sec. IV, we discuss the
advantages of the sampling method and numerically verify
that second-, third-, and fourth-order force constants can be
accurately predicted. A brief conclusion is given in Sec. V.

II. DUAL ADAPTIVE SAMPLING METHOD

In complex applications such as thermal transport model-
ing, the training structures should ideally cover the configura-
tion space of the considered wide spectrum of thermodynamic
conditions such as temperature. It is relatively easy to design
a training dataset for materials with simple crystal structure.
The difficulty for a sampling method to achieve reliable and
flexible ML-IP comes from the intrinsic complex chemical
bonding in complex materials, specifically, the fact that the
response of atoms at a given temperature can vary substan-
tially due to differences in chemical bond strength [23]. As the
temperature increases, the displacement magnitude of differ-
ent species from the equilibrium positions becomes larger and
the corresponding distribution becomes broader as shown in
Fig. 1(a). This is the physical reason why the extrapolation of
a training dataset sampled at one arbitrarily given temperature
to a wider temperature spectrum is usually safe for rigid mate-
rials, but leads to unstable dynamics for materials with weak
chemical bonds [9,34]. Therefore, based on the fact that the
spatial extent of configuration space explored by atoms varies
depending on the chemical bond strength, we developed a
DAS method, which consists of an inner adaptive loop and an
outer loop. The inner loop deals with the local configuration
space [i.e., sampling inside each peak in Fig. 1(a)], while
the outer loop aims to cover a wide temperature range [i.e.,
covering all the peaks in Fig. 1(a)].

The schematic workflow of the outer loop of DAS is shown
in Fig. 1(b). The initial training dataset contains several struc-
tures using a simple sampling (preliminary sampling), such
as short-time ab initio MD or just random displacements of
a few atoms. The preliminary dataset is used to train a rough
potential to drive sampling iterations, and the dataset is to be
expanded to explore more configuration space in an adaptive
self-consistent manner (inner loop, which will be discussed
shortly). Several temperatures, equally spaced over a wide
temperature range, are selected as the center temperatures of
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FIG. 1. Schematic explanation for the dual adaptive sampling
method. (a) Schematic atomic displacement distribution pattern in
the materials with complex chemical bonding under varying temper-
ature. The outer loop (b) and inner loop (c) in the DAS workflow.
The temperatures considered in the inner loop at sampling block
T α

block are T α
c ± �T, . . . , T α

c ± n�T , where n is a positive integer;
T α

c and �T are the central temperature of the sampling block α

and a small temperature deviation, respectively. The thermodynamic
conditions are represented by temperature in the diagram for brevity.
All the Nm potentials are used to calculate the ensemble ambiguity.
The MD simulation for exploring the configuration space uses the
potential with the lowest training loss. For any MD simulations of
the ith iteration, these structures giving ambiguity greater than āα

i are
selected for subsequent processing (see the main text for details).

the sampling blocks in the outer loop. Each sampling block
represents one inner loop. To ensure the accuracy of the poten-
tials, the convergence of the outer loop is checked at the end of
all inner loops, and the criterion should be consistent with the
applications of interest. In this work, the convergence criterion
for the outer loop requires that the ML-IP based energies,
forces, and phonon dispersions are in good agreements with
the DFT results, and this is essential in reliably evaluating the
lattice thermal transport.

Each inner loop is responsible for several temperatures
close to the central temperature. Practically, it is efficient to
cover those structures at close-by temperatures within a spe-
cific inner loop sampling block. As shown in Fig. 1(c), each
inner loop of DAS consists of three main steps: (1) training Nm

