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Fate of symmetry protected coherence in open quantum system
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We investigate the fate of coherence in the dynamical evolution of symmetry protected quantum systems.
Under the formalism of system plus bath for open quantum systems, antiunitary symmetries exhibit significant
differences from the unitary ones in protecting initial coherence. Specifically, taking advantage of the Lindblad
master equation, we find that a pure state in the symmetry protected degenerate subspace will be decoherent
even though both the system Hamiltonian and system-environment interaction respect the same antiunitary
symmetry. In contrast, the coherence will persist when the protecting symmetry is unitary. We provide an
elaborate classification table to illustrate what kinds of symmetry combinations are able to preserve the coherence
of the initial state, which is confirmed in several concrete models of single spin-3/2 systems. It can also be
applied to the Haldane phase in interacting topological systems. Our results could be helpful in exploring possible
experimental realization of stable time-reversal symmetric topological states.
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I. INTRODUCTION

Symmetry is one of the greatest unifying themes in modern
physics and plays a fundamental role in classifying quantum
phases of matter.

In condensed matter physics, the existence of the Pe-
riodical Table in topological free fermions is a great
example in which the anomalous quantum Hall effect, topo-
logical insulators and topological superconductors, and many
other interesting topological phenomena are unified into a
single framework of classification theory [1–3]. Despite the
high degree of universality on classification theory, previous
research on symmetry analysis and topology in condensed
matter mainly focused on the isolated systems [4–9] or those
systems coupled to non-Hermitian potentials [10–17]. How-
ever, realistic quantum systems inevitably couple to external
degrees of freedom, which, in principle, should be described
by open quantum systems.

Recently, efforts have been made to study the classifica-
tion problem on steady states in Lindblad equations [18,19].
The key point for experimentally searching stable symme-
try protected topological states is maintaining the coherence
of quantum states in the presence of surroundings. Thus a
natural question is whether these symmetry protected topo-
logical states can survive from the decoherence induced by
environment. In particular, one of the central issues for the
open quantum system is the decoherence dynamics con-
cerning how the quantum coherence evolves and vanishes,
which is particularly important for quantum information and
quantum computation [20]. A crucial question is how to
prevent decoherence which is an unavoidable roadblock to
quantum information processing.

Therefore, diagnosing the stability of coherence of sym-
metry protected quantum states has a fundamental importance
in theory and practice. Symmetry analysis plays a vital role
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in this issue. According to Wigner’s theorem [21], a sym-
metry transformation is either unitary or antiunitary. Recent
theoretical research revealed that the coherence of states un-
derlying many symmetry protected features could be fragile
when the symmetry is antiunitary, even though both the envi-
ronment and system-environment interaction respect the same
symmetry as that of the system Hamiltonian [22]. But these
features are always robust as long as the protected symme-
try is unitary. Strikingly, when applying this to topological
systems protected by time-reversal symmetry, one concludes
that the topological phases could be unstable to the perturba-
tion of environment [22]. Understanding these nonequilibrium
dynamics is of fundamental interest and has potential applica-
tions in quantum information.

This work investigates the fate of coherence in degenerate
subspace protected by the unitary or antiunitary symmetry.
When a system is weakly coupled to the environment, its
dissipative dynamics under the Born-Markovian approxima-
tion in this open system are governed by the Lindblad master
equation. Indeed, the anomalous decoherence or degeneracy
breaking in antiunitary symmetry has already arisen from the
non-Hermitian linear response theory [23]. At this level, dy-
namical evolution of density matrix in degenerate subspace is
able to distinguish the difference between antiunitary and uni-
tary symmetries in maintaining coherence [24]. Besides, the
decoherence is also related to the number of coupling channels
between system and environment when all coupling operators
are Hermitian ones [22]. We will classify the maintenance of
coherence with different symmetry combinations respected by
the system and system-environment interaction. Furthermore,
we take several representative examples in spin-3/2 systems
to illustrate our classification. We also provide a general proof
about the origin of decoherence by taking advantage of non-
Hermitian linear response theory.

The rest of this paper is organized as follows. Section II
introduces the general formalism. In Sec. III, we carry out
research into the roles of symmetry in dynamical evolution
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and give the classification of coherence of symmetry pro-
tected states. And then, in Sec. IV, taking advantage of the
Lindblad master equation, we exemplify the classification ta-
ble with spin-3/2 models by calculating the density matrix
and von Neumann entropy in the degenerate subspace. Sec-
tion V provides a brief summary and outlook. The analytic
proof and application to interacting topological phase are in-
cluded in the Appendixes.

II. GENERAL FORMALISM

In this section, we derive a general formalism from a mi-
croscopical Hamiltonian to study the dynamical evolution in
the system protected by unitary or antiunitary symmetry. To
investigate the robustness of coherence in degenerate space,
we consider a quantum system coupled to a Markov bath
whose Hamiltonian reads

ĤT = ĤS + ĤB + ĤSB, (1)

where ĤS , ĤB are Hamiltonians belonging to the system and
bath, respectively, and ĤSB denotes the interaction between
them. The coupling part ĤSB can be decomposed as

ĤSB =
M∑

j=1

Â†
j ⊗ B̂ j + Â j ⊗ B̂†

j , (2)

where Â j , B̂ j are operators belonging to system and bath,
respectively, and M denotes the number of coupling channels.

