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Quantum chaos and ensemble inequivalence of quantum long-range Ising chains
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We use large-scale exact diagonalization to study the quantum Ising chain in a transverse field with long-range
power-law interactions decaying with exponent α. We numerically study various probes for quantum chaos and
eigenstate thermalization on the level of eigenvalues and eigenstates. The level-spacing statistics yields a clear
sign towards a Wigner-Dyson distribution and therefore towards quantum chaos across all values of α > 0. Yet,
for α < 1 we find that the microcanonical entropy is nonconvex. This is due to the fact that the spectrum is
organized in energetically separated multiplets for α < 1. While quantum chaotic behavior develops within the
individual multiplets, many multiplets do not overlap and do not mix with each other, as we analytically and
numerically argue. Our findings suggest that a small fraction of the multiplets could persist at low energies for
α � 1 even for large N , giving rise to ensemble inequivalence.
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I. INTRODUCTION

Thermalization in classical Hamiltonian systems is well
understood in terms of chaotic dynamics and the related essen-
tially ergodic exploration of the phase space [1–3]. From the
quantum point of view the physical mechanism is quite differ-
ent, with the eigenstates of the Hamiltonian behaving similar
to the eigenstates of a random matrix with the additional
property that they appear thermal from the point of view of
local measurements. This is the paradigm of eigenstate ther-
malization (ETH) introduced in Refs. [4–7]. In general there
is correspondence between classical and quantum thermaliza-
tion [5,8–13], but due to the different physical mechanism
there can be cases where quantization breaks ergodicity, as
for many-body localization (see [14] for a review) and many-
body dynamical localization [7,15–19].

In quantum short-range thermalizing systems there are
three relevant properties. First of all eigenstate thermalization,
that is to say that almost all the excited eigenstates locally
behave equal to the microcanonical or thermal density matrix
[20]. So, expectation values of local observables equal the cor-
responding microcanonical ones, up to fluctuations vanishing
in the thermodynamic limit. This property is strictly related
to a second one: quantum chaos [20]. Quantum chaos means
that the spectrum of the Hamiltonian behaves essentially as
the one of a random matrix [21] and this occurs typically for
many-body nonintegrable models [22] and for Hamiltonians
obtained quantizing classical chaotic systems [12]. Hamilto-
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nians show in general eigenstate thermalization together with
quantum chaos and behave as random matrices [20] (with
some caveats [23]). This fact gives rise to random eigenstates,
which look locally thermal, as appropriate for ETH. A third
property relevant in thermalized short-range interacting sys-
tems is additivity and ensemble equivalence, which are strictly
related to a convex microcanonical entropy [24].

An interesting question deals with the relation between
quantum chaos, ETH and ensemble equivalence in quantum
systems with long-range interactions. In the classical case, for
instance, the thermalization behavior is very different in the
case of short- and long-range interactions. For classical sys-
tems with short-range interactions, any nonlinear Hamiltonian
with more than two degrees of freedom and no conservation
law beyond energy gives rise to chaos, essentially ergodic
dynamics [1] and ensemble equivalence [2]. In the long-range
case the situation is very different. A central aspect of long-
range classical systems is the inequivalence of canonical and
microcanonical ensemble due to the lack of additivity of the
Hamiltonian [24–26]. This implies that the dynamics does not
lead to a simple thermalization behavior, even in presence of
chaos. One can see an effectively regular behavior dominated
by one or few degrees of freedom [25,27–31], which has been
exploited to obtain a classical Hamiltonian time crystal [32].

Although ensemble inequivalence for the exactly-solvable
infinite-range anisotropic quantum Heisenberg model has
been studied in [33–35], the relation between quantum chaos
and ensemble equivalence in generic interacting quantum
long-range systems has not yet been explored. We fill here this
gap focusing on a long-range ferromagnetic Ising spin-1/2
chain model. Similar models have been already studied. One
very well-studied case is the Ising model with infinite-range
interactions (the so-called Lipkin-Meshkov-Glick model),
which is known to be integrable [36–38]. It is also known
that the isotropic Heisenberg chain with power-law interac-
tions with exponent α = 2 is integrable [39,40] as well as
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some anisotropic spin-chain models with α = 2 [41–43]. Spin
chains with disorder and power-law interactions are known to
undergo a transition between a many-body-localized-like and
an ergodic phase [44–50].

Comparatively less attention has been devoted to homo-
geneous long-range interacting spin models. Although these
models have been extensively studied in the context of quan-
tum quenches [51–63] and quantum spin liquids [64], and
their dynamics has attracted a lot of experimental interest
[45,65–71], an analysis of the thermalization properties of
the eigenstates is generally lacking. A significant exception
is [72], which showed quantum chaos at low energies for
α = 1.5 in the clean ferromagnetic spin-1/2 Ising model
with long-range power-law interactions. The dynamics of this
model has been intensively studied, mostly in connection with
the persistence of long-range order in the asymptotic state of
the dynamics [38,51–54,56–60], for different values of α and
small transverse field, but it is not known if this asymptotic
state is thermal.

In our paper we focus on this same model and widely
extend the ETH and quantum chaos analysis by using exact
diagonalization and exploring a wide range of α and energies.
The main question is the relation between eigenstate thermal-
ization, quantum chaos and convex microcanonical entropy.
For α < 1 we find a very interesting behavior.

On the one hand the level spacing statistics gives a clear an-
swer pointing towards a random-matrix Wigner-Dyson form.
This is valid for any value of 0 < α < ∞, but for the region
around α ≈ 2 for weak transverse fields, hinting to the possi-
ble vicinity of some integrable point.

On the other hand ETH indicators (eigenstate expectations
and eigenstate half-system entanglement entropies) yield a
much less clear perspective for finite system sizes, in par-
ticular, for α < 1. We find that the permutation symmetry,
which is only exact at α = 0, leaves behind a strong finger-
print in many ETH indicators: The α = 0 symmetry-protected
multiplets in the energy spectrum represent a relatively rigid
structure for 0 < α < 1. They affect the eigenstate quantities
and forbid them a smooth ETH dependence on energy, in con-
trast with short-range interacting quantum-chaotic systems
[20].

These multiplets have another important consequence: The
microcanonical entropy becomes a nonconvex function of
energy, which in the thermodynamic limit excludes ensemble
equivalence in a thermodynamic sense. We provide an ana-
lytical argument for the rigidity of the multiplets for large
but finite N when α < 1. For α � 1 we observe that some
of the multiplets at low energies persist also for large N .
As a consequence, we argue that the system does not obey
ensemble equivalence.