ML-IPs; (2) selecting new structures from MD simulations;
(3) updating structure labels (energy, forces, and stresses) for
the training dataset. At the beginning of each iteration of
the inner loop, Nm potentials with the same functional form
are trained independently with the same dataset but starting
from different random initialization parameters, and then the
one with the lowest loss on the training dataset is adopted

to explore the configuration space by MD simulation. Struc-
tural sampling based on MD simulation has the advantage of
sampling true physical states at a specific thermodynamic con-
dition [35]. Those structures selected from MD simulations at
a specific time interval are then scrutinized by the query by
committee method based on the calculated ensemble ambi-
guity to pick those structures valuable to the training dataset.
In the query by committee method [8], only those structures
yielding ensemble ambiguity higher than a threshold value are
selected as candidates, which can avoid selecting structures
that have already been accurately predicted by the potential
trained on the current dataset. As we have mentioned, previous
studies have employed fixed threshold values for ensemble
ambiguity [8,10–12]. In this work, we introduce an adaptive
way to update the threshold of ensemble ambiguity on the fly.

The ensemble ambiguity a(x) on an unlabeled input x mea-
sures the disagreement of the output over these independently
trained potentials [36]. The ensemble ambiguity is a lower
bound for the average error [36]. If the error on the training
dataset for each potential model is low, then the ambiguity
of the training points is also low, which ensures that the
pattern giving high ambiguity is unlikely to be a neighbor
of one of the training structures. Therefore, any new candi-
date structure yielding high ambiguity on force must contain
one or more atomic local environments differing significantly
from the existing training structures. In other words, assuming
that all the structures generated using MD simulations give
low ambiguity, the space spanned by the existing training
structures could be believed to satisfactorily fully cover the
configuration space at the given thermodynamic conditions.
This inspired us to define a criterion for the convergence of
the inner loop as

ā(x) � āα
i = max

x̃∈X̃ α
i−1

ā(x̃), for all x ∈ X α
i , (1)

where ā(x) is the ensemble ambiguity on an unlabeled struc-
ture x, X α

i is the set of structures from MD simulations in
the ith iteration of the sampling block α, and X̃ α

i−1 is the
set of structures added to the training dataset in the (i–1)th
iteration. In this work, we employ atomic forces to estimate
ensemble ambiguity, since forces are more sensitive to the
atomic local environment [10,35]. The ensemble ambiguity
a(x) is calculated by [10]

ā(x) = max
j

√
1

Nm

∑
m

‖ f j,m(x) − f̄ j (x)‖2
and

f̄ j (x) = 1

Nm

∑
m

f j,m(x), (2)

where Nm is the number of trained potentials and f j,m is the
force on atom j predicted by the potential m. The criterion
(1) basically states that the ambiguity of the training dataset
convergence to a value, and the accuracy of the ML-IP cannot
be further improved by including new structures under the
current thermodynamic condition. In fact, as the number of
iterations increases, the description of the dynamics becomes
more and more accurate due to the increased accuracy of
the ML-IPs. Therefore, the structures added to the training
dataset in the (i−1)th iteration becomes more suitable to
check whether convergence is achieved at the ith iteration.
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At the first iteration of each sampling block, the ambiguity
threshold is set to a very small value, for example, 0.01 eV/Å
in this work. In this way, the convergence criterion of the
inner loop is not fixed but adaptively updated on the fly. If the
convergence criterion is satisfied, the inner loop is terminated.
Otherwise, these structures with ā higher than āα

i are taken as
candidate structures entering into the adapting procedure.

The local environment descriptors represent atomic local
neighborhood environments with continuous atomic coordi-
nates in space as the features to be input into various ML-IP
models [37]. Many different types of local environment de-
scriptors have been proposed, among them the atom-centered
symmetry functions [5], smooth overlap of atomic positions
[37], and the moment tensor potential [6], and some others
[7,38] are well accepted and tested for different applications.
The current work chose the moment tensor potential [6,39] to
fit the training dataset generated by our sampling method, due
to its computational efficiency and reasonable universality for
different applications [40].

