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Probing the superfluid-insulator phase transition by a non-Hermitian external field
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We study the response of a thermal state of the Hubbard-like system to either global or local non-Hermitian
perturbation, which coalesces the degenerate ground state within the U(1) symmetry breaking phase. We show
that the dynamical response of the system is strongly sensitive to the underlying quantum phase transition (QPT)
from a Mott insulator to a superfluid state. The Uhlmann fidelity in the superfluid phase decays to a steady value
determined by the order of the exceptional point (EP) within the subspace spanned by the degenerate ground
states, but remains almost unchanged in the Mott insulating phase. It demonstrates that the phase diagram at
zero temperature is preserved even though a local probing field is applied. Specifically, two celebrated models,
including the Bose-Hubbard model and the Jaynes-Cummings-Hubbard model, are employed to demonstrate this
property in the finite-size system, wherein fluctuations of the boson and polariton number are observed based
on EP dynamics. This work presents an alternative approach to probe the superfluid-insulator QPT at nonzero
temperature.
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I. INTRODUCTION

In equilibrium and at zero temperature, the quantum
phase transition (QPT) serving as one of the central is-
sues in condensed matter physics can usually be described
by a phenomenological order parameter according to the
Landau-Ginzburg theory [1]. Therefore, a system experiences
a symmetry breaking from one phase with a nonzero order
parameter to another with a vanishing order parameter. The
underlying mechanism is the degeneracy of the ground states.
Thanks to the incredible advance in quantum simulation, es-
pecially in the context of quantum optics and atomic physics,
a wide range of condensed matter systems has been theoret-
ically investigated and many proposals for probing the QPT
have been proposed [2–4]. QPTs might still be observed at
sufficiently low temperatures, where the quantum fluctuations
dominate and thermal fluctuations are not significant enough
to excite the system from its ground state. At higher tempera-
tures, thermal fluctuations conceal the quantum criticality. As
a consequence, it leaves no residuals of the quantum phase
diagram at absolute zero temperature.

Dissipation is ubiquitous in nature and plays an essential
role in quantum systems such as inducing decoherence of
quantum states. Recently, a promising research direction has
been to investigate the effect of the non-Hermiticity on the
QPT [5–11] and hence discover novel quantum matter. On
the other hand, much attention has been paid to an intriguing
possibility of dissipation as an efficient tool for the prepa-
ration and manipulation of quantum states [12–16]. In this
new area, the understanding and controlling of the nonequi-
librium dynamics of correlated quantum many-body systems
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with dissipation is an urgent issue in diverse fields of physics,
ranging from ultracold gases [17], Bose-Einstein condensates
(BECs) placed in optical cavities [18], trapped ions [19,20],
exciton-polariton BEC [21], and microcavity arrays coupled
with superconducting qubits [22,23]. Given the above two
fruitful topics, we naturally ask the following questions: Can
we establish a non-Hermitian dynamic detection scheme to
capture the phase of the Hermitian system and can we accu-
rately predict the phase boundary?

The QPT and the corresponding critical phenomena can
be understood with the concepts from quantum information,
i.e., the quantum entanglement [24,25], the quantum fidelity
[26–28], and the Loschmidt echo (LE) [29–36]. This provides
a method for detecting QPT based on the response of the
ground state under a perturbation. The recent development
of the non-Hermitian Hamiltonian shows that it exhibits ex-
clusive effects never before observed in a Hermitian system
[15,37–39]. One of the most interesting phenomena is the crit-
ical dynamics based on the exceptional point (EP) [8,10,40].
Addressing the proposed question may shed light on this. In
this paper, we propose a scheme to detect the Mott insulator-
superfluid QPT based on the EP dynamics. In its essence,
if there can exist a non-Hermitian perturbation relating the
degenerate states with each other so as to form a Jordan block,
then the order of the EP can be arbitrarily modulated accord-
ing to the degeneracy of the involved states. The EP drives the
system to evolve towards the corresponding coalescent state.
Unlike the Hermitian system, the system evolution shows
directional rather than periodic oscillations even though an
initial thermal state is prepared. Based on this mechanism, we
examine the response of two celebrated Hubbard-like systems
to the external critical non-Hermitian field. It demonstrates
that when the system is in the superfluid phase, the non-
Hermitian external field forces the degenerate ground state
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to coalesce and thereby leads to a decay of the Loschmidt
echoes. In the thermodynamic limit, it converges to zero but
stays around 1 in the Mott insulating phase. This dynamical
property holds at a low-temperature limit and is insensitive to
whether the external field is localized and whether the external
field is isotropic. Therefore, it provides a reliable scheme for
detecting the Mott insulator-superfluid phase transition in a
real physical system.