These observations on the multiplet structure seem to con-
tradict our findings for the level spacing statistics. These
results are reconciled by what we call a partial spectral quan-
tum chaos. The states in individual multiplets, which are
separated in energy with respect to each other, mix in a quan-
tum chaotic fashion, whereas the multiplets do not yet mix
among each other for the accessible system sizes. Each multi-
plet in the bulk of the spectrum behaves as a separate random
matrix leading to a overall Wigner-Dyson level statistics. This
is a significant result: Each multiplet behaves a random matrix

from a spectral point of view, so its spectrum tends to a smooth
continuum for N → ∞. This is in contrast to integrable long-
range system whose spectrum has been claimed to be pure
point also in the thermodynamic limit [73].

We emphasize again that we expect the multiplet structure
to be most rigid at low-energy densities, which might have
important consequences for the absence of thermalization ob-
served in low-energy quenches [52,60].

The paper is organized as follows. In Sec. II we define
the model Hamiltonian. In Sec. III we study the quantum
chaos properties at the level of the spectrum. We show a
generalized tendency towards a Wigner-Dyson level-spacing
statistics for increasing system size. In Sec. IV we discuss
an analytical argument based on the random-matrix behavior
of each multiplet. We show that the spectral multiplet width
increases linearly in α, in agreement with numerics, and that
part of the multiplets persist in the large-N limit, for low
energies and α � 1. In Sec. V we better discuss the multiplet
spectral structure for small α and finite N and study the corre-
sponding nonconvex behavior of the microcanonical entropy
related to ensemble inequivalence. In Sec. VI we study the
broken symmetry edge (the energy density below which there
is Z2 symmetry breaking) and find a different behavior in the
canonical and microcanonical ensemble, although there are
too strong finite-size effects to allow to make statements on
ensemble inequivalence. We study also the eigenstate prop-
erties by considering the eigenstate expectation values of a
local operator, the longitudinal nearest-neighbor correlation
(Sec. VII), and of the half-system entanglement entropies of
the eigenstates (Appendix A).

In Appendix B we discuss the Hilbert-Schmidt distance of
the α > 0 Hamiltonian from the α = 0 Hamiltonian, showing
its linearity in the limit α → 0. This fact, together with the
random-matrix assumption, allows us to explain the linearity
in α of the multiplet spectral width in Sec. IV.

II. MODEL HAMILTONIAN

In this paper we study the ferromagnetic long-range inter-
acting quantum Ising chain in a transverse field:

Ĥ (α) = − J

N (α)

N∑
i, j, i �= j

σ̂ z
i σ̂ z

j

D α
i, j

+ h
N∑

i=1

σ̂ x
i . (1)

Here, σα
i with α = x, y, z denotes the Pauli matrices at lattice

site i = 1, . . . , N with N the system size. We use periodic
boundary conditions implemented through the definition [56]
Di, j ≡ min[|i − j|, N − |i − j|]; we define the Kac factor
[74] N (α) ≡ 1

N−1

∑
i, j, i �= j

1
D α

i, j
in order to preserve extensivity

of the Hamiltonian.
We use exact diagonalization. We largely exploit the trans-

lation, inversion, and Z2 (σ̂ z
i → −σ̂ z

i ) symmetries of the
model in order to restrict to an invariant subspace of the
Hamiltonian. In most of the text we restrict to the subspace
fully symmetric under all the symmetries of the Hamiltonian.
We call this Hamiltonian eigenspace HS and we define it
as the zero-momentum sector subspace even with respect
to inversion and Z2 symmetry. For future convenience we
define NS ≡ dim HS . In Sec. VI we are interested in the
spectral pairing properties of the model, which requires to
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consider both Z2 symmetry sectors: We consider here the
zero-momentum sector subspace even only with respect to
inversion. We denote the eigenstates of the Hamiltonian |ϕμ〉
and the corresponding eigenenergies Eμ (taken in increasing
order), while always specifying which subspace we are con-
sidering.

In the limit α → ∞ the model in Eq. (1) reduces to the
nearest-neighbor quantum Ising chain. This model is inte-
grable and undergoes a quantum phase transition: Its ground
state breaks the Z2 symmetry for h < 1 [75,76]. For any finite
system size, the ground state is doubly degenerate made up by
the two states symmetric and antisymmetric under the global
Z2 symmetry, with a splitting exponentially small in the sys-
tem size. The states in the doublet show long-range order and
the doublet becomes degenerate in the thermodynamic limit,
giving rise to symmetry breaking.

In the limit α = 0, on the opposite, Eq. (1) reduces to
the Lipkin-Meshkov-Glick model. This model is also inte-
grable, thanks to the full permutation symmetry, and it shows
a symmetry-broken phase for h < 1. In contrast to the α →
∞ case, all the spectrum up to an extensive energy Ne∗ is
organized in doublets with exponentially small splitting and
the corresponding eigenstates have long-range order [36–38].
Due to the full permutation symmetry, the Hilbert space is
factorized in a number of invariant subspaces, differently
transforming under the permutation symmetries [37]. The
number of these subspaces is exponential in N , and many of
them have the same level structure. This gives rise to mas-
sively degenerate multiplets, whose levels belong to different
symmetry sectors, a property that will be quite relevant in the
following.

For α = 0, the number of distinct multiplets is set by
the possible distinct simultaneous eigenstates of the total

spin Ŝ2 ≡ 1
4 (

∑
j 
̂σ 2

j )
2

and the total spin z component Ŝz ≡
1
2

∑
j σ̂

z
j . This is a consequence of the permutation symmetry

and total-spin conservation of the Hamiltonian [36]. The total
spin can have eigenvalues from S = 0 to S = N/2 and for each
value of S the total z component can acquire 2S + 1 values.
Assuming N from now on even—so that S assumes only
integer values—the number of multiplets is Q = ∑N/2

S=0(2S +
1) = (N/2 + 1)2. For α = 0 each multiplet is degenerate with
degeneracy g(S) given only by S and N through the formula
[37]

g(S) =
(

N
N
2 + S

)
−

(
N

N
2 + S + 1

)
(2)

In the remainder of the paper we consider the case of
intermediate α.

III. QUANTUM CHAOS AND LEVEL SPACING STATISTICS

First, we study the quantum chaos properties focusing on
the level spacing statistics. The model in Eq. (1) is inte-
grable for the limits α = 0 (infinite-range case) and α → ∞
(nearest-neighbor case). We now aim at exploring the behav-
ior at intermediate α.