CoSb3 skutterudite and Mg3Sb2 are chosen as the
testing cases for our methodology. Both are promising
intermediate-temperature thermoelectric materials. The lat-
tice thermal conductivity of CoSb3 was observed to follow
a temperature scaling T −1, consistent with the picture of
third-order phonon scattering. This had been explained
by many DFT-based calculations in Boltzmann transport
theory [41,42]. Simulations in the Boltzmann transport
equation (BTE) method using ML-IP also could repro-
duce lattice thermal conductivities of CoSb3 at the tem-
perature near or above its Debye temperature of 307 K
[16]. However, the lattice thermal conductivity calculated
by the Green-Kubo method is systematically underestimated
compared to that calculated by the BTE method using the
moment tensor potential as adopted in this work [16]. The
Mg3Sb2-based compounds, consisting of ionic Mg2+ and
covalent (Mg2Sb2)2– layers, also attracted intensive inter-
est due to their excellent thermoelectric performance near
room temperature [27,43,44]. Interestingly, the lattice thermal
conductivity of Mg3Sb2 shows a temperature dependence de-
viating from T −1, and this has been explained by temperature
dependence of force constants [27]. In addition, the ab initio
MD trajectories show that the displacement distribution in
Mg3Sb2 at different temperatures differs significantly, approx-
imately isotropic at 300 K but strongly anisotropic at 700 K
for Mg ions in (Mg2Sb2)2– layers [27].

We implemented the DAS method in our homemade code
[45]. The MD simulation with ML-IP was carried out by the
LAMMPS package [46]. All ab initio calculations were carried
out using the Vienna ab initio simulation package (VASP)
[47] with projector-augmented wave (PAW) pseudopotentials
[48] and the generalized approximation of Perdew-Burke-
Ernzerhof form [49] for the exchange correlation energy
functional. Unless otherwise specified, an energy convergence
criterion of 10–5 eV and a plane-wave energy cutoff of 450 eV
were adopted for all ab initio calculations. The time step of the
MD simulation was set to 1.0 fs. The geometry optimization
of the primitive cell was done with a 13 × 13 × 13 and 15
× 15 × 15 Monkhorst-Pack k-point mesh for CoSb3 and
Mg3Sb2, respectively. During the sampling process, all MD
simulations were started from a supercell by replicating the

DFT-relaxed unit cell. For CoSb3 and Mg3Sb2, we used a
2 × 2 × 2 supercell (256 atoms) by replicating the conven-
tional unit cell and a 4 × 4 × 4 supercell (320 atoms) by
replicating the primitive unit cell, respectively. To improve the
accuracy of the force, a Monkhorst-Pack k mesh of 2 × 2 × 2
was used in calculating the energies, stresses, and forces.

The preliminary dataset was constructed by selecting a
structure every two steps from a 20.0 fs ab initio MD sim-
ulation at 700 K. It is worth noting that those structures with
strongly anisotropic displacement distribution of Mg atoms
in Mg3Sb2 are not included in the preliminary dataset. In
our tests, the preliminary dataset (the number of structures,
sampling temperature, and sampling method) has insignificant
effect on the accuracy of the potential as shown in Table S5
of the Supplemental Material [50]. First, four temperatures
were taken at 200 K intervals below 800 K as the central
temperatures of the sampling block. Then, these structures at
four different temperatures around each central temperature,
with 50 K as a step, were taken into one sampling block. More
details on the parameter settings for each sampling block
can be found in the Supplemental Material [50]. Considering
the temperature dependence of lattice constants, samplings
at volume compression (∼–10% for Mg3Sb2 and ∼–5% for
CoSb3) or expansion (∼10% for Mg3Sb2 and ∼5% for CoSb3)
at each temperature are used to increase transferability of
potentials in volume space. It should be addressed that parallel
sampling at several temperatures and different volumes is
not the key to the success of the current adaptive sampling
strategy, but it does speed up the efficiency and convergence
structure selection process. In each inner loop, we simulta-
neously trained five potentials of the same functional form
with random initialization. All MD samplings for any iteration
of the inner loop started with random initial velocities at the
given temperature and volume. Each MD simulation ran for a
total of 10.0 ps, sampling one structure at 20 step intervals.

