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Flexocaloric effect near a ferroelastic transition
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A Ginzburg-Landau model embedded into a vibrational model is used to study the flexocaloric effect in a
beam near a ferroelastic transition. The caloric response upon bending is characterized by the isothermal entropy
change and the adiabatic temperature change of the beam. We obtain a larger response relative to the strength of
the applied forces at temperatures slightly above the transition temperature. It is also obtained that the maximum
caloric response is almost linear with the bending angle of the beam, whereas the relation between the bending
angle and the applied forces is highly nonlinear. Small hysteresis associated with the phase transition is obtained
for sufficiently large bending forces due to the existence of a critical point in the temperature-stress phase diagram
of the ferroelastic material. Finally, the microstructure changes with bending in the beam are consistent with
previous experimental observations.
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I. INTRODUCTION

In recent years, there has been a great deal of interest in
developing environmentally friendly cooling techniques that
can efficiently replace the current technology based on vapor
compression, which uses fluids with strong global-warming
adverse effects. Among the different possibilities, solid state
technologies, based on materials exhibiting giant caloric ef-
fects, are nowadays considered the most promising [1].

Caloric effects rely on the reversible thermal response
of solid materials to changes induced by an externally ap-
plied field, either electric, magnetic, or mechanical. The
corresponding effects are denoted as electro-, magneto- and
mechanocaloric effects, respectively. The caloric response is,
in general, quantified by either the change of entropy induced
by isothermal application of the field or the change of tem-
perature that occurs when the field is applied or removed
adiabatically [2]. A number of ferroic (and multiferroic) ma-
terials display very large caloric effects close to the phase
transition, where the relevant ferroic property spontaneously
emerges. Particularly interesting are first-order transitions
which can be induced by externally applied fields with an as-
sociated large latent heat [1,3,4]. This is the class of materials
that has been acknowledged to be potentially interesting for
solid state cooling and energy harvesting applications [5].

Among the caloric materials, mechanocaloric materials
have opened up excellent promise for applications [6,7]. In
this class of materials, caloric effects are usually induced by
uniaxial stress or by hydrostatic pressure. However, in prac-
tical applications, flexion, i.e., bending or twisting, is a very
convenient stress mode since it is much more easily imple-
mented in refrigeration or harvesting devices [8]; the required
force decreases at the expense of increased displacement

[9,10] and has the advantage of localizing the areas where
large changes of temperature may occur. In addition, the large
surface-to-volume ratio of thin beams or fibers is conducive to
efficient heat transfer. Compared with the homogeneous de-
formation induced by uniaxial stress or hydrostatic pressure,
bending or twisting induces stress gradients strongly concen-
trated in the regions of maximum curvature. The caloric effect
associated with the application of a field that couples to the
gradient of the strain is known as the flexocaloric effect. In
a broader context, caloric effects associated with bending or
twisting a material are also known as flexocaloric as these
deformation modes involve large strain gradients.

Recently, there has been an incipient interest in studying
the caloric response of materials subjected to inhomogeneous
stress modes. Specifically, the caloric response of NiTi shape-
memory alloy, rubber, and plastic fibers [10–12] subjected
to bending or twisting has been demonstrated. Nevertheless,
studies dealing with the thermodynamics of mechanocaloric
materials subjected to inhomogeneous stress modes are still
scarce. In the present paper, we propose a model for a fer-
roelastic transition that is adequate for studying flexocaloric
effects in the vicinity of the ferroelastic transition. The model
is formulated in two dimensions for a system undergoing
a square-to-rectangle transition, which can be considered as
the analog of a three-dimensional (3D) cubic-to-tetragonal
transition, commonly occurring among many ferroelastics. In
fact, the former can be conceived as the cross section of the
latter and, therefore, the obtained results are expected to be
meaningful for the study of flexocaloric effects in a variety of
real materials.

Actually, the present study represents a step forward
in the quest for new caloric materials since, as it is
well known, in some materials strain gradients can
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FIG. 1. (a) Beam of size Lx × Ly in the absence of external forces
and (b) with applied external forces fy.

induce a strong polar and magnetic response [13], which
suggests that the combined application of flexion and
electric or magnetic fields in this class of materials might
be a very convenient strategy to induce an enhanced
multicaloric response [14]. Additionally, it would be
worthwhile to explore caloric effects in flexoelectric [15–17],
flexomagnetic [18], and flexomagnetoelectric [19,20]
materials.