Let us focus on the situation that ĤS has related symmetry
in consideration, and then a natural question is whether the
symmetry protected feature such as degeneracy is maintained
or not. It is generally expected that the symmetry protected
feature would be destroyed if the system-bath coupling ĤSB

breaks the related symmetry, and it survives as long as ĤSB

respects the same symmetry. This intuitive principle seems to
be an unquestionable fact. However, recently, in their seminal
work [22], McGinley and Cooper found that it can fail when
the respecting symmetry is antiunitary even when each part
(Â j , B̂ j , and ĤB) obeys the same symmetry. This unexpected
discovery is deeply rooted in Schur’s Lemma for antiuni-
tary groups [25,26] and immediately indicates the fragility
of time-reversal symmetry protected topological edge states
[24]. Here we will investigate the fate of coherence in the
degenerate subspace of the system. For concreteness, we con-
sider the following total Hamiltonian:

ĤT = ĤS +
M∑

j=1

∑
α

g j,αÔ†
j b̂α + g∗

j,αÔ j b̂
†
α +

∑
α

ωα b̂†
α b̂α,

(3)

where the bath is considered as a reservoir of harmonic oscil-
lators in thermal equilibrium and b̂α (b̂†

α) is the annihilation
(creation) operator of the bath for α mode with bosonic com-
mutation relation [b̂α, b̂†

β ] = δαβ and the bath is considered as

the reservoir of harmonic oscillators ĤB = ∑
α ωα b̂†

α b̂α .
Here we focus on the scenario in which the system Hamil-

tonian ĤS possesses the symmetry in question exhibiting
degeneracy, and the coupling ĤSB and the bath ĤB respect the
same symmetry. That is to say the symmetry considered here

is represented by a group G, and Ô, b̂α are all invariant under
the symmetry operations in G.

Under this circumstance, a significant practical question is
whether symmetry protected properties such as degeneracy in
system are fundamentally stable against perturbations of the
environment. To explore this, we consider the one-channel
case M = 1 for simplicity.

Following the standard procedure (see Appendix A) to
integrate out the bath under Markovian approximation and
Born approximation, one can derive the Lindblad master
equation as

d ρ̂(t )

dt
≡ L ρ̂(t )

= −i[ĤS, ρ̂(t )] − γ {ρ̂(t ), Ô†Ô} + 2γ Ôρ̂(t )Ô†, (4)

where L is the Liouvillian superoperator and {Â, B̂} ≡ ÂB̂ +
B̂Â denotes the anticommutator. This equation dominates the
dynamics of the density matrix.

In this way, the symmetry protected properties in degen-
erate space are connected with the dynamics governed by the
Lindblad master equation. Here we focus on the von Neumann
entropy in degenerate subspace to characterize the decoher-
ent process, and the corresponding response of entropy is
given by

δS(t ) = S(t ) − S0(t ), (5)

where S0(t ) is the unperturbed entropy with coherent evo-
lution determined by ĤS . Specifically, we will study von
Neumann entropy Sv(t ) = −Tr[ρ̂(t )lnρ̂(t )], which can be
obtained once the master equation is solved. The decoher-
ence dynamics in degenerate subspace and entropy growth
can be derived by non-Hermitian linear response theory (see
Appendix B).

Moreover, the break of degeneracy is reflected in
the matrix representation of Liouvillian L . Using the
Choi-Jamiołkowski isomorphism [27,28], Eq. (4) can be
mapped to the following equation:

d

dt
|ρ〉 = L̂ |ρ〉 , (6)

with vectorized density matrix |ρ〉,

|ρ〉 =
∑
i, j

ρi, j |i〉 ⊗ | j〉, (7)

where ρi, j = 〈i| ρ̂ | j〉 is the matrix element of ρ̂. And L̂
denotes the matrix representation of the Liouvillian, which is
written as

L̂ = −i
(
ĤS ⊗ Î − Î ⊗ ĤT

S

)
+ γ [2Ô ⊗ Ô∗ − Ô†Ô ⊗ Î − Î ⊗ (Ô†Ô)T]. (8)

The Liouvillian superoperator can share the symmetry associ-
ated with the system [29], which determines Eq. (4). The fate
of coherence in degenerate subspace depends on whether L̂
is proportional to the identity matrix in degenerate subspace.

