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Measurement-induced purification in large-N hybrid Brownian circuits
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Competition between unitary dynamics that scrambles quantum information nonlocally and local measure-
ments that probe and collapse the quantum state can result in a measurement-induced entanglement phase
transition. Here we study this phenomenon in an analytically tractable all-to-all Brownian hybrid circuit model
composed of qubits. The system is initially entangled with an equal sized reference, and the subsequent hybrid
system dynamics either partially preserves or totally destroys this entanglement depending on the measurement
rate. Our approach can access a variety of entropic observables which are distinguished by the averaging
procedure, and for concreteness we focus on a particular purity quantity for which the averaging is particularly
simple. We represent the purity as a path integral coupling four replicas with twisted boundary conditions.
Saddle-point analysis reveals a second-order phase transition corresponding to replica permutation symmetry
breaking below a critical measurement rate. The transition is mean-field-like and we characterize the critical
properties near the transition in terms of a simple Ising field theory in 0 + 1 dimensions. In addition to studying
the purity of the entire system, we study subsystem purities and relate these results to manifestations of quantum
error correction in the model. We also comment on the experimental feasibility for simulating this averaged
purity, and corroborate our results with exact diagonalization for modest system sizes.
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I. INTRODUCTION

As a quantum many-body system evolves in time, its state
vector follows a trajectory in Hilbert space guided by unitary
dynamics and measurements. Unitary evolution is generated
by a system’s Hamiltonian, while measurements are gener-
ated by coupling the system to a macroscopic apparatus that
records the value of some observable and simultaneously col-
lapses the state vector. If a quantum system is composed of
many parts and if the interactions and measurements involve
only a few of these parts at a time, then the operator which
updates the quantum state has the general structure of a net-
work composed of many elementary pieces glued together.
When the number of elementary pieces is large and the time
is long, the evaluation of such a network is akin to evaluating
the partition function of a generalized statistical mechanics
problem, analogous to an Ising model where one allows more
local degrees of freedom and all kinds of few-body interac-
tions with coupling parameters that may be complex or even
random. This point of view has a long tradition in theoretical
physics, with recently studied examples including [1–6].

From this point of view, computing the dynamics of quan-
tum many-body observables is part of a very general class
of problems that also includes evaluating partition functions
of classical statistical models and studying imaginary time
evolution of local quantum systems. Given this overarching
framework, one goal is to classify and understand all possi-
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ble distinct classes of behaviors (phases) and the transitions
between them (phase transitions). Many of these problems
directly relate to experimentally realizable observables; even
in cases where direct experimental access is challenging, a
general understanding of the space of possible behaviors can
shed indirect light on measurable observables.

In this paper, we consider a recently discovered class
of such phases and phase transitions which involve the
interplay of unitary scrambling dynamics and single-body
measurements [7–9]. The phenomena of interest arise from a
competition between the unitary part, which tends to move the
state away from a product form by generating entanglement,
and the measurement part, which tends to move the state
towards a product form by decreasing entanglement. We make
progress towards an effective field theory description of this
physics by defining and solving a mean-field-like model that
exhibits a similar phase transition.

In more detail, the competition between scrambling dy-
namics and measurements in hybrid local quantum circuits
composed of two-body unitary scrambling gates interspersed
with local projective measurements leads to a measurement-
induced phase transition (MIPT) from a volume-law entan-
gled phase to an area-law entangled phase above a critical
measurement rate [7–11]. These phenomena are also related to
dramatic phase transitions that can occur in the entanglement
structures of final states in noisy quantum computers [12]. The
hybrid circuit discoveries were followed by a series of works
studying related transitions in a variety of models, exploring
the critical properties, and studying relations to quantum er-
ror correcting codes [13–24]. More recently, some papers
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have considered all-to-all models and again found analogous
phases and phase transitions [25,26]. Similar transitions have
also been observed recently in fermionic chains of coupled
Sachdev-Ye-Kitaev (SYK) models with imaginary damping
terms [27]. Related dynamics in free-fermion systems have
also been studied [28,29].

Distinct from but related to the entanglement transition in
local systems, it was found that measurements in quantum
circuits can also drive a purification transition, where an ini-
tial mixed state is dynamically purified in constant time by
repeated measurements occurring above a critical rate, while
remaining mixed until exponential times for measurement
rates below this critical rate [30,31]. From a quantum infor-
mation processing point of view, the volume-law phase or the
mixed phase can be identified as a randomly generated quan-
tum error correcting code [14,15,17,24], where the scrambling
dynamics effectively “hides” the quantum information from
local measurements.

The interplay between unitary dynamics and measurement
in quantum mechanics is an old and rich subject [12,32–
34]. In particular, weak continuous measurements of the type
studied here have a long history stemming largely from quan-
tum optics and cold atoms [35–46]. In fact, the monitored
dynamics we consider here—in which the quantum state evo-
lution is conditioned upon obtaining particular measurement
results—is most naturally described in terms of the quantum
trajectories formalism, a standard tool in the analysis of open
quantum systems [33]. Continuous weak measurements of
this kind have recently been used in experiments to engineer
quantum Zeno dynamics capable of producing metrologically
useful entanglement [40,42] as well as to drive phase transi-
tions in ensembles of cold atoms [46].

The novelty of our current interest is in the interplay of
these weak measurements with the many-body scrambling
dynamics of a strongly interacting system, where the com-
petition between these two forces drives a phase transition in
the structure of the many-body entangled state [13,25,30] that
is underpinned by a dynamically generated error-correcting
code [14,15,17]. Whereas existing theoretical and experimen-
tal work on weak measurements, quantum feedback, and
quantum control has focused largely on single- or few-body
dynamics, the hybrid dynamics we consider here is strongly
chaotic and many-body. In these many-body systems the
quantum state follows an increasingly complex trajectory that
can rapidly explore arbitrary regions of the exponentially large
Hilbert space. For this reason, new techniques and approaches
are required to characterize and understand hybrid entangle-
ment dynamics in the many-body context.

Due to the inherently many-body nature of these entangle-
ment transitions, the earliest work on measurement-induced
phase transitions was driven by numerical simulations of
Clifford circuits, in which a restricted subgroup of quantum
operations can be simulated efficiently on a classical com-
puter. Subsequently, Refs. [13,14] showed that Haar-random
hybrid circuits in 1 + 1 dimensions could be mapped ex-
actly onto effective replica statistical mechanics problems in
two dimensions. In these replica Potts models, the volume-
law phase can be identified as the “low-temperature” replica
permutation symmetry-broken phase of the Potts model, while
the area-law phase is associated with replica-symmetric “para-

magnetic” phase. Moreover, as we emphasize below, there are
actually families of observables and phase transitions related
to different kinds of averaging procedures which translate to
different kinds of replica limits. These and other mappings
are general, but analytical progress has been hampered by the
presence of nonpositive weights in the generalized partition
function; in certain cases the problem can be ameliorated by
considering the limit of large local Hilbert space dimension or
restricting to special classes of circuits. One also has to take
a delicate replica limit to access entanglement observables
averaged with respect to Born probabilities.

Throughout this body of work, a still outstanding goal
is the construction of effective field theories which capture
the universal physics of these various transitions. Here we
make progress towards that goal by introducing new analytical
tools for directly accessing measurement-induced entangle-
ment transitions. In particular, we introduce a broad family of
microscopic all-to-all hybrid Brownian circuit models exhibit-
ing measurement-induced phase transition (MIPT) that also
feature solvable large-N (mean-field) solutions. We focus on
a particularly simple member of this family featuring Brown-
ian two-body unitary dynamics [47] and Brownian one-body
weak measurements [33,44] and characterize the MIPT in this
model in terms of the purification dynamics of a system of
spins in a cluster Q that are initially maximally entangled
with a reference system R as shown in Fig. 1(a). We write
and analyze a path-integral representation for an average �Q

of the purity Tr[ρ2
Q] of the system which is controlled in the

large-N limit. The technology can be readily generalized to
higher moments Tr[ρn

Q] of the system density matrix as we
show in Appendix B.

The path-integral representation of the purity involves four
replicas which are coupled by various collective fields and
N copies of an auxiliary few-spin path integral that depends
on the collective fields. We analyze this path integral using a
saddle-point approach. At large N and time polynomial in N ,
the leading saddle point gives two distinct phases as a func-
tion of the measurement-to-scrambling ratio γ /J as shown in
Figs. 1(b) and (1 c). Sufficiently strong measurements γ > γc

yield a paramagnetic (replica symmetry unbroken) phase with
a single dominant saddle point [Fig. 1(c)(i)] for all circuit
depths T � O(1). As the measurement strength γ decreases
through the critical point γc, this saddle point continuously
splits into a pair of degenerate saddle points, leading to a
spontaneous breaking of the replica symmetry [Fig. 1(c)(ii)].
Nonequal boundary conditions at times t = 0, T promote the
formation of instanton configurations in the bulk with action
I∗ that traverse between the two saddle points. At exponen-
tially long times T ∼ exp (NI∗), we must include subleading
approximate saddles involving multi-instanton configurations.
The instantons proliferate at long time and the replica symme-
try is restored [Fig. 1(c)(iii)].

These hybrid Brownian circuit models are motivated
from several points of view. First, we wanted to consider
continuous-time models for the more direct access they pro-
vide to path-integral and field-theory representations of the
physics. Second, we wanted to consider models with all-
to-all interactions which typically have simpler statistical
properties, and we do observe that various distinct methods
of averaging the purity are nearly identical for experimentally
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FIG. 1. Purification phase diagram for hybrid Brownian circuits.
(a) Hybrid Brownian circuits V composed of alternating layers of
unitary Brownian dynamics of strength J (green) and nonunitary
weak-measurement Brownian dynamics of strength γ (blue) exhibit
a measurement-induced purification transition diagnosed by the pu-
rity �Q of qubits Q that are initially maximally entangled with a
reference system R. (b), (c) Above the critical point γ > γc (i) bulk
fields (solid blue) traverse through a single saddle point (dotted
black), leading to a pure phase with purity �Q ∼ 1 (b, dotted purple).
Below the critical point γ < γc (ii) the bulk fields tunnel between two
symmetry-broken saddle points (dotted black) via a single-instanton
configuration, leading to a mixed phase with �Q ∼ T exp (−NI∗) �
1 for polynomially long times T (b, solid red). At exponentially long
times the instantons proliferate and destroy the mixed phase (iii).
Dynamics at early times (gray boxes) are also accessible in these
models but are not the main focus of this work.

accessible systems of modest size. Third, we wanted to ana-
lytically study the entanglement of subsystems to reveal how
information about the reference is hidden from small subsys-
tems, a key property of quantum codes. Fourth, we wanted
to study models in which higher-body unitary dynamics and
higher-body measurements could be seamlessly incorporated.
Finally, while mean-field scrambling dynamics is also analyt-
ically accessible in random all-to-all fermion models, here we
wanted to study models consisting of spins which are more di-
rectly related to potential near-term experimental realizations
in cold-atom platforms. In the following we discuss each of
these motivations in more detail and survey some of the main
results.

First, the continuous-time path-integral representation of
our hybrid Brownian circuits makes it particularly easy to
derive a field-theory representation of the purification phase
transition. In particular, at low measurement rates close to
but below the critical rate γc, we find in Sec. III C that the
system entropy has critical exponent 3/2, i.e., − ln �Q ∼
N (γc − γ )ζ , with ζ = 3/2. The corresponding field theory
is particularly simple, an effective 0 + 1d Ising field theory,
which hosts a phase transition in the limit of infinite N for
finite T . Moreover, by including subleading saddles at finite
N , we show in Sec. III E that instantons destabilize the mixed

(symmetry-broken) phase leading to asymptotic purification
of the system at exponentially long time.

Second, a crucial aspect of the MIPT phenomena is that
they are visible only in entanglement-sensitive observables
like the purity that are nonlinear in the density matrix.
Since measurement outcomes are fundamentally random in
quantum physics, one must carry out a large number of exper-
imental trials (exponential in the number of measurements)
to generate even a few copies of a particular state associ-
ated to a fixed set of measurement outcomes, which would
be necessary to estimate these observables. These include
so-called “forced” transitions where one postselects on a par-
ticular measurement outcome and the quantum state evolves
according to a fixed nonunitary transformation [25,48–51]
(our measurement setup is of this kind). It is also interest-
ing to attempt to circumvent the experimental overheard by
considering special hybrid circuits [52,53].

Given this exponential postselection cost, we are justified
in considering MIPTs in families of observables with compa-
rable experimental accessibility, no harder than simulating the
Born averaged observable. The above phase diagram applies
to a simple kind of averaged purity in which we average
the unnormalized purity and probability separately and then
divide. This circumvents the theoretical difficulty associated
with averaging the purity with respect to the Born probability.
We show in Sec. II B and in Appendix A that this analyt-
ically tractable averaging procedure actually corresponds to
an experimentally accessible observable which requires com-
parable experimental effort to the Born-averaged quantity.
Moreover, we offer evidence from exact diagonalization that
these two distinct averages are actually nearly identical in the
mixed phase at modest system size.

Third, we can also directly access the purity �A of subsys-
tems A ⊂ Q in our path-integral representation by modifying
the boundary conditions on the path integral. In particular,
this allows us to make contact between our path-integral
representation and the dynamically generated quantum error
correcting codes generated in the mixed phase. We show in
Sec. IV that the subsystem purities are consistent with this
code property and identify a critical subsystem fraction kc

above which the subsystems of Q with more than kcN qubits
are entangled with the reference R for any time T polynomial
in N . Within our model, we can also access the critical ex-
ponent of kc analytically, and we find kc − 1/2 ∼ (γc − γ )μ,
with μ = 1.

Fourth, while we focus most of our attention in this work
on a single model, we emphasize that the tools we develop in
Secs. II and III are quite general. In particular, in Appendix B
we provide explicit path-integral representations for a family
of models indexed by (p, q) featuring p-body unitary interac-
tions and q-body weak measurements. Such models could be
relevant for studying measurement-only transitions [54–59],
and we conjecture they will have an even higher degree of
self-averaging for larger p, q. Furthermore, these all-to-all
clusters can readily be placed on different geometries, such as
chains and trees, and also with various kinds of experimentally
realizable long-range interactions. We reserve detailed study
of these more general models to future work.

Finally, we emphasize that hybrid Brownian dynamics
similar to the type we study here could in principle be
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probed in experiments with optically trapped cold neutral
atoms coupled to a single-mode cavity. All-to-all interac-
tions between atomic qubits mediated by photons in the
optical cavity mode can be engineered to generate strong
scrambling dynamics [60–62]. Single-site measurements in
principle could be performed using state-of-the-art single-site
resolution imaging techniques [63,64]. Alternatively, weak
continuous measurements of collective spin observables could
be performed by monitoring photons escaping from the rear
port of the cavity [40,65] (see Appendix G). To probe the
purity �Q one could prepare two identical copies of the state
within a pair of atomic subensembles and interfere them [66].
To guarantee identical measurement results in the two copies
one would need to perform an exponentially large number of
experimental trials and postselect on matching measurement
records as noted above [31]. While we acknowledge that
these are daunting experimental challenges, in principle the
analytical results we derive here provide precise predictions
for the outcomes of real experiments that could be performed
in the laboratory.

In the rest of the introduction we provide an outline for the
rest of the paper. Section II introduces the hybrid Brownian
circuit models and describes how they may be converted into
a large-N path-integral description. In Sec. II A we introduce
the minimal (2,1) hybrid Brownian circuit model, followed by
a description the averaged purity �Q that serves as our order
parameter in Sec. II B. We also explain the experimental inter-
pretation of the averaged quantity in this section. In Sec. II C
we derive the path-integral representation for the purity �Q

and derive a simplification for spin-1/2 systems in Sec. II D.
We discuss the discrete replica permutation symmetry group
and its representation in path-integral language in Sec. II E.

In Sec. III we study the purification transition in the (2,1)
hybrid Brownian model via large-N methods and obtain the
phase diagram shown in Fig. 1. In Sec. III A 1 we consider
time-independent saddle-point solutions of the path integral
and show that the MIPT transition is driven by a sponta-
neously broken Z2 symmetry in the bulk. In Sec. III A 2 we
consider the role of nonuniform boundary conditions and
show that these drive instanton transitions between the two
degenerate saddle points. In Sec. III B we show that these in-
gredients lead to the three phases shown in Figs. 1(b) and 1(c)
and compute analytical estimates for the purity �Q in each
of these phases. In Sec. III C we derive a field theory for
the model near criticality and show that the critical exponent
for the entropy − ln �Q is ζ = 3/2. We also study the path
integral numerically using gradient descent methods and find
a critical exponent ζ = 1.44 ± 0.07 consistent with the ana-
lytical prediction. In Sec. III D we show that the saddle-point
approach can also capture the time dependence of the purity at
early times, and compare these predictions with results from
numerical exact diagonalization in small systems. In Sec. III E
we study the disintegration of the phase at exponentially long
times due to the proliferation of instantons.

In Sec. IV we consider the purity �A of subsystems A ⊂ Q
as a function of subsystem fraction k = |A|/|Q|. In Sec. IV A
we show that measuring the purity of subsystems is equivalent
to a straightforward modification of the boundary conditions
in the path integral. In Sec. IV B we use our field theory for
the transition to find a critical exponent for subsystem fraction

μ = 1. In Sec. IV C we interpret these results in terms of a
dynamically generated quantum error correcting code in the
mixed phase. In Sec. V we review our results and discuss
directions for future work.

II. HYBRID BROWNIAN CIRCUITS

In this section we define the microscopic model, a hybrid
Brownian circuit combining time-dependent all-to-all two-
spin interactions and postselected local weak measurements,
and show how to express the purity �Q as a path-integral ex-
pression with a large-N limit. This model can be generalized
to allow for p-spin interactions and postselected weak mea-
surements of q-spin operators as described in Appendix B,
but in the main text we focus on the simplest case with p = 2,
q = 1. The system Q consists of N spins initialized in a
maximally entangled state with N additional reference spins
R. The system Q is then evolved with the hybrid Brownian
circuit V while the reference R is left untouched as shown in
Fig. 1(a).