The paper is organized as follows. In Sec. II, we introduce
the model, a strain-based free energy, and the corresponding
dynamical equations. The elastic and thermodynamic proper-
ties obtained from the model for a bent (ferroelastic) beam are
presented in Sec. III. The change in microstructure is found
to be consistent with experimental observations [21]. Finally,
in Sec. IV, we summarize our main results and draw specific
conclusions.

II. MODEL

In this section, we present a mesoscopic model for a fer-
roelastic material as the constituent of a two-dimensional (2D)
macroscopic beam of size Lx × Ly with free boundary condi-
tions [Fig. 1(a)]. The beam is considered to be the projection
onto a 2D space of a 3D sheet of width Lx, thickness Ly, and
with no boundaries in the z direction. Thus, all results will
be given per unit length in the z direction, assuming that all
physical variables describing the beam are constant along this
direction.

The Helmholtz free energy of the beam is written as the
free energy of a set of 3N classical harmonic oscillators with
frequency ωi, which are the building blocks of the 3D sheet,

Fvib = kBT
3N∑
i=1

ln

(
h̄ωi

kBT

)
. (1)

This free energy is divided into two terms,

Fvib = Fω + FT , (2)

with the first term Fω containing the dependence of the vibra-
tional free energy on the frequencies of the oscillators, and the
second term FT that depends on temperature only,

Fω = kBT
3N∑
i=1

ln

(
h̄ωi

U

)
,

FT = − 3NkBT ln

(
kBT

U

)
, (3)

where U is the reduced unit of energy. The free energy term
Fω is modeled using a Ginzburg-Landau expansion in the
components of the strain tensor. To this end, the beam is
discretized onto a Nx × Ny = 1024 × 32 mesh.

The distortion of the beam is described by the displacement
field,

u(X) = x(X) − X, (4)

where X are the positions of the cells of the discretized beam
in the undistorted or reference configuration, and x are their
positions in the distorted state. These displacement fields,
which are the variables of the model, are used to compute the
Lagrangian strain field,

εi j (X) = 1

2

(
∂ui

∂Xj
+ ∂u j

∂Xi
+

∑
k

∂uk

∂Xi

∂uk

∂Xj

)
, (5)

which in turn will be used to compute the elastic free energy
Fω.

The beam is a single crystal of a ferroelastic material with
a square-to-rectangle phase transition that can be bent by
applying external forces. The order parameter (OP) of the
transformation, which is of first order, is the deviatoric strain,
e2 = (εxx − εyy)/

√
2. Thus, the Ginzburg-Landau expansion

of the free energy density is written up to sixth order in the
OP. In addition, we include the lowest-order contribution of
the non-OP components of the strain tensor, dilatation e1 =
(εxx + εyy)/

√
2 and shear e3 = εxy, which play an important

role in heterogeneous strain configurations, and the lowest-
order contribution of the gradient of all strain components,

fω ≈ 1
2 A(T − Tc)e2

2 + 1
4βe4

2 + 1
6γ e6

2 + 1
2 A1e2

1

+ 1
2 A3e2

3 + 1
2κ1|∇e1|2 + 1

2κ2|∇e2|2 + 1
2κ3|∇e3|2, (6)

where T is the temperature and Tc is the stability limit of the
square phase. In summary, the free energy term Fω in Eq. (3)
is evaluated as

Fω =
∫

fωdX, (7)

with fω given by Eq. (6). The temperature dependence of
the free energy is thus limited to the quadratic term in the
Landau free energy density and to the free energy term FT .
We also note that fω includes physical nonlinearities (fourth-
and sixth-order elastic constants) and, thus, the phonon fre-
quencies in Eq. (3) need to be interpreted as being effective
and temperature dependent in an anharmonic system.

An efficient and simple way of obtaining the equilibrium
state of the beam under an applied external force is by solving
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the dynamical equations of the displacement field,

ρüi = ρgi +
∑

j

∂σi j

∂x j
, (8)

where the dots stand for the time derivative, ρ is the density
of the deformed configuration, gi is the ith component of
an external force (per unit mass), σi j are the components
of the Cauchy stress tensor, and we recall that x j is the
jth component of the position vector of a unit cell of the
discretized beam in the deformed configuration. Using more
appropriate variables, the dynamical equations can be written
as [22]