For concreteness, we do not scan extensively across the
transverse fields, but rather focus on two representative values
h = 0.1 and h = 0.5. In Fig. 1 we investigate the spectral
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(b)

FIG. 1. Average level spacing ratio vs α. We consider h = 0.1
[(a) and h = 0.5 (b)].

properties of the model as a function of α upon varying the
system size N . Specifically, we plot the average level spac-
ing ratio r (introduced in [77]), which is a central probe for
quantum chaos and is defined as

r = 1

NS − 2

NS−2∑
μ=1

min(Eμ+2 − Eμ+1, Eμ+1 − Eμ)

max(Eμ+2 − Eμ+1, Eμ+1 − Eμ)
. (3)

With the time-reversal symmetry properties of our Hamil-
tonian, a value r = rWD � 0.5295 would be associated with
a fully quantum-chaotic random-matrix-like behavior given
by the Gaussian Orthogonal Ensemble (GOE) and a Wigner-
Dyson distribution for the level spacings [21]. On the
opposite, a value r = rP � 0.386 is known to be related to
a Poisson distribution of the level spacings, which implies
integrable behavior [78].

Before considering the behavior for large α (Sec. III A)
and α � 1 (Sec. III B), and the associated tendency towards
quantum chaos for increasing N , let us comment on the strong
minimum at α = 2 appearing in Fig. 1(a). It suggests a be-
havior closer to integrability (and the corresponding Poisson
value), which persists at least up to N = 22. It is important to
remind that there are spin models with power-law interactions
decaying with α = 2 that are integrable, such as the long-
range isotropic Heisenberg chain [39] or other anisotropic
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long-range models [41–43]. It could be an interesting question
for future research to investigate whether this phenomenon is
related to the proximity to an integrable point.

A. Large α

For large α we see in Fig. 1 that there is a crossover towards
the Poisson value rP. At some larger value of α there is another
crossover towards a value even smaller than Poisson. This
behavior of r is a finite-size effect due to the proximity of
the integrable α → ∞ point. The spectrum becomes quan-
tum chaotic in the thermodynamic limit: As we are going
to show, the crossover towards Poisson shifts to large α for
increasing N .

We can argue this shift towards integrability as follows. In a
free-fermion model (corresponding to our α → ∞ case), any
arbitrarily small integrability-breaking next-nearest-neighbor
interaction restores thermalization in the thermodynamic limit
[79,80]. Similarly, in our case, for α � 1, the next-nearest-
neighbor terms are the stronger ones breaking the integrability
of the nearest-neighbor α → ∞ model. For increasing N ,
the next-nearest-neighbor terms become at some point large
enough compared to the level spacings, and the model be-
comes quantum chaotic.

Let us now roughly estimate the crossover scale at
which the system becomes quantum chaotic for α � 1,
by comparing the next-nearest-neighbor interaction term
with the relevant gap � of the integrable nearest-neighbor
model. The next-nearest-neighbor term is of order V ∼
J/(N (α)2α ). We can understand the relevant gap of the
nearest-neighbor model, moving to its fermionic represen-
tation via the Jordan-Wigner transformation [81]. In this
representation, the nearest-neighbor model is integrable and
its excitations are fermionic quasiparticles [76,82] with energy

εk = 2
√

( J
N (α) )2 + h2 − 2 J

N (α) h cos k. We have k ∈ [0, π ] and,

for finite system size N , k can take only N discrete equally
spaced values. In the fermionic representation the next-
nearest-neighbor term becomes a four-fermion term, which
induces inelastic scattering between the fermionic quasiparti-
cles. If momenta k1 and k2 go into momenta k3, k1 + k2 − k3,
the relevant gap is � = εk3 + εk1+k2−k3 − εk1 − εk2 . We can
roughly estimate � by taking twice the bandwidth of εk and
dividing it by N , the number of allowed equally-spaced k
values. We find

� ∼ 4

N

[∣∣∣∣ J

N (α)
+ h

∣∣∣∣ −
∣∣∣∣ J

N (α)
− h

∣∣∣∣
]

. (4)

Imposing that V � �, one finds that quantum chaotic behav-
ior is obeyed for α � α∗. We evaluate α∗ numerically, and find
that α∗ asymptotically increases as log2 N (see Fig. 2). So, for
N → ∞ there is quantum chaos for all values of h.

B. The role of multiplets for α � 1

For α � 1, r is close to the Wigner-Dyson value (Fig. 1).
Therefore, our numerics suggests that the integrable behavior
at α = 0 [36] is unstable to a small perturbation in α, which
breaks the full permutation symmetry at α = 0.

As we have already discussed in Sec. II, the multiplets
at α = 0 do not correspond to a given permutation symme-

 1
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 10  100  1000

α∗

N

h = 0.1
h = 0.5
log2(N)

FIG. 2. α∗ vs N (single-logarithmic plot). Notice the increase as
log2 N .

try class, but contain states belonging to different invariant
subspaces, differently transforming under permutation. There
are many subspaces with the same energy levels inside [37].
When perturbation symmetry is broken by α � 1, the de-
generate states inside each multiplet can mix and so all the
subspaces are mixed by the Hamiltonian. This leads to quan-
tum chaos, as we are going to argue.

Since there is no gap to protect the subspaces from mix-
ing, this change happens abruptly as soon as α > 0 and the
multiplet degeneracy is lifted. We can see an example of
that in Fig. 3. We plot Eμ versus μ/NS for h = 0.1 and two
values of α, α = 0 and α = 0.15. For α = 0 there are many
degenerate multiplets at all energies, as we can see in the
magnifying insets. For α = 0.15 the multiplets merge into a
smooth continuum at large energy (right inset) but can be still
well identified at low energy (left inset). The organization of
the spectrum in multiplets for small α is also evident in the
eigenstate expectation of local observables (Sec. VII) and the
half-system entanglement entropy of these eigenstates (Ap-
pendix A).

FIG. 3. Plot of Eμ vs μ/NS for h = 0.1, N = 22 and two differ-
ent values of α.
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This multiplet structure is apparently in contrast with the
average level spacing ratio being close to the Wigner-Dyson
value. In order to explain this apparent contradiction, we no-
tice that the number of gaps among multiplets is much smaller
than the total number of states. The number of discontinuity
points scales as the number of distinct multiplets at α = 0,
which scales as N (N + 1)/2 (see Sec. V), while the number of
states equals NS , which is exponential in N . So, if each of the
multiplets behaves separately as a random matrix, the overall
average level spacing ratio is Wigner-Dyson in the large N
limit. This is exactly what happens, as we show in detail in
the next section.