094306-2



FATE OF SYMMETRY PROTECTED COHERENCE IN OPEN … PHYSICAL REVIEW B 104, 094306 (2021)

III. COHERENCE ANALYSIS FOR DIFFERENT
SYMMETRY COMBINATIONS

In this section, we classify the coherent dynamics in
degenerate subspace regarding different combinations of
symmetries respected by ĤS and Ô. Suppose the system
respects unitary or antiunitary symmetry characterized by
group G. This means the matrix representation of ĤS satisfies
[ĤS, ÛG] = 0 for any group element ÛG ∈ G. If |ψ〉 is one of
the eigenstates of ĤS , i.e., ĤS|ψ〉 = E |ψ〉, then ÛG |ψ〉 would
also be the eigenstate of ĤS . Thus {ÛG |ψ〉} spans a degenerate
subspace when ÛG ∈ G satisfying ÛG |ψ〉 �= |ψ〉 exists, which
is also an irreducible representation subspace of G. We call
this symmetry protected degeneracy. A notable example in a
half-odd integer spin system is Kramers’ degeneracy when G
represents the time-reversal symmetry group.

To describe the coherent dynamics in degenerate space,
we assume that the {UG|ψ〉} contains two orthogonal bases
which are denoted by |φ+〉 and |φ−〉 corresponding to twofold
degenerate subspace. The initial state is prepared to be a pure
state ρ̂(0) = |ψ (0)〉〈ψ (0)| with |ψ (0)〉 = α|φ+〉 + β|φ−〉 and
then the dynamics of the density matrix will be dominated by
Lindblad master equation (4). We focus on the density matrix
in the subspace ρ̂G(t ) = 
̂Gρ̂(t )
̂G, where the ground-state
projective operator is defined by 
̂G = |φ+〉〈φ+| + |φ−〉〈φ−|.

For a general total Hamiltonian, the bath and system-bath
coupling do not respect the related symmetry of ĤS , in which
case ρ̂G(t ) evolves into a mixed state where the decoherence
happens. Nevertheless, what we are concerned about here is
whether the complete information of the initial state, or at
least the coherence, can be maintained when both the op-
erators {âα} and {Ô j} respect the same symmetry as the
system Hamiltonian ĤS . As stated above, the fate of coherence
is determined by unitarity or antiunitarity of the symmetry.
This conclusion had been pointed out in Refs. [22,24] and
here we provide a brief explanation. For the unitary sym-
metry, 
̂GÔ†Ô
̂G ∝ 
̂G, 
̂GÔ†
̂G ∝ 
̂G, and 
̂GÔ
̂G ∝

̂G are guaranteed by Schur’s lemma [30] as long as Ô†,
Ô respect the same symmetry as ĤS . In this case, Lindblad
superoperator L only acts on the subspace density matrix as

̂GL [ρ̂(t )]
̂G ∝ ρG(0). Accordingly, if we define

ρG(t ) =
(

ρ++ ρ+−
ρ−+ ρ−−

)
=

(〈φ+|ρ̂|φ+〉 〈φ+|ρ̂|φ−〉
〈φ−|ρ̂|φ+〉 〈φ−|ρ̂|φ−〉

)
, (9)

then all of the matrix elements synchronously decay at the
same rate. That is to say, the renormalized density matrix in
subspace ρ̃G = ρG(t )/tr[ρG(t )] is always equal to ρG(0) under
the time evolution of the Lindblad equation, which means
the initial coherence is maintained. In addition, the matrix
representation of L̂ in subspace is proportional to identity,
namely,

L̂G ∝

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠, (10)

which acts trivially on the state of subspace
L̂G[ρ+,+(t ), ρ+,−(t ), ρ−,+(t ), ρ−,−(t )]

T ∝ [ρ+,+(0), ρ+,−
(0), ρ−,+(0), ρ−,−(0)]T.

For the case of antiunitary symmetry, according to Schur’s
Lemma [25], if Ô is a Hermitian operator obeying this
symmetry, it will be proportional to the identity matrix in de-
generate subspace, i.e., 
̂GÔ†
̂G = 
̂GÔ
̂G ∝ ÎG, and the
condition (10) is also true, which means the density matrix
will maintain its initial coherence. But if Ô is a non-Hermitian
operator, then its matrix representation is no longer propor-
tional to identity, i.e., 
̂GÔ
̂G �∝ ÎG. In this case, one can find
immediately ρ̃G = ρG(t )/tr[ρG(t )] �= ρG(0) from the master
equation (4) and decoherence occurs. Meanwhile, L̂G is no
longer proportional to identity:

L̂G �∝

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠. (11)

The above statements for unitary or antiunitary symmetric
systems can be naturally generalized to those with various
combinations of symmetries. We summarize different kinds
of symmetry combinations and the corresponding fate of co-
herence in Table I. We take the time-reversal symmetric group
and quaternion group as candidates of the antiunitary and uni-
tary group, respectively. Some representative examples will be
illustrated in the next section.