In the large-N limit, we expect this model to exhibit at least
two hybrid dynamical phases and a measurement-induced
phase transition between them as a function of the effec-
tive measurement rate. As discussed in the introduction, the
physics of these phases is only visible in nonlinear functions
of the quantum state. We therefore construct path-integral
representations of the squared probability P2 to obtain the
postselected state and of the unnormalized purity Z2 of the
system qubits. These are the simplest observables that both
access the measurement-induced phase transition and are an-
alytically calculable. Both integrals P2, Z2 can be analyzed in
the large-N limit by saddle-point analysis, yielding a mean-
field description of the measurement-induced phase transition.
In Sec. III we analyze the physics of the (p, q) = (2, 1) model
at large N and demonstrate the phase structure illustrated in
Fig. 1.

A. Model

Consider a system of N spin-S SU(2) degrees of free-
dom Sα

i , i = 1, . . . , N , α = x, y, z subject to an alternating
sequence of unitary and nonunitary Brownian dynamics as
illustrated in Fig. 1(a). For the moment we leave the spin
length S unspecified, but we specialize to S = 1/2 in Sec. II B.

On even timesteps t = m�t , with m an integer, the
spins evolve under a Brownian unitary matrix U (t ) =
exp [−iH (t )�t/2] with Hamiltonian

H (t ) =
∑
i < j
α, β

Jαβ
i j (t )Sα

i Sβ
j (1)

with time-dependent all-to-all couplings J = Jαβ
i j (t ) [47].

These couplings are independent white-noise-correlated
Gaussian random variables with zero mean and covariance〈

Jαβ
i j (t )Jα′β ′

i′ j′ (t ′)
〉
J = J

N (S + 1)4

δtt ′

�t/2
δii′δ j j′δ

αα′
δββ ′

. (2)

The scale of the fluctuations of the coupling is set by the
coupling parameter J � 0. The normalization 1/N (S + 1)4

ensures that the Hamiltonian (1) is extensive in N and

094304-4



MEASUREMENT-INDUCED PURIFICATION IN LARGE-N … PHYSICAL REVIEW B 104, 094304 (2021)

intensive in S, and the factor δtt ′ (�t/2)−1 is a regularization
of the Dirac delta function δ(t − t ′) for white-noise random
variables.

On odd timesteps t = (2m + 1)�t/2 the spins are sub-
jected to single-site weak measurements along random spin
directions. To perform each measurement we introduce an
auxiliary qubit initialized in |ψ〉aux = |0〉aux and couple it to
the system via a unitary interaction,

exp

[
−i

�t

2
O(t )σ x

aux

]
|�〉|0〉aux, (3)

where |�〉 is the state of the many-body system prior to the
weak measurement, σ x

aux is the Pauli-x operator acting on
the auxiliary qubit, and O(t ) =∑i,α nα

i (t )Sα
i is the random

spin operator to be measured. We then perform a projective
measurement of the auxiliary qubit in the σ

y
aux eigenbasis and

postselect for +1 results. The many-body state |�〉 is thereby
transformed to

|�〉 → M(t )|�〉 = (1 − 1
2O�t − 1

8O
2�t2 + · · · )|�〉 (4)

to lowest order in �t/2 (note that M(t ) 
= exp [−O(t )�t/2]).
Note that under this measurement setup, the state evolves
nonunitarily, and also deterministically, without any inherent
measurement randomness. Similar to the unitary Brownian
dynamics above, we take the coefficients n = nα

i (t ) to be in-
dependent white-noise-correlated Gaussian random variables
with zero mean and covariance〈

nα
i (t )nα′

i′ (t ′)
〉
n = γ

(S + 1)2

δtt ′

�t/2
δii′δ

αα′
. (5)

The fluctuations in n are controlled by the parameter γ � 0.
Due to the postselection step the operator M(t ) does not
conserve probabilities, and the resulting state M(t )|�〉 is not
normalized.

The full time evolution of the system is constructed by
stacking alternating layers of U (t ) and M(t ) gates

V ≡
T∏

t=0

M(t )U (t ) (6)

as shown in Fig. 1(a). Given an initial state ρ0 and a fixed
disorder realization J, n this hybrid circuit produces the
unnormalized output state ρ̃(V ) = V ρ0V † with probability
P = Tr[ρ̃(V )] � 1. The relative strength of measurement and
scrambling in this circuit is controlled by the dimensionless
ratio γ /J .

B. Phase structure and observables

When γ = 0 the weak measurement layers have no ef-
fect, and we recover a unitary Brownian circuit that strongly
scrambles quantum information [47]. For a system Q maxi-
mally entangled with a reference R at time t = 0 [Fig. 1(a)],
the purely unitary dynamics obtained at γ = 0 preserves the
entanglement between Q, R for all time. Specifically, if we
measure the second Rényi entropy of the system as a function
of a time, it will remain at its maximal value S(2)

Q = N ln 2
for all time. This is analogous to a “volume-law” phase for
the Rényi entropy of the system. We can also equivalently
consider the purity �Q = exp (−S(2)

Q ).

Once we consider a nonzero rate γ of weak measurements,
the purely unitary dynamics is modified to include processes
that degrade entanglement. In particular, for sufficiently large
γ the measurements will dominate and all the entanglement
between the system and the reference will be destroyed,
thus purifying the system. In this case, S(2)

Q = 0 and �Q = 1
[Fig. 1(b), dotted purple] [30].

The Rényi entropy S(2)
Q or the purity �Q therefore serve

as order parameters for the purification transition. Our goal
in the remainder of this section is to derive a path-integral
expression for the purity �Q, computed for a particular ana-
lytically tractable disorder average. We begin by specifying in
more detail the quantity of interest.

Consider a single realization of the circuit V = V (J, n)
which produces a pure unnormalized quantum state ρ̃(V ) of
the system and reference. To calculate the purity Tr[ρ̃2

Q(V )] of
the system’s reduced density matrix ρ̃Q(V ) = TrR[ρ̃(V )] for
this trajectory, we introduce a second identical copy ρ̃ ′(V ) =
ρ̃(V ) of the system and reference with the same postselected
measurement results and identical dynamics and compute the
expectation value of the SWAPQQ′ operator [66–69],

Z2(V ) ≡ Tr
[
ρ̃2

Q(V )
] = Tr[(ρ̃ ⊗ ρ̃ ′)SWAPQQ′ ], (7)

which gives the purity of the unnormalized state ρ̃Q(V ). The
purity �Q = Tr[ρ2

Q] = Z2/P2 of the normalized state ρQ =
ρ̃Q/Tr[ρ̃Q] is obtained simply by dividing Z2 by the squared
probability for this trajectory,

P2(V ) ≡ Tr[ρ̃Q(V )]2 = Tr[ρ̃ ⊗ ρ̃ ′]. (8)

From Eqs. (7) and (8) it is clear that the quantity Z2 differs
from P2 only in the presence of the SWAPQQ′ operator. As
we shall see, this SWAP operator modifies the initial and final
boundary conditions of the system, leading to fundamentally
different physics in Z2 and P2.

The normalized purity �Q = Z2/P2 is in principle an
experimentally accessible observable and can be measured
in the following way, which we discuss in more detail in
Appendix A. The experimentalist first fixes the parameters
J, n and then applies the Brownian circuit dynamics V (J, n),
repeatedly performing the necessary projective measurements
until the desired measurement record is obtained (i.e., +1
for all σ

y
aux measurements). If the σ

y
aux outcomes are close

to equally likely, this will require a number of experimental
runs scaling like 2Naux , where Naux is the total number of
auxiliary measurement qubits used over the whole circuit.
Each successful run is stored as a quantum state ρ̃(V ), and
then once enough copies of the state have been obtained, the
experimentalist can perform SWAP tests to estimate the value
of the purity �Q(V ) = Z2(V )/P2(V ) for this circuit realiza-
tion V . If the purity is expected to be small, this estimate will
require many samples to gather sufficient statistics. The total
number of experiments required in this brute force approach
is thus no more than 2aNt+bN , where the 2aNt piece represents
the 2Naux experimental runs required for postselection and the
2bN piece represents extra copies needed to estimate the purity
from SWAP tests.

Next, we can consider sampling the normalized purity
�Q(V ) over different circuit realizations V = V (J, n). The
average of these samples then defines the circuit-averaged
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FIG. 2. Unnormalized purity for the hybrid Brownian circuit. The purity Z2 = Tr[ρ̃2
Q] of the unnormalized state ρ̃Q is equivalent to the

expectation value of the SWAPQQ′ operator evaluated on two identical copies ρ̃, ρ̃ ′ of the system. Straightforward rearrangement of the circuit
yields pure-state dynamics on four replicas r = 1, 2, 3, 4 with nontrivial boundary conditions at t = 0, T . Because the Brownian coefficients
J, n are uncorrelated in time, the disorder averages 〈 · 〉J,n at each circuit layer (solid green, solid blue) can be computed independently. Arrows
on the t = T boundary condition indicate a “reversed” singlet state |(32)〉 = −|(23)〉. The corresponding circuit for the squared probability P2

is identical except for the SWAP-ed boundary condition at t = T .

purity �Q. The circuit-averaged purity can be estimated ex-
perimentally by simply repeating the above procedure for each
sample J, n, yielding

�Q =
∑

V

π (V )
Z2(V )

P2(V )
, (9)

where π (V ) = π (V (J, n)) is the probability for a particular
circuit realization J, n. While the experimental protocol for
computing this disorder-averaged quantity is clear, this kind
of average is difficult to calculate with, since the random
variables J, n appear in numerator and denominator of Eq. (9).

In this work we make analytical progress by sampling
trajectories differently. A particularly convenient choice is to
consider

〈�Q〉 = 〈Z2〉
〈P2〉 , (10)

where both 〈Z2〉 =∑V π (V )Z2(V ) and 〈P2〉 =∑
V π (V )P2(V ) are individually averaged over circuit

realizations V = V (J, n). While one might reasonably protest
that the disorder-averaged quantity 〈�Q〉 is not as physical
as the quantity �Q, we show in Appendix A that measuring
〈�Q〉 just corresponds to sampling the purity �Q(V )
over trajectories with a different probability distribution
π ′(V ) from the usual circuit probability distribution π (V ).
Moreover, we demonstrate that the disorder-averaged quantity
〈�Q〉 requires only classical postprocessing and no more
quantum resources than simulating �Q.

In the rest of the paper, we consider the deterministic weak
measurement setup for qubits S = 1/2, and suppress the 〈. . .〉
notation for �Q, Z2 and P2, always referring to the particular
averaged quantity whenever �Q, Z2 and P2 are considered.

Also, we will make statements about the Rényi-2 entropy-like
quantity − ln 〈�Q〉 derived from the averaged purity 〈�Q〉.
This is obviously not the same as the averaged Rényi-2 en-
tropy of the system, since we are averaging the purity and then
taking the logarithm. In the rest of the paper, when referring
to the entropy of the system we always refer to the quantity
− ln 〈�Q〉, which is what we can access analytically.

C. Path integral representation

We have expressed the unnormalized purity Z2 and squared
probability P2 in Eqs. (7) and (8) using two identical copies
ρ̃ ′ = ρ̃ of the unnormalized state. To express these quantities
in path-integral language, we first use the Choi-Jamiołkowski
isomorphism to convert the mixed-state dynamics on two
copies of the system into pure-state dynamics on four
copies [70,71]. In its simplest form, this isomorphism just
maps the two-copy density matrix |ψ〉〈ψ | ⊗ |ψ ′〉〈ψ ′| to the
four-replica pure state |ψ〉|ψ〉|ψ ′〉|ψ ′〉. More generally, this
isomorphism provides a mapping between quantum operators
O acting on a Hilbert space H and pure quantum states |O〉
living in a doubled Hilbert space H ⊗ H.

In our calculation this conversion from mixed-state dy-
namics to doubled pure-state dynamics is easiest to see
when the quantities Z2, P2 are represented graphically us-
ing a tensor-network representation as shown in Fig. 2(a),
where downward-facing external legs represent bras 〈ψ | and
upward-facing legs represent kets |ψ〉. The two copies of
the system Q, Q′ are initially maximally entangled with their
respective reference systems R, R′ via EPR pairs |EPR〉 =⊗

N (|00〉 + |11〉)/
√

2. Hybrid Brownian dynamics V are then
applied to the system qubits Q, Q′, and the SWAPQQ′ operator
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(orange) exchanges qubits in the two systems to yield the
purity Z2. Each instance of the time-evolution matrix V has
been labeled by a replica index r = 1, 2, 3, 4.

Evaluating the trace and using the identity

〈EPR|(V † ⊗ I) = 〈EPR|(I ⊗ V ∗) (11)

we can bring the purity into the form shown in Fig. 2(b).
In this form the dynamics may be interpreted as pure-state
dynamics on four replicas of the system, where replicas r =
1, 3 are subject to time evolution V while replicas r = 2, 4
are subject to complex-conjugated time evolution V ∗. The
EPR pairs and SWAPQQ′ operator yield nontrivial boundary
conditions on the initial and final quantum states as shown in
Fig. 2(c). These boundary conditions are analogous to those
imposed at the input and output states of Haar-random tensor
network models exhibiting a MIPT [17].

Complex conjugation V ∗ is naturally related to time-
reversal symmetry in quantum mechanics [72]. For spin-1/2
degrees of freedom, the conventional definition of time
reversal also includes conjugation by iσ y, since complex con-
jugation alone only reverses the y component of spin,

(σ x, σ y, σ z )∗ = (σ x,−σ y, σ z ). (12)

In replicas r = 2, 4 we therefore reflect all spin components
in the σ x, σ z spin plane via the operator iY = i

∏
i σ

y
i , such

that

V ∗ = (−iY )(iY )V ∗(−iY )(iY ) = (−iY )VT (iY ), (13)

where VT = (iY )V ∗(−iY ) is the properly time-reversed ver-
sion of the time-evolution operator V [72]. With this
additional coordinate change the spin-1/2 Pauli matrices
transform correctly as �σ → �σT = −�σ as required for angular
momentum vectors under time-reversal T . We regard this
additional rotation as a convenient parametrization that makes

the SU(2) invariance of the problem manifest in the resulting
path integral.

The remaining factors of ±iY introduced into the four-
replica circuit by this change of coordinates serve to convert
the initial and final EPR pairs into spin singlets:

∓ 1√
2

(I ⊗ iσy)(|00〉 + |11〉)rs = ± 1√
2

(|01〉 − |10〉)

= ±|(rs)〉, (14)

where |(rs)〉 denotes a spin-singlet state between replicas
r, s. The spin singlet is antisymmetric under replica exchange
|(rs)〉 = −|(sr)〉, but because the four-replica circuit fea-
tures pairs of identical singlet states at t = 0, T these overall
negative signs cancel such that Z2, P2 are always positive.
The unnormalized purity Z2 is initialized with spin-singlet
pairs |(12)(34)〉 entangling replicas 1-2 and 3-4 as shown in
Fig. 2(c), while the final state |(14)(32)〉 has spin singlets
entangling replicas 1-4 and 3-2 due to the SWAPQQ′ operator.
These nonequal boundary conditions in Z2 lead to most of the
interesting physical consequences explored in this work. By
contrast, without the SWAPQQ′ operator the squared probabil-
ity P2 has identical singlet-pair states |(12)(34)〉 at both initial
and final times.

With the unnormalized purity Z2 and squared probability
P2 expressed in terms of pure-state dynamics on four replicas
r = 1, 2, 3, 4, we now perform the disorder average over the
Brownian coefficients J, n and show that this leads to path-
integral expressions for Z2, P2.

Because the disorder J, n is uncorrelated in time due to the
delta function δtt ′ , we may compute the disorder average for
each circuit layer U (t ), M(t ) separately as shown in Fig. 2(c).
Expanding each U (t ) = exp [−iH (t )�t/2] to lowest order in
�t , the disorder average over a single unitary layer yields

〈U ⊗ UT ⊗ U ⊗ UT 〉J = 1 − �t2

4

∑
r<s

(−1)r+s〈HrHs〉J − 1

2

�t2

4

∑
r

〈HrHr〉J + O(�t4),

〈HrHs〉J = J

�t

N

(S + 1)4

(
1

N

∑
i

Sr
i · Ss

i

)2

. (15)

where terms linear in �t vanish because J has zero mean and where Sr
i · Ss

i ≡∑α Sα,r
i Sα,s

i is the standard dot product. The
second line holds as an operator equation, where Hr,s denote copies of the Hamiltonian (1) acting on replicas r, s = 1, 2, 3, 4.
The factor of �t in the denominator comes from the regularization of the white-noise random variables Eq. (2), while the overall
factor of N comes from the sum

∑
i over spins and is ultimately responsible for large-N control. The replica-dependent factor

(−1)r+s is a consequence of the time-reversed dynamics in replicas r = 2, 4, and is a crucial feature of the field theory governing
the MIPT.