ρ0üi = ρ0gi +
∑

j

∂τi j

∂Xj
, (9)

where ρ0 is the density of the undistorted beam, τi j are the
components of the first Piola-Kirchhoff stress tensor, and Xj

is the jth component of the position vector of a unit cell
of the discretized beam in the reference configuration. The
first Piola-Kirchhoff stress tensor is the work conjugate of the
deformation gradient, Fi j , defined as

Fi j = ∂xi

∂Xj
= ∂ui

∂Xj
+ δi j = di j + δi j, (10)

where we define

di j = ∂ui

∂Xj
. (11)

Thus, using the chain rule, the first Piola-Kirchhoff stress
tensor can be obtained from the Helmholtz free energy,

τi j = δFvib

δFi j
=

3∑
m=1

δFω

δem

∂em

∂Fi j
, (12)

where the free energy,

Fω =
∫

fω(em, ∂em/∂Xi )dX, (13)

is a functional of the strain fields and the strain gradients.
Thus, we have

τi j =
3∑

m=1

(
∂ fω
∂em

−
∑

k

∂

∂Xk

∂ fω
∂ (∂em/∂Xk )

)
∂em

∂Fi j
, (14)

which yields

τxx = [
A(T − Tc)e2 + βe3

2 + γ e5
2 + A1e1

]
× 1√

2
(1 + dxx ) + A3e3

1

2
dxy − (κ1∇2e1 + κ2∇2e2)

× 1√
2

(1 + dxx ) − κ3(∇2e3)
1

2
dxy,

τxy = [−(
A(T − Tc)e2 + βe3

2 + γ e5
2

) + A1e1
]

× 1√
2

dxy + A3e3
1

2
(1 + dxx ) − (κ1∇2e1 − κ2∇2e2)

× 1√
2

dxy − κ3(∇2e3)
1

2
(1 + dxx ),

τyx = [
A(T − Tc)e2 + βe3

2 + γ e5
2 + A1e1

] 1√
2

dyx

+ A3e3
1

2
(1 + dyy) − (κ1∇2e1 + κ2∇2e2)

1√
2

dyx

− κ3(∇2e3)
1

2
(1 + dyy),

τyy = [−(
A(T − Tc)e2 + βe3

2 + γ e5
2

) + A1e1
]

× 1√
2

(1 + dyy) + A3e3
1

2
dyx − (κ1∇2e1 − κ2∇2e2)

× 1√
2

(1 + dyy) − κ3(∇2e3)
1

2
dyx. (15)

In geometrically linear elasticity, the stress tensor is some-
times defined as the partial derivative of the free energy
density with respect to the linear strain tensor, and the par-
tial derivative of the free energy density with respect to the
strain gradient is referred to as the hyperstress or the double
stress [23]. In this case, the functional derivative of the free
energy with respect to the linear strain tensor, which is a
combination of the stress and the hyperstress, is referred to
as the total stress. In the present work, we introduce the first
Piola-Kirchhoff stress tensor as the functional derivative of
the free energy with respect to the deformation gradient. Thus,
this definition corresponds to the total stress and contains the
dependence of the free energy density on both the strain and
the strain gradients. Consequently, the divergence of the first
Piola-Kirchhoff stress tensor yields the total elastic force in a
volume element of the beam.

To dissipate the excess free energy of the beam during its
relaxation to equilibrium, we introduce the Rayleigh potential,

R = 1

2

3∑
m=1

Amė2
m, (16)

which yields the damping stress tensor,

τ i j = δ

δḞi j

∫
R dX = ∂R

∂Ḟi j
, (17)

and the associated damping force,

hi = 1

ρ0

∑
j

∂τ i j

∂Xj
. (18)

Applying the chain rule, the damping stresses are

τ xx = (A1ė1 + A2ė2)
1√
2

(1 + dxx ) + A3ė3
1

2
dxy,

τ xy = (A1ė1 − A2ė2)
1√
2

dxy + A3ė3
1

2
(1 + dxx ),

τ yx = (A1ė1 + A2ė2)
1√
2

dyx + A3ė3
1

2
(1 + dyy),

τ yy = (A1ė1 − A2ė2)
1√
2

(1 + dyy) + A3ė3
1

2
dyx. (19)