IV. NUMERICAL RESULTS WITH SPIN-3/2 MODELS

In this section, we take spin-3/2 models as a concrete
example to elucidate and verify the symmetry classification
shown in Table I. This kind of high-spin system coupled
to environment was extensively studied in nitrogen-vacancy
(NV) centers [31,32]. The matrix representation of spin-3/2
angular momentum is chosen as

Sx = 1

2

⎛
⎜⎜⎝

0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0

⎞
⎟⎟⎠,

Sy = i

2

⎛
⎜⎜⎝

0 −√
3 0 0√

3 0 −2 0
0 2 0 −√

3
0 0

√
3 0

⎞
⎟⎟⎠,

Sz =

⎛
⎜⎜⎝

3
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2

⎞
⎟⎟⎠. (12)

The unitary and antiunitary symmetries will be discussed re-
spectively.

A. Unitary symmetry

We first study the system with unitary symmetry. In order
to illustrate the symmetry protected coherence, for simplic-
ity, we choose the quaternion group Q as a candidate of
the unitary group, which is a non-Abelian unitary group
whose irreducible representation can be two-dimensional,
spanning a twofold degenerate subspace. The matrix repre-
sentation of Q is displayed explicitly in Appendix C. We then
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TABLE I. Classification table for the fate of initial coherence protected by three kinds of symmetries in ĤS and coupling operator Ô with
different types of symmetry combinations. Here [ĤS,Q] = 0 ([ĤS,T ] = 0) means the system respects (Q-symmetry) time-reversal symmetry.
ÎG represents the identity matrix in ground-state subspace.

Symmetry of ĤS Hermiticity of Ô Symmetry of Ô Coherence/Decoherence L̂G ∝ ÎG ⊗ ÎG (Yes/No)

Hermitian [Ô,Q] = 0 Coherence Yes
[Ô,Q] �= 0 Decoherence No

[ĤS,Q] = 0
Non-Hermitian [Ô,Q] = 0 Coherence Yes

[Ô,Q] �= 0 Decoherence No

Hermitian [Ô,T ] = 0 Coherence Yes
[Ô,T ] �= 0 Decoherence No

[ĤS,T ] = 0
Non-Hermitian [Ô,T ] = 0 Decoherence No

[Ô,T ] �= 0 Decoherence No
Hermitian [Ô,T ] = 0, [Ô,Q] = 0 Coherence Yes

[Ô,T ] = 0, [Ô,Q] �= 0 Coherence Yes
[Ô,T ] �= 0, [Ô,Q] = 0 Coherence Yes
[Ô,T ] �= 0, [Ô,Q] �= 0 Decoherence No

[ĤS,T ] = 0
[ĤS,Q] = 0

Non-Hermitian [Ô,T ] = 0, [Ô,Q] = 0 Coherence Yes
[Ô,T ] = 0, [Ô,Q] �= 0 Decoherence No
[Ô,T ] �= 0, [Ô,Q] = 0 Coherence Yes
[Ô,T ] �= 0, [Ô,Q] �= 0 Decoherence No

construct a Q-symmetric Hamiltonian ĤS = Eg(ŜxŜyŜz +
ŜzŜyŜx ) with twofold degenerate ground states which forms
a two-dimensional irreducible representation space of group
Q. For Hermitian operator Ô coupled to a system re-
specting Q symmetry such as Ô = Ŝ2

y , the coherence in
ground-state subspace maintains all the time but deco-
herence occurs when this symmetry is broken, say, Ô =
ŜxŜy + ŜyŜx as shown in Fig. 1(a). The same situation
happens to the non-Hermitian coupling operators that the
symmetric and asymmetric Ô are chosen as Ô = ŜxŜyŜz

and Ô = ŜyŜz, respectively [see Fig. 1(b)]. The increas-
ing entropy reflects a fact that the subspace density
matrix evolves into a mixed state. The unchanged von Neu-
mann entropy indicates that the density matrix in subspace is
always a pure state, which means the coherence is maintained.
This is a reasonable consequence that the decoherence appears
only when the system is perturbed by symmetry-broken cou-
pling. As mentioned above, Schur’s lemma tells 
̂GÔ
̂G ∝
ÎG if Ô respects Q symmetry, which leads to L̂G ∝ ÎG ⊗ ÎG

according to expression (8). In contrast, L̂G �∝ ÎG ⊗ ÎG if

̂GÔ
̂G �∝ ÎG, since Ô breaks Q symmetry which destroys
the coherence, and the corresponding entropy of decoher-
ent dynamics reaches the steady-state value Sv(∞) = ln 2 ≈
0.693, which is nothing but the maximum entropy in doublet
space.