We can therefore express each disorder-averaged unitary circuit layer as a propagator IJ [Sr
i ] over 4N spins Sr

i :

〈U ⊗ UT ⊗ U ⊗ UT 〉J = e−NIJ [Sr
i ]�t , IJ

[
Sr

i

] ≡ J

4(S + 1)4

∑
r<s

(−1)r+s

(
1

N

∑
i

Sr
i · Ss

i

)2

+ JS2

2(S + 1)2
, (16)

which holds as an operator equation to lowest order in �t . Similar manipulations for the nonunitary circuit layers yield a
propagator Iγ [Sr

i ]

〈M ⊗ MT ⊗ M ⊗ MT 〉n = e−NIγ [Sr
i ]�t , Iγ

[
Sr

i

] ≡ −γ

2(S + 1)2

∑
r<s

(−1)r+s

(
1

N

∑
i

Sr
i · Ss

i

)
+ γ S

(S + 1)
, (17)
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where there is a relative minus sign in the first term compared
to Eq. (16). In terms of the propagators IJ , Iγ , the disorder-
averaged unnormalized purity Z2 (or squared probability P2)
is given by a stack of alternating unitary and nonunitary prop-
agators with appropriate boundary conditions,

〈Z2 or P2〉J,n = 〈ψT |
∏

t

e−NIγ �t e−NIJ�t |ψ0〉, (18)

where the initial and final states

|ψ0〉, |ψT 〉 = {|(12)(34)〉, |(14)(32)〉} (19)

are the singlet-pair states enforcing the nonuniform boundary
conditions that distinguish Z2 from P2. Notice that both the
unitary and nonunitary propagators in Eq. (18) are preceded
by a factor N which allows for analytical control over fluctua-
tions in the thermodynamic limit.

In performing the disorder average we have exchanged
intersite couplings Sα

i Sβ
j in the original Hamiltonian (1) for

interreplica couplings Sr
i · Ss

i in the propagator (18). As a
consequence, the propagators IJ , Iγ are functions only of the
mean-field variables

Grs =
(

1

N

∑
i

Sr
i · Ss

i

)/
(S + 1)2 (20)

with r < s, which mediate all spin-spin interactions. Because
these mean fields consist of a large number of independent
and identical degrees of freedom, their dynamics is highly
classical with fluctuations controlled by the system size N .
These simplifying features are typical of disorder-average
calculations performed in the context of mean-field spin glass
theory [73,74] and the SYK model [75–77], where the high
amount of connectivity between degrees of freedom naturally
leads to mean-field behavior. Because our Brownian inter-
actions are all-to-all, a similar phenomenon occurs in our
hybrid model and the physics can be captured by the mean
fields Grs.

Formally, we convert the propagator (18) to a path inte-
gral by introducing an over-complete basis of coherent spin
states |�〉r

i parameterized by SO(3) unit vectors � and sat-
isfying the eigenvalue equation � · Sr

i |�〉r
i = S|�〉r

i for each
spin Sr

i [78,79]. Using this basis we insert resolutions of the
identity

I =
∫

2S + 1

4π
d2�r

i

∣∣�r
i

〉〈
�r

i

∣∣ (21)

at each time step �t following the usual rules of path
integration. This effectively converts the spin operators in
the propagators IJ , Iγ into classical SO(3) vectors Sr

i →
(S + 1)�r

i . The standard path-integral derivation also gener-
ates “kinetic” or Berry phase terms ∼�∂t� in the path integral
coming from overlaps 〈�r

i (t )|�r
i (t + �t )〉 of the coherent

spin states at consecutive time steps [79] (see Appendix B 3
for more details).

Next, to enforce the identification (20) we introduce
six time-dependent mean fields Grs(t ) and six Lagrange

multiplier fields Frs(t ) into the path integral via the identity

1 =
∫ ∏

r<s

DFrsDGrs

× exp

[∫
dt
∑
r<s

iFrs

(
Grs − 1

N

∑
i

�r
i · �s

i

)]
. (22)

With this delta-function constraint now explicit in the path
integral, we may simply substitute the mean fields Grs for any
mean-field Heisenberg terms

∑
i �

r
i · �s

i /N that appear in the
propagators IJ , Iγ . In particular, the unitary part IJ of the path
integral Eq. (16) contributes quadratic terms ∝ JG2

rs while the
nonunitary part Iγ Eq. (17) contributes linear terms ∝ γ Grs.
After making this replacement the only spins �r

i explicitly re-
maining in the path integral are those coupled to the Lagrange
multiplier fields iFrs coming from the delta-function constraint
Eq. (22).

Thus in the limit �t → 0 at fixed T we finally arrive at

Z2 or P2 =
∫ (∏

r<s

DFrsDGrs

)
exp [−NI[Frs, Grs]],

I[Frs, Grs] =
∫ T

0
dt

[
J

4

∑
r<s

(−1)r+sG2
rs

− γ

2

∑
r<s

(−1)r+sGrs − i
∑
r<s

FrsGrs

]

− ln K[Frs, ψ0, ψT ],

K[Frs, ψ0, ψT ] = 〈ψT | exp

[
−
∫ T

0
dt
∑
r<s

iFrs
Sr · Ss

(S + 1)2

]
|ψ0〉.

(23)

where we have expressed the path integral over spins Sr as
a time-ordered exponential propagator K[Frs, ψ0, ψT ] and the
choice of boundary states |ψ0〉, |ψT 〉 determines whether the
expression corresponds to Z2 or P2. The path-integral expres-
sion (23) is the main technical result of this section. Here
the quadratic terms in the action ∝ JG2

rs correspond to the
unitary part of the dynamics while the linear terms ∝ γ Grs

correspond to the non-Hermitian weak measurement part. The
competition between these two terms as a function of γ /J is
what drives the measurement-induced phase transition in this
model.

Due to the overall factor of N preceding the action
I[Frs, Grs] in Eq. (23), we can evaluate the path integral via
steepest-descent when N is large. In this limit, the action
I may be viewed as a classical Lagrangian where the first
two terms describe effective potential energies for the mean
fields Grs and the third term is a coupling between the Grs

and the Lagrange multipliers Frs. The propagator K evolves
an initial state |ψ0〉 of four spin-1/2 degrees of freedom Sr

to a final state |ψT 〉 under the influence of time-dependent
external fields iFrs(t ). We perform this steepest-descent anal-
ysis for time-independent fields Frs, Grs in Sec. III A 1, and
consider time-dependent fields leading to instanton transitions
in Sec. III A 2. This large-N analysis yields an analytically
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tractable description of the system over a large portion of the
phase diagram shown in Fig. 1.

Although our focus in this work is on the simplest mean-
field model (23) featuring bilinear spin interactions (p = 2),
single-spin weak measurements (q = 1), and probed by the
purity Tr[ρ̃n

Q] with n = 2, we show in Appendix B how this
(2,1) model can be easily generalized to arbitrary (p, q) hy-
brid Brownian models featuring higher-order interaction and
measurement terms and probed by nth-order moments Tr[ρ̃n

Q]
of the density matrix. From this more general derivation we
find that the choice of p, q only affects the Grs-dependent part
of the action I , while the propagator K is unaffected by the
order of the unitary interactions or weak measurements. By
contrast, the parameter n changes the number of replicas r, s
but otherwise leaves the path integral (23) unchanged. We re-
serve the study of these more general models for future work.

D. Simplification of spin-1/2 propagator K

Before performing a saddle-point analysis of the ac-
tion (23) at large-N , however, it is convenient to first simplify
the four-replica propagator K[Frs, ψ0, ψT ] for the special case
S = 1/2. This case is particularly easy to calculate because
the Heisenberg coupling terms Sr · Ss in the propagator as
well as the initial and final singlet-pair states are all mani-
festly SU(2) invariant. In fact, because the initial and final
states |(12)(34)〉, |(14)(32)〉 are pairs of SU(2) spin singlets,
the four-replica system is constrained at all times to live in
the subspace of total spin STot = 0, in which the total spin
operators STot =∑r Sr , summed over all four replicas, act
trivially and the Casimir operator STot · STot = S (S + 1) has
eigenvalue S = 0. For four spin-1/2 degrees of freedom Sr

with r = 1, 2, 3, 4 this subspace is two-dimensional and is
spanned by the basis vectors

|↑〉 = 1

2
√

3
(2|1010〉 + 2|0101〉 − |0011〉 − |1100〉

− |1001〉 − |0110〉),

|↓〉 = 1

2
(|0011〉 + |1100〉 − |1001〉 − |0110〉), (24)

which transform trivially under global SU(2) rotations
generated by the total spin operators STot. We view this two-
dimensional subspace of the replica space as encoding an ef-
fective two-level system |ψ (t )〉 = ψ↑(t )|↑〉 + ψ↓(t )|↓〉 which
we refer to as a replica-bit or r-bit. The instantaneous state of
the r-bit may be drawn on a Bloch sphere as shown in Fig. 3.

In the two-dimensional basis |↑〉, |↓〉 the initial and final
boundary conditions may be simply written in terms of the
states

|ψ±〉 =
√

3

2
|↑〉 ± 1

2
|↓〉, (25)

where the initial and final states |ψ0〉, |ψT 〉 take the values

t = 0 t = T
Z2 |ψ+〉 |ψ−〉
P2 |ψ+〉 |ψ+〉

(26)

such that Z2, P2 differ only in the final boundary conditions
at t = T . The difference between the nonuniform boundary

FIG. 3. Bulk two-level r-bit subspace |↑〉, |↓〉. For S = 1/2, the
SU(2) symmetry of the problem kinematically constrains the dy-
namics to a single effective qubit or r-bit |ψ (t )〉 (red) living in the
STot = 0 subspace spanned by |↑〉, |↓〉. The r-bit’s trajectory |ψ (t )〉
must begin on the singlet-pair state |ψ+〉 = |(12)(34)〉, and end on
the same singlet-pair state for P2 or on the SWAP-ed singlet-pair
state |ψ−〉 = |(14)(32)〉 for Z2.

conditions for Z2 compared to the uniform boundary con-
ditions for P2 will be crucial in distinguishing between the
mixed and purified phases.

The propagator in the two-dimensional r-bit subspace sim-
plifies to

K[ �B, ψ0, ψT ] = 〈ψT | exp

[
1

2

∫ T

0
dt �B(t ) · �σ

]
|ψ0〉eB0T/2,

(27)

where �σ are the 2 × 2 Pauli matrices acting on the r-bit
|↑〉, |↓〉 subspace and �B(t ) is a time-dependent “magnetic
field” with components

Bx = 2

3
√

3
(iF12 + iF34 − iF14 − iF23), By = 0,

Bz = 2

9

∑
r<s

iFrs − 2

3
(iF13 + iF24), (28)

and where terms proportional to the identity within the r-bit
subspace have been collected into the term

B0 = 2

9

∑
r<s

iFrs. (29)

The time-dependent bulk fields Bx(t ), Bz(t ) encode the rel-
evant mean-field dynamics of the r-bit ψ (t ), and in general
must execute nontrivial motions in the bulk in order to satisfy
the nonequal boundary conditions |ψ0〉, |ψT 〉. By contrast, the
remaining fields in the action I appear simply as quadratic
Gaussian fields and may therefore be trivially integrated out
of the path integral, leading to the effective action

Z2 or P2 =
∫

DBxDBz exp [−NI[ �B]],

I[ �B] =
∫ T

0
dt

[
27B2

x

4J
− 81B2

z

4J
+ Bz(1 + 18γ )

− J

72
− 4γ 2

J
− γ

2

]
− ln K[ �B, ψ0, ψT ],

K[ �B, ψ0, ψT ] = 〈ψT | exp

[
1

2

∫ T

0
dt (Bxσx + Bzσz )

]
|ψ0〉,

(30)
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which is a simplification of the general path integral (23) for
the special case S = 1/2.

In this form, one can view the magnetic field variables
�B(t ) as “guiding fields” for the bulk r-bit, in the sense that
the propagator − ln K in (30) is minimized when the r-bit
|ψ (t )〉 is in the instantaneous ground state of the effective
“magnetic-field” Hamiltonian H ( �B) = −�B(t ) · �σ/2 appearing
in the propagator K . As a result of this coupling between
the magnetic field variables �B(t ) and the bulk r-bit |ψ (t )〉,
we expect the fields �B(t ) to be strongly time-dependent near
t = 0, T in order to guide the r-bit |ψ (t )〉 to its appropriate
boundary conditions |ψ0,T 〉. We see these expectations borne
out in gradient-descent numerics in Sec. III.

A crucial ingredient in the path-integral representation of
Z2 or P2 in Eq. (30) is the contour of integration of the Bx

and Bz fields. Due to the minus sign preceding the B2
z term

in Eq. (30) we conclude that for the path integral to be well
defined, Bx must be integrated along the real axis, while Bz

must be integrated along the imaginary axis. We shall discuss
this issue of contour integration more fully in Sec. III A 1.
Note also that until now we have not made any assumptions
about the time dependence of the fields �B(t ). The simplified
expression (30) for the path integral over the fields Bx, Bz

follows solely from the SU(2) symmetry of the four-replica
propagator K and the fact that the boundary states |ψ0〉, |ψT 〉
belong to a particular spin sector.

For the rest of the paper we will focus on the properties
of the path integral (30), which we shall discuss in terms of
classical field configurations �B(t ). But it should always be
borne in mind that this is only a particular example of the more
general path-integral expression (23) and further higher-body
generalizations.

E. Replica symmetry

The pure-state dynamics on four replicas shown in Fig. 2(c)
possesses a number of discrete symmetries. The microscopic
bulk dynamics V = V (1) ⊗ V (2)

T ⊗ V (3) ⊗ V (4)
T on replicas r =

1, 2, 3, 4 is manifestly invariant under the replica symmetry
group

G = (S2 × S2) � Z2, (31)

where the inner S2
∼= Z2 denote symmetric groups permuting

the time-reversed or non-time-reversed replicas among them-
selves with generators σ :1 ↔ 3 and σ ′:2 ↔ 4 [25]. The outer
Z2 in the semidirect product is generated by an operation τ

corresponding to timereversal T on all four replicas followed
by exchange of even and odd replicas 1 ↔ 2, 3 ↔ 4, where
σ ′ = τστ . Crucially, the generator τ is antiunitary; as we
discuss in Appendix C, this fact constrains the spectrum of
V to be real or for for its eigenvalues to come in complex-
conjugate pairs. This is the same mechanism that guarantees
the reality of the spectrum in non-Hermitian PT-symmetric
quantum mechanics [80–83].

To be explicit we can express the symmetry generators
σ, τ directly in terms of their effects on the path-integral
expressions (23) and (30). In Eq. (23) the generator σ sim-
ply exchanges spins S1

i ↔ S3
i in the propagator K , while

the generator τ exchanges even and odd replicas and flips the
sign of all spins S1

i ↔ −S2
i , S3

i ↔ −S4
i . If we ignore the

boundary conditions |ψ0,T 〉, each of these transformations can
be undone by an appropriate redefinition of the fields Frs, Grs,
leaving the bulk action I invariant. In the reduced spin-1/2
action Eq. (30), σ generates a reflection about σ z in the r-bit
subspace:

σ : �σ → σ z �σσ z. (32)

Ignoring the boundary conditions, this transformation can be
undone by a redefinition of the x-component of the magnetic
field Bx → −Bx, which leaves (30) invariant. The action is
trivially invariant under τ as this generator acts trivially in the
r-bit space |↑〉, |↓〉.

The boundary conditions |ψ±〉 = |(12)(34)〉, |(14)(32)〉
break the replica symmetry group down to a subgroup H ⊂ G
generated by the mutually commuting generators τ, c, where

c ≡ στσ (33)

corresponds to performing time-reversal T on all four repli-
cas followed by a “reflection” in replica space 1234 ↔
4321. The generators τ, c leave the boundary states
|(12)(34)〉, |(14)(32)〉 invariant, while the generator σ trans-
forms these two states into one another:

σ |(12)(34)〉 = |(14)(32)〉. (34)

The generator σ therefore represents a Z2 symmetry generator
of the bulk symmetry group G that is explicitly broken by the
boundary states.

We shall find in the next section that this same Z2

symmetry is also spontaneously broken in the bulk of the
four-replica system below the critical point γ < γc, leading
to two ordered phases that transform into one another via
the generator σ . By imposing nonequal boundary conditions
|(12)(34)〉, |(13)(24)〉 at times t = 0, T that explicitly break
the σ -symmetry, we force the system in the ordered phase to
transition somewhere in the bulk between the two symmetry-
broken ordered phases via a domain wall or “kink.” This is
entirely analogous to imposing nonequal boundary conditions
on either end of a conventional Ising chain (in dimension d >

1) in thermal equilibrium [13]. In both cases, the bulk systems
undergo spontaneous Z2 symmetry-breaking transitions as a
function of measurement rate or temperature, respectively,
with an ordered phase below the critical point. In the ordered
phase, the nonequal boundary conditions force the creation of
domain walls or “kinks” in the bulk where the system rapidly
transitions from one symmetry-broken phase to the other in
order to satisfy the boundary conditions. We shall see this
picture emerge explicitly for the hybrid Brownian model in
the next section, where we study the path integral Eq. (30) in
the large-N limit.

III. MEASUREMENT-INDUCED PURIFICATION AT
LARGE N IN THE (2,1) HYBRID BROWNIAN CIRCUIT

The path integral (23), along with its simplification (30)
for spin-1/2 degrees of freedom, expresses the disorder-
averaged purity Z2 for hybrid Brownian dynamics in terms
of mean-field variables Frs, Grs (or �B) whose fluctuations are
controlled by the large parameter N . In the thermodynamic
limit N → ∞, the factor of N preceding the action I in the
path integral (23) and (30) allows for analysis via steepest-
descent methods (also known as saddle-point or stationary
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phase methods [84]). At infinite N , the leading contribution
to the path integral comes from the dominant saddle point (or
saddle-point manifold). This section primarily focuses on this
regime of the path integral, meaning large N at fixed T . We
will also focus on the regime where T > J−1, γ −1 is larger
than the various microscopic timescales in the problem, which
is a quasi-steady-state regime in which early time transients
have died away.

At finite N , there are two kinds of corrections to the lead-
ing saddle-point answer, fluctuations around the saddle point,
which are perturbative in 1/N , and additional subleading sad-
dles, which are nonperturbative in 1/N , e.g., e−N = e−1/(1/N ).
We leave the study of perturbative corrections from fluctua-
tions to future work. We do, however, consider contributions
from subleading saddles in Sec. III E. These give rise to im-
portant new effects in the long-time limit at fixed N , leading
to the disintegration of the mixed phase.