Our paper is structured as follows: In Sec. II, we give
the fundamental mechanism of the proposed non-Hermitian
detecting scheme through a simple two-level system. In
Secs. III and IV, we apply the proposal to examine the Mott
insulator-superfluid QPT in two celebrated correlated many-
body systems, namely, the Jaynes-Cummings-Hubbard (JCH)
model and Bose-Hubbard (BH) model. We conclude and dis-
cuss our results in Sec. V.

II. INSIGHT INTO THE NON-HERMITIAN DETECTION

We first demonstrate the underlying mechanism of the con-
sidered proposal through a simple 2×2 matrix. The starting
point is a Hermitian two-level system, with the eigenenergies
E1 and E2. In the energy representation {|ψ1〉, |ψ2〉}, the ma-
trix form can be given as

H0 =
(

E1 0
0 E2

)
, (1)

where the two energy levels are arranged in ascending order
such that E1 < E2. We focus on the dynamics of an initial
thermal state with density matrix ρ(0) = e−βH0/Tr(e−βH0 ) at
temperature T = 1/β with h̄ = 1. Evidently, when the two en-
ergy levels are near degenerate and the low-temperature limit
is assumed, the density matrix ρ(0) is reduced to ρI(0) = I/2,
where I is the identity matrix. On the contrary, if a gap δ =
E2 − E1 exists between the two involved energy levels, then
the initial density matrix of the system is reduced to ρII(0) =
(I + σz )/2. Note in passing that the first type of initial state
is a maximally mixed state demonstrated by Tr[ρ2

I (0)] = 1/2
and the second type of initial thermal state is a pure state
characterized by Tr[ρII(0)]2 = 1. The interplay between δ and
β determines the constituents of each eigenstate in the mixed
state. For instance, the larger β is required to involve the
information of the excited state in the initial thermal state
when δ is large. These evidences play the key role to under-
stand the quench dynamics. After a non-Hermitian quench,
the postquench Hamiltonian can be given as H = H0 + H ′,
wherein H ′ = λ|ψ1〉〈ψ2|. The corresponding matrix form is

H =
(

E1 λ

0 E2

)
, (2)

where λ is a real number and denotes the non-Hermitian
coupling between two such energies. When the two energies
of the prequench Hamiltonian are degenerate, E1 = E2, the
postquench Hamiltonian H is in a Jordan block form such
that the two eigenstates |ϕ1〉 and |ϕ2〉 of H coalesce. For any
given pure initial state, the quenched Hamiltonian drives it
to the coalescent state (see the Appendix for details). How-
ever, when δ � 1, the quenched Hamiltonian H shares the
same spectrum with H0; the eigenstate |ϕ1〉 is unchanged even
though a nonzero perturbation λ presents, and the eigenstate

|ϕ2〉 of H is in a superposition of |ψ1〉 and |ψ2〉, that is, |ϕ2〉 =
(λ/δ)|ϕ1〉 + |ϕ2〉. It is conceivable that the dynamics of the
two initial thermal states will exhibit distinct behaviors. To
give such differences, we first investigate the time evolution of
the density matrix ρ(t ). It should obey the following equation:

i
∂ρ(t )

∂t
= Hρ(t ) − ρ(t )H†, (3)

which admits the formal solution

ρ(t ) = e−iHtρ(0)eiH†t . (4)

Due to the non-Hermiticity nature, the time evolution of the
density matrix is no longer unitary. Hence, in the subsequent
analysis, we normalize ρ(t ) by taking

ρ(t ) = e−iHtρ(0)eiH†t/Tr[e−iHtρ(0)eiH†t ]. (5)

The degree of distinguishability between the initial states
ρ(0) and ρ(t ) can be identified by the so-called Uhlmann
fidelity [41,42],