B. Antiunitary symmetry

From now on, we focus on the systems respecting time-
reversal symmetry. Since time-reversal operation inverts the
angular momentum operators, i.e., T̂ Ŝx,y,zT̂ −1 = −Ŝx,y,z, one
can construct a time-reversal invariant Hamiltonian as ĤS =
Eg{Ŝx, Ŝz}. The ground-state subspace of ĤS is twofold degen-

erate due to Kramers’ theorem and we denote two degenerate
states as |φ±〉. Similar to the discussion of the unitary
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FIG. 1. Time evolution of von Neumann entropy in degenerate
subspace protected by unitary symmetry (Q symmetry). (a) von
Neumann entropy as a function of time for Hermitian coupling
operator: with Q symmetry Q̂ = Ŝ2

y (red solid line) and without Q
symmetry Q̂ = ŜxŜy + ŜyŜx (blue dashed line). (b) von Neumann en-
tropy as a function of time for non-Hermitian coupling operator: with
Q symmetry Q̂ = ŜxŜyŜz (red solid line) and without Q symmetry
Q̂ = ŜxŜyŜz (blue dashed line).
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FIG. 2. Time evolution of von Neumann entropy and density
matrix in degenerate subspace protected by time-reversal symme-
try. (a) von Neumann entropy as a function of time for Hermitian
coupling operator: with time-reversal symmetry Q̂ = S2

x (red solid
line) and without time-reversal symmetry Q̂ = Sz (blue dashed line).
(b) Matrix elements of density matrix associated with red solid line
in (a) evolve over time. (c) von Neumann entropy as a function
of time for non-Hermitian coupling operator: without time-reversal
symmetry Q̂ = SxSySz (red solid line) and with time-reversal sym-
metry Q̂ = iSz (blue dashed line). (d) Matrix elements of density
matrix associated with the blue dashed line in (c) evolve over time.
The initial density matrix is chosen as |ψ (0)〉 〈ψ (0)| with |ψ (0)〉 =

1√
2
( |φ+〉 + |φ−〉 ).

symmetric system, here the Hermitian and non-Hermitian
coupling Ô will be investigated, respectively. In order to ver-
ify the case of [ĤS, T ] = 0 in Table I, we prepare the initial
state on |ψ (0)〉 = α|φ+〉 + β|φ−〉, and then calculate the time
evolution of von Neumann entropy in the ground-state sub-
space by means of the Lindblad equation shown in Fig. 2.

For the Hermitian case, as shown in Fig. 2(a), the initial
coherence will maintain (vanish) if the operator Ô cou-
pled by the system respects (breaks) time-reversal symmetry.
However, there will be a dramatic difference when this time-
reversal symmetric system couples to non-Hermitian operator
Ô. Figure 2(c) plots the von Neumann entropy, from which
one can see clearly that the coherence is always destroyed
despite whether or not Ô respects time-reversal symmetry.
Hence we demonstrate that coherence could survive only
if the time-reversal symmetric coupling operator is also
Hermitian. This is consistent with Schur’s Lemma for antiu-
nitary groups that an antiunitary symmetric and Hermitian
operator is proportional to identity in degenerate subspace,
i.e., 
̂GÔ
̂G ∝ ÎG, which results in the relation L̂G ∝ ÎG ⊗
ÎG. When the situation that any of the symmetry and Hermitic-
ity is not satisfied happens, it results in 
̂GÔ
̂G �∝ ÎG, which
causes the decoherence and, meanwhile, L̂G �∝ ÎG ⊗ ÎG.
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FIG. 3. von Neumann entropy as a function of time with the
system Hamiltonian respecting both Q symmetry and time-reversal
symmetry. The Hermitian and non-Hermitian coupling operators
are shown in (a) and (b), respectively. For the Hermitian case,
the four kinds of coupling Ô are chosen as Ŝ2

x (red solid line),
ŜxŜy + ŜyŜx (blue dashed line), ŜxŜyŜz + ŜzŜyŜx (green dotted line),
and Ŝx (dot-dashed line). For the non-Hermitian case, the correspond-
ing choice is i(ŜxŜyŜz − ŜzŜyŜx ), ŜxŜy, ŜxŜyŜz, and Ŝ2

x Ŝz. The initial
value of density matrix is chosen as |ψ (0)〉 〈ψ (0)| with |ψ (0)〉 =

1√
2
( |φ+〉 + |φ−〉 ).

With regard to density matrix ρ̂G(t ) in ground-state sub-
space, for coherent evolution, all matrix elements decay with
the same rate during the whole region of time as shown in
Fig. 2(b). For the decoherent process, the nondiagonal ele-
ments could decay to zero, but its diagonal elements keep
finite, which means all coherence is lost and the system
reaches maximum entanglement in ground-state subspace
[see Fig. 2(d)].

C. Both unitary and antiunitary symmetry

There is another case in which the Hamiltonian respects
both time-reversal symmetry and Q symmetry, such as ĤS =
EgŜ2

z , whose degeneracy of ground states is protected by both
symmetries. This highly symmetric system allows for more
types of symmetry combinations which contain four circum-
stances for both Hermitian and non-Hermitian couplings as
shown in the third row of Table I. The corresponding entropy
dynamics associated with different symmetries are shown
in Fig. 3. For the Hermitian case, the initial coherence in
ground-state subspace is always maintained whichever sym-
metry the coupling operator Ô has. This is consistent with the
conclusions in subsections IV A and IV B that 
̂GÔ
̂G ∝ ÎG

regardless of unitarity or antiunitarity, which signifies the
decoherence occurs only when the coupling operator breaks
both symmetries, as shown in Fig. 3(a). For the non-Hermitian
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case, the coherence will be destroyed once the Q symmetry is
broken by coupling operator Ô as shown in Fig. 3(b). This re-
flects the fact that the coherence protected only by antiunitary
symmetry is fragile under non-Hermitian perturbation. One
point worth emphasizing is that the classification in Table I is
applicable to all groups containing two- or higher-dimensional
irreducible representations.