Our main purpose in this section is to analyze the path
integrals for Z2 and P2 in the saddle-point approximation
using a combination of analytical and numerical tools. We
will show that the model exhibits two phases separated by
a continuous phase transition as a function of the measure-
ment strength γ . The boundary conditions at t = 0, T deserve
special attention as they are a departure from typical large-
N or saddle-point analyses. Typically, such calculations are
concerned with the equilibrium physics of a Hamiltonian H
at inverse temperature β with the path integral constructed to
compute the partition function Z = Tr[e−βH . . .]. Because of
the trace, such a path integral naturally has time-translation
symmetry, and the relevant saddle points may usually be taken
to be time independent. In our case, however, the propagator
K[ �B, ψ0, ψT ] explicitly breaks time translation invariance,
and we are forced to consider time-dependent saddle points
in the analysis. Nevertheless, when T is large compared to
microscopic scales, the relevant saddle-point configurations
will be approximately time independent for a majority of the
time domain.

The plan for the remainder of this section is as follows.
In Secs. III A 1 and III A 2 we outline the different compo-
nents that are used to construct saddle-point solutions. These
components include “bulk” configurations which are time-
independent, instanton-like configurations that are localized
in time, and boundary effects which are concentrated near the
boundaries t = 0, T . In Sec. III B we use these components
to show the existence of and analyze two distinct phases in
the purity. In Sec. III C we consider the critical point be-
tween these two phases and analyze the resulting effective
field theory of the transition. In Sec. III D we consider the
dynamics of the purity at early times from the perspective of
numerical gradient descent and exact diagonalization. Finally,
in Sec. III E we comment on late times at fixed N , which
we analyze by summing over subleading saddles with multi-
instanton configurations.

A. Components of saddle-point configurations

1. Bulk (time-independent) configurations

While we expect general field configurations �B(t ) to be
time dependent, especially near the boundaries t = 0, T , we
first consider the physics of the path integral (30) deep in the

bulk, i.e., dynamics occurring at times 1/J � t � T very far
from either the initial or final boundary. Because the prop-
agator K is local in time, fields �B(t ) deep in the bulk are
largely unaffected by the faraway t = 0, T boundary con-
ditions. Moreover, time-dependent variations |∂t �B| > 0 are
penalized in the action (30) via kinetic-energy terms in the
propagator K . We therefore expect fields deep within the bulk
to be time-independent.

For a time-independent magnetic field �B(t ) = �B, the prop-
agator (30) is easy to evaluate and one obtains

K ≈ exp
(T B

2

)
+ exp

(
−T B

2

)
, (35)

where B ≡ √B2
x + B2

z and where we have dropped the con-
tributions from the boundary states |ψ0〉, |ψT 〉, which are
subdominant in the limit of large T (and have not been treated
properly by our assumption of time-independence anyway).
Assuming real and positive B and large T , we may simply
replace ln K → BT/2 in the action I[ �B] (30).

With this replacement, one can now easily determine the
time-independent saddle points of the action I[ �B] (30) in the
large-N limit by solving the Euler-Lagrange equations ∂Bx I =
∂Bz I = 0. We find one symmetric saddle point,

Bx = 0,
(36)

Bz = 4
9

(
γ + 1

2γc
)
,

and a pair of degenerate symmetry-broken saddle points

Bx = ± 1
3

√
(γc − γ )(γ + 3γc),

(37)
Bz = 1

3 (γ + γc),

where γc ≡ J/18 is the critical point where all three saddle-
point solutions coincide. The symmetric saddle is invariant
under the replica permutation symmetry Bx → −Bx, while
the second pair of saddle points explicitly break this replica
symmetry.

The bulk action Ibulk for these saddle points are plotted in
Fig. 4 as a function of the measurement rate γ . Note that the
symmetry-broken saddle points (purple) always have lower
action than the trivial saddle point (green); the dominant sad-
dle point, however, depends on the direction of the integration
contour. In the region γ < γc, the symmetry-broken saddles
are indeed dominant, but for γ > γc, the trivial saddle controls
the path integral. We now explain these points.

In Fig. 5 we plot the contours of the real part of the
action in Eq. (30) in the complex plane of Bx with Bz

set to its saddle-point value. The original contour of inte-
gration is along the real Bx axis. For γ < γc the replica
symmetry-broken saddles [Fig. 5(b), purple dots] lie along
the contour of integration, and are the minimum-action sad-
dles as confirmed in Fig. 5(b)(iii). However, for γ > γc, the
corresponding symmetry-broken saddles lie along the imag-
inary axis [Fig. 5(a)]. The contour of integration cannot be
deformed to pass through these saddles while maintaining
a valid estimate of the integral using only the saddle-point
value.

In order for the saddle-point value to make the only im-
portant contribution to the integral, the contour of integration
must pass though the saddle point in such a way that the
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FIG. 4. Classical bulk action for the trivial and symmetry-broken
saddles. For all values of γ the bulk action Ibulk for the symmetry-
broken saddles (purple) is always smaller than the trivial saddle
(green), but above the critical point γ > γc the symmetry-broken
saddle points (dotted purple) are imaginary and do not contribute to
the path integral (see Fig. 5). The symmetry-broken saddle points
(solid purple) therefore dominate below the critical point γ < γc

while the trivial saddle point (solid green) dominates above γ >

γc. This smooth exchange of saddle-point dominance at γ = γc is
responsible for the second-order measurement-induced purification
transition in the (2,1) model.

saddle is a local minimum. However, for γ > γc, the desired
integration contour hits a branch cut that leads off to infinity
in a direction for which the value of the integrand diverges.
This means that the symmetric saddle [Fig. 5(a)(iii), green
dot] is actually the relevant saddle to estimate the integral
when γ > γc. Hence, there is a bulk phase transition at γ = γc

across which the replica permutation symmetry is sponta-
neously broken.

This symmetry breaking appears explicitly in the problem
if we plot the real part of the action I as a function of Bx above
and below the transition point [Figs. 5(a) and 5(b)(iii)], which
reveals a straightforward double-well potential with sponta-
neously broken Z2 symmetry Bx ↔ −Bx below the transition
γ < γc.

2. Time-dependent configurations

The time-independent analysis of the previous section
revealed the key Z2 symmetry-breaking physics that is re-
sponsible for the purification transition in the (2,1) hybrid
model. But the time-independent bulk solutions alone cannot
be the whole story: indeed, as the bulk action I is identical
for Z2 and P2, the time-independent bulk solutions alone ap-
pear to predict a purity Z2/P2 = 1 for all γ , which is clearly
incorrect. Neglected in this time-independent analysis are the
nonequal boundary conditions at times t = 0, T which explic-
itly break time translation symmetry in the problem.

To correctly evaluate the path-integral expressions (30)
in the large-N limit (or (23) and its generalizations in
Appendix B), we must expand the action I around “clas-
sical” time-dependent configurations of the fields �B(t )
[Grs(t ), Frs(t )] that properly account for boundary effects at
t = 0, T . Quantum fluctuations around these classical config-
urations are controlled by the factor of N preceding the action
I , analogous to the role played by 1/h̄ in semiclassical (WKB)

expansions [84]. By definition the classical field configura-
tions �B(t ) obey the time-dependent Euler-Lagrange equations
that extremize the action I , including time-derivative terms
∂t Bx,z coming from the path-integral expansion of the prop-
agator K as well as boundary terms associated with the
boundary states t = 0, T .

These full time-dependent Euler-Lagrange equations can
be solved numerically in the general case, and analytically in
some special cases, including with time-independent configu-
rations and near the critical point. In the discussion below, we
focus on the regime where T is much larger than any micro-
scopic scale, so we are not considering transients associated
with times of order γ −1 or J−1. We will return to consider
dynamics on these short timescales in Sec. III D.

There are two kinds of time-dependent configurations that
will be important. The first are edge configurations in which,
under the influence of the boundary states |ψ0〉, |ψT 〉 in the
propagator K , the �B(t ) fields near t = 0, T are deformed away
from their time-independent values deep in the bulk. These
boundary contributions are relevant for any value of γ . The
second are instanton-like configurations in which the �B(t )
fields traverse from one symmetry-broken saddle to another.
These are relevant only for γ < γc.

We first discuss the edge configurations, focusing on the
regime γ > γc as illustrated in Fig. 6(a). These configura-
tions are found using a numerical gradient descent algorithm
which takes the action (30), discretizes the time direction to
approximate the kernel K , and then searches through classical
configuration space �B(t ) to find the time-dependent fields
Bx(t ) and Bz(t ) that extremize the action; for further details
of the gradient-descent numerics, see Appendix E. Deep in
the bulk the fields Bx(t ), Bx(t ) take their trivial saddle-point
values Bx = 0, Bz = 2γc/3 as expected [Fig. 6(a)]. Near the
boundaries, however, the fields Bx(t ), Bz(t ) differ consider-
ably from their bulk value due to the influence of the boundary
states in the definition of K . Crucially, since the initial and
final states |ψ0〉, |ψT 〉 are symmetric about the Bx = 0 saddle
point, the action evaluated on the time-dependent configura-
tions are identical for P2 and Z2 up to corrections that are
exponentially small in T . As a result, these contributions
cancel in the ratio �Q = Z2/P2, yielding �Q ≈ 1.

Similar edge configurations are also relevant for γ < γc,
but instanton configurations now also play a role. For γ < γc,
there are two symmetry-broken bulk saddle configurations
B±

x [dotted black in Fig. 6(b)]. An important new ingredient
is that the bulk saddles are distinguished by the boundary
conditions. The boundary state at t = 0 in the definition of P2

and Z2 favors the B+
x saddle (upper dashed black line), while

the boundary state at t = T in the definition of Z2 favors the
B−

x saddle (lower dashed black line). The identical boundary
conditions in P2 favor a configuration shown in the left panel
of Fig. 6(b) in which the bulk saddle is B+

x and there are iden-
tical edge configurations near t = 0 and t = T . By contrast
the nonequal boundary conditions in Z2 favor a configuration
that traverses from B+

x to B−
x over a localized time window.

This single-instanton configuration is shown in the right panel
of Fig. 6(b). Due to the reflection symmetry Bx ↔ −Bx of the
propagator K under the generator σ , the overlap between |ψ0〉
and the ground state of the B+

x saddle Hamiltonian is equal
to the overlap between |ψT 〉 and the ground state of the B−

x
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FIG. 5. Time-independent saddle-point analysis. With Bz fixed to its saddle-point value, plots of Re[Ibulk] in the complex Bx plane reveal
the Z2 symmetry breaking in the bulk responsible for the purification transition. Dotted blue and solid red lines show contours of steepest
descent. (a) Above the critical point γ > γc, the trivial (i, green) and symmetry-broken (ii, purple) saddle points lie on the imaginary-Bx axis.
Because the integration contour for Bx in the path integral lies along the real axis (solid red), only the trivial saddle point contributes to the
effective bulk action Ibulk (iii). (b) Below the critical point γ < γc, all three saddle points lie on the real-Bx axis (i, ii) and therefore all three
contribute to the bulk action (iii), where the symmetry-broken saddle points (purple) minimize the effective bulk action Ibulk.

saddle Hamiltonian. As a result, the edge contributions to the
action are approximately the same in the left and right panels
of Fig. 6(b), and these contributions therefore cancel from the
ratio �Q = Z2/P2.

The time-translation symmetry of the bulk implies that
the instanton is approximately free to move in time, giving
rise to a zero mode in the path integral as is typical for
instanton physics. This means that for γ < γc, we do not
have just an isolated saddle point but a continuous family of
nearly degenerate saddle points. For this reason, the instanton
contributes an additional “entropic” factor ∝ (T − T0) to the
purity Z2 with T0 some short-time regulator that arises because
the instanton cannot get too close to the t = 0, T boundaries
without changing its action.

We note that there are other possible time-dependent con-
figurations that could be relevant for Z2. In particular, one
might try to avoid the action cost of the instanton by consid-
ering a configuration that adheres closely to the B+

x saddle
until times of order T . Then around t = T , the �B(t ) fields
could bend towards the B−

x saddle to some degree. Such a
configuration might be viewed as a partial instanton “bound”
to the t = T boundary. One can find approximate solutions of
roughly this form, but at least when T is large, the unbound
instanton configuration always has lower action than such a
bound configuration in every calculation we have done.

B. Phases of the path integral

With the above ingredients in hand, we can now obtain
the structure of the purity �Q as a function of γ . The bulk

phase transition at γ = γc drives the transition in �Q, but
to correctly compute this quantity we must include edge and
instanton effects as discussed above.

For γ > γc, there is only a single symmetric bulk saddle
and the edge contributions to the action are identical for Z2

and P2 [Fig. 6(a)]. Again, this follows from the important fact
that the boundary states at t = 0 and t = T as well as the
trivial bulk saddle are symmetric with respect to the reflection
symmetry Bx ↔ −Bx. For this reason, the classical actions for
Z2 and P2 are identical, up to corrections that decay exponen-
tially with T and we therefore expect Z2/P2 ≈ 1. Moreover,
although we do not explicitly consider 1/N fluctuations in this
work, we note that it seems plausible that the 1/N corrections
are also equal order-by-order in Z2 and P2 up to corrections
that decay exponentially with T .

For γ < γc, there are two symmetry-broken bulk saddles
[Fig. 6(b)], and the instanton configuration with action I∗
and “entropy” ∝ (T − T0) controls the Z2 path integral. Once
again, due to the symmetry under Bx ↔ −Bx we expect the
edge contributions to the action for P2 and Z2 to be identical
and the only difference arises from the extra instanton in Z2.

Combining these results together, we find that at large N
and fixed T > J−1, γ −1 (with T large compared to micro-
scopic scales), the purity exhibits two phases,

�Q = Z2

P2
=
{

T −T0
a(T ) exp [−NI∗(γ )] γ < γc

1 γ � γc,
, (38)

where (T − T0)/a(T ) is the ratio of the functional determi-
nants entering Z2 and P2 [and we are only really interested
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FIG. 6. Time-dependent classical field configurations �B(t ) from numerical gradient descent. Optimal classical field configurations Bx (t )
(blue), and Bz(t ) (red) as obtained by numerical gradient descent over Re I[ �B] of the “magnetic-field” action (30). Gradient descent is performed
by taking Jδt = 0.05, until the threshold δI = 10−7 is reached for the action difference, requiring ∼104 iterations for the parameters considered
here. (a) Above the critical point γ > γc the configurations are dominated by a single trivial time-independent saddle point (dotted black),
where the different boundary conditions in Z2, P2 lead to nontrivial boundary dynamics in the field Bx (t ) near t = 0, T . (b) Below the critical
point γ < γc, the optimal configurations are dominated by a pair of symmetry-broken saddle points (dotted black). The nonuniform boundary
conditions in Z2 promote the formation of an instanton with action I∗ somewhere in the bulk that traverses between the two saddle points.

in the explicit T dependence, although a(T ) may have some
weak T dependence as well]. Note that for γ > γc we expect
the Z2 and P2 functional determinants to be approximately
equal (it would be good to check this expectation explicitly).
Finally, we remind the reader that this result concerns large
N and fixed T ; we discuss late-time dynamics at fixed N in
Sec. III E.

C. Phase transition

From the above analysis, which yields the large-N esti-
mate (38) for the purity �Q, we find that the value of the purity
in the mixed phase γ < γc is governed almost entirely by the
instanton action I∗. For γ � γc, this depends on the details
of the spin propagator K . However, in the vicinity of the
critical point γ = γc, it is possible to analytically determine
the instanton action as a function of γ . In this section, we
outline the effective field theory of the transition and com-
pute the instanton action. This allows us to determine various

critical exponents which have an expected mean-field charac-
ter arising from the large-N limit.

Near the critical point, the symmetry-breaking field Bx has
magnitude Bx ∝ √

J (γc − γ ) which vanishes at the critical
point, while the field Bz remains finite and of the order of
J by Eqs. (36) and (37). Thus, near the critical point, one
can find the time dependence of the instanton configuration
analytically by expanding the action in terms of the small
field Bx. For the instanton configurations, the Bz field in the
action can be set to be a constant value set by the bulk saddle
point, in agreement with our observations from gradient de-
scent numerics (Fig. 6). Keeping in mind that the σx, σz terms
in the “magnetic-field” Hamiltonian H ( �B) = −�B(t ) · �σ/2 in
the propagator K[ �B, ψ0, ψT ] [Eq. (30)] do not commute at
different times t , one can expand the term − ln K in orders of
Bx ∝ √

J (γc − γ ) which is the small parameter, while keeping
the time dependence explicit. Keeping terms up to second
order in Bx(t ) (and dropping constant terms) the action in
Eq. (30) can be rewritten as

I[ �B] ≈
∫

dt
27

4J
B2

x (t ) − 1

8J

∫
dt1dt2Bx(t1)Bx(t2) f (t1, t2) + O

(
B4

x

)
with the kernel f (t1, t2) = cosh α(T − 2|t1 − t2|)

cosh αT
, α = γ + γc

6J
, (39)
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where we have fixed the field Bz = (γ + γc)/3 to its time-
independent saddle-point value.