IV. RANDOM-MATRIX BEHAVIOR AND MULTIPLET
SPECTRAL WIDTH FOR α < 1

The goal of this section is to argue that each multiplet
broadens by an amount proportional to α. This numerically
verified statement relies on the Hamiltonian projected to a
multiplet subspace behaving like a GOE random matrix, as
we argue in Sec. IV A. The main implication is that the total
multiplet width is linear in N and much smaller than the total
spectral width for α � 1. This result has important conse-
quences for the rigidity of part of the multiplet structure in
the large-N limit, as we clarify in Sec. IV B.

A. Width of a single multiplet

Let us focus on �Ĥ (α, N ) = Ĥ (α) − Ĥ (0), the difference
of the two Hamiltonians at α and at α = 0. We choose the
basis |i〉 of eigenstates of Ĥ (0) such that the matrix elements
H (0)

i, j = δi, jE
(0)
S j

with E (0)
S denoting the energy of the degen-

erate multiplet with spin S at α = 0. Then we consider the
square root of the quadratic average of the matrix elements of
�Ĥ (α, N ), defined in the following way:

√〈(
H (α)

i, j − H (0)
i, j

)2〉 =
√∑

i, j

(
H (α)

i, j − H (0)
i, j

)2

√
N

. (5)

N in the denominator is the number of nonvanishing matrix
elements of �Ĥ (α, N ). In order to quantify it we recall that
�Ĥ (α, N ) is a sum of terms of the form σ z

j σ
z
l . Under a global

rotation, σ z
j σ

z
l transforms like the sum of a scalar and a tensor,

i.e. an object with spin 2. Thus, by Wigner-Eckart theorem
[83], and by the rules of spin addition, we have that, if |S, i〉 is
a state with spin S, then σ z

j σ
z
l |S, i〉 is a superposition of states

whose spin is in the set {S − 2, S − 1, S, S + 1, S + 2}. Con-
sidering that in each spin-S sector there are 2S + 1 multiplets,
and that �Ĥ (α, N ) commutes with the total spin along z, we
can therefore evaluate N as

N =
N/2∑
S=0

min(2,N/2−S)∑
q=max(−2,S−N/2)

(2S + 1)g(S)g(S + q) . (6)

The numerator in Eq. (5) is the Hilbert-Schmidt norm of
�Ĥ (α, N ), whose symbol is ‖�H (α, N )‖HS . As we show in
Appendix B, the scaling behavior of this norm is

‖�H (α, N )‖HS = αK
√

dim H ,

where K > 0 is a numerical factor. We emphasize that K
is order 1 for the values of α < 1 we are considering (see
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FIG. 4. Examples of width of a multiplet vs α, for multiplets in
the bulk of the spectrum [E (α = 0) is the energy of the considered
multiplet in the α = 0 degenerate case]. Notice the linear increase,
which lasts until the value of α where the considered multiplet starts
to overlap with the nearby ones.

Appendix B). dim H= 2N is the dimension of the full Hilbert
space. [Restricting to the fully even subspace will only modify
dim H and g(S) by a factor 1/N , leaving Eq. (7) and our
conclusions unchanged.]

We assume now that: (i) the gaps separating each multiplet
from the neighboring ones are much larger than the matrix
elements coupling it to them and (ii) when we restrict to a mul-
tiplet, the spectrum resembles that of a random matrix from
the GOE ensemble. We might expect the second assumption
to hold on the one hand due to our results on quantum chaos
and on the other hand since the projection onto a multiplet is
an highly nonlocal operation that will destroy any locality—or
sparsity—structure from H (α). When these assumptions hold,
the eigenvalue spectrum in each multiplet resembles Wigner’s
semicircle law [21,84], and the multiplet spectral width is
given by

w(N, S) ∼
√〈(

H (α)
i, j − H (0)

i, j

)2〉 √
g(S) = α2N/2K

√
g(S)

N , (7)

with the multiplet-degeneracy g(S) given in Eq. (2), and N
in Eq. (6). We emphasize that averaging the square matrix
elements over all the Hilbert space does not contradict the fact
that each multiplet separately behaves as a random matrix, as
long as assumption (i) is valid and there is no mixing between
multiplets.

Equation (7) tells us that our assumption of random-matrix
behavior inside a multiplet gives rise to the prediction of a
w(N, S) linear in α. We can numerically verify that this is ex-
actly what happens for multiplets in the bulk of the spectrum
(see Fig. 4). So, each multiplet separately behaves as a random
matrix and all together give rise to the Wigner-Dyson statis-
tics. Near the edges of the spectrum the behavior is probably
different, but states near the spectral edges are a small fraction,
vanishing in the limit of large N .
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FIG. 5. (a) W (N )/(αKN ) vs N for α < 1. (Inset) W (N )/(αK) vs
N for α < 1. Linear dependence with slope slope βW = 0.9. (b) Ex-
amples of total spectral width �E (N ) vs N for h = 0.1. �E (N )
is defined as the difference between the largest eigenvalue and the
smallest eigenvalue of the Hamiltonian restricted to the fully-even
Hilbert subspace. The slope β� ∼ 1.1 comes from a linear fit.

B. Total multiplet width and spectral rigidity

In order to better understand the rigidity of the multiplets
upon increasing system size N , we now consider the total
multiplet width [85]:

W (N ) ≡
N/2∑
S=0

(2S + 1)w(N, S) .

We evaluate this quantity using Eqs. (7) [86] and (2) and
numerically compute the factorials using the Lanczos formula
[87]. We see that W (N ) increases linearly in N [see inset of
Fig. 5(a)] with a slope obtained from a linear fit βW = 0.9.