V. SUMMARY AND OUTLOOK

We study the fate of coherence in degenerate subspace,
which is protected by unitary symmetry or antiunitary sym-
metry. With symmetries lying in the system Hamiltonian, and
the interaction between system and environment, we have
demonstrated that the coherence could be fragile when the
symmetry is antiunitary. We elaborate on the classification
of various symmetry combinations and analyze the stability
of coherence detailedly and confirm it by means of several
spin-3/2 models. Moreover, the conclusion is extended to
interacting topological phases in many-body systems where
we investigated entropy dynamics in the symmetry protected
ground-state manifold for the AKLT model (Appendix D).
These results could be applied to the investigation of robust-
ness in time-reversal invariant topological edge states.

Given that the recent experimental progress in controlling
and manipulating dissipation in ultracold atoms provides an
unprecedented opportunity for understanding the dynamics
of open quantum systems [33–39], we expect our work will
guide the preparation for stable time-reversal symmetry pro-
tected topological states in the laboratory. There is another
intriguing issue about the open quantum systems beyond the
Born-Markov approximation. In this case, the coherence pro-
tected by antiunitary symmetry could also be fragile even
when the system couples Hermitian operators with the same
symmetry [40]. The fate of coherence that we have identified
could assist in experimentally preparing stable time-reversal
symmetry protected topological phases.
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APPENDIX A: DERIVATION OF THE
LINDBLAD MASTER EQUATION

Here we provide a derivation of the Lindblad master
equation (4) from the total Hamiltonian (3). We start from the
general total Hamiltonian (1)

ĤT = ĤS + ĤB + ĤSB, (A1)

and the Liouville–von Neumann equa-
tion of total density matrix ρ̂T is
given by

d

dt
ρ̂T = −i[ĤT , ρ̂T ]. (A2)

Introducing the interaction picture of ĤS + ĤB,

ρ̂I(t ) = ei(ĤS+ĤB )t ρ̂T (t )e−i(ĤS+ĤB)t , (A3)

then the equation of motion for ρ̂I(t ) will be

d

dt
ρ̂I(t ) = −i

[
Ĥ I

SB(t ), ρ̂I (t )
]
, (A4)

where Ĥ I
SB(t ) = ei(ĤS+ĤB )t ĤSBe−i(ĤS+ĤB )t . Integrating Eq. (A4)

from 0 to t yields

ρ̂I(t ) = ρ̂I(0) − i
∫ t

0

[
Ĥ I

SB(t ′), ρ̂I(t ′)
]
dt ′. (A5)

Substituting Eq. (A5) into the right-hand side of Eq. (A4),
we have

d

dt
ρ̂I(t ) = −i[Ĥ I

SB(t ), ρ̂I(0)]

−
[

Ĥ I
SB(t ),

∫ t

0

[
Ĥ I

SB(t ′), ρ̂I(t ′)
]
dt ′

]
. (A6)

Now we take the Born-Markov approximation. By replacing
ρ̂I(t ′) to ρ̂I(t ) and setting ρ̂(t ) = ρ̂S (t ) ⊗ ρ̂B where ρ̂B is the
density matrix of the bath in thermal equilibrium and taking
partial trace of the bath, we arrive at

d

dt
ρ̂S (t ) = −i trB

{[
Ĥ I

SB(t ), ρ̂S (0) ⊗ ρ̂B
]}

−
∫ t

0
dt ′ trB

{[
Ĥ I

SB(t ),
[
Ĥ I

SB(t ′), ρ̂S (t ) ⊗ ρ̂B
]]}

.

(A7)

The first term in the right hand side of Eq. (A7) can be
equal to zero by setting trB(ĤSB) = 0. This is because, for
the case of trB(ĤSB) �= 0, we can always adopt a shift Ĥ I

SB →
Ĥ I

SB − trB(ĤSB). Substituting t ′ by t − t ′ and extending the
upper limit to infinity in the integral, we have

d

dt
ρ̂S (t )=−

∫ ∞

0
dt ′ trB

{[
Ĥ I

SB(t ),
[
Ĥ I

SB(t−t ′), ρ̂S (t ) ⊗ ρ̂B
]]}

.

(A8)
Thus we obtain the Markovian master equation (A8). Here we
should emphasize that the infinite upper limit is a permissible
approximation if the integrand disappears sufficiently fast.
This is valid if the system relaxation time is much larger than
the time scale over which the bath correlation functions decay.