One can take T → ∞ in the integration kernel safely, since
most of the instantons occur far from the boundary, thereby
simplifying the kernel to f (t1, t2) = e−2α|t1−t2|. Since the ker-
nel is tightly peaked near t2 = t1, one can expand in t2 near t1
and obtain the time dependence of the field Bx(t ). The lowest
order of time dependence occurs at quadratic order B2

x , and
all higher orders of time dependence are suppressed at least
to quartic order B4

x . Thus, keeping only the lowest order of
time dependence, we can just consider the time-independent
part of the B4

x term in the action. This can be easily obtained
from the bulk saddle solutions Eq. (37) and expanding the
time-independent action to order B4

x , which gives a contri-
bution

∫
dtB4

x/(128α3J3). Combining these results, and also
extracting the time-independent part of the kernel in Eq. (39)
for simplicity, the action I[ �B] can be approximated as

I[ �B] ≈
∫

dt Bx(t )

(
27

4J
Bx(t ) + 1

128α3J3
B3

x (t )

− 1

8J

∫
dsBx(s)e−2α|t−s|

)
, (40)

where the first two terms correspond to the time-independent
contributions and the final term captures the time dependence
of Bx(t ).

One can easily check that there exist static solutions
Bx(t ) = Bx satisfying the time-independent equations of mo-
tion for the action (40). These time-independent equations of
motion are

27Bx

2J
+ B3

x

32α3J3
− Bx

4J

∫ +∞

−∞
dse−2α|t−s| = 0. (41)

Evaluating the integral this simplifies to

B3
x = 32α3J3

(
1

4Jα
− 27

2J

)
Bx = δBx, (42)

which has static solutions

Bx = 0,±
√

δ, (43)

where we have introduced the parameter δ ≡ 2(γ + γc)2(γc −
γ )/J . Close to criticality, this static solution for Bx is consis-
tent with the earlier time-independent results, approximately
the same as the Eq. (37), differing only at order O(γc − γ )3/2

for γ � γc.
One can also easily find time-dependent solutions �B(t ) to

the action (40). Since the kernel e−2α|t−s| is tightly peaked near
s = t , we can Taylor-expand the field as Bx(s) = Bx(t ) + (s −
t )B′

x(t ) + (s − t )2B′′
x (t )/2 + · · · in the equation of motion.

After some algebra we obtain the time-dependent equation of
motion for the field Bx(t ) with a second-order time derivative,

B′′
x (t ) = −δBx(t ) + B3

x (t ). (44)

Equation (44) is exactly the equation of motion of a scalar
field in a φ4 potential with a mass set by δ, which vanishes
at criticality, δ → 0. This is the correct theory near criticality,
as any higher order time derivatives are suppressed either by
factors of 1/α or δ. The bulk field theory model close to

criticality δ → 0 is thus given by

I[ �B] =
∫

dt

(
1

2
(∂t Bx )2 + V (Bx )

)
,

V (Bx ) = −δ
B2

x

2
+ B4

x

4
, (45)

which is just the action for a scalar φ4 theory, where Bx is the
scalar field and δ is the mass. The purification transition in
the (2,1) hybrid Brownian circuit model is therefore captured
by the same universal physics as a 0 + 1-dimensional Ising
model.

In the mixed phase δ > 0, we expect time-dependent in-
stanton transitions between the static solutions Bx = ±√

δ just
as in Sec. III B. The instanton configuration has a field profile
that asymptotes from Bx = √

δ in the far past to Bx = −√
δ in

the far future. The equation of motion in Eq. (44) has instanton
solutions of the required form, with

B∗
x (t ) = −

√
δ f∗(t ), f∗(t ) = tanh t

√
δ/2. (46)

We can plug this solution back into the action (40) to compute
the action cost of the instanton I∗, relative to a background that
stays in one saddle for all time. This calculation yields

I∗ = δ3/2
∫

dy√
2

(
( f ′

∗)2 − f 2
∗
2

+ f 4
∗
4

+ 1

4

)
. (47)

The integral is just a numerical constant independent of δ, so
the instanton action contribution goes like I∗ ∼ δ3/2.

We confirm that this instanton configuration is correct for
the full action in Eq. (30) by feeding the instanton solu-
tion (46) into the action and checking if there are nearby
configurations with smaller action. In Fig. 7 we find time-
dependent configurations of the field Bx(t ) from numerical
gradient descent that are indistinguishable from the analyt-
ically obtained solution in Eq. (46) within the threshold
for gradient descent. Furthermore, by numerically computing
the action cost of these optimal configurations as a func-
tion of measurement rate γ we find a critical exponent ζ =
1.44 ± 0.07 consistent with the analytically obtained ζ =
3/2. Hence, as the purity undergoes a transition at γ = γc,
the entropy − ln �Q has a scaling form

− ln �Q ∼ N (γc − γ )ζ (48)

with critical exponent ζ = 3/2.

D. Time dependence of purity

The statements made so far have been for the purity of the
system at long times T > J−1, γ −1 after some initial early
time transients controlled by the microscopic parameters. In
this section we study these early time dynamics for times
T ∼ J−1, γ −1, accessing the purity on O(1) timescales using
the saddle-point approach as well as exact diagonalization
numerics. In Fig. 8(a) we plot the Rényi-2 entropy − log2 �Q

or S(2)
Q (t ), as a function of time for different γ , by finding min-

imal action configurations of the fields at different time inter-
vals. To access this numerically, we perform gradient descent
with the action in Eq. (30), and interpret the results using the
formula, S(2)

Q /N ∼ I∗ − ln(T )/N , from Eq. (38). For γ > γc,
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FIG. 7. Instanton configurations near criticality and critical exponent from gradient descent numerics. (a) Bulk instanton configurations
�B(t ) obtained from numerical gradient descent for measurement rates γ = γc − �γ just below the critical point. Gradient descent is performed
by taking Jδt = 0.05, until the threshold δI = 10−7 is reached for the action difference. For the close-to-critical γ considered, the analytically
obtained instanton configuration in Eq. (46) are fixed points of the gradient descent algorithm. (b) Critical scaling of the instanton action I∗
shows a critical exponent ζ = 1.44 ± 0.07, which is consistent with the theoretical expectation, ζ = 3/2.

we find that the instanton action I∗ goes to zero (equivalently,
the system is purified) at O(1) timescales, preceded by an
exponential decay. For γ < γc, I∗ exponentially decays to
a finite nonzero values (this is most clearly evident in the
numerics for low γ , deep in the mixed phase). For the entropy,
this plateau region ultimately gives in to a logarithmic decay
with time [see Eq. (38)], which is not captured using gradient
descent to estimate I∗. Directly using S(2)

Q /N ∼ I∗ − ln(T )/N ,
we can visualize the actual time dependence of the entropy,
even for a modest choice N = 6 for γ deep in the mixed phase,
in the inset of Fig. 8(a). The ln T term becomes more and more
important when we fix a finite N and increase T .

To access the dynamics at finite N , we resort to exact
diagonalization using Krylov subspace methods [85–87]. The
unitary layers (1) of the Brownian circuit are computed via
the conventional Krylov subspace technique with subspace
dimension NK = 8 and timestep δt = 0.01 in dimensionless
units where J = 1. The nonunitary measurement layers (4) are
computed by using the identity

M(t ) =
(

1

2
− i

2

)
exp [−iO(t )δt/2]

+
(

1

2
+ i

2

)
exp [iO(t )δt/2]. (49)

FIG. 8. Time dependence of Rényi-2 entropy, from saddle-point calculation and exact diagonalization. (a) We plot the instanton action I∗
as a function of time at different γ , obtained by performing gradient descent of the action in Eq. (30) for field configurations at different time
intervals. Note that γc = J/18 = 0.0556J . For γ > γc (red), I∗ goes to zero, while for γ < γc (blue, purple), it approaches a finite nonzero
plateau at late times. Close to criticality (blue), this plateau value is small, approaching zero, I∗ → 0 as γ → γc. This result is true for N = ∞,
where the saddle-point solution is exact. Inset shows estimated Rényi-2 entropy of the system for γ < γc deep in the mixed phase accounting
only for the instanton action (green), and including the − ln T/N term for N = 6 (pink) to show the logarithmic decay in entropy at late times.
Gradient descent is performed by taking Jδt = 0.1, until the threshold δI = 10−6 is reached for the action difference. (b) We probe the time
dependence for finite N , for system size |Q| = |R| = 6, via exact diagonalization. We note that for γ > γc (yellow), and for measurement-only
dynamics (J = 0) (gray), the entropy largely follows an exponential decay to zero. However, for γ < γc, the time plots deviate from the
exponential decay at later times. In the inset, we find at the latest times, there is a logarithmic decay in the entropy, − log2 �Q ∝ − log T .
For exact diagonalization via Krylov method, averaging is done over 50 disorder realizations, with Jδt = 0.01, Jt = 200 and NK = 8 Krylov
subspace dimension.
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In our numerical simulations we compute the exponentia-
tions exp [±iO(t )δt/2]|�〉 separately using the conventional
Krylov subspace technique and sum the results with appro-
priate complex coefficients to give M(t )|�〉. At each timestep
t = mδt we independently sample coefficients Jαβ

i j (t ), nα
i (t )

from normal distributions with zero mean and variance
given by Eqs. (2) and (5), respectively. Using this disor-
der realization we then construct the Brownian generators
H (t ),O(t ), and compute the time-evolved unnormalized state
|�(t + δt )〉 = U (t )M(t )|�(t )〉. For each disorder realization
we compute both the purity Tr[ρ̃2

Q(t )] and squared proba-
bility Tr[ρ̃Q(t )]2 of the reduced unnormalized state ρ̃Q(t ) =
TrR[|�(t )〉〈�(t )|] as a function of time.

These methods allow us to simulate hybrid Brownian dy-
namics for modest system sizes, N = |Q| = |R| = 6 and for
times as long as Jt = 200. In Fig. 8(b) we plot the resulting
Rényi entropy − log2 �Q at different rates of measurement γ .
We find that for γ > γc, the behavior is qualitatively similar to
measurement only dynamics (without the unitary part of the
circuit), for which the entropy exponentially decays to zero
(although very small values of the entropy are inaccessible in
the exact diagonalization numerics). For γ < γc, it is difficult
to distinguish the plateau region (since here N ∼ 1), and the
eventual decay due to the entropic factor ln T . However, the
plots here already show that the late time behavior qualita-
tively deviates from the exponential decay, instead showing
a much slower decay at late times. We identify in the inset
of Fig. 8(b) that this late time behavior is consistent with
the factor of ln T in − ln �Q, which comes from the entropic
freedom of the instanton in Eq. (38). In the next section, we
discuss the role of the entropic enhancement of the purity in
the eventual late time disintegration of the mixed phase.

E. Phase disintegration at late times

Although the mixed phase γ < γc is robust to repeated
single-qubit measurements over extensive timescales T ∼
poly(N ), at very long times T exponential in the system
size, the measurements ultimately destroy entanglement be-
tween R, Q and the mixed phase disintegrates [24,30]. In
the path-integral representation (30) this disintegration oc-
curs due to the proliferation of instantons, which are heavily
favored in the path integral at long times due to the “en-
tropic” factor (T − T0)/a(T ) found in Sec. III B. At large
N these multi-instanton configurations are subleading saddle-
point configurations in the path integral and therefore do not
contribute to the result at strictly N → ∞. For very large
but finite N , however, we must sum over these additional
subleading saddles in the path integral.

To see the breakdown of the mixed phase explicitly, first
consider the contribution z� to the path integral (30) coming
from a configuration �B�(t ) consisting of � instantons. Due to
the boundary conditions, the full instanton contribution is a
sum over all odd � for Z2 or over all even � for P2. For suf-
ficiently large T , we may apply the dilute-gas approximation
in which the � instantons are assumed to be widely separated
in time and noninteracting [88]. In this limit, each instanton
independently contributes an action penalty e−NI∗ and an “en-
tropic” factor ∝ (T − T0)/a(T ) coming from integration over
the zero mode [88,89]. In this approximation, and ignoring

the contribution of the boundary conditions at t = 0, T the
�-instanton configuration has amplitude

z� ≡
∫

Dη exp

[
−N

∫ T

0
dt I[ �B�(t ) + η(t )]

]

≈ 1

�!
e−�NI∗ (T/a)�z0 = 1

�!
R�z0, (50)

where R ≡ z1/z0 = e−NI∗ (T − T0)/a(T ), and the “entropic”
term (T − T0)/a(T ) comes from the functional determinant
capturing the quantum fluctuations η(t ) around the classical
configuration �B�(t ) as discussed in Sec. III A 2 [88]. We have
to divide by �! because instantons must always precede anti-
instantons. The numerical value of the O(1) constant a(T )
depends on the details of the action I[ �B] and can be found by
computing a functional determinant in the path integral after
removing the zero-mode fluctuations of the instanton [88,89].

Summing over even (or odd) � we find∑
� even

z� = z0 coshR,
∑
� odd

z� = z0 sinhR, (51)

which gives a disorder-averaged purity

Z2/P2 = tanhR. (52)

At intermediate times T ∼ poly(N ) the exponential penalty
e−NI∗ dominates and instantons are disfavored R � 1 such
that Z2/P2 ≈ R as found in Sec. III B. At exponentially long
times T ∼ exp (I∗N ), however, instantons become much more
attractive R → 1 due to the “entropic” factor (T − T0)/a(T ).
We therefore find that instantons proliferate at late times
with Z2/P2 → 1 as T → ∞, corresponding to purification
of the state and the disappearance of the mixed phase. We
note that the instanton action I∗, along with the functional
determinant (T − T0)/a(T ), determines the crossover point
T ∼ exp (I∗N ). This late-time destruction of the phase is sim-
ilar to that found in phenomonological studies of MIPTs in
1 + 1 dimensions using capillary-wave theory [24].

IV. PURIFICATION DYNAMICS FOR SUBSYSTEMS

In the previous section we considered the purity �Q of
the full system consisting of all |Q| = N qubits as an order
parameter for the transition in the (2,1) model. It is also inter-
esting to ask whether the transition can be probed using only a
fraction k = |A|/|Q| of the system’s qubits, with A ⊂ Q [31].
In Sec. IV A we study the disorder-averaged purity �A for
variable-size subsystems A and show that the purification tran-
sition is only visible for sufficiently large k > kc(γ ) � 1/2,
leading to the phase diagram shown in Fig. 10 below. Using
a modified version of the bulk field theory (45) we identify
the critical point k = kc in this diagram as a second-order
phase transition in Sec. IV B and compute its critical exponent
μ = 1 using analytical and numerical methods. Finally, we
show in Sec. IV C that these results can be interpreted in the
language of quantum error correcting codes.

A. Subsystem purity

Consider a modified circuit setup shown in Fig. 9(a) where
we compute the purity �A = Tr[ρ2

A] of a portion |A| = kN
of the system qubits using a SWAPAA′ operator while the
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FIG. 9. Purification dynamics for subsystems A ⊂ Q. (a) Sub-
sets A, A of the system Q are both initially maximally entangled
with the reference R, but only the purity �A of the subsystem A
is computed, while the remaining qubits A are traced over. (b) The
disorder-averaged purity Z2(k)/P2 represented as a quantum circuit,
where in the numerator the SWAPAA′ operator has been applied only
to qubits in subsystem A.

remaining |A| = (1 − k)N qubits are traced over. Similar to
Sec. II we compute the disorder-averaged purity Z2(k) and
probability P2 of the unnormalized state ρ̃A = TrR,A[ρ̃(V )]
as shown in Fig. 9(b), where the SWAPAA′ operator in this
case leads to nontrivial boundary conditions only between the
A, A′ subsystems. Converting this to a path-integral expression
leads to an action identical to (30) except for the replacement

ln K → k ln KA + (1 − k) ln KA, KA = K[ �B, ψ+, ψ−],

KA = K[ �B, ψ+, ψ+] (53)

in the unnormalized purity Z2(k); the probability P2 is left
unchanged by the k-dependence. Here K[ �B, ψ0, ψT ] is the
propagator from Eq. (30) and the boundary states |ψ±〉 have
been defined in Eq. (25). An analogous replacement can be
made to compute subsystem purities in the general path in-
tegral (23). For k = 1 these path-integral expressions reduce
to their original forms (30) and (23) as required. We there-
fore find that the bulk physics remains entirely unchanged
by varying k and inherits the same set of time-independent
saddle points as discussed in Sec. III A 1. Dependence on the

subsystem fraction k enters only through the boundary effects
in the propagators KA,A.

The interplay of bulk physics and boundary effects in
Z2(k), P2 leads to a nontrivial phase diagram as a function
of γ , k as shown in Fig. 10(a). We can argue through the
major features of this phase diagram by comparing the action
costs I[ �B(t )] of various time-dependent classical field config-
urations �B(t ), which dominate the path integral at large N .
Equations (30) and (53) indicate that this action cost near the
t = 0 boundary will be the same for Z2(k) and P2 regardless
of the value of k, and hence will cancel out in the purity
Z2(k)/P2. It is the future boundary condition at time t = T ,
generated by the SWAPAA′ operator acting on subsystems
A, A′, that distinguishes between the different phases.

Let us first discuss the relevant time-dependent configura-
tions of the �B(t ) fields. In Fig. 10(b), we consider classical
configurations of the field Bx(t ) at different values of k
and γ at intermediate times T ∼ poly(N ). As shown in
Fig. 10(b)(i–ii), for γ > γc the classical path (solid blue)
begins in a configuration Bx > 0, Bz < 0 that is bent towards
the |ψ+〉 state, traverses through the single trivial saddle point
Bx = 0 (dotted black) and either returns to Bx > 0 for k <

1/2 [Fig. 10(b)(i)] or continues on to Bx < 0 for k > 1/2
[Fig. 10(b)(ii)]. The action cost associated with the future
boundary deflection is identical for k and 1 − k because of
the symmetry Bx → −Bx and k → 1 − k.