In order to understand if the majority of the multiplets
overlaps for large N , or if there is a significant fraction of them
which survives, we need to compare W (N ) with the total spec-
tral width �E (N ) ≡ maxμ(Eμ) − minμ(Eμ), which is linear
in N with slope β� ∼ 1.1 (for h = 0.1) and independent from
α < 1 [see Fig. 5(b)]. So, both W (N ) and �E (N ) increase
linearly in N and their ratio tends to a constant

W (N )

�E (N )
N→∞−→ αKβW

β�

. (8)

So, when α <
β�

KβW
, the total multiplet width W (N ) is

asymptotically smaller than the total spectral width �E (N ). In
particular, when α � 1 [more precisely, α � min(1,

β�

KβW
)],
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FIG. 6. exp[Sth (E )]/NS vs E/N for different values of N . (a) α =
0.05, h = 0.1, and NShell � 200. (b) α = 0.25, h = 0.1, and NShell �
250.

we expect that the spectral structure seen in Fig. 3 persists
for larger system size, with a multiplet structure visible at
low-energy densities. When α � 1 we have W (N ) � �E (N )
for large N , there must be gaps in the spectrum, and we expect
that some multiplets persist.

Looking at Fig. 3 (see also Figs. 6 and 7), we see that the
persisting multiplets lie at low energy densities. The rigidity
of these multiplets, and the related ensemble inequivalence,
are likely behind the effective nonergodic behavior and the
persistent longitudinal magnetization appearing in low-energy
quenches [52,60] for α < 2.

V. NONCONVEX MICROCANONICAL ENTROPY AND
ENSEMBLE INEQUIVALENCE

The spectrum being organized in multiplets gives rise to a
nonconvex microcanonical entropy, with many maxima, one
per each multiplet. As we have seen above, for α � 1, part of
the multiplets persists for very large N . A nonconvex micro-
canonical entropy in this limit shows the presence of ensemble
inequivalence, as it happens in classical long-range systems
[24].

In order to visually show how the presence of multiplets
gives rise to a nonconvex microcanonical entropy, let us
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FIG. 7. exp[Sth (E )]/NS vs E/N for different values of α and h.
Numerical parameters: N = 22, NShell = 1200. h = 0.1 (a) and h =
0.5 (b).

numerically evaluate the microcanonical entropy Sth(E ) in a
case of finite N . To define the entropy, we start from the
density of states

ρ(E ) =
∑

μ

δ(E − Eμ) . (9)

We average it over an energy shell (we divide the energy spec-
trum in NShell equal energy shells and mark the energy-shell
average as 〈· · · 〉Shell) and we define Sth(E ) = ln〈ρ〉Shell(E )
(for each shell, E is the middle-point energy and we take
kB = 1). We show our results in Figs. 6 and 7.

In Fig. 6(a) we plot Sth(E ) versus the energy density E/N
for α = 0.05, h = 0.1 and two system sizes. At low- and
intermediate-energy densities, we clearly see the peaks cor-
responding each to a multiplet and we do not see a strong
tendency for them to disappear for increasing system size. We
can see something similar for α = 0.25, h = 0.1 [Fig. 6(b)]
where the low and intermediate energy density multiplet struc-
ture becomes more evident for increasing system size. So,
multiplets strongly affect the dynamics for finite system sizes
giving rise to a nonconvex microcanonical entropy. For α < 1
we clearly see the same nonconvex structure for both h = 0.1
and h = 0.5 (Fig. 7). We remark that each peak corresponds to
a multiplet, an object with many levels giving rise to a smooth

random-matrix continuum for N → ∞. So each peak is some-
thing physical, very different from e.g., the spikes appearing
at finite size in the density of states of the short-range Ising
model, when a energy shell smaller than the finite-size gaps
between the eigenenergies is considered.

In the plots in Fig. 6 we notice that at the lowest energy
densities we have only few levels in the multiplets and there
are significant gaps separating the multiplets. The first two
or three multiplets survive even at larger α, as we can see in
the density-of-states plots of Fig. 7, both for h = 0.1 [panel
(a)] and h = 0.5 [panel (b)] where the multiplet structure at
intermediate energies is more tight and more fragile to α > 0.

VI. SPECTRAL PAIRING AND BROKEN
SYMMETRY EDGE

It is well known that the long-range quantum Ising chain
exhibits a symmetry-breaking transition at nonzero tempera-
ture as soon as α < 2 [88]. The corresponding microcanonical
or even single-eigenstate properties have, however, not been
explored extensively, except the notable Ref. [72]. Here we
study the long-range order of the eigenstates, which gives
rise to Z2 symmetry breaking in the thermodynamic limit. In
particular, we want to quantify whether for α �= 0 there are
states with long-range order at finite excitation energy density
and to estimate the critical energy density e∗ below which the
eigenstates break the symmetry in the thermodynamic limit
(e∗ is called broken symmetry edge [37]). The existence of the
broken-symmetry edge is well known for the case α = 0 [37],
h < 1, but it is not explored in detail for α �= 0. We are going
to compare this quantity with the corresponding canonical one
and show that the two differ from each other for the accessible
α � 1.5 values.

For the microcanonical analysis, we need both the two Z2

symmetry sectors. Therefore, we restrict to the subspace cor-
responding to the zero-momentum sector and even only with
respect to inversion. We target the single eigenstates and study
the energy gaps between nearby states: If there is symmetry
breaking in the thermodynamic limit, the eigenstates must ap-
pear in quasidegenerate doublets, which become degenerate in
the thermodynamic limit (the splitting is exponentially small
in the system size). We make use of this property to determine
the broken-symmetry edge. We consider the splitting inside
pairs of nearby eigenenergies �(1)

n = E2n − E2n−1, (n is an in-
teger number labeling the eigenvalues in increasing order) and
the gap between nearby pairs, evaluated as the difference of
next-nearest-neighbor eigenenergies �(2)

n = E2n+1 − E2n−1. If
we are in presence a quasidegenerate doublet (E2n−1 and E2n

belong to the same doublet), �(1)
n should be much smaller than

�(2)
n and the ratio �(1)

n /�(2)
n should scale to 0 with the system

size. It is convenient to average �(1)
n and �(2)

n on energy shells,
in order to reduce fluctuations. We define the NShell energy
shells as in Sec. V and we consider the ratio

D(E ) =
〈
�(1)

n

〉
Shell (E )〈

�
(2)
n

〉
Shell (E )

(10)

of the averages over the energy shells 〈�(1)
n 〉Shell (E ) and

〈�(2)
n 〉Shell (E ). We term D(E ) as the relative splitting and plot

it versus E/N for different system sizes in Fig. 8. We consider
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FIG. 8. D(E ) vs E/N for α = 0.05 (a) and α = 0.5 (b). h = 0.1;
NShell = 50.

h = 0.1 and two values of α, α = 0.05 [Fig. 8(a)] and α = 0.5
[Fig. 8(b)]. For the first value of α the spectrum is organized
in multiplets for the system sizes we have access to, while
for the second it does not. For α = 0.5 we can see that the

curves for different N clearly cross: There is a value of E/N
below which D(E ) decreases with the system size and above
which increases. This is exactly what one would expect for
a broken-symmetry edge, and we take this crossing point as
an estimate for the broken symmetry edge, with an error bar
given by the mesh in E .