It is straightforward to obtain the Lindblad master equation
[41]. Putting the total Hamiltonian (3) into Eq. (A8) and
setting ∑

α

∑
β

gαg∗
β〈b̂α (t )b̂†

β (t ′)〉B = γ δ(t − t ′),

∑
α

∑
β

gαg∗
β〈b̂†

α (t )b̂β (t ′)〉B = 0,

∑
α

∑
β

gαg∗
β〈b̂α (t )b̂β (t ′)〉B = 0,

where 〈. . .〉B = trB(. . . ρ̂B), and γ = π |g|2ρ with density of
state ρ of the bath, then we can derive the Lindblad master
equation (4) directly.
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APPENDIX B: RESPONSE OF DENSITY MATRIX AND
VON NEUMANN ENTROPY GROWTH

In this Appendix, we derive the response of den-
sity matrix and von Neumann entropy growth utilizing
non-Hermitian linear response theory. As discussed in
Ref. [23], the whole system coupling to a bath with
white noise can be described by a non-Hermitian effective
Hamiltonian

Ĥeff = ĤS + Ĥdiss, (B1)

with Ĥdiss = (−iγ Ô†Ô + Ô†ξ̂ + ξ̂ †Ô ). Here ξ̂ (t ), ξ̂ †(t )
present the Langevin noise operators which obey the follow-
ing relations:

〈ξ̂ (t )ξ̂ †(t1)〉noise = 2γ δ(t − t1),

〈ξ̂ (t )ξ̂ (t1)〉noise = 〈ξ̂ †(t )ξ̂ (t1)〉noise = 〈ξ̂ †(t )ξ̂ †(t1)〉noise = 0,

(B2)

where 〈. . .〉noise denotes the noise average [42]. This formal-
ism is equivalent to the total Hamiltonian (3) with a white
noise bath [23]. In the interaction picture, time evolution of
density matrix can be expressed by

ρ̂(t ) = Ûeff (t )ρ̂Û †
eff (t ), (B3)

where Ûeff (t ) = T̂ exp (−i
∫ t

0 Ĥdiss(t ′)dt ′) with time-ordered operator T̂. Taking Ĥdiss as perturbation and then averaging the
noise, one can obtain the density matrix with the first-order correction of γ :

〈ρ̂(t )〉noise = 〈U ′
eff (t )ρ̂U ′†

eff (t )〉noise

=
〈(

1+
∞∑

n=1

(−i)n
∫

t1<···<tn

Ĥdiss(t1) . . . Ĥdiss(tn)dt1 . . . dtn

)
ρ̂

(
1+

∞∑
n=1

(i)n
∫

t1<···<tn

Ĥ†
diss(tn) . . . Ĥ†

diss(t1)dt1 . . . dtn

)〉
noise

≈ ρ̂ −
∫ t

0
dt ′γ {Ô†(t ′)Ô(t ′), ρ̂} + 2

∫ t

0
dt ′γ Ô(t ′)ρ̂Ô†(t ′), (B4)

where 〈. . .〉noise is the noise average and the correlation function Eq. (B2) has been applied. The linear response of density matrix
is defined by

δρ̂(t ) ≡ ρ(t ) − ρ̂ = −
∫ t

0
dt ′γ {Ô†(t ′)Ô(t ′), ρ̂} + 2

∫ t

0
dt ′γ Ô(t ′)ρ̂Ô†(t ′). (B5)

From the response of density matrix, one can calculate the von Neumann entropy which characterizes the loss of coherence.
Here we focus on the density matrix in symmetry protected subspace such as Kramers’ degenerate space ρ̂K(t ) = 
Kρ̂(t )
K

(ρ̂0,K = 
Kρ̂
K) and the corresponding response of von Neumann entropy is given by

δSv(t ) = Sv(t ) − S0,v(t )

= − Tr

[
ρ̂0,K + δρ̂K(t )

Tr [ρ̂0,K + δρ̂K(t )]
ln

(
ρ̂0,K + δρ̂K(t )

Tr [ρ̂0,K + δρ̂K(t )]

)]
+ Tr [ρ̂0,Klnρ̂0,K]

= Tr
[
ρ̂0,Klnρ̂0,K − [δρ̂K(t )/ Tr δρ̂K(t )]lnρ̂0,K

]
Tr δρ̂K(t ). (B6)

We initialize the density matrix in Kramers’ degenerate space,
i.e., Trρ̂0,K = 1. It is clear that, when δρ̂K(t ) ∝ ρ̂0,K [namely,
δρ̂K(t ) = ρ̂0,K(t ) tr δρ̂K(t )], we have δSv(t ) = 0 and δSR(t ) =
0, but δSv(t ) �= 0 if δρ̂K(t ) �= ρ̂0,K. In other words, the time-
reversal symmetry breaking discussed in the main text leads
to the growth of entropy.