In order to avoid introducing too many correlated struc-
tures, when the number of structures yielding ā(x) higher
than āα

i in a MD simulation is greater than 1, we only pick
a representative structure with ā(x) close to the peak of the
ambiguity distribution of these structures. Therefore, the max-
imum number of structures selected for one iteration in the
inner loop is the number of MD simulations. If no structure
is selected in one iteration of the inner loop, then the inner
loop terminates. In the two systems considered in this work,
the outer loop convergence criterion could be reached after all
the sampling blocks have gone through only one cycle. The
final training datasets of CoSb3 and Mg3Sb2 contain 359 and
487 structures, respectively.

To validate the accuracy of the developed ML-IPs, the ener-
gies and forces of randomly selected structures calculated by
ML-IP were compared with the results of DFT calculations.
These test structures were selected from the MD trajectories
at every 0.1 ns after 1.0 ns running. Figure 2 shows the forces
evaluated in both ML-IP and DFT for test structures. It is
found that the mean absolute errors of the energies are 5.7, 6.1,
6.3, and 6.7 meV/atom for CoSb3 at 100, 300, 500, and 700
K, respectively, and the corresponding mean absolute errors
in the forces are 24.6, 28.2, 32.0, and 37.4 meV/Å. The mean
absolute errors of the energies are 1.0, 0.48, 1.04, and 0.36
meV/atom for Mg3Sb2 at 100, 300, 500, and 700 K and the
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FIG. 2. Comparison of the DFT predicted forces and the ML-
IP predicted forces (a) CoSb3 and (b) Mg3Sb2. The distribution of
absolute error in the forces is also shown as an inset.

corresponding mean absolute errors in the forces are 10.0,
17.9, 23.9, and 28.2 meV/Å, respectively. The error in forces
is small and normally distributed around zero as shown in
Fig. 2 (inset, upper left), indicating that the ML-IP can predict
DFT forces with high accuracy. The error in forces of our
ML-IP for CoSb3 is similar to that of a recent study [16], but
interestingly, the number of force components in our training
structures is 275 712 for the 300–800 K temperature range,
comparable to the number of force components of 275 328
in the training structures at 500 K of Ref. [16]. This clearly
supports the sampling efficiency of the current DAS approach.
The dot product between the normalized DFT forces and
ML-IP forces (F̂DFT · F̂ML-IP) is near unity (around 0.99)
for all structures (CoSb3 and Mg3Sb2). Overall, the energy
and forces predicted by ML-IP agree very well with DFT
calculations in both magnitude and direction.

III. APPLICATIONS IN LATTICE THERMAL
CONDUCTIVITY

After modeling the two testing systems using the DAS
method, we used the developed ML-IP to calculate the lat-
tice thermal conductivities. We used two typical methods to

calculate the temperature-dependent lattice thermal conduc-
tivity, the perturbation-based BTE method and the Green-
Kubo method. The former accounts for up to third-order
anharmonicity while the latter naturally includes all high-
order anharmonicity [51,52]. Under the BTE method, the
forces in the supercells with finite displacements were calcu-
lated by both DFT and ML-IP, in order to provide a benchmark
for the developed methodology in this work. A higher en-
ergy convergence criterion of 10–8 eV was used in calculating
force constants for Mg3Sb2 to reduce the noise in forces.
The second- and third-order force constants of CoSb3 were
calculated in the 2 × 2 × 2 supercell (128 atoms) with a
Monkhorst-Pack k mesh of 2 × 2 × 2. The second-order
force constants of Mg3Sb2 were calculated in the 4 × 4 × 4
supercell (320 atoms) with a Monkhorst-Pack k mesh of
2 × 2 × 2, while the third-order force constants were cal-
culated in the 3 × 3 × 3 supercell (135 atoms) with a
Monkhorst-Pack k mesh of 2 × 2 × 2. The cutoff of in-
teraction range for CoSb3 and Mg3Sb2 were set to 5.0 and
6.6 Å, respectively. The lattice thermal conductivities of
BTE were computed with the SHENGBTE package based on
a full iterative solution [53]. The BTE was solved with a
15 × 15 × 15 q-point grid for both systems.