Finally, to bend the beam, we apply a distribution of exter-
nal forces to its long edge that vary linearly with the position
where they are applied, as shown schematically in Fig. 1(b).
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Analytically, the forces are given by the expression

fy(X,Y = 0) =
{

2 f0X/Lx, X � Lx/2

2 f0 − 2 f0X/Lx, X > Lx/2,
(20)

fy(X,Y = Ly) =
{− f0 + 2 f0X/Lx, X � Lx/2

f0 − 2 f0X/Lx, X > Lx/2,

where X = Xx, Y = Xy, and f0 is a parameter.
Expanding Eq. (9) and taking into account the damping

force as an external force, we obtain

ρ0üx = ∂ (τxx + τ xx )

∂X
+ ∂ (τxy + τ xy)

∂Y
,

ρ0üy = ρ0 fy + ∂ (τyx + τ yx )

∂X
+ ∂ (τyy + τ yy)

∂Y
,

(21)

where the first Piola-Kirchhoff stress tensor is given by
Eq. (15), the damping stress tensor is given by Eq. (19), and
the external forces that are applied to bend the beam are given
in Eq. (20).

Equation (21) is integrated using the leap-frog Verlet algo-
rithm [24]. As the damping force in a volume element of the
beam is written as the divergence of a damping stress tensor,
the friction force is large for short wavelength oscillations of
the beam, but is inefficient to dissipate the energy associated
with long wavelength distortions. Thus, to reach the equilib-
rium configurations in reasonably short times, every 104-105

integration time steps, the velocity of all volume elements of
the beam is set to zero.

The parameters A, Tc, κ2, and ρ0 are set to unity, which
define reduced units of length, energy, mass, and tempera-
ture. Some other parameters are taken from a fit to Fe-Pd by
Kartha et al. [25], and in reduced units are β = −2.76 × 102,
γ = 4.86 × 105, A1 = 2.27, and A3 = 4.54. The remaining
model parameters are κ1 = κ3 = 1 and A1 = A2 = A3 = 0.2.
The size of the beam is Lx × Ly = 2000 × 62.5 (in reduced
units), which leads to a number of oscillators per unit length
in Fe-Pd of 3N = 3.746 × 105, where we have used that Fe-
Pd has an fcc crystal structure with lattice parameter [26]
a = 0.3758 nm. With these model parameters, the square-
to-rectangle phase transition in the absence of applied forces
occurs at T0 = Tc + 3β2/16Aγ = 1.029Tc.

III. ELASTIC AND THERMODYNAMIC PROPERTIES
OF THE BENT BEAM

In this section, we present the elastic and thermodynamic
properties of the beam obtained from fully relaxed static con-
figurations. In Fig. 2, we show the shape of the beam obtained
at T = 1.05Tc, above the transition temperature, for five dif-
ferent values of the parameter f0 which controls the strength
of the applied forces. The corresponding OP deviatoric strain
field is also plotted using a gray scale, where gray stands
for the high-temperature square phase and white/black stand
for the two variants of the rectangular phase. The nucleation
of the rectangular phase induced by stress is obtained in the
curved regions of the beam, the horizontal variant nucleating
in the stretched external part of the curved regions, and the
vertical variant nucleating in the compressed internal part of
the curved regions, as shown schematically.

FIG. 2. Bent beam at T = 1.05Tc for several values of the pa-
rameter f0, which controls the strength of the distribution of applied
forces. The corresponding deviatoric strain field is shown using a
gray scale, where gray stands for the square phase and white/black
stand for the two variants of the rectangular phase, as shown
schematically.

A macroscopic or integral quantity that characterizes the
deformation of the beam is the bending angle. This is defined
as the change of the angle between the directions where the
ends of the beam point when the external forces are applied.
The bending angle as a function of the strength of the applied
forces is shown in Fig. 3 at three different temperatures above
T0. The obtained relation is highly nonlinear. In addition, the
strength of the applied forces that is needed to bend the beam
by a given angle decreases as the transition temperature T0

is approached. This is a consequence of the softening of the
elastic constant, C′ = (C11 − C12)/2 = A(T − Tc)/2.

In Fig. 4, we show the bent beam and the corresponding
OP deviatoric strain field at different temperatures for f0 =
5 × 10−5. In this case, below the transition temperature, there
is a competition between the stress and temperature to induce
the rectangular phase. If the effect of the stress is larger than
the effect of temperature, we obtain a strain configuration
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FIG. 3. Bending angle of the beam vs the strength of the distri-
bution of applied forces at three different temperatures.

similar to the one obtained above T0, with one variant of the
rectangular phase nucleating in the external part of the curved
regions and the other variant nucleating in the internal part.
However, when the effect of temperature dominates over the
stress, we obtain a twin microstructure with twin boundaries
oriented along the 〈11〉 directions in order to minimize the
elastic energy, which results in a zigzag microstructure. Still,
to accommodate the stress in this microstructure, one of the
variants of the rectangular phase is dominant in the external
part of the curved regions of the beam and the other variant
is dominant in the internal part. These results are consistent
with the experimental observation of microstructure changes
associated with bending [21] in CuAlNi.