L(t ) = {Tr[ρ1/2(0)ρ(t )ρ1/2(0)]1/2}2, (6)

also known as the Loschmidt echo (LE). For the first type of
initial state ρI(0), the straightforward algebra shows that

ρI(t ) = 1


I(t )

(
t2λ2 + 1 −itλ

itλ 1

)
, (7)

where 
I(t ) = λ2t2 + 2. Substituting ρI(t ) into Eq. (6), one
can immediately obtain

L(t ) =
[

1

2

1/2
I (t )

(√

I(t ) + λt[
I(t ) + 2]1/2

+
√


I(t ) − λt[
I(t ) + 2]1/2
)]2

. (8)

Our primary interest here is the steady value of the LE, L(t )
(t → ∞), after a sufficiently long period, which can be given
by setting λt f � 1. Within this condition, 
I(t f ) ≈ λ2t2

f , and
hence L(t f ) ≈ 1/2. The physical picture is clear: The initial
mixed state ρI(0) contains components of two parities. When
the non-Hermitian coupling λ is switched on, the postquench
non-Hermitian Hamiltonian H contains only one coalescent
state |ϕc〉 = |ψ1〉. Therefore, all the possible initial states will
be driven towards this coalescent state. This indicates that
the component with a certain parity (|ψ1〉) of the thermal
state ρI(0) is dominant due to the EP dynamics. From this
perspective, ρI(t ) loses half of the information regarding the
|ψ2〉, which results in L(t f ) ≈ 1/2. These features do not
occur when the Hermitian field H ′ is applied since L(t ) is
always 1 as time t goes by. These conclusions still hold for
the dynamical detection scheme of an N-fold degenerate sys-
tem. In that setup, the non-Hermitian detection field is given
as H ′ = λ

∑N−1
j=1 |ψ j〉〈ψ j+1| and postquench Hamiltonian H

possesses only one eigenvalue whose geometric multiplicity
is 1. Hence, the high-order EP point up to N-level coalescence
is created. Any given arbitrary initial state will evolve towards
the coalescent state |ψ1〉 after a sufficiently long time. At this
time, ρI(t ) tends to |ψ1〉〈ψ1|, leading to L(t f ) ≈ 1/N . It also
demonstrates that the order of the EP determines the steady
value of LE, L(t ).
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For the second type of initial state ρII(0), the time evolution
of the density matrix can be readily obtained as ρII(t ) =
ρII(0) = (I + σz )/2. The LE L(t ) can be given directly as
L(t ) ≈ L(0) = 1. This denotes that a non-Hermitian detection
does not substantially affect the dynamics due to the presence
of gap δ. It is worth pointing out that if the Hermitian detection
field H ′ = λ|ψ1〉〈ψ2|+ H.c. is turned on, then LE L(t ) =
1 − λ2 sin2(ωt )/ω2, wherein ω =

√
δ2/4 + λ2. Evidently, it is

a periodic function. In the weak coupling limit λ 	 1, L(t f )
stays near 1, which is similar to that of the non-Hermitian
detection scheme. In the following, we will demonstrate that
the considered scheme can be applied to examine the QPTs,
which are usually associated with the spontaneous symmetry
breaking of the system. When the system enters from one
phase to another, the system energy will undergo a transi-
tion from gap to gapless, wherein the phase transition point
corresponds to the gap closing point. Hence, the system will
exhibit distinct dynamic behaviors when it is in the different
phases. Such difference can be detected by the current pro-
posed scheme.

III. JAYNES-CUMMINGS-HUBBARD MODEL

The first celebrated QPT model is the JCH model that has
emerged as a fundamental model at the interface of quantum
optics and condensed matter physics [2,43–48]. It describes
strongly correlated photons in a coupled qubit-cavity array
and predicts a superfluid–Mott-insulator transition of polari-
tons. The corresponding Hamiltonian reads

H0 =
∑

i

H JC
i +

∑
〈i, j〉

κi j (a
†
i a j + H.c.) −

∑
i

μiNi, (9)

with

H JC
i = ωca†

i ai + ωaσ
+
i σ−

i + g(aiσ
+
i + a†

i σ
−
i ), (10)