In contrast to the α = 0.5 case, for α = 0.05 we do not see
any crossing as smooth as this one [Fig. 8(a)]. For this value
of α and these system sizes, the dynamics is strongly affected
by the above-discussed multiplets. A noisy behavior appears
in Fig. 8(a) and does not allow us to clearly give an estimate
for e∗. We will estimate the broken symmetry edge only for
those values of α and N where we do not see a noisy multiplet
structure in the crossing region.

We plot the resulting microcanonical e∗ versus α in Fig. 9
for h = 0.1 and h = 0.5 with the label “Micro”. We obtain
it considering the crossing of the relative-splitting curves for
N = 20 and N = 22 and for α = 0 we take the theoretical
value e∗ = −h found in [37]. We can reliably estimate e∗ with
our method up to α = 1.5. Above that value larger system
sizes are needed.

We compare it with the canonical broken-symmetry edge
labeled as “Canonical” in Fig. 9. The latter is evaluated con-
sidering the Binder cumulant, a measure of Z2 symmetry
breaking particularly effective in the canonical ensemble [89].
Defining Ŝq

z ≡ (
∑

j σ̂
z
j )q, the Binder cumulant is given by

B = 1 − 〈Ŝ4
z 〉th

3〈Ŝ2
z 〉2

th

, where 〈· · ·〉th is the thermal canonical expec-

tation. Varying the temperature, both B and the corresponding
energy density e = 〈Ĥ〉th /N vary. We plot B versus e for a
set of parameters and two different values of N in Fig. 10.
The canonical symmetry breaking threshold is estimated as
the crossing between these two curves, in a way similar to
what done in [60]. Here the thermal canonical expectations
〈· · ·〉th are obtained by evolving in imaginary time a purified
infinite-temperature state [90,91]. The imaginary-time evolu-
tion is performed through the TDVP algorithm [92,93].

The canonical e∗ versus α (Fig. 9) shows a strong depen-
dence on N and so that the canonical e∗ increases if we take
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FIG. 9. Microcanonical e∗ vs α for two values of h < 1 (labelled “Micro”, from the crossing of D(E ) vs E/N curves) compared with the
corresponding canonical value (labelled “Canonical”, obtained from the crossing of the Binder-cumulant curves). In the key to symbols the
values for N of the two crossing curves are specified. In the canonical case, the step of the imaginary time evolution is everywhere τ = 10−3

but in the curve “Canonical, N = 100, 150” in (a) where τ = 2 × 10−3.
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the crossing of curves for larger N : The difference with the
microcanonical value increases. This fact suggests ensemble
inequivalence, but finite-size effects are too strong for making
a precise statement.

Moreover, considering that the ground state is at eGS � −1,
Fig. 8 gives us the nontrivial conclusion that for α � 1.5
the system shows Z2 symmetry breaking at finite excitation
energy densities. So, there is a finite fraction of the energy-
spectrum width where the eigenstates show long-range order,
similarly to the α = 0 and the disordered case. This is in
agreement with the findings of [52,60], where the long-time
dynamics supports long-time magnetization in the range α �
1.5 and beyond.

VII. ETH PROPERTIES

After having studied in detail spectral properties, we now
take a step further and aim to study eigenstate-thermalization
properties. For concreteness, we consider the longitudinal

FIG. 11. Scatter plots of Gμ vs Eμ for different values of the parameters. We consider N = 20.
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nearest-neighbor correlation operator

Ĝ = 1

N

N∑
j=1

σ̂ z
j σ̂

z
j+1 , (11)

as a representative for local observables. We focus on
the properties of the eigenstate expectation values Gμ ≡
〈ϕμ|Ĝ|ϕμ〉. We expect that the same behavior occurs for any
local observable. As we show in Appendix A also the entan-
glement entropy (involving half of the system size) shows a
similar behavior.

We consider the scatter plots of Gμ versus Eμ in Fig. 11.
Most importantly, these expectation values as a function of
energy do not always exhibit a smooth dependence with small
fluctuations, as expected in a system obeying ETH [6] even
though the level spacing ratio Eq. (3) is close to Wigner-
Dyson. The finite-size effects are too strong, mainly related to
the spectrum being organized in multiplets for α < 1, and no
quantitative extrapolation to larger size is possible. Neverthe-
less we see a lack of correspondence between quantum chaos
and ETH, in contrast with short-range interacting systems.

The most noteworthy case is α = 0.05 [Figs. 11(a) and
11(b)] where we see many almost vertical lines, as many as
the multiplets. Each of these lines is a continuous curve, as if
ETH was to hold just within a multiplet but not across them.
As we have argued in Sec. IV, when N is increased, part of
the multiplets should survive, and then this behavior should
persist. What we see in Figs. 11(a) and 11(b) is nevertheless
strongly affected by finite-size effects.

Another interesting case is provided by α = 0.5
[Figs. 11(c) and 11(d)]. For h = 0.1 [panel (c)] we can
see a qualitatively different behavior at large and small
energy. In the center of the spectrum we observe a quite
smooth curve with some small fluctuations, which appears as
a prototypical example of a system obeying ETH. Overall,
for these small system sizes, this does not seem to follow the
predictions by ETH.

For larger α [α = 1.5 in Figs. 11(e), 11(f) and α = 2 in
Figs. 11(g), 11(h)] we see a fully developed ETH behavior for
h = 0.5: very smooth curves with noise at the edges of the
spectrum [panels (f) and (h)]. On the opposite, for h = 0.1
[panels (e) and (g)], the situation is not at all ETH, in close
correspondence with the average level spacing ratio being
different from Wigner-Dyson [Fig. 1(a)]. In particular, the
case α = 2 is very regular-like with some scattered points
between the horizontal lines suggesting a stronger mixing at
larger system sizes.

VIII. CONCLUSIONS

In conclusion we have considered the long-range Ising
model with power-law interactions and used exact diag-
onalization to study the relation between quantum chaos,
eigenstate thermalization and convexity of the microcanonical
entropy. For small α we have remarkably found that the level
spacing distribution is Wigner-Dyson but this does not reflect
a full-random-matrix behaving Hamiltonian.