Given the equilibrium displacement field of the bent beam,
its entropy is obtained as

S = − ∂Fvib

∂T
= −A

2

∫
e2

2dX + 3NkB

[
1 + ln

(
kBT

U

)]
.

(22)

In Fig. 5, we plot the entropy of the beam as a function of
temperature for several values of f0. The results are given
relative to the entropy at T = 1.5Tc in the absence of applied
forces. In the absence of external forces, the entropy curve
is discontinuous due to the first-order character of the phase
transition. However, in the whole range of applied forces we
have used, the entropy curve is continuous within numerical
precision. This is related to the existence of a critical point
in the temperature-stress phase diagram of the model, where
the square-to-rectangle phase transition ends. The existence
of a critical point has been observed experimentally in Fe-
31.2Pd (at.%) and is expected to exist in materials where the
transformation strain has a strong dependence on the applied
stress [27]. Nonhysteretic superelasticity similar to the one

FIG. 4. Bent beam at several temperatures under an external
force distribution with f0 = 5 × 10−5. The corresponding deviatoric
strain field is shown using a gray scale, as in Fig. 2.

expected above a critical point has also been observed in
NiCoFeGa [28].

Using a Gibbs free energy density f = fw − e2σ2, where
σ2 = (σxx − σyy)/

√
2 is the deviatoric stress, we have deter-

mined that in the model, the critical point is located at Tcri =
1.070Tc and σ cri

2 = 4.89 × 10−4 in reduced units. Strictly
speaking, the work conjugate of the Lagrangian strain tensor
is the second Piola-Kirchhoff stress tensor. However, we will
compare this critical stress to the first Piola-Kirchhoff stresses
obtained in the simulations. Thus, this comparison is made in
the approximation of geometrically linear elasticity, in which
the two Piola-Kirchhoff stress tensors and the Cauchy stress
tensor are equivalent.

In Fig. 6, we plot the deviatoric stress field in the bent beam
relative to the critical stress for several strengths of the ap-
plied forces at T = 1.03Tc. The regions where the local stress
is larger than the critical stress are plotted in white/black
according to their positive/negative sign. In the remaining
parts of the beam, the strength of the local deviatoric stress
is represented using a gray scale. It is found that in the range
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FIG. 5. Entropy of a bent beam vs temperature for f0 = 0, 1 ×
10−5, 2 × 10−5, 5 × 10−5, 1 × 10−4, and 2 × 10−4 (from top to bot-
tom above T0). Results are given with respect to the entropy at
T = 1.5Tc in the absence of applied forces.

of external forces used in Fig. 5, the local deviatoric stress
is above the critical stress in large parts of the beam, which
is sufficient to prevent the existence of discontinuities and
hysteresis in the whole system. For smaller values of the ap-
plied forces, several discontinuities in the entropy curves are
obtained (not shown in the figure). These may be associated
with the nucleation of the rectangular phase at the center of
the beam or at its ends where the curvature and thus the local
stress may be very small.

From the entropy curves, we have computed the isothermal
entropy change of the beam when the external forces are
applied, �S = S( f0, T ) − S( f0 = 0, T ) (Fig. 7). Due to the
continuity of the entropy curves when the external forces
are applied, there is a single discontinuity in the isothermal
entropy change associated with the discontinuity of the en-
tropy curve in the absence of applied forces. This yields a
temperature dependence of the isothermal entropy change that
is somewhat different from the usual peak at the transition
temperature. Above the transition temperature, we obtain that
the entropy change increases with the strength of the applied
forces. In the vicinity of the phase transition, the ratio between
the entropy change and the strength of the applied forces
is larger for small forces, and the temperature dependence
of the entropy change is smaller if the applied forces are
large.