Ni = σ+
i σ−

i + a†
i ai, (11)

where σ+
i = |ei〉〈gi| and σ−

i = |gi〉〈ei| (a†
i , ai) correspond to

the atomic (photonic) raising and lowering operators, respec-
tively. |gi〉 and |ei〉 are the ground and excited states of the
two-level system. The transition energy of the atomic system
is ωa, the cavity resonance is ωc, and the cavity mediated
atom-photon coupling is g, which is assumed to be real for
our purposes. The whole system is given by a combination of
the Jaynes-Cummings Hamiltonian H JC

i with photon hopping
between cavities κi j (〈i, j〉 represent nearest-neighbor pairs)
and the chemical potential term μi. Here, N = ∑

i Ni is the
total number of atomic and photonic excitations, which is a
conserved quantity, i.e., [N, H] = 0. This is also called U(1)
symmetry conserving the number of polaritons.

For simplicity, we assume that the homogeneous intercav-
ity hopping κi j = κδi, j+1 occurs for nearest neighbors and
zero disorder, μi = μ, for all sites. Because of the photonic
repulsion arising from g, the system supports two phases, that
is, the Mott insulating and superfluid phases. Such phases
can be determined by employing a mean-field approximation.
Although the mean-field theory as an approximation theory
is not particularly accurate, it can give the basic property of
the ground state of two phases. To capture such property, we

first give the dressed states |±, n〉 of H JC (the subscript i is
omitted), where n is the number of excitations in the cavity.
The concrete forms of such states can be given as

|±, n〉 = g
√

n|g, n〉 + [−
/2 ± χ (n)]|e, n − 1〉√
2χ2(n) ± χ (n)


∀n � 1,

(12)
and the corresponding eigenenergies are

E±,n = nωc ± χ (n) − 
/2, (13)

where detuning 
 = ωc − ωa and χ (n) =
√

ng2 + 
2/4. The
ground state for the dressed state system is defined as |g, 0〉
with eigenenergy Eg = 0. Taking the decoupling approxi-
mation a†

i a j = ψ∗a j + ψa†
i − |ψ |2 with ψ = 〈ai〉, we can

demonstrate that when the system is in the Mott insulating
phase ψ = 0, the ground state of the system has a fixed num-
ber of polaritonic excitation on each site, which is determined
by the system parameters. There must be a gap between the
ground state and the first excited state of the system. As
a comparison, the system is in the superfluid phase when
ψ 
= 0. At this time, the system is gapless and the ground state
at each site corresponds to a coherent state of excitations over
the |−, n〉 branch. Note that the condition of E−,n < E+,n is
assumed. These properties allow us to dynamically identify
two such phases by employing the non-Hermitian probing
field that can be given as H ′ = λ

∑
i ai in this scenario. Af-

ter a quench, one can expect that L(t ) of the initial thermal
state with a low-temperature limit will not decay due to the
protection of the gap. On the contrary, when the system is
tuned to the superfluid phase, the ground state is forced to
be degenerate to break the U(1) symmetry. The degenerate
ground states possessing the different excitation numbers can
be related to each other through H ′ such that a Jordan block
form appears. The degeneracy of the ground state determines
the order of the EP of H . In the thermodynamic limit, the
steady value of L(t ) quickly approaches 0 according to the EP
dynamics of ρI(t ) in the aforementioned section. In the finite-
size system, the change of the ground state symmetry accords
with that predicted by the mean-field theory, but the exact
phase boundary cannot be determined by that approximation.
As a benchmark, the purity Tr[ρ2(0)] is employed to identify
whether the ground state is degenerate in the low-temperature
limit. Evidently, Tr[ρ2(0)] = 1 when the ground state is not
degenerate. On the other hand, the presence of the degen-
erate ground states makes the purity tend to 1/Nc, with Nc

denoting the degeneracy. Here, two points should be noted:
First, the system is initialized in the ground state and no other
excited states are involved when the zero-temperature limit
is assumed. All the aforementioned statements about the two
types of initial density matrices are strictly true. The so-called
low-temperature limit means that thermal fluctuations are not
significant enough to excite the system from its ground state.
Second, there can exist a gap in the finite-size system even
though the system is in the deep superfluid regime (κ � g)
characterized by the constant number of the correlation func-
tion 〈a†