APPENDIX C: MATRIX REPRESENTATION OF
QUATERNION GROUP

This Appendix provides a matrix representation of quater-
nion group Q discussed in the main text. The Q group
{Qj, j = 1, . . . , 8} is a non-Abelian group that is isomorphic
to subset {e, i, j, k, e, i, j, k}, whose multiplication table is dis-
played in Table II. The Q group contains a two-dimensional
irreducible representation (see Table III), which can be de-
scribed as a subgroup of the special linear group SL2(C).
We can construct the following four-dimensional reducible

representation:

Q1 = I ⊗ I, Q2 = −Q1, Q3 = −I ⊗ iσz, Q4 = −Q3,

Q5 = −iσx ⊗ σy, Q6 = −Q5, Q7 = −iσx ⊗ σx,

Q8 = −Q7, (C1)

TABLE II. Multiplication table (Cayley table) of quaternion group.

Element e e i i j j k k

e e e i i j j k k
e e e i i j j k k
i i i e e k k j j
i i i e e k k j j
j j j k k e e i i
j j j k k e e i i
k k k j j i i e e
k k k j j i i e e
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TABLE III. Character table of quaternion group.

Representation/conjugacy class {e} {e} {i, i} {j, j} {k, k}
Trivial representation 1 1 1 1 1
i-kernel 1 1 1 −1 −1
j-kernel 1 1 −1 1 −1
k-kernel 1 1 −1 −1 1
Two-dimensional representation 2 −2 0 0 0

where σx,y,z denote Pauli matrices and I is the identity matrix.
One can easily find that the matrix representation (C1) obeys
the multiplication Table II and contains two-dimensional irre-
ducible representation.

APPENDIX D: APPLICATION TO THE HALDANE PHASE
IN AKLT MODEL

In this Appendix, we study the Affleck-Kennedy-Lieb-
Tasaki (AKLT) model [43] which serves as an example to
show that the conclusion in the main text can also be applied
to interacting topological phases. The AKLT model exhibits
the symmetry protected topological phase (Haldane phase),
and its Hamiltonian is written as

Ĥ = J
L−1∑
j=1

(
S j · S j+1 + 1

3
(S j · S j+1)2 + 2

3

)
, (D1)

where S j = (Sx
j , Sy

j , Sz
j ) denotes the spin-1 vector operator, L

represents the system size, and J is the coupling strength.
One can rewrite the AKLT Hamiltonian (D1) as a sum of
the local spin-2 projector of the nearest neighbor pair of
sites Ĥ = J

∑L−1
j=1 P̂S=2

j, j+1. Then the zero-energy ground states
can be constructed by excluding spin-2 components on each
nearest neighbor site. For an open boundary condition, the
model contains four degenerate ground states which are ef-
fectively represented by two effective free spins-1/2 on each
edge. These degenerate edge states can be expressed by the
following matrix product states (MPS):

|�G〉 =
∑

{σ1···σL}
Tr

(
blT

A A[σ1] · · · A[σL]br
A

)|σ1 . . . σL〉, (D2)

where σ j = −1, 0, 1 denotes the component of Sz at site j.
The matrix A[σ j ] takes the form

A[−1] =
√

2

3

(
0 0

−1 0

)
, A[0] = 1√

3

(−1 0
0 1

)
,

A[1] =
√

2

3

(
0 1
0 0

)
, (D3)

and the left (right) boundary vector bl
A (br

A) corresponds
to free spin-1/2 on the left (right) edge. Specifically, they

FIG. 4. von Neumann entropy in ground-state subspace of the
AKLT model as a function of time with the system Hamiltonian
respecting both D2 symmetry and time-reversal symmetry with
Hermitian (a) and non-Hermitian (b) couplings, respectively. For
Hermitian coupling, the four different kinds of operators are chosen
as Ô = (Ŝz

1)2 (red solid line), Ô = i(Ŝx
1 )2(Ŝy

1 )2 + H.c. (blue dashed
line), Ô = Ŝx

1 Ŝy
1 + Ŝy

1Ŝx
1 (green dotted line), and Ô = Ŝz

1 (dot-dashed
line). For non-Hermitian couplings, the corresponding choices are
Ô = (Ŝx

1 )2(Ŝy
1 )2, Ô = i(Ŝz

1)2, Ô = iŜz
1, and Ô = Ŝx

1 (Ŝz
1)2. The model

parameters are chosen as L = 10 and γ /J = 0.01.

are set to

bl
A =

(
1
0

)
, br

A =
(

0
1

)
.

if both edges are set to spin up. The degenerate edge states
in the AKLT model are protected by both antiunitary symme-
try (time-reversal symmetry) and unitary symmetry (dihedral
symmetry D2) [44]. The D2 group is isomorphic to Z2 ×
Z2, which is represented by π rotation about two orthog-
onal axes. Hence we can investigate the fate of coherence
in ground-state subspace of the AKLT model, as similarly
discussed in Sec. IV C. The corresponding numerical re-
sults for both Hermitian and non-Hermitian couplings are
shown in Fig. 4. We can see that the fate of coherence
is the same as that in the noninteracting system, Fig. 3,
which further confirms the classification table. The unstability
of edge states in the AKLT chain is also found in recent
works [24,45].
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