The reason comes from the strong effect of the α = 0
integrable point, where the Hilbert space decomposes into
many identical subspaces with the same energy levels, due to

the full permutation symmetry. Even an infinitesimal α > 0
mixes the degenerate levels belonging to different subspaces;
the resulting spectrum is organized in multiplets and we argue
that multiplets in the bulk of the spectrum separately behave
as a random matrices, with a negligible role of the spectral
edges.

Due to the strong effect of multiplets, this Wigner-Dyson
spectral statistics appears in association with anomalous ther-
malization properties. The random-matrix behavior of the
multiplets suggests that part of the multiplets persists at large
N and α < 1. This holds in particular in the α � 1 limit. So,
also at large N there are multiplets, and they give rise to a
nonconvex microcanonical entropy as a function of energy,
implying ensemble inequivalence [24]. From the numerics,
we expect that the multiplets persisting at large N lie at low-
energy densities; they are probably involved in the persistent
magnetization, which has been observed in the low-energy
dynamics of this model [52,60].

We further analyse the eigenstate thermalization properties
and we see that at small α the local observable eigenstate
expectation values and the corresponding half-system entan-
glement entropies do not organize into smooth curves as a
function of the energy, as one should naively expect from
quantum chaotic behavior in the Wigner-Dyson level spacing
statistics. In contrast to short-range interacting systems the
spectrum is organized in multiplets and there is no simple
ETH behavior. Quantitative probes (see Appendix A) suggest
that the curves become smoother for increasing system sizes
and we cannot tell if this is due to the ETH being obeyed better
and better inside the multiples or to the fact that the multiplets
at large energy densities tend to merge.

We remark that our exact diagonalization results show a
persisting nonergodic behavior for h = 0.1 and α around the
value α ≈ 2. This is a suggestive result because there are other
long-range models with α = 2, which are integrable, but the
system sizes we have access to do not allow to state if this
effect persists in the thermodynamic limit. Nevertheless, a
nonchaotic behavior for N = 22 is already remarkable and
might suggest at least the proximity of an integrable point.
In all the other cases we see an ergodic behavior.

Perspectives of future work will focus on the connec-
tion between the dynamical phase transition in α undergone
by this model [52,55,60] and the corresponding low-energy
confinement-deconfinement transition [56]. Another direction
of research will be to study the relation between quantum
chaos in sectors of the Hilbert space and ensemble inequiv-
alence in models with Hilbert space fragmentation [94].
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to a fully random state [97].
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APPENDIX A: EIGENSTATE HALF-SYSTEM
ENTANGLEMENT ENTROPIES

ETH properties of eigenstates can be explored also by
means of the entanglement entropy. This is not a local object
because it involves correlations extending up to a distance
N/2, but eigenstate thermalization has been proved valid for
subsystems up to this size [95]. Considering an eigenstate
|ϕμ〉, and decomposing the system in two parts A and B in
physical real space, we define

S(μ)
A = − Tr[ρ̂A log ρ̂A] with ρ̂A = TrB[|ϕμ〉 〈ϕμ|] . (A1)

Specifically, we focus on the half-system entanglement en-
tropy S(μ)

N/2 taking each bipartition made up of N/2 consecutive

spins. In case of eigenstate thermalization, S(μ)
N/2 are equal to

their microcanonical value at energy Eμ, up to relative fluctu-
ations decreasing with the system size. (The microcanonical
value of S(μ)

N/2 is the microcanonical entropy for half of the
system.)

In Fig. 12 we show the scatter plots of the entanglement
entropy S(μ)

N/2 [defined in Eq. (A1)] versus the corresponding
eigenstate energy Eμ. ETH is strictly related to these curves
looking “smooth”, as appropriate for microcanonical entropy
[95]. Let us first discuss this point qualitatively. We consider
a small value of α, α = 0.05 [panels (a) and (c)]. The S(μ)

N/2
versus Eμ look like smooth curves, as in the ETH case, only
if we restrict inside the multiplets. This result fits with the av-
erage level spacing ratio being Wigner-Dyson for these small
values of α (Sec. III) and each multiplet behaving separately
as a random matrix (Sec. IV). The nonconvex entangle-
ment entropy of these curves corresponds to a nonconvex
microcanonical entropy and to ensemble inequivalence (see
Sec. V).

Increasing α the multiplet structure disappears, first at
higher, then at lower energy densities, as one can see in
Figs. 12(a) and 12(c) already for α = 0.5 and α = 0.75.
The scatter plot for α = 2 and h = 0.1 [Fig. 12(b)] is re-
markable. Here the scatter plot looks fuzzy and loses the
smoothness typical of ETH. For this value of h, α = 2 cor-
responds to a minimum in the level spacing ratio [see
Fig. 1(a)].

Let us move to quantify the smoothness of the
entanglement-entropy curves. Considering S(μ)

N/2, we wish to
characterize its eigenstate to eigenstate fluctuations. In ETH
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these fluctuations should be smaller compared to other con-
texts, because S(μ)

N/2 should resemble the microcanonical curve,
smooth in Eμ. In order to quantify the fluctuations we consider

M ≡ 1

NS − 1

NS−1∑
μ=1

∣∣S(μ+1)
N/2 − S(μ)

N/2

∣∣ , (A2)

Here, |ϕμ〉 and |ϕμ+1〉 are “nearby eigenstates” [77] with the
Eμ and Eμ+1 in increasing order. (unique for α > 0 and inside
HS , where there are no degeneracies.) A quantity similar to
M was introduced in [77] in the disordered Heisenberg chain
taking instead of S(μ)

N/2 the local magnetizations. In case of a
system obeying ETH, M is expected to exhibit a rapid decay
upon increasing system size N .

We plot M versus N in Fig. 13. We compare with the case
of the α → ∞ (nearest-neighbor) Ising model in transverse
field in Figs. 13(b) and 13(c). The nearest-neighbor model is
integrable [82], and, consistently with that, the value M stays
more or less constant with the size N . On the opposite, in the
long-range model Eq. (1), M clearly decreases with N for
most of the considered values of α. We emphasize that this
occurs for the small values of α, but we cannot tell if this
is due to the entanglement-entropy curves getting smoother
inside the multiplets or to the fact that the multiplets tend to
merge with each other for increasing N .