i a j〉. However, it will vanish as the system dimension
increases. This property does not affect the validity of the
currently proposed non-Hermitian scheme to detect the QPT
boundary at which the excitation spectrum is gapless.
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FIG. 1. Time evolution of LEs for different κ with a given chem-
ical potential μ. The lines and dots denote the LEs for β = 5 and
β = 10, respectively. The system consists of two cavities, where the
photon number of each cavity is truncated at a finite value n = 10.
The other system parameters are g = 1, ωc = 5g, 
 = 0, λ = 0.1g,
and μ = −6.5g. The profiles of the LEs in the two regions are
distinct, independent of the temperature of the initial thermal states,
and converge to 1.0 and 0.2, respectively.

To verify the above conclusion, we perform the numerical
simulations for L(t ) of the initial state ρ(0) at different phases
in the finite system. In Fig. 1, the non-Hermitian quenched

Hamiltonian that drives the system exhibits two distinct be-
haviors of L(t ): In the Mott insulating phase characterized by
a fixed number of excitations per site with no fluctuations, L(t )
will stay at 1 as time t goes on; in a superfluid phase, L(t )
tends towards a steady value depending on the purity of the
initial thermal state. These results agree with our prediction
and demonstrate that LEs are insensitive to temperature and
tend towards different values in different phases. To compare
with the phase diagram obtained by the mean-field theory and
the purity, we introduce an average LE in the time interval
[0, T ] that is defined as

L = 1

T

∫ T

0
L(t )dt, (14)

where T � 1. The average LE as a function of the values of
parameters κ and μ with given 
 = 0 is plotted in Figs. 2(c)
and 2(d). Comparing to the order parameter ψ obtained by
the mean-field approximation in the thermodynamic limit, it
indicates that the average LE can be used to identify the quan-
tum phase diagram at nonzero temperatures even in small-size
systems.

Next we will examine how a local external field affects the
L(t ). Consider the postquench Hamiltonian with the form

H = H0 + λai, (15)

FIG. 2. Comparison of phase diagrams obtained by the mean-field approximation, purity, and average LEs. Here we set T = 200. Other
parameters: g = 1, λ = 0.1, (c) β = 3, and (d) β = 20. The behaviors of L and the purity accord with each other and demonstrate the phase
boundary even in the finite-size system. It also presents a clear manifestation of the Mott insulator to superfluid quantum phase transition at
nonzero temperature. Note that in the upper right part of (b)–(d), the system possesses a gap due to the finite-size effect, which can be expected
to vanish as N increases to infinite. Note that the color bar of (a) is reversed as opposed to that of (b)–(d).
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FIG. 3. Numerical simulation for LEs under the postquench Hamiltonian (15) for different i values. (a), (c) LEs in the Mott insulating
phase when κ/g = 10−4 and κ/g = 10−0.08. (b), (d) LEs in the superfluid phase when κ/g = 10−0.3 and κ/g = 100. The system is composed of
four cavities and the other system parameters are μ = −6.5g and β = 10. The LE decays rapidly to 0.25, whereas it remains at one in the Mott
insulating phase. This evidence manifests that a local dissipation can lead to a significant change of ρ(t ), and thereby serves as a dynamical
signature to identify different phases of matter.

where λai is the component of operator λ
∑

i ai. In this case,
the LE is denoted by Lj (t ). In the superfluid phase, a local
external field can indeed make the degenerate ground states
coalesce, and thereby the long-term behavior of Lj (t ) is ex-
pected to be similar to that of the postquench Hamiltonian in
the presence of the global non-Hermitian field. We perform
the numerical simulation in Fig. 3. We can see that Lj (t )
decay to a steady value in the superfluid phase, but remain
1 in the Mott insulating phase after a sufficiently long time.
This accords with our prediction. This evidence manifests that
a local dissipation qualitatively affects the dynamics of the
initial state through the EP and hence provides an alterna-
tive mechanism to probe the QPT from the Mott insulator to
superfluid state.