The Green-Kubo method which relates the lattice ther-
mal conductivity καβ (α, β = x, y, z) with heat flux can be
expressed as [51,52]

καβ = 1

kBT 2V

∫ ∞

0
〈Jα (0)Jβ (t )〉dt, (3)

where kB is the Boltzmann constant, T is temperature, V is the
volume of the simulation box, 〈· · · 〉 is the average over time,
and J(t ) is the heat flux. We used the direct method to estimate
the integral in Eq. (3) [54,55], specifically, first specifying a
range of the correlation time where the integral is converged,
and then taking the mean value and standard error in that range
as the average value and error estimate, respectively. The heat
flux is expressed as [56,57]

J ≡ d

dt

∑
i

riEi =
∑

i

viEi +
∑

i

W i · vi, (4)

where ri, vi, W i, and Ei are the velocity, position, atomic virial
stress, and total energy of atom i, respectively. The atomic
virial stress is defined by

W i =
∑
j 	=i

(r j − ri ) ⊗ ∂Uj

∂ri
=

∑
j 	=i

ri j ⊗ F i j, (5)

where Uj is the potential energy of atom j and ⊗ is the Carte-
sian outer product operator. Equation (3) holds for the general
ML-IP in periodic boundary conditions. According to Eq. (4),
the heat flux can be reliably determined as long as energies
and forces are accurately predicted. The Green-Kubo method
based on DFT is good for complex materials but the extremely
huge computation cost makes it infeasible in large-scale sys-
tems, which makes reliable and robust interatomic potentials,
e.g., the MTP-based [16,17] and a few other ML-IPs [18,58],
important for simulating complex materials.

The simulation cells of CoSb3 and Mg3Sb2 under the
Green-Kubo method contain 2048 and 2560 atoms, respec-
tively. We did not consider isotope effects in our simulations
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FIG. 3. Lattice thermal conductivities of theoretical and exper-
imental data for (a) CoSb3 and (b) Mg3Sb2. The lattice thermal
conductivity obtained by the Green-Kubo method based on ML-IP
is labeled as GK-ML-IP. The experimental data for CoSb3 are taken
from Morelli et al. [60] and Caillat et al. [61]. The experimental data
for Mg3Sb2 are taken from Zhu et al. [27].

since their contribution to the lattice thermal conductivity is
negligible, less than 1% for both systems in our BTE calcu-
lations. The experimental lattice constants were adopted for
lattice thermal conductivity calculation at each temperature
[43,59]. The convergence of lattice thermal conductivity with
respect to simulation size was carefully checked as shown
in Fig. S4 of the Supplemental Material [50]. At each tem-
perature, we obtained the average heat flux autocorrelation
function by 40 independent simulations starting from different
initial velocities. Each simulation was first equilibrated for
100.0 ps in a NVT ensemble, and subsequently switched to
a NVE ensemble first run for 100.0 ps, after which heat flux
data were recorded for 2.0 ns every ten steps. The converged
correlation times of CoSb3 and Mg3Sb2 were [200 ps, 500 ps]
and [50 ps, 100 ps], respectively.