For γ < γc, the situation is more complicated as shown in
Fig. 10(b)(iii–iv) due to the presence of the two symmetry-
broken saddle points B±

x (dotted black), which can host
instanton transitions between them. For small k < 1/2
[Fig. 10(b)(iii)] the purity Z2(k) is dominated by the |ψ+〉
future boundary condition, so Bx spends most of its time on
the nearest bulk saddle point B+

x with the deflection at the
future boundary similar to (but not identical to) that of the
past boundary. As the fraction k increases, however, the |ψ−〉
contribution begins to significantly affect the future boundary
condition and Bx field is pulled towards Bx < 0 in order for

FIG. 10. Subsystem purity phase diagram. (a) At times T ∼ poly(N ), the subsystem purity �A exhibits three distinct phases as a function
of γ , k which are governed by the corresponding classical field configurations �B(t ) (b). Above the critical point γ > γc the bulk fields (solid
blue) primarily occupy the trivial saddle point Bx = 0 (dotted black), leading to a trivial (purified) phase for all k (i, ii). Below the critical
point γ < γc, the zero-instanton configuration (iii) dominates for small k < kc(γ ) while the single-instanton configuration (iv) with action I∗
is dominant for large k > kc(γ ).
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the r-bit |ψ (t )〉 to have higher overlap with |ψ−〉 at t = T . For
sufficiently large k > kc, the future boundary condition forces
an instanton to appear somewhere in the bulk [Fig. 10(b)(iv)].

Because of the extra action cost I∗(γ ) of the instanton,
the transition point between the zero- and single-instanton
configurations Fig. 10(b)(iii–iv) in the mixed phase γ < γc

always occurs at a critical fraction k = kc(γ ) > 1/2 larger
than half the system size. By the same reasoning, we also
expect kc → 1/2 as γ → γc due to vanishing instanton cost
I∗ → 0 as the symmetry-broken saddle points B±

x rejoin at
the critical point. Together, these arguments allow us to map
out the major features of the k, γ phase diagram Fig. 10 for
subsystem purity at times T ∼ poly(N ).

Similar to Sec. III B, we can estimate the purity Z2(k)/P2

in each of these phases by computing the action cost I[ �B(t )]
of the classical time-dependent field configurations �B(t ) dis-
cussed above. Above the critical point γ > γc, the action gets
contributions from the trivial bulk saddle point Bx = 0 as
well as the boundary contributions near t = 0, T as illustrated
in Fig. 10(b)(i–ii). Similar to what we found in Sec. III B,
the bulk contribution and the t = 0 boundary contributions
cancel in the ratio Z2(k)/P2, so the purity in this phase is

controlled entirely by the difference of future boundary contri-
butions �I0

bdy(k, γ ). Note that �I0
bdy(1 − k, γ ) = �I0

bdy(k, γ )
from the k ↔ 1 − k symmetry present for γ > γc.

Below the critical point γ < γc and for small subsystems
k < kc, the zero-instanton configuration Fig. 10(b)(iii) domi-
nates, and we obtain nontrivial contributions I0,T to the action
from the boundary dynamics near t = 0, T and from the
bulk saddle point B+

x . As with γ > γc, the bulk contribution
and the t = 0 boundary contribution I0 are common to both
Z2(k) and P2, so the purity is controlled by the difference of
the t = T boundary contributions denoted �I+

bdy(k, γ ). For
larger subsystems k � kc the single-instanton configuration
Fig. 10(b)(iv) dominates and we obtain nontrivial contribu-
tions in the action from the boundary dynamics I0,T , from the
bulk saddle value, and from the bulk instanton with action
I∗. Again, the bulk saddle contribution and t = 0 boundary
contribution are common to Z2(k) and P2, so the ratio is
controlled by I∗ + �I−

bdy where �I−
bdy denotes the difference of

future boundary contributions in the presence of an instanton.
Combining these results, we find estimates for the subsys-

tem purity Z2(k)/P2 in all three regions of the phase diagram
Fig. 10:

Z2(k)

P2
=

⎧⎪⎨
⎪⎩

T −T0
a′(T ) exp[−N (I∗(γ ) + �I−

bdy(k, γ ))] γ < γc, k � kc,

exp[−N�I+
bdy(k, γ )] γ < γc, k < kc,

exp
[−N�I0

bdy(k, γ )
]

γ � γc,

(54)

where we have included the “entropic” term (T − T0)/a′(T )
(with a possibly different prefactor a′(T )) in the single-
instanton configuration coming from the zero-mode motion
of the instanton. These k-dependent purity estimates are a
generalization of the k = 1 purity estimates in Eq. (38).

The expressions (54) are similar to those obtained using
capillary-wave theory as a phenomenological description of
measurement-induced transitions in 1 + 1-dimensional sys-
tems [24]. In this picture, the bulk of the circuit is viewed as
a two-dimensional statistical mechanics system supporting a
collection of domains separated by domain walls. In the mixed
phase, small subsystems A with nontrivial boundary condi-
tions at the late-time boundary are unable to force most of the
bulk to transition between phases and the system therefore has
a domain wall pinned near the subsystem A. This is analogous
to the case γ < γc, k < kc in Eq. (54), where the boundary
action �I+

bdy is analogous to the energy cost of the pinned
domain wall.

Sufficiently large subsystems A at the late-time boundary,
by contrast, can force the entire bulk to transition, leading
to a “domain-wall decoupling” effect where it is entropically
favorable for the system to support two decoupled domain
walls: one in the bulk that is free to move in time, and another
that is pinned near the small subsystem A. This situation
is analogous to the case γ < γc, k � kc in Eq. (54) where
the instanton action I∗ corresponds to the energy cost of the
bulk domain wall and the boundary action �I−

bdy corresponds
to the energy cost of the pinned domain wall. In particu-
lar, the entropic prefactor (T − T0)/a′(T ) coming from the
zero-mode motion of the instanton corresponds to the entropy

of the decoupled domain wall in the bulk; in both cases,
this additional entropy is the reason why the single-instanton
(or decoupled domain-wall) configuration is favorable despite
the additional cost I∗ of creating the instanton (or domain
wall) [24]. While the capillary-wave theory is phenomenolog-
ical and specifically tailored for 1 + 1-dimensional systems,
in Eq. (54) we have obtained similar expressions for the same
physical phenomena starting from an exactly solvable all-to-
all microscopic model.

B. Critical scaling of kc near γc

We can also study the behavior of kc(γ ) close to the
bulk phase transition γ = γc, in the symmetry-broken phase.
For this, we can numerically compare the action penalty
for the boundary �Ibdy ≡ �I+

bdy − �I−
bdy with the instanton

action I∗. We perform an optimization of the fields with
the initial configurations corresponding to the two cases in
Fig. 10(b)(iii–iv), to locally minimize the action in Eq. (53)
for γ � γc. We identify the critical fraction kc � 1/2 by in-
terpolating to find the value of k above which �Ibdy > I∗,
such that the single-instanton configuration is dominant (see
Appendix E for more details). We find numerically in Fig. 11
that kc scales with γc − γ as

kc − 1
2 ∼ (γc − γ )μ, for γ close to γc. (55)

A linear fit yields an estimate μ = 0.99 ± 0.01 for the critical
exponent.

Close to the bulk critical point, we can also adopt the previ-
ously described critical field theory model, now embellished
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From the numerics
f(x) = p1*x + p2
Coefficients (with 95% confidence bounds)
p1 = 0.9857  (0.9683, 1.003)
p2 = 2.015  (1.878, 2.152)

FIG. 11. Subsystem purity critical exponent μ from gradient de-
scent numerics. The critical subsystem fraction kc(γ ) is identified
for measurement rates γ < γc just below the critical point by finding
points in the k, γ plane (red) where the boundary action �Ibdy is
equal to the single-instanton action I∗ (see Fig. 15 of Appendix E). A
linear fit (blue) gives an estimate μ = 0.99 ± 0.01, consistent with
μ = 1 from analytical arguments.

with a boundary term, to analytically argue that μ = 1. We
showed earlier that the bulk field theory close to criticality is
given by the action (45). We now model the boundary effect
at t = T with a delta function pinning field with action

I[ �B] → I[ �B] +
∫

dt hBxδ(t − T ), (56)

where h is an additional field controlling the strength of the
pinning effect.

The delta function is regulated by setting δ(t − T ) →
δ(t − T + ε) and taking Bx(t ) = Bx,bdy (a constant) for t ∈
[T − ε, T ]. The equation of motion then implies that ∂t Bx

jumps across t = T − ε, −∂t Bx(T ) + ∂t Bx(T − ε) + h = 0.
Since ∂t Bx(T ) = 0, we find that ∂t Bx(T − ε) = −h. In other
words, −h is the slope of the Bx(t ) configuration at t = T −.
Close to criticality, we expect the following scaling:

h ∝ (k − 1/2). (57)

This is because, for k > 1/2, the SWAP-ed boundary condi-
tion should dominate, and the Bx field at the future boundary
should go lower than the Bx ≈ 0 bulk saddle point, leading
to −h < 0, i.e., h > 0. On the other hand, for k < 1/2, the
trivial boundary condition should dominate, and the Bx field
at the future boundary should go higher than the Bx ≈ 0 bulk
saddle point, leading to h < 0. Close to k ∼ 1/2, the linear
scaling of h ∝ (k − 1/2) can thus be justified and we expect
our simplified model of the boundary condition to capture the
universal physics.

The value of Bx,bdy is determined by appealing to a conser-
vation law. For t < T − ε, the quantity

H[ �B] = 1
2 (∂t Bx )2 − V (Bx ) (58)

is conserved; in the language of classical mechanics this is the
statement that the classical Hamiltonian H[ �B] corresponding
to the Lagrangian I[ �B] is conserved. If we consider solutions

that asymptote to a saddle point in the far past, then we know
that H = −V (

√
δ) = δ2/4. Now, we can consider the two

different cases as before: first where the Bx field configuration
asymptotes to B+

x = √
δ, and second to B−

x = −√
δ, in the

far past. Consider Bx,bdy = Bx(−∞) + a, where for the two
cases, Bx(−∞) = ±√

δ. Because of the conservation law, we
can solve for a close to criticality where |a/

√
δ| � 1 and we

obtain a ∝ −h/
√

2δ. Note that we have selected the correct
sign of a consistent with the fact that higher h should lower
the boundary field compared to the bulk saddle.

Finally, we read off the excess boundary actions �I±
bdy for

both cases from Eq. (56). To leading order in a we find

�I±
bdy = ±h

√
δ + hO(a) ⇒ �Ibdy = 2h

√
δ. (59)

Recall that in Sec. III C we found that I∗ ∝ δ3/2. Thus the
condition for the zero-instanton and single-instanton con-
figurations exchanging dominance �Ibdy > I∗ occurs when
h ∝ δ. Combined with Eq. (57), we find that kc scales as
(kc − 1/2) ∝ δ, and thus μ = 1.

C. Mutual information and error correction

We can also understand the mixed phase at low measure-
ment rate in this model through the lens of quantum error
correction. Consider γ � γc, and k � kc(γ ). For this case, the
dominant saddle-point configuration for the field Bx(t ) will
be the single-instanton configuration shown in Fig. 10(b)(iv).
On the other hand, for a subsystem fraction k′ = (1 − k), the
dominant saddle point will be the zero-instanton configuration
shown in Fig. 10(b)(iii). Since the boundary conditions are
symmetric with respect to the saddle points (i.e., the overlap
between |ψ+〉 and the r-bit state favored by B+

x is equal to
the overlap between |ψ−〉 and the B−

x state), we can deduce a
strong relation between the purities for k and (1 − k).

In particular, this symmetry dictates that �I+
bdy(1 − k) =

�I−
bdy(k). For the Rényi-2 entropies at γ � γc and k � kc(γ ),

we therefore have

S(2)
k = �I−

bdy(k) + I∗, S(2)
1−k = �I+

bdy(1 − k), S(2)
1 = I∗.

(60)

From these relations, and the identity relating the two bound-
ary effects, we may deduce

S(2)
k = S(2)

1−k + S(2)
1 (61)

at γ � γc and k � kc(γ ).
Because we may interpret the SWAPAA′ operator shown in

Fig. 9 as acting either at the t = 0 boundary or at the t = T
boundary (this is equivalent to cyclically permuting the SWAP
operator in the trace), the entropy S(2)

k can be identified as the
Rényi-2 entropy of either a subsystem of fraction k of the
system Q or of the reference R. As a result, Eq. (61) can be
understood as the statement that for sufficiently large k > kc,
the mutual information between the (1 − k)N qubits in the
subsystem A and the N qubits in the reference R vanishes
identically, when measured by the disorder-averaged Rényi-2
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entropy:

I (2)(A : R) = S(2)(A) + S(2)(R) − S(2)(A, R)

= S(2)(A) + S(2)(R) − S(2)(A)

= S(2)
1−k + S(2)

1 − S(2)
k = 0, (62)

where in the second line we have used the fact that
S(2)(A, R) = S(2)(A) because the state ρ̃(V ) is pure.

This result is consistent with the system forming a quan-
tum error correcting code. The physical interpretation of the
result (62) is that small parts of the system A contain no
information about the reference R, after some of the system-
reference entanglement is destroyed by the measurements. To
be explicit, consider using the entire remaining system purity
to encode information. We have S(2)

1 logical qubits encoded
within N qubits and a reference entangled with those S(2)

1

logical qubits. Equation (62) states that any subsystem A of
size less than 1 − kc < 1/2 has zero Rényi mutual information
with the reference R. If these statements also held for the
mutual information I (A : R) computed from the von Neumann
entropies, then the existence of a recovery channel would be
guaranteed which could undo the erasure of the subsystem A.

Of course, these statements are only established here for
the second Rényi mutual information defined via a certain av-
eraging procedure. More work is therefore needed to establish
the existence of a recovery map since the mutual information
can depend on the Rényi index n, and also on the averaging
procedure. In order to make the connection to quantum er-
ror correction rigorous, we would also in principle need to
include 1/N corrections and carefully work with approximate
recovery maps. These are interesting topics to pursue in future
work; here we content ourselves with describing the analo-
gous phenomenon at the level of the second Rényi entropy.

V. DISCUSSION

In this work we introduced new tools for analyzing
measurement-induced purification transitions in the large-N
limit. Specifically, the (2,1) hybrid Brownian circuit intro-
duced in Sec. II exhibits a purification transition described
by a relatively simple mean field theory that is analytically
tractable at large N . We represented a particular disorder av-
erage over the purity as a path integral coupling four replicas,
and derived the critical properties of the replica permutation
breaking in the system, which is manifested as the purification
transition for the system. Since the model is all-to-all, and
the saddle-point point analysis depends on taking the large
N limit, the resulting field theory can be viewed as a minimal
mean field description for the purification transition. Further-
more, since the resulting theory is a simple Ising field theory
in 0 + 1 dimensions, the critical exponents can be analytically
understood, and also sheds light on the late-time purifica-
tion in the mixed phase through the mechanism of instanton
proliferation. We also derived an entropic relation between
subsystem and the reference, which allows us to identify the
mixed phase as being a dynamically generated quantum error
correcting code.

This work adds to the growing paradigm of interpret-
ing entanglement dynamics in quantum circuits through
statistical mechanical models in the replica space in the con-

text of hybrid circuits [6,13–15,17,27,83] and more broadly
in random circuits [1–5]. However, this model differs from
the earlier works in considering the large-N limit that allows
us to make progress in interpreting entropy-like quantities
as path integrals dominated by their saddle points. This is
distinct from the large local Hilbert space dimension which
is often necessary to make analytical progress in the random
and hybrid circuits, and these two limits can lead to distinct
physics. Our analysis here focused on contributions to lowest
order in 1/N . However, one can also study the subleading 1/N
effects, which we reserve for future studies.

We emphasize that the (p, q) = (2, 1) model studied here
using the purity (n = 2) is only one example of a large family
of hybrid Brownian circuit models with measurement-induced
transitions. Straightforward generalizations of the Brownian
circuit layers introduced in Sec. II can generate p-body uni-
tary interaction terms and q-body nonunitary measurement
terms. Further, by introducing additional copies of the state
ρ̃ one can probe the phase transition using higher moments
of the density matrix n > 2. We show in Appendix B that
each of these models leads to a distinct (p, q)n path-integral
representation with a large-N limit. In particular, for reason-
ably small n = 3, 4, 5, . . . we expect that the combination of
SU(2) and replica symmetry will kinematically constrain the
system to subspaces of small dimension similar to what we
found in Sec. II D for n = 2, allowing for analytical access to
the purification transition at large N for higher-order Rényi
entropies n > 2. Furthermore, this setup can be extended to
a combination of different q-body measurements, without
the unitary part, allowing for exploration of measurement-
only dynamics within the hybrid Brownian setup. Such
measurement-only circuits have recently been shown to har-
bor symmetry-protected-measurement-only phases [54–59]
and phase transitions, which could be investigated in these
Brownian setups as well.

Other straightforward generalizations include studying the
(p, q) models at higher spin S or for more general degrees
of freedom such as SU(Q) spins or fermions. We expect
many of these models to also show measurement-induced
transitions governed by boundary conditions and instanton
effects similar to the story presented here for the (2, 1)2 path
integral, although of course the details will differ considerably
depending on the specifics of the model. Another exciting
direction is to consider chains or lattices of (p, q) models, with
nearest-neighbor Brownian spin-spin interactions between
individual clusters. This would allow for direct connection to
measurement-induced phase transitions in 1 + 1-dimensional
models, including analytical estimates of the spatial critical
exponent. We reserve study of these more general models for
future work.
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APPENDIX A: PHYSICAL INTERPRETATION OF THE
DIFFERENT AVERAGED OBSERVABLES

Here we discuss the issue of extracting the averaged puri-
ties �Q, 〈�Q〉 from experiments. A flowchart describing the
experimental protocol is provided in Fig. 12.