IV. BOSE-HUBBARD MODEL

The second celebrated model delineating a Mott-insulator–
superfluid transition is the BH model. The corresponding
Hamiltonian is

H0 = −
∑
〈i, j〉

κi j (b
†
i b j + H.c.) + U

2

∑
i

ni(ni − 1) − μ
∑

i

ni.

(16)

Here, b†
i and bi are the bosonic creation and annihilation oper-

ators such that ni = b†
i bi gives the number of particles on-site,

i. κi j , μ, and U are tunable parameters of the BH model, corre-
sponding to the tunneling, chemical potential, and interaction

strength, respectively. The system also respects the U(1) sym-
metry, that is, [

∑
i ni, H] = 0, which conserves the number of

0 50 100
0

0.5

1

FIG. 4. Time evolution of LEs for different ratio of κ/U . The
lines and dots denote the LEs for β = 5 and β = 10, respectively.
The system consists of four sites with photon numbers truncated
at a finite value n = 15. The chemical potential is assumed to be
μ/U = 0.5 such that each site’s occupation number of the ground
state is 1 within the Mott insulating phase. The strength of the
non-Hermitian perturbation field is set to be λ/U = 0.1 to induce
the Jordan block form in the superfluid phase. Again, the LEs exhibit
different dynamical behaviors in two such phases: L(t ) tends towards
a steady value 0.2 in the Mott insulating phase, whereas it remains
1 in the superfluid phase. The profiles of the LEs are independent of
the temperature of the initial thermal states.
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FIG. 5. Contour plot of average LEs, (a) L and (b) Li. The Mott lobes denoted by the red and blue solid lines are obtained by the mean-field
approximation. Here the local dissipation is applied to site 1 and T = 200 is set to evaluate the average LEs. Other system parameters are
(a1) λ/U = 0.1 and β = 3, (a2) λ/U = 0.1 and β = 20, (b1) λ/U = 0.2 and β = 3, and (b2) λ/U = 0.2 and β = 20. It demonstrates that
the response of the thermal state to a nonlocal and local non-Hermitian perturbation field is the same so that two such fields can be served as a
signature to witness the QPT in a real experiment.

bosons instead of polaritons. The BH model is closely related
to the Hubbard model which originated in solid-state physics
as an approximate description of superconducting systems
and the motion of electrons between the atoms of a crystalline
solid. In the experiment of an ultracold atom loaded into the
optical lattice, the considered model can be explored from
the superfluid to Mott insulating phases [49–51] by address-
ing the laser field and manipulating the Feshbach resonance
[52–54]. This model can also be used to describe physical
systems such as bosonic atoms in an optical lattice, as well
as certain magnetic insulators [55–57].

Again, the system exhibits two different phases of mat-
ter by tuning the ratio t/U . The Mott insulating phase is
essentially a product of single-site states of bosons where
there is a finite energy gap opposing the addition of a boson.
The excitation spectrum of the superfluid is gapless in the
sense that the sum of the energy cost needed to add and to
remove one particle from the system is zero. The superfluid
phase shows boson number fluctuations instead of polariton
number fluctuations in the JCH model. According to the value
of ψ , the mean-field phase boundary of the BH model is
shown in Fig. 5. With the same procedure, we consider the
quench dynamics of the initial thermal state ρ(0). The non-
Hermitian applied field is H ′ = λ

∑
i bi. After a quench, we

first evaluate the performance of L(t ) in two such different
phases of matter. The evolved density matrix ρ(t ) is the same

as that in the JCH model, which can be shown in Fig. 4. In
addition, we numerically compute the L(t ) and Li(t ) in the
finite-size system. Figure 5 shows that the Mott lobes can be
determined by L, indicating that the phase diagram can be
preserved in the finite-size system. Note in passing that a local
non-Hermitian quench field H ′ = λb†

i can also dynamically
identify two such phases, which can be shown by comparing
Figs. 5(a) and 5(b). The proposed detecting schemes are insen-
sitive to the thermal fluctuation in the low-temperature limit.
Hence, it paves the way to understanding the spontaneous
symmetry breaking of matter at nonzero temperatures.