Figure 3(a) shows the computational and experimen-
tal temperature-dependent lattice thermal conductivities for
CoSb3. The lattice thermal conductivities of CoSb3 obtained

by solving the BTE using the second- and third-order force
constants calculated by DFT or ML-IP are in good agreement,
with a difference of about 5.0%. The lattice thermal conduc-
tivity calculated by BTE in this work also differs very little
from the previous DFT calculation [41], which is about 2.0%.
The lattice thermal conductivities of CoSb3 obtained by the
Green-Kubo method are an excellent match to the experimen-
tal values of single crystals [35] as shown in Fig. 3(a), 9.90 ±
0.69 W/mK at 300 K, with an error of about 5.0% compared
to the experimental measurement. Thus, the current ML-IP
with the DAS method is reliable for predicting lattice thermal
conductivities of CoSb3, under both the BTE and Green-Kubo
methods. Notice that the previous lattice thermal conductivity
results [16] from the Green-Kubo method with ML-IP showed
a systematic underestimation compared to experimental re-
sults, exceeding about 15% at 300 and 500 K. Furthermore,
the elastic constants, i.e., c11, c12, and c44 of CoSb3, are
calculated with ML-IP, and the values are 179.5, 38.3, and
48.6 GPa, respectively. They are also in good agreement with
the previous calculations [62,63].

The lattice thermal conductivities of pristine Mg3Sb2 have
a relatively weak temperature dependence as experimentally
observed [64–66]. The lattice thermal conductivities predicted
by the Green-Kubo method with ML-IP agree very well
with the experimental results on a single crystal as shown in
Fig. 3(b). For example, the predicted value is 1.73 ± 0.12
W/mK at 300 K, very close to the experimental value of
1.69 ± 0.16 W/mK. Figure 3(b) also plots the lattice thermal
conductivities from BTE using the second- and third-order
force constants calculated by ML-IP or DFT; they follow a
classical T −1 temperature-dependent relation. The difference
between the lattice thermal conductivities calculated by the
BTE method using the force constants from ML-IP and DFT
is less than 1.0%, indicating that the accuracy of our de-
veloped ML-IP is comparable to DFT as a force calculator.
However, the BTE method systematically underestimates the
lattice thermal conductivities of Mg3Sb2 by about 30%, 40%,
and 40% at 300, 500, and 700 K compared to the Green-Kubo
method, respectively. This indicates clearly that the BTE
method considering only third-order phonon scattering is not
adequate for this material. These results imply that high-order
anharmonicity is important for accurate prediction of lattice
thermal conductivities of Mg3Sb2. A recent theoretical study
[27] extracting the effective force constants from ab initio MD
trajectories also predicted a weak temperature dependence of
lattice thermal conductivity but systematically overestimated
the lattice thermal conductivities compared to experimental
results. Overall, the lattice thermal conductivities calculated
by the present Green-Kubo method with ML-IP agree well
with the experimental results.

We also tested the effect of the sampling temperature range
on the calculated lattice thermal conductivities to demonstrate
the importance of covering a wide range of temperature for
the accuracy of ML-IP. We generated the training structures
for both testing systems using the DAS method with the same
setting as mentioned above, except that a narrow temperature
range of 250–350 K was adopted. The training datasets for
CoSb3 and Mg3Sb2 in the narrow temperature range con-
tain 120 and 132 structures, respectively. Figure S5 of the
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Supplemental Material [50] shows the lattice thermal conduc-
tivities for a narrow temperature range of sampling, labeled as
ML-IP (narrow). The calculated lattice thermal conductivities
of CoSb3 using the BTE with ML-IP (narrow) agree well with
the DFT results. However, the error of lattice thermal con-
ductivities obtained by BTE with ML-IP (narrow) reach about
9.0% in Mg3Sb2 comparing with the results from the BTE
based on DFT. The lattice thermal conductivities calculated by
the Green-Kubo method with ML-IP (narrow) have an error
of 10%–15% compared to results from the wide temperature
spectrum sampling for the two testing systems at 300 and 500
K. However, the MD simulations with ML-IP (narrow) are
unstable for modeling Mg3Sb2 at 700 K due to the displace-
ment pattern of Mg3Sb2 at 300 K being completely different
from that at 700 K (see MD trajectories as shown in Fig. S7
for details). Therefore, covering a wide temperature spectrum
when generating a training dataset for Mg3Sb2 is indispens-
able for the accuracy and transferability of ML-IP, at least for
the Green-Kubo method.