To measure the purity �Q, the experimenter first fixes
the unitary circuit elements (1), and the measurement bases
σ

y
aux (3), yielding a single circuit realization with disorder

coefficients J, n. The experimenter then prepares the initial
maximally entangled state ρ0 = |�0〉〈�0| and applies an al-
ternating sequence of unitary and weak-measurement layers
to the system Q as described in Sec. II A. As discussed in the
main text, weak measurements on the system are performed
by coupling the system to auxiliary qubits and projectively
measuring the auxiliary system. In principle, the experimenter
can record the measurement results on a classical memory,
and the resulting quantum states can be stored in a quantum
memory. At this point the experimentalist keeps all resulting
quantum states, even if the measurement results are not all +1.

Due to the unpredictability of these measurement out-
comes, for each given realization J, n of the circuit, there
will be a collection of quantum trajectories, which we la-
bel T = T(J, n, m), where m is the record of measurement
outcomes. Each trajectory performs a nonunitary operation
on the state, |�QR〉 = T|�0〉 which is an unnormalized pure
state, and each trajectory occurs with the Born probability
P[T] = 〈�QR|�QR〉. Now, given a sample set of classical data
(collection of measurement records), one can estimate the
Born probability P[T]. For a system in an initially mixed
state, one would start with a prior of 1/2 for each measure-
ment, which would be updated based on the actual outcomes
corresponding to the circuit realization and the measurement
randomness.

Using the quantum memory which stores the obtained
quantum states, the experimenter can access the purity of
the state. Once enough copies of each state are obtained, the
experimenter can perform SWAP tests on the copies of the
states to obtain the purity. The purity for each trajectory is
given by

�Q[T] = Z2[T]

P2[T]
, (A1)

where Z2 = Tr[ρ̃2
Q], for the unnormalized reduced density ma-

trix on the system, ρ̃Q = TrR[|�QR〉〈�QR|]. The estimate from
experiments improves with the number of copies, but these
copies are hard to obtain, requiring a typical number of trials
that scales exponentially with the number of measurements
as discussed in Sec. II B. In the simplified setup we consider
for our analytical calculation, we require the state to be stored
only for specific measurement records m, where the auxiliary
qubit measurement only gives the result +1.

Now the experimenter can repeat the whole subroutine, by
sampling different circuit realizations, V = V (J, n), with an
underlying probability distribution, π (V (J, n)). For our ana-
lytical computation, we considered an analytically tractable
Gaussian probability distributions over the coefficients J, n
as described in Sec. II A. While repeating the experiment to
collect data, there can be some simplifications due to symme-
tries in the circuit: for example, applying a weak-measurement
layer with the disorder coefficient n and obtaining a +1 out-
come on the auxiliary qubit is equivalent to using a disorder
coefficient −n with an overall negative sign and obtaining the
result −1.

Armed with the probability distribution of states and the
purities, one can estimate a family of observables, related
to different kinds of averages of the purity. Firstly, the Born

FIG. 12. Experimental protocol to simulate the various averaged purities. The protocol is composed of two subroutines: “circuit” (blue)
and “measurement” (red). Sampling of circuit realizations is done in the blue subroutine, which calls the sampling of measurement trajectories
in the red subroutine. For each run of the measurement subroutine, the measurement data are stored classically, and the resulting quantum
state is stored in a quantum memory depending on whether we want to simulate the Born probability or postselected trajectories (this choice
is represented by the diamond in the circuit). For each run of the circuit subroutine, purity can be estimated by doing SWAP tests on identical
copies of the stored quantum states, and the corresponding probabilities can be estimated by processing the classical data of measurement
records. To estimate either of these quantities, the typical number of runs of the measurement subroutine scales exponentially with the number
of measurements, i.e., exponentially with the “volume” of the circuit. All quantum processes in the protocol are denoted by “green” rounded
boxes, and all classical processes are denoted by “pink” boxes. Finally, once enough statistics is collected, the “classical” data of purity and
the probability for each circuit/measurement can be postprocessed (as described in the text) to give us (�Q)Born, �Q, 〈�Q〉 or any other simple
averaged purity-like quantities.
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probability averaged purity is given by

(�Q)Born =
∑
V,T

π (V )P[T]�Q[T]. (A2)

In our setup with postselection, one can avoid averag-
ing with the Born probability P[T], by averaging the purity
�Q only over postselected trajectories with the desired mea-
surement record m = +1. In this case, there is a single
postselected trajectory for each choice of circuit realization,
with a single value of �Q(V ), Z2(V ), and P2(V ). In this case,
the circuit-averaged purity for the postselected trajectories is
given by

�Q =
∑

V

π (V )�Q(V ). (A3)

Both the Born and postselected averaged purity consid-
ered above are difficult to access analytically, as one needs
to average the ratio of two multireplica quantities. In prin-
ciple one could access the disorder-averaged ratio Z2/P2 by
studying the path-integral representation of Z2P2n analytically
continued to n = −1. This can be difficult because one would
typically need to access the expression over the entire domain
of n in order to take the analytic continuation.

However, by classical postprocessing of the probability
data, we can access the analytically tractable reweighted pu-
rity 〈Z2〉/〈P2〉 studied in this work. To do so, we first define a
reweighted probability,

N (V ) = π (V ) × P2(V )

N0
, (A4)

with N0 =∑V π (V )P2(V ) to ensure that the probabilities
sum to 1. In an experiment, N (V ) can be estimated with just
the classical information of the measurement records. Now we

consider the purity averaged over this reweighted probability,

〈�Q〉 =
∑

V

N (V )�Q(V ) =
∑

V π (V )Z2(V )∑
V π (V )P2(V )

= 〈Z2〉
〈P2〉 ,

(A5)

which being an average of ratios is analytically accessible,
and is the quantity we compute in this work. From an ex-
perimental point of view, although this estimation requires
classical postprocessing, it does not require any more quantum
resources than the other two averages (in fact it requires fewer
quantum resources than the Born-averaged quantity due to
postselection and selective storage of quantum states).

APPENDIX B: DERIVATION OF GENERAL (p, q) PATH
INTEGRAL

Here we derive a path-integral representation for general
(p, q) hybrid Brownian circuits probed by the nth moment of
the unnormalized density matrix Zn = 〈Tr[ρ̃n

Q]〉. To compute
this object, we introduce n copies of the system Q and refer-
ence R, and calculate the expectation value of the generalized
n-system SWAP operator as shown in Fig. 13(a). Using the
circuit identities in Fig. 2 and introducing factors of iY as
in Sec. II C, we can bring this circuit to the form shown
in Fig. 13(c) describing pure-state dynamics on 2n replicas
r = 1, 2, . . . , 2n with evolution operator

V = V ⊗ VT ⊗ · · · ⊗ V ⊗ VT (B1)

and generalized SWAP boundary condition at t = T which
cyclically permutes the n odd replicas r = 1, 3, . . . , 2n − 1.
The associated probability Pn = 〈Tr[ρ̃Q]n〉 is described by the
same circuit but with trivial boundary condition at t = T .

The operators V can be constructed by stacking any se-
quence of unitary Brownian layers or weak-measurement
Brownian layers to give a variety of interaction and damping
terms in the final action. Regardless of the particular choice of
unitary and weak measurement dynamics, we always choose

FIG. 13. Partition function Zn for the nth moment of the density matrix. The nth-order Rényi entropy S(n)
Q = − ln Tr[ρn

Q] is defined in terms
of the nth moment of the system density matrix ρQ. The associated circuit for computing the nth moment Tr[ρ̃n

Q] of the unnormalized density
matrix ρ̃Q can be transformed into pure-state dynamics on 2n replicas r = 1, 2, . . . , 2n with nontrivial boundary conditions at times t = 0, T
coming from the generalized n-system SWAP operator (orange).
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Brownian coefficients Jαβ
i j (t ), nα

i (t ), . . . for these layers that
are statistically uncorrelated in time. As a result, the disorder
average factorizes over the different timesteps �t and we may
compute the disorder average over each layer independently
as shown in Fig. 2(c). We therefore first consider contribu-
tions to the effective action from unitary p-body Brownian
circuit layers in Sec. B 1. We then consider contributions
from nonunitary q-body Brownian circuit layers in Sec. B 2.
Finally, we combine these results in Sec. B 3 to give a path-
integral expression in Eq. (B26) for Zn for general (p, q)
hybrid Brownian models.

1. p-body Brownian interactions

Unitary Brownian dynamics are generated by p-body spin
interactions U (t ) = exp[−iH (t )�t/2] with time-dependent
Hamiltonian

H (t ) =
∑

i1 < . . . < ip

α1 . . . αp

J
α1...αp

i1...ip
(t ) Sα1

i1
Sα2

i2
· · · S

αp

ip
, (B2)

where the Sα
i are SU(2) spin-S degrees of freedom on sites i =

1, . . . , N and the Brownian coefficients J
α1...αp

i1...ip
(t ) are white-

noise-correlated Gaussian random variables〈
J

α1...αp

i1...ip
(t )J

α′
1...α

′
p

i′1...i′p
(t ′)
〉
J

= J

N p−1(S + 1)2p
δ(t − t ′)δi1i′1 · · · δα1α

′
1 · · · , (B3)

where the normalization 1/N p−1(S + 1)2p ensures that the
Hamiltonian H (t ) is extensive and independent of spin size.
We regulate the delta function via the replacement δ(t − t ′) ≈
δtt ′ (�t/2)−1 and consider the limit �t → 0. Note that under
the time-reversal operation T the Hamiltonian and unitary
operator transform as

HT (t ) = (−1)pH (t ),

UT (t ) = exp[i(−1)pH (t )�t/2]. (B4)

Expanding this layer to second order in �t and performing the
disorder average over the Brownian coefficients J

α1...αp

i1...ip
(t ) we

find

〈U ⊗ UT ⊗ · · · ⊗ U ⊗ UT 〉J ≈
〈(

1 − iH
�t

2
− 1

2
H2 �t2

4

)
⊗
(

1 + iHT
�t

2
− 1

2
H2
T

�t2

4

)
⊗ · · ·

〉
J

=
〈(

1 − iH
�t

2
− 1

2
H2 �t2

4

)
⊗
(

1 + i(−1)pH
�t

2
− 1

2
H2 �t2

4

)
⊗ · · ·

〉
J

= 1 − �t2

4

∑
r<s

μp
rs〈HrHs〉J − 1

2

�t2

4

∑
r

〈(Hr )2〉J, (B5)

where Hr,s denote copies of the Hamiltonian (B2) acting on
replicas r, s = 1, . . . , 2n, and we have defined

μp
rs ≡

{
(−1)r+s p even
1 p odd.

(B6)

Evaluating the disorder average, we find

〈HrHs〉J
�t2

4
= J�t

N p−1(S + 1)2p

1

2p!

×
∑

i1 . . . ip

α1 . . . αp

(
Sα1,r

i1
Sα1,s

i1

) · · · (Sαp,r
ip

S
αp,s
ip

)

= J�t

N p−1(S + 1)2p

N p

2p!

(
1

N

∑
i

Sr
i · Ss

i

)p

(B7)

as an operator equation, where the additional factor of 1/p!
comes from converting the ordered sum in Eq. (B2) to an
unordered sum. The disorder-averaged Brownian circuit layer
can therefore be written as a propagator:

〈U ⊗ UT ⊗ · · · ⊗ U ⊗ UT 〉J ≈ e−NIp(t )�t

Ip(t ) ≡ n
JSp

2p!(S + 1)p

+
∑
r<s

μp
rs

J

2p!(S + 1)2p

(
1

N

∑
i

Sr
i · Ss

i

)p

(B8)

to lowest order in �t , which holds as an operator equation.

2. q-body Brownian measurements

Consider making a weak measurement of a Hermitian q-
body operator

O(t ) =
∑

i1 < . . . < iq
α1 . . . αq

Oα1...αq

i1...iq
(t ) Sα1

i1
· · · S

αq

iq
(B9)

at some time t during the circuit evolution. For the moment we
leave the coefficients Oα1...αq

i1...iq
(t ) of this operator unspecified.

This q-body operator is the analog of the one-body spin opera-
tors O(t ) =∑i,α nα

i (t )Sα
i weakly measured in the (2,1) model

described in Sec. II. To measure this operator we introduce an
auxiliary qubit initialized in |ψ〉aux = |0〉aux and couple it to
O via a unitary interaction

exp
[−iO(t )σ x

aux�t/2
]|�〉|0〉aux (B10)

for a short time �t/2, where |�〉 is the state of the system
prior to the weak measurement and σ x

aux is the Pauli-x operator
acting on the auxiliary qubit. By projectively measuring the
auxiliary qubit in the eigenbasis of σ

y
aux and postselecting only

for +1 results, the original state is transformed to

|�〉 → M(t )|�〉 ≡
(

1 − O�t

2
− 1

2
O2 �t2

4
+ · · ·

)
|�〉
(B11)

to lowest order in �t . The circuit diagram for this mea-
surement protocol is shown in Fig. 14. The strength of the
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FIG. 14. Brownian weak measurement protocol. The operator
M(t ) weakly measures the Brownian operator O(t ) by coupling it
to an auxiliary qubit |ψ〉aux for a time �t/2 (blue) and projectively
measuring the auxiliary qubit in the σ y

aux basis, postselecting for +1
results (orange). Due to the coupling between the system |�〉 and
auxiliary qubit |ψ〉aux this projective measurement alters the many-
body state |�〉 → M(t )|�〉.

measurement is controlled by the magnitude of the operator
|O(t )| in units of the time step �t/2. Under the time-reversal

operation T the operators O(t ) and M(t ) transform as

OT (t ) = (−1)qO(t )

MT (t ) =
(

1 − (−1)qO�t

2
− 1

2
O2 �t2

4
+ · · ·

)
. (B12)

We now apply weak-measurement operators M(t ) in the
circuit at each odd timestep t = (2m + 1)�t/2 and take the
operator coefficients to be white-noise-correlated Gaussian
random variables〈

Oα1...αq

i1...iq
(t )Oα′

1...α
′
q

i′1...i′q
(t ′)
〉
O

= γ

Nq−1(S + 1)2q
δ(t − t ′)δi1i′1 · · · δα1α

′
1 · · · (B13)

whose strength is controlled by the parameter γ . As before,
the delta function can be regulated by the replacement δ(t −
t ′) ≈ δtt ′ (�t/2)−1. Performing the disorder average over the
coefficients Oα1...αp

i1...ip
(t ) in the 2n-replica system we find

〈M ⊗ MT ⊗ · · · ⊗ M ⊗ MT 〉O ≈
〈(

1 − O�t

2
− 1

2
O2 �t2

4

)
⊗
(

1 − OT
�t

2
− 1

2
O2

T
�t2

4

)
⊗ · · ·

〉
O

=
〈(

1 − O�t

2
− 1

2
O2 �t2

4

)
⊗
(

1 − (−1)qO�t

2
− 1

2
O2 �t2

4

)
⊗ · · ·

〉
O

= 1 + �t2

4

∑
r<s

χq
rs〈OrOs〉O − 1

2

�t2

4

∑
r

〈
(Or )2〉

O (B14)

where we have defined

χq
rs ≡ μq+1

rs =
{

1 q even
(−1)r+s q odd (B15)

similar to Eq. (B6). Evaluating the disorder average, we find

〈OrOs〉O
�t2

4
= γ�t

Nq−1(S + 1)2q

1

2q!

∑
i1 . . . iq
α1 . . . αq

(
Sα1,r

i1
Sα1,s

i1

) · · · (Sαq,r
iq

S
αq,s
iq

) = γ�t

Nq−1(S + 1)2q

Nq

2q!

(
1

N

∑
i

Sr
i · Ss

i

)q

(B16)

as an operator equation. The disorder-averaged Brownian-measurement circuit layer can therefore be written as a propagator:

〈M ⊗ MT ⊗ · · · ⊗ M ⊗ MT 〉O ≈ e−NIq (t )�t , Iq(t ) ≡ n
γ Sq

2q!(S + 1)q
−
∑
r<s

χq
rs

γ

2q!(S + 1)2q

(
1

N

∑
i

Sr
i · Ss

i

)q

(B17)

to lowest order in �t , which holds as an operator equation.
Comparing Eqs. (B8) and (B17), we conclude that the q-body
Brownian measurement propagator is nearly identical to the
unitary p-body propagator—the only differences are in the
numerical coefficients μ

p
rs, χ

q
rs and in the overall sign of the

interaction term.

3. Coherent spin state path integral

We now stack a repeating sequence of p-body Brownian
interactions and q-body Brownian measurements, insert reso-
lutions of the identity between each layer, and take the limit
�t → 0 with T fixed to express the dynamics as a path inte-
gral over 2nN unit-norm SO(3) spins Sr

i , using spin coherent
states as the basis. The completeness relation for the coherent

states for a single spin is given by

I =
∫

2S + 1

4π
d�i|�i〉〈�i|. (B18)

To turn the spins into coherent states, we use the upper sym-
bols for single spin-S Pauli operators [90],

Sα
i =

∫
2S + 1

4π
d�i|�i〉〈�i|(S + 1)�α

i , (B19)

(Sα
i )2 =

∫
2S + 1

4π
d�i|�i〉〈�i|

[
(S + 1)

(
S + 3

2

)(
�α

i

)2
−S + 1

2

]
. (B20)
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We introduce a measure for the coherent spin states in the path
integral,

D�r
i =

∏
tn

2S + 1

4π
d�r

i,tn

〈
�r

i,tn+1

∣∣�r
i,tn

〉
, (B21)

such that it includes the overlap of spin coherent states at
discrete times tn and tn+1. (Explicit evaluation of these overlap

terms leads to “kinetic energy” or Berry-phase terms ∼�∂t�

in the path integral [79]; the above choice of integration mea-
sure allows us to keep these time-dependent terms implicit,
but the reader should keep in mind that these terms are always
present.)

In terms of the coherent states, the action for 2n copies,
combining both scrambling and measurement can be defined
as follows:

〈V ⊗ VT ⊗ · · · ⊗ V ⊗ VT 〉J,O = e−NI[�](t )�t ,

I[�] =
∫ T

0
dt

[
nJSp

2p!(S + 1)p
+ nγ Sq

2q!(S + 1)q
+ J

2p!