V. CONCLUSION

In conclusion, we have witnessed the Mott insulator to
superfluid phase transition from zero to nonzero temperatures.
The gapless excitation spectrum, which serves as the signature
of the U(1) symmetry breaking, is crucial to achieving the
conclusion. Such nonzero-temperature QPT can be probed
through an inhomogeneous non-Hermitian external field. The
evolved state with specific direction arising from the EP dy-
namics amplifies the difference between two phases of matter,
which has no counterpart in the Hermitian regime and allows
distinct responses in two such phases. We expect that the
scheme proposed in this paper can be exploited to uncover as
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yet unexplored Hubbard-like models in a variety of physical
systems.
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APPENDIX

Consider that the eigenstates of the two-level system are
degenerate. In the basis of {|ψ1〉, |ψ2〉}, the postquenched
Hamiltonian is

H =
(

E λ

0 E

)
, (A1)

where E = E1 = E2 is supposed. It has a Jordan block struc-
ture such that the degenerates become coalesced with a
coalescent state, |ϕc〉 = (1 0)T. For an arbitrary initial state
|�(0)〉 = a|ψ1〉 + b|ψ2〉, its time evolution can be determined
by the propagator U (t ) that has an explicit form

U (t ) = e−iEt

[
I2 − iλt

(
0 1
0 0

)]
. (A2)

Hence, the evolved state, by neglecting the overall phase, can
be given as |�(t )〉 = (a − ibtλ)|ψ1〉 + b|ψ2〉. After a suffi-
ciently long time, the probability in |ψ1〉 overwhelms that in
|ψ2〉, ensuring the final evolved state be the coalescent state
|ϕc〉.

[1] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge
University Press, Cambridge, 2011).

[2] A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg,
Nat. Phys. 2, 856 (2006).

[3] M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio,
Laser Photon. Rev. 2, 527 (2008).

[4] J. Koch and K. Le Hur, Phys. Rev. A 80, 023811 (2009).
[5] Y. Liu, X.-P. Jiang, J. Cao, and S. Chen, Phys. Rev. B 101,

174205 (2020).
[6] Q.-B. Zeng and Y. Xu, Phys. Rev. Research 2, 033052 (2020).
[7] C.-X. Guo, X.-R. Wang, and S.-P. Kou, Europhys. Lett. 131,

27002 (2020).
[8] X. Z. Zhang and Z. Song, Phys. Rev. B 102, 174303 (2020).
[9] S. Longhi, Phys. Rev. B 103, 054203 (2021).

[10] K. L. Zhang and Z. Song, Phys. Rev. Lett. 126, 116401 (2021).
[11] H. C. Wu, L. Jin, and Z. Song, Phys. Rev. B 103, 235110 (2021).
[12] M. Müller, S. Diehl, G. Pupillo, P. Zoller, P. Berman, E.

Arimondo, and C. Lin, in Advances in Atomic, Molecular, and
Optical Physics, edited by P. Berman, E. Arimondo, and C. Lin
(Academic Press, San Diego, CA, 2012), Vol. 61, pp. 1–80

[13] A. J. Daley, Adv. Phys. 63, 77 (2014).
[14] T. Tomita, S. Nakajima, I. Danshita, Y. Takasu, and Y.

Takahashi, Sci Adv. 3, e1701513 (2017).
[15] X. Z. Zhang, L. Jin, and Z. Song, Phys. Rev. B 101, 224301

(2020).
[16] M. Nakagawa, N. Tsuji, N. Kawakami, and M. Ueda, Phys. Rev.

Lett. 124, 147203 (2020).
[17] L. M. Sieberer, M. Buchhold, and S. Diehl, Rep. Prog. Phys.

79, 096001 (2016).
[18] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger,

Rev. Mod. Phys. 85, 553 (2013).
[19] R. Blatt and C. F. Roos, Nat. Phys. 8, 277 (2012).
[20] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall, A. M.

Rey, M. Foss-Feig, and J. J. Bollinger, Science 352, 1297
(2016).

[21] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013).
[22] A. A. Houck, H. E. Türeci, and J. Koch, Nat. Phys. 8, 292

(2012).
[23] M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch, and

A. A. Houck, Phys. Rev. X 7, 011016 (2017).

[24] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Rev. Mod. Phys. 81, 865 (2009).

[25] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277
(2010).
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