The lattice thermal conductivities for Mg3Sb2 were also
calculated using the Green-Kubo method with ML-IP but with
a training dataset generated from a fixed value for the ambi-
guity threshold, i.e., a low threshold 0.05 eV/Å and a high
threshold 0.1 eV/Å. The final lattice thermal conductivities
were shown in Fig. S6 of the Supplemental Material [50]. The
final training datasets of the low and high thresholds contain
671 and 399 structures, respectively. In the above two cases
with different fixed thresholds, the lattice thermal conductiv-
ities are close to the experimental value at 300 K with an
error of below 7%, but the temperature dependence of the
lattice thermal conductivity cannot be correctly reproduced.
Furthermore, the number of structures generated using the
fixed threshold 0.05 eV/Å is about 40% higher than that of
the DAS method using an on the fly threshold.

IV. DISCUSSIONS

The physics behind the reliability and transferability of
DAS is the versatile response of materials with inherently
multilevel complexity to varying thermodynamic conditions.
Due to the coexistence of different chemical bonds in one
material, the response pattern of different atoms could vary
substantially at different temperatures [23,26,27], e.g., the
obviously different displacement distributions at 300 and
700 K in Mg3Sb2 [27]. Figure 4(a) shows the distribution
of displacements of the atoms away from their equilibrium
positions. The large overlap of displacement distributions
at different temperatures suggests that taking several tem-
peratures near a central temperature and combining the
corresponding structures into one sampling block can improve
the sampling efficiency because those structures do have simi-
lar local configuration space to some extent. The peak position
of the displacement distribution increases with increasing
temperature for both CoSb3 and Mg3Sb2. For example, the
peak position at 700 K is about 1.5 times higher than that at
300 K. However, the full width at half maximum of the distri-
bution of Mg3Sb2 is nearly twice that of CoSb3, implying that
the configuration space explored by atoms in Mg3Sb2 is much
larger than that in CoSb3. The larger local configuration space

FIG. 4. (a) The distribution of displacements of the atoms away
from their equilibrium positions for CoSb3 (lower) and Mg3Sb2

(upper). (b) Comparison of the DFT results and the ML-IP results for
the effective force constants at 300 K for Mg3Sb2. We normalized the
force constants of ML-IP and DFT with the maximum and minimum
force constants of DFT results. (c) The force contributed by high-
order force constants, second- and third-order force constants only
[(c) upper], and second-, third- and fourth-order force constants [(c)
lower] for Mg3Sb2.

explored by the atoms due to the presence of weak chemical
bonds poses a greater challenge for sampling, e.g., ML-IP
trained with structures sampling at 300 K in Mg3Sb2 does
not correctly describe the dynamics at 700 K. In DAS, the
inner loop explores only a very narrow configuration space,
which is not much influenced by the strength of the chemical
bond. When the convergence criterion of the inner loop is
satisfied, further additional structures in the corresponding
sampling block are not likely to further improve the accuracy
of the ML-IP. This is also the reason why a complementary
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outer loop has to be adopted to cover the configuration spaces
corresponding to a wide spectrum of temperatures.

The final on the fly threshold āα of each sampling block
is also presented in Tables S1 and S2 of the Supplemental
Material [50]. It is worth noting that the values of āα have a
significant difference in different sampling blocks; for exam-
ple, ā4 is about 6 times larger than ā1 for Mg3Sb2, indicating
the importance of the on the fly thresholds for the convergence
criterion of the inner loop. Furthermore, we also found that the
āα’s show material dependence by comparing Tables S1 and
S2. Therefore, it is more efficient to use an adaptive āα

i rather
than a fixed threshold. For example, a low threshold increases
the number of selected structures as shown in Table S3 of the
Supplemental Material [50]. The DAS together with the on the
fly threshold are the key for the training dataset construction
in this work.