We have also computed the adiabatic temperature change
as a function of the initial temperature when the external
forces are applied to the beam, �T = T ( f0, S) − T ( f0 =
0, S). The results are shown in Fig. 8. As before, in the curves
of the temperature change, there is a single discontinuity
associated with the discontinuity of the entropy curve in the
absence of applied forces. We also find that the larger the
applied forces, the larger the thermal response. In addition,

FIG. 6. Deviatoric stress field in the bent beam relative to the
critical deviatoric stress. Regions with a positive/negative stress
larger than the critical stress are plotted in white/black, whereas
in the remaining parts of the beam the local deviatoric stress is
represented using a gray scale. The results correspond to T = 1.03Tc

for several values of the parameter f0, which controls the strength of
the distribution of applied forces.

for large forces, the temperature dependence of the adiabatic
temperature change obtained above the transition temperature
is very weak.

As the bending angle can be easily measured in exper-
iments, we also present the thermal response of the beam
upon bending in terms of this quantity. In Fig. 9(a), we plot
the isothermal entropy change of the beam at T = 1.03Tc as
a function of the bending angle. The adiabatic temperature
change at the same initial temperature is shown in Fig. 9(b).
In both cases, we obtain an almost linear behavior. This is
surprising since, as shown in Fig. 3, the relationship between
the applied forces and the bending angle is highly nonlinear.
It is also worth noting that the thermal response obtained
for bending angles smaller that 30◦ is very small, as this
bending angle can be obtained with very small forces that are
insufficient to induce the phase transition. In this small force
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regime, we obtain discontinuities in the entropy curves and
hysteresis.

Considering the reduced unit of temperature that corre-
sponds to the Fe-30.0Pd (at.%) alloy [25,29], Tc = 257 K, the
average temperature change of the simulated beam for a bend-
ing angle θ = 60◦ is �T = 1.7 K. This result will strongly
depend on the ratio Ly/Lx of the beam. Short and thick beams
require large forces to be bent. On the contrary, long and
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thin beams can be easily bent, but lead to a more localized
deformation and caloric response.

The effect of the external forces on the phase transforma-
tion can be visualized by plotting the fraction of the beam that
has transformed to the rectangular phase versus the bending
angle. This is shown in Fig. 10 at three different temperatures.
A local area of the beam is considered to have transformed
to the rectangular phase if the local deviatoric strain is larger
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than 50% of the transformation strain that is obtained at the
transition temperature in the absence of stress, eT

2 = 0.0206.
The minimum bending angle that is needed to nucleate the
rectangular phase is almost independent of temperature, al-
though the forces needed to bend the beam by such an angle
increase with temperature. Once the rectangular phase nu-
cleates, the transformed fraction increases with the bending
angle up to a maximum value that is reached for large bend-
ing angles (>90◦). We expect the elastic and thermodynamic
response of the beam to such large bending angles to strongly
depend on how the external forces are applied.

IV. SUMMARY AND CONCLUSIONS

We have used a Ginzburg-Landau model embedded into a
vibrational model to study the flexocaloric effect in a beam
near a ferroelastic transition. The equilibrium strain config-
urations of the beam at several temperatures and strengths
of the applied forces have been obtained by solving the cor-
responding dynamical equations, and the associated entropy
has been computed. It is found that the entropy-temperature
curves are continuous for applied forces above a given thresh-
old. This is related to the existence of a critical point in the
stress-temperature phase diagram of ferroelastic materials. If
the applied forces are sufficiently large, the local deviatoric
stress is larger than the critical stress in large parts of the
beam. This leads to a reduction of the hysteresis associated
with the phase transition that in small systems is completely
suppressed.

The flexocaloric effect is characterized by the isothermal
entropy change and the adiabatic temperature change obtained
from the entropy curves [1–4]. A larger thermal response rel-
ative to the applied forces is obtained at temperatures slightly
above the transition temperature. The maximum caloric re-
sponse is also plotted in terms of the bending angle of the
beam and an almost linear relation is obtained, whereas the
relation between the bending angle and the applied forces is
highly nonlinear. The peculiar morphology of the microstruc-
ture in the beam is found to be similar to that observed in
experiments [21].

It is also demonstrated that there is a minimum bending
angle that is necessary to induce the nucleation of the low
symmetry phase by stress. This minimum bending angle has a
weak dependence on temperature. Finally, as a natural exten-
sion of the present study, it would be noteworthy to study the
twistocaloric effect in ferroelastic beams or rods subjected to
a torque (or twisting strain [11,12]), as well as caloric effects
in flexoelectric [15–17], flexomagnetic [18], and flexoelastic
[30] materials, and multicaloric effects [31] in flexomagneto-
electric [19,20] and other related materials.
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