∑
r<s

μp
rs

(
1

N

∑
i

�r
i · �s

i

)p

− γ

2q!

∑
r<s

χq
rs

(
1

N

∑
i

�r
i · �s

i

)q]
. (B22)

To deal with the nonlinear interactions in �r
i · �s

i , we introduce decoupling fields Frs(t ) and Grs(t ) with the following operator
identity:

I =
∫

DFrsDGrs exp

[
iN
∫ T

0
dt Frs

(
Grs− 1

N

∑
i

�r
i · �s

i

)]
. (B23)

We can now treat Frs and Grs as the dynamical fields for the problem which couple different replicas r, s, and integrate out
the spins, which gives us a propagator for spin problem. Note that we actually have a N-spin propagator when we evaluate the
� path integral. However, since all the sites i are identical and have been decoupled by the disorder average, we can rewrite the
2nN-spin problem as the N th power of a 2n-spin problem,∫ ∏

i,r

D�r
i exp

(
−
∑
r<s

iFrs

∑
i

�r
i · �s

i

)
=
∫ ∏

r

(D�r )N exp

(
−N

∑
r<s

iFrs�
r · �s

)
, (B24)

where the new single-site integration measure is

D�r =
∏

tn

2S + 1

4π
d�r

tn

〈
�r

tn+1

∣∣�r
tn

〉
. (B25)

Putting it all together, along with the boundary conditions for the spin propagator, we get the action density

I[Frs, Grs] = I0 + I1 − ln K (ψ0, ψT , T ), where I0 ≡ JT
nSp

2p!(S + 1)p
+ γ T

nSq

2q!(S + 1)q
,

I1 ≡
∫ T

0
dt

[
J

2p!

∑
r<s

μp
rsG

p
rs −

∑ γ

2q!

∑
r<s

χq
rsG

q
rs − i

∑
r<s

FrsGrs

]
,

K (ψ0, ψT , T ) ≡ 〈ψT | exp

[
−
∫ T

0
dt
∑
r<s

iFrs

(S + 1)2
Sr · Ss

]
|ψ0〉. (B26)

Since the propagator K is composed of SU(2)-symmetric
Heisenberg couplings, the dynamics of the propagator are
highly constrained. For S = 1/2 and n = 2 we showed in
the main text that these constraints reduce the dynamics to
a two-dimensional subspace; we expect similar constraints to
simplify the problem for more general cases, but this remains
a problem for future work.

APPENDIX C: REPLICA SYMMETRY

As discussed in the main text, the microscopic bulk dynam-
ics V = V (1) ⊗ V (2)

T ⊗ V (3) ⊗ V (4)
T on replicas r = 1, 2, 3, 4

for n = 2 is manifestly invariant under the replica symmetry

group

G = (S2 × S2) � Z2, (C1)

where the inner S2
∼= Z2 groups denote the permutation

groups on replicas 1,3 and 2,4 with generators σ = (13),
σ ′ = (24), respectively, where we use standard cycle notation
in this section to represent permutations of replicas. The outer
Z2 in the semidirect product is generated by τ = T (12)(34),
where the operation T represents time reversal V ↔ VT on
all four replicas. Under the semidirect product, the generator
τ simply exchanges the generators σ, σ ′:

σ ′ = τστ. (C2)
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Explicitly, these generators act on the bulk dynamics as

σ
(
V (1) ⊗ V (2)

T ⊗ V (3) ⊗ V (4)
T
) = V (3) ⊗ V (2)

T ⊗ V (1) ⊗ V (4)
T ,

σ ′(V (1) ⊗ V (2)
T ⊗ V (3) ⊗ V (4)

T
) = V (1) ⊗ V (4)

T ⊗ V (3) ⊗ V (2)
T ,

τ
(
V (1) ⊗ V (2)

T ⊗ V (3) ⊗ V (4)
T
) = V (2) ⊗ V (1)

T ⊗ V (4) ⊗ V (3)
T ,

(C3)

where superscripts denote replica indices r = 1, 2, 3, 4. The
replica symmetry group G for n = 2 is isomorphic to the di-
hedral group D4 = Dih4 (the group of symmetries of the geo-
metrical square) via the representation

G = 〈a, b|a4 = b2 = 1, bab = a−1〉 (C4)

with the identification a = τσ and b = σ .
While the bulk dynamics V are invariant under the full

group G, the boundary conditions at t = 0, T break this down
to a subgroup H ⊂ G generated by the mutually commuting
operators τ, c, where

c = στσ = ba = T (14)(23) (C5)

corresponds to a “reflection” 1234 ↔ 4321 in replica space
followed by time reversal T on all replicas. This subgroup
is isomorphic to the Klein four-group H ∼= Z2 × Z2 com-
posed of the four elements {e, τ, c, τc} with e the identity
element. Left multiplication by σ = b yields the left coset
σH = {σ, στ, σc, σ τc}, and together the left cosets H, σH
generate the full group G. In this sense, the generator σ = b
represents the Z2 symmetry that is explicitly broken by the
boundary conditions and spontaneously broken in the bulk.

For n > 2 the replica symmetry group is

G = (Sn × S′
n) � Z2, (C6)

where Sn = S135..., S′
n = S246... are the order-n! symmetric

groups on replicas r = 1, 3, 5, . . . and r = 2, 4, 6, . . . with
generators σ, σ ′, respectively. Similar to above, the outer Z2 is
generated by an element τ = T (12)(34) · · · (2n − 1 2n) that
exchanges the generators σ ′ = τστ . The boundary conditions
at t = 0, T break this bulk symmetry down to a subgroup
H ⊂ G that depends on the details of the boundary states.

Because they contain the time-reversal operation T , which
itself contains the complex conjugation operation ∗, the op-
erators τ, c are antilinear operators on the Hilbert space of
quantum states, in contrast to the generators σ, σ ′ which
are conventional linear operators [72]. Whereas conventional
linear operators (as their name suggests) are linear in their
arguments,

σ (α|ψ〉 + β|ψ ′〉) = ασ |ψ〉 + βσ |ψ ′〉, (C7)

antilinear operators are antilinear in their arguments,

τ (α|ψ〉 + β|ψ ′〉) = α∗τ |ψ〉 + β∗τ |ψ ′〉, (C8)

where complex conjugation of the c-numbers α, β arises due
to the complex conjugation in the definition of time rever-
sal T . The antilinearity of τ, c leads to restrictions on the
spectrum of the operator V via the same mechanism that
guarantees the reality of eigenvalues of certain non-Hermitian
Hamiltonians in PT-symmetric quantum mechanics [80,81].

Here we show that an operator V with unbroken PT sym-
metry has a real spectrum, while an operator with broken

PT symmetry has a spectrum consisting of complex-conjugate
pairs. Assume that there is an antilinear operator τ that com-
mutes with the operator V :

[τ,V ] = 0 (C9)

and suppose |�〉 is an eigenstate of V with eigenvalue V :

V |�〉 = V |�〉. (C10)

Multiplying this eigenvalue equation on the left by τ and using
the fact that τV = V ∗τ by antilinearity of τ , along with the
commutativity of τ,V , we find that |� ′〉 = τ |�〉 is also an
eigenstate of V with eigenvalue V ∗:

V |� ′〉 = V ∗|� ′〉. (C11)

Hence any eigenstate |�〉 of V with eigenvalue V is always
accompanied by a second eigenstate τ |�〉 with eigenvalue V ∗.

This shows that the spectrum of any PT-symmetric operator
V always consists of complex-conjugate pairs V,V ∗, but there
is no guarantee that these eigenvalues lie on the real line. To
guarantee reality of the spectrum one requires the additional
assumption that the eigenstate |�〉 is simultaneously also an
eigenstate of τ :

τ |�〉 = λ|�〉. (C12)

If τ were a conventional linear operator, this would follow
immediately from the commutativity of τ,V (C9); but when
τ is antilinear this is an additional independent assumption.
Because τ is antilinear the eigenvalue λ can be any pure
phase λ = eiφ but we may always appropriately redefine the
eigenstate |�〉 such that λ = 1 [72,80,81]. In this case we have
|� ′〉 = τ |�〉 = |�〉 and therefore by combining Eqs. (C10)
and (C11) we immediately obtain V = V ∗. Thus, if |�〉 is a
simultaneous eigenstate of both τ and V , then its eigenvalue
V is real.

If all of the eigenstates of V are also eigenstates of the
antilinear operator τ then the spectrum is guaranteed to be
real by the above arguments and we say that the PT symmetry
of V is unbroken. Conversely, if there are eigenstates of V
that are not eigenstates of τ , then the spectrum consists of
complex-conjugate pairs and we say that the PT symmetry of
V is broken.

APPENDIX D: SIMPLIFICATION OF THE PATH
INTEGRAL AT SADDLE POINT

We introduce symmetric and antisymmetric fields defined
as

F±
a = 2

9 (iF12 ± iF34), G±
a = 9

2 (G12 ± G34),

F±
b = 2

9 (iF14 ± iF23), G±
b = 9

2 (G14 ± G23),

F±
c = 2

9 (iF13 ± iF24), G±
c = 9

2 (G13 ± G24).

This redefinition simplifies the four-replica propagator, as
the only fields appearing in the propagator are the symmet-
ric combinations, F+

a,b,c. This implies that the saddle-point
equations of motion for the antisymmetric fields F−

a,b,c set
G−

a,b,c = 0, which reduces the number of fields to consider
down from 12 to 6. Since all the antisymmetric fields are
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thus integrated away, we drop the ± superscript and define
Ga,b,c = G+

a,b,c (and similarly for the F fields).
In terms of these fields, the action density can be rewritten

as

I =
∫ T

0
dt
[ J

162

(− G2
a − G2

b + G2
c

)− γ

9
(−Ga − Gb + Gc)

−FaGa − FbGb − FcGc] − ln K. (D1)

The saddle-point equations of motion corresponding to this
action are given by

− J

81
Ga,b + γ

9
= Fa,b ,

J

81
Gc − γ

9
= Fc, Ga,b,c = − d ln K

dFa,b,c
. (D2)

The G fields can thus be integrated out by replacing them with
the saddle-point solutions. We can also rewrite the action in
terms of the magnetic field variables �B. The B0 field can also
be integrated out since it appears in a quadratic form.

Finally we have a path integral over just two fields, with
the action

I =
∫ T

0
dt

[
27B2

x

4J
− 81B2

z

4J
+ Bz(1 + 18γ ) − J

72

−4γ 2

J
− γ

2

]
− ln K,

K = 〈ψT | exp

[
1

2

∫ T

0
dt (Bxσx + Bzσz )

]
|ψ0〉. (D3)

We need to determine the integral contour such that the
integral is converged. This implies that Bx is to be integrated
from −∞ → ∞, while Bz is to be integrated along the imag-
inary axis, −i∞ → i∞.

Note that until now we have not made any assumptions
about the time dependence of the fields. This simplified ex-
pression for the path integral over just two fields follows
naturally from the symmetry of the four-spin Hamiltonian and
the fact that the boundary states belong to a particular spin
sector.

APPENDIX E: NUMERICAL GRADIENT DESCENT

We can estimate the time dependent solutions to Eq. (29)
by performing numerical gradient descent on discretized field
configurations of Bx and Bz. For this section in order to per-
form gradient descent over real-valued Bx and Bz fields we
change the definition of Bz to an imaginary “magnetic field,”
iBz. The action is given by

I =
∫ T

0
dt

[
27B2

x

4J
+ 81B2

z

4J
+ iBz(1 + 18γ ) − J

72

−4γ 2

J
− γ

2

]
− ln K,

K = 〈ψT | exp

[
1

2

∫ T

0
dt (Bxσx + iBzσz )

]
|ψ0〉. (E1)

For the gradient descent, we consider units where Jdt =
0.05. In Figs. 6 and 7 we consider total times of 2430Jt
and 3240Jt , respectively. Starting from the bulk saddle-point
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0
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1
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4
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(c) (d)
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FIG. 15. Subsystem purity critical exponent μ from gradient descent numerics. The critical subsystem fraction kc(γ ) is identified for
measurement rates γ < γc just below the critical point by finding points in the k, γ plane where the boundary action �Ibdy is equal to the
single-instanton action I∗.
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FIG. 16. Disorder averaging in exact diagonalization numerics. (a) Far below the critical point, the two averaging protocols (purple, green)
yield nearly identical results in numerical simulations with N = 6 qubits averaged over 50 circuit realizations. (b) Closer to the critical point the
two estimates begin to diverge, while above the critical point (c) they disagree sharply. Nevertheless, both disorder averages appear to faithfully
diagnose the transition when compared to the respective disorder averages performed in circuits featuring measurements only (dotted gray,
solid gray).

configurations we perform the gradient descent with the action
given in Eq. (E1) until the difference in action is below a
threshold of δI ∼ 10−7. Each of the configurations in Fig. 6
requires ∼10 000 iterations of the gradient descent to reach
the required threshold. For Fig. 7(a), we initialize the configu-
ration of the fields to correspond to the instanton configuration
in Eq. (45) and find that the action is already below the
threshold for gradient descent.

To explore the subsystem purity phase diagram Fig. 11, we
perform numerical gradient with the k dependent action with
the propagator given by Eq. (51). For γ < γc but close to criti-
cality, we consider the two configurations in Fig. 10(b)(iii–iv)
and perform gradient descent to find local minima near these
solutions, for a range of k ∈ 0.50, 0.501, . . . , 0.51 as shown
in Fig. 15. We then interpolate to find the value of k for which
the two configurations exchange in total action, which is the
numerical estimation of kc, used to plot Fig. 11. The error bars
are the errors due to the resolution of the k values considered
for the numerics.

APPENDIX F: EXACT DIAGONALIZATION

Numerical simulations of the hybrid dynamics for small
system sizes N confirm the presence of a long-lived mixed
phase as shown in Fig. 8. These data were obtained by numer-
ically simulating the (2,1) hybrid Brownian model on N =
|Q| = 6 qubits maximally entangled with |R| = 6 reference
qubits using the Krylov subspace method [85–87].

We plot the results of these numerical simulations in
Fig. 16, which shows the entropy − ln �Q = − ln Z2/P2 as
a function of time, averaged over 50 circuit realizations. We
perform the disorder average in two different ways: the “phys-
ical” disorder average 〈Z2/P2〉 that one obtains from the Born
rule (purple); and the “tractable” disorder average 〈Z2〉/〈P2〉
studied in this work (green). At low measurement rates γ

we find that these two ways of doing the disorder average
give nearly identical answers [Fig. 16(a)], while they disagree
for higher values of γ [Figs. 16(b) and 16(c)]. Both disorder
averages, however, deviate substantially from the correspond-
ing curves computed in measurement-only circuits (dotted

black, solid black), indicating that both disorder averages are
sensitive to the purification transition.

Our exact diagonalization calculations are limited to short
simulation times and values of γ /J that are not too small.
At small γ one must distinguish the phase from the initial
exponential decay, necessitating simulation times longer than
t > 1/γ ; accessing these long timescales is challenging for
exact diagonalization due to the propagation of successive
errors in the Krylov approximation. Specifically, numerical
accuracy of the Krylov algorithm requires ε = √

Jδt � 1 [the
square root comes from the fact that J controls the variance of
the couplings in Eq. (2), not the standard deviation]. Together
with the requirement t > 1/γ this gives a lower bound

t

δt
>

1

ε2

J

γ
(F1)

on the number of timesteps t/δt required to access the mixed
phase given fixed numerical precision ε and phase parameter
γ /J . Our simulation for γ = 0.0044J above, for example, has
ε ≈ 0.16 and J/γ = 225, requiring on the order of t/δt ≈ 104

timesteps or more to access the mixed phase.

APPENDIX G: CONTINUOUS MONITORING
OF DISORDERED SPIN OBSERVABLES

WITH OPTICAL CAVITIES

While the projective qubit model introduced in Ap-
pendix B 2 is conceptually useful for deriving the effective
weak measurement operator M(t ), high-fidelity single-site
projective measurements are challenging to implement exper-
imentally. Fortunately, such high-fidelity single-qubit projec-
tive measurements are not strictly necessary for our scheme to
work. Instead, one can generate equivalent weak measurement
dynamics by continuously monitoring the collective spin op-
erator O =∑i,α nα

i Sα
i directly. Such collective spin variables

can be monitored naturally in state-of-the-art cavity quantum
electrodynamics setups by coupling a quasi-one-dimensional
cold atomic ensemble to the optical mode of an all-to-all
optical cavity [40,65,91–94].
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In such a cavity setup, each spin Si is encoded into the
electronic states of the ith atom, which resides at position
zi along the longitudinal cavity axis. The atoms act like a
spin-dependent refractive index for the cavity mode, which
causes the cavity resonance to shift by an amount proportional
to the total magnetization Sz

Tot =∑i Sz
i [91–93]. By probing

the cavity with near-resonant light we can therefore continu-
ously monitor the total spin projection Sz

Tot. If the atoms are
coupled unequally to the cavity mode, the shift in cavity reso-
nance is instead proportional to the disordered magnetization
S̃z

Tot =∑i niS
z
i , where the weights ni are determined by the

coupling between the ith atom and the cavity mode. These
couplings can be modified by shifting the physical locations
of the atoms relative to the cavity mode, or by applying
nonuniform local ac Stark shifts to the ensemble. Further, one
can couple different spin components Sα

i to the cavity mode
by applying additional nonuniform magnetic fields or optical
drive fields to rotate the local coordinate frame at each atomic
site zi. The combination of these tools in principle allows for
continuous monitoring of disordered spin-linear operators of
the form O =∑i,α nα

i Sα
i without requiring single-site projec-

tive measurements of single qubits.
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