In traditional perturbation-based thermal transport theory,
the accurate prediction of lattice thermal conductivity requires
that second- and third-order force constants are accurately
predicted. Many previous works have shown that the effec-
tive force constants can describe high-order anharmonicity
correctly [27,34,67]. However, in order to obtain reasonable
high-order effective force constants for complex materials,
structures with both small and large displacements need to
be carefully considered [34]. In DAS, the improvement of
the force constants’ accuracy is achieved by systematically
reducing the error in the energies and forces in an iterative
manner. Different vibration or phonon modes are excited at
high temperatures, which contributes to the displacements in
MD simulations. The forces on atoms from MD simulations
implicitly contain many force constants [67] and the larger
displacements make the proportion of high-order force con-
stants higher. If the error of some force constant components
is large, the error in forces of corresponding structures will
also be large; namely, there is high ambiguity. To validate
whether the ML-IP with DAS method can describe the high-
order force constants, we employed the least-square fitting
method [68] to obtain the effective high-order force constants
with forces from ML-IP and DFT calculations, respectively.
The agreement between effective force constants that were
extracted from the forces of DFT and ML-IP is excellent as
shown in Fig. 4(b). The errors in second-, third-, and fourth-
order maximum force constants of the ML-IP are 0.17%,
0.12%, and 13.3% for Mg3Sb2, respectively. Figure S10 of
the Supplemental Material [50] shows the phonon disper-
sion along high-symmetry paths calculated from the effective
second-order force constants of ML-IP and that from DFT
for Mg3Sb2, respectively. The phonon dispersions are in good
agreement except for a tiny difference in the optical branches.
The agreement of effective force constants for CoSb3 is also
excellent [50].

In Fig. 4(c), we compare the ML-IP forces and correspond-
ing forces contributed by effective force constants for Mg3Sb2

at 300, 500, and 700 K, respectively. Here, we show the forces
contributed by force constants up to third order [Fig. 4(c), up-
per] and that with force constants up to fourth order [Fig. 4(c),
lower]. The contribution of the fourth-order force constants
to the forces increases with increasing temperature and, in

particular, the fourth-order force constants are indispensable
for reproducing the forces at 700 K. Previous study has shown
that due to the influence of the fourth-order force constants to
the renormalization of the harmonic phonons, the low-lying
transverse acoustic branches become harder with increasing
temperatures [27]. We then fitted the forces by considering
only the second- and third-order force constants to reproduce
the phonon renormalization. Figure S9 of the Supplemental
Material [50] plots the phonon dispersions of the second-
order force constants from the least-square fitting and frozen
phonon method. The hardening of the low-lying transverse
acoustic phonon modes at the M, A, and L points is success-
fully reproduced by our ML-IP method. This demonstrates
that the present DAS approach could be used for evaluating
the complex thermal transports for the materials with high-
order phonon nonlinear scattering.

V. CONCLUSIONS

In summary, we developed a DAS method that significantly
reduces the effort to design the training dataset for ML-IP
by adaptively updating the ambiguity threshold for selecting
structures at a wide range of thermodynamic conditions. The
developed sampling method exhibits both good robustness
and transferability as demonstrated in the thermal transport for
rigid material such as CoSb3 and material with chemical bond
hierarchy such as Mg3Sb2. The lattice thermal conductivities
of CoSb3 and Mg3Sb2 calculated by the Green-Kubo method
based on ML-IP agree very well with the experimental results.
Our method is expected to be applicable in more complex
materials such as part-crystalline, part-liquid materials [23,26]
and these complex applications will be investigated in future
work. Our further analysis shows that the sampling method
ensures that high-order effective force constants such as third
and fourth order are also highly accurate despite the fact
that only energies and forces are used for fitting. Our work
provides an avenue to effectively construct the training dataset
for ML-IP in complex materials with chemical bond hierarchy
and accurately predict thermal transport properties.
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