We see that there is a close correspondence between the
decay of M with N and the Wigner-Dyson value of the level
spacing ratio (see Fig. 1). Indeed, the only conditions where
we see something different from a decrease of M with N in
Fig. 13 correspond to values of α where the average level
spacing ratio has not yet attained the Wigner-Dyson value.
This is true for α = 8 [Figs. 13(b) and 13(c)] and, as we have
argued in Sec. III, this is most probably a finite-size effect.
This is also true for h = 0.1 and α = 2, 2.25 [Fig. 13(b)]. The
effect is very strong for α = 2, again suggesting a connection
with the integrability of other α = 2 long-range spin chain
models.

Another quantitative analysis relevant for the study of ETH
is the comparison with the Page value. ETH eigenstates with
the largest entanglement are expected to approach the so-
called Page value [96] upon increasing the system size N
(the Page value corresponds to the entanglement entropy of
a fully-random state [97]). We want to quantitatively probe
this fact and consider the following two quantities introduced
in [98]. The first one is defined as

�S (N ) = 1

NS

∑
μ

log
(∣∣S(Page)

N/2 − S(μ)
N/2

∣∣) . (A3)

The rationale is that the logarithm overweighs the small-
est values of the argument and the high-entropy states—
corresponding to the smallest values of the difference in the
argument—give the strongest contribution to the average. If
the highest-entropy states tend to the Page value, �S (N ) takes
more and more negative values.

In order to define the second quantity, we need to first
define the integer number 1 � μ∗ � dim HS as the value of
μ such that the quantity |S(Page)

N/2 − S(μ∗ )
N/2 | is minimum over μ.

Restricting the average of the entanglement entropy to states
around the energy Eμ∗ , we focus on the highest entropy states,
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FIG. 13. Plot of M vs N for different values of α and h and, for
comparison, the Ising integrable α → ∞ nearest-neighbor model.

the ones nearest to the Page value. More formally, if we term
the width of the energy spectrum as �E (N ) = maxμ(Eμ) −
minμ(Eμ), we restrict the sum to the states with eigenenergy
Eμ ∈ [Eμ∗ − f

2 �E (N ), Eμ∗ + f
2 �E (N )] (call their number

N f ). In this way we can define

〈SN/2〉 f = 1

N f

∑
μ s.t. Eμ∈[Eμ∗ − f

2 �E (N ),Eμ∗ + f
2 �E (N )]

S(μ)
N/2 . (A4)
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FIG. 14. Plot of the quantities �S (N ) [Eq. (A3); (a),(c)] and (S(Page)
N/2 − 〈SN/2〉 f )/N [Eq. (A3); (b),(d); f = 0.1] vs J for different values

of N . h = 0.1 in [(a),(b)] and h = 0.5 in [(c),(d)]. For N = 22 we consider 14 000 randomly chosen eigenstates, in the other cases all the
spectrum.

We choose f = 0.2, so that the sum is restricted around
the state with entropy nearest to the Page value, that is to
say to the infinite-temperature value. If �S (N ) and (S(Page)

N/2 −
〈SN/2〉 f )/N get smaller, the system becomes more ETH.

We report the results for �S (N ) versus α for different
values of N in Figs. 14(a) and 14(c), and those for (S(Page)

N/2 −
〈SN/2〉 f )/N in Figs. 14(b) and 14(d). The steady decrease
with N for h = 0.5 suggest a tendency to ETH for increasing
system size. The largest-α crossing point between curves with
nearby values of N tends to shift right for increasing N . The
increase in N for large α is therefore a finite-size effect.
Results for h = 0.1, on the opposite, are not that conclusive.
Although the behavior at small and large α is similar to the
h = 0.5 case, we find an interval of α (α ∈ [1, 1.5]) where
both the considered quantities seem to saturate with N . Quite
remarkably, in this interval of α the average level spacing ratio
is significantly different from the Wigner-Dyson value [see
Fig. 1(a)] and probably finite-size effects are too strong.

APPENDIX B: HILBERT-SCHMIDT DISTANCE FROM THE
INFINITE-RANGE MODEL

The Hilbert-Schmidt distance is an operator distance used
in quantum information [99,100] and is defined by the norm

‖Ô‖HS =
√

Tr(Ô†Ô). We are going to show that the Hilbert-
Schmidt distance of the Hamiltonian at α > 0 from the
infinite-range Hamiltonian at α = 0 increases linearly with α

when α is small.

/
2

N
/
2

FIG. 15. d (α, N )/2N/2 vs α for different values of N . Notice the
linear increase with α.
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We consider the Hamiltonian Eq. (1), and we want to
quantify the Hilbert-Schmidt distance of Ĥ (α) from its infinite-
range α = 0 counterpart Ĥ (0). We define the distance as

d (α, N ) = ‖�H (α, N )‖HS =
√

Tr[(�Ĥ (α, N ))2], (B1)

with �Ĥ (α, N ) ≡ Ĥ (α) − Ĥ (0) independent of h. Note that
for an Hermitian operator Ô with eigenvalues λ j , ‖O‖HS =√∑

j λ
2
j . To compute d (α, N ), we write

�Ĥ (α, N ) =
N∑

i, j, i �= j

J ′
i, j (α) σ̂ z

i σ̂ z
j , (B2)

where J ′
i, j = 1

N (α)D α
i, j

− 1
N (0) . Then

[�Ĥ (α, N )]2 =
N∑

i, j, i �= j

[J ′
i, j (α)]2 +

N∑
distinct i, j,k

(· · · ) σ̂ z
i σ̂ z

j

+
N∑

distinct i, j,k,l

(· · · ) σ̂ z
i σ̂ z

j σ̂
z
μσ̂ z

l . (B3)

Taking the trace, all term but the first one vanish, so that

d (α, N ) = 2N/2

√√√√ N∑
i, j, i �= j

[J ′
i, j (α)]2 . (B4)

We numerically compute this quantity for various values of
N and report it versus α in Fig. 15. We clearly see that it
increases linearly in α for small α.

We strongly remark that, for α < 1, d (α, N )/2N/2 fast sat-
urates to a constant when N is increased. This point is crucial:
The fact that d (α, N )/2N/2 is asymptotically constant with N
is at the root of our argument in Sec. IV. This result can be
seen in Fig. 15 and can also be analytically checked in the
large-N limit, by using translational invariance and writing ap-

proximately d (α, N ) � 2N/2
√

2N
∑N/2

l>1[ 1
N (α)

1
lα − 1

N (0) ]
2, and

then using the asymptotic behaviours N (0) = N , N (α) ∼
N1−α ,

∑N/2
l>1

1
lα ∼ N1−α .
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