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Interacting defects generate stochastic fluctuations in superconducting qubits
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Amorphous dielectric materials have been known to host two-level systems (TLSs) for more than four decades.
Recent developments on superconducting resonators and qubits enable detailed studies on the physics of TLSs.
In particular, measuring the loss of a device over long time periods (a few days) allows us to investigate stochastic
fluctuations due to the interaction between TLSs. We measure the energy relaxation time of a frequency-tunable
planar superconducting qubit over time and frequency. The experiments show a variety of stochastic patterns that
we are able to explain by means of extensive simulations. The model used in our simulations assumes a qubit
interacting with high-frequency TLSs, which, in turn, interact with thermally activated low-frequency TLSs.
Our simulations match the experiments and suggest the density of low-frequency TLSs is about three orders of
magnitude larger than that of high-frequency ones.
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I. INTRODUCTION

Superconducting devices operated in the quantum regime
[1] are ideal tools to study the properties of amorphous
dielectric materials [2]. These materials are known to be
characterized by defects that can be modeled as two-level
systems (TLSs) [3]. TLSs can interact with superconducting
resonators or qubits, resulting in dissipation channels that are
particularly prominent in planar devices. Such devices are
fabricated by depositing superconducting films made from
metals, e.g., aluminum (Al) or niobium, on silicon (Si) or
sapphire substrates. A few examples of planar devices can be
found in our works of Refs. [4,5], where we have investigated
coplanar waveguide (CPW) resonators [6] as well as Xmon
transmon qubits [7].

A large body of work on CPW resonators and qubits has
shown that TLSs are likely hosted in native oxide layers
[8–17] at the substrate-metal (SM), substrate-air (SA), or
metal-air (MA) interfaces [4,18–20]. TLSs originate within
these layers because naturally occurring oxides deviate from
crystalline order. This deviation may result in trapped charges,
dangling bonds, tunneling atoms, or collective motion of
molecules.

It is convenient to distinguish between two categories of
TLSs based on their energy E and the device operating tem-
perature T . When E > kBT , the corresponding TLSs reside in
the quantum ground state; these TLSs are hereafter referred
to as quantum-TLSs (Q-TLSs). When E < kBT , the TLSs
are thermally activated and are referred to as thermal-TLSs
(T-TLSs). Typically, superconducting resonators are charac-
terized by a resonance frequency fr and qubits by a transition
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frequency fq, with fr ∼ fq ∼ 5 GHz, and are operated at T ∼
50 mK. Hence, the energy threshold between Q- and T-TLSs
is E/h ∼ 1 GHz.

Superconducting quantum devices interact
(semi)resonantly with Q-TLSs [21], affecting the internal
quality factor of resonators Qi or the energy relaxation
time of qubits T1. Several authors have hypothesized that
Q-TLSs additionally interact with T-TLSs [22–24], leading to
experimentally observed stochastic fluctuations in Qi and fr

[15,16,22,25] as well as T1 and fq [2,26]. The model proposed
by these authors departs from the TLS standard tunneling
model (STM), where TLS interactions are neglected [3].
The interacting model is sometimes called the generalized
tunneling model (GTM).

It has recently been shown that planar fixed-frequency
transmon qubits exhibit random fluctuations in both T1 and
fq over very long time periods [27–29]. Frequency-tunable
transmon qubits, as the Xmon, show TLS-induced fluctuations
predominantly in T1 [30]. TLS-induced fq fluctuations are
present but are overshadowed by additional noise processes
such as flux noise.1 These findings serve as the main moti-
vation for the experiments and simulations presented in this
paper.

In this paper, we present the experimental measurement of
spectrotemporal charts for an Xmon transmon qubit as well as
the results of detailed simulations corresponding to these ex-
periments. In the spectrotemporal charts, T1 is measured and
simulated for time periods up to 48 h and for fq ranges up to
300 MHz. Our main objective is to validate the Q-TLS–T-TLS
interaction hypothesis in the GTM by comparing experiments
and simulations. In our simulations, a qubit interacts with
an ensemble of Q-TLSs, the frequencies of which undergo

1The flux noise experienced by tunable transmon qubits is caused
by the increased flux sensitivity due to the SQUID (see Appendix B).
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stochastic fluctuations due to the interaction with T-TLSs. For
every Q-TLS we consider a set of interacting T-TLSs, where
the dynamics of each T-TLS state are governed by a ran-
dom telegraph signal (RTS). The Q-TLS frequency fluctuation
process, which is broadly referred to as spectral diffusion, is
responsible for the random fluctuations in T1.

The comparison between experiments and simulations re-
veals that the Q-TLS–T-TLS interaction likely exists, as
proposed in the GTM. In particular, our simulations repro-
duce well the spectral-diffusion patterns presented in the
experiments. Our model suggests that the density of T-TLSs
is significantly higher than that of Q-TLSs. We find a T-
TLS density of approximately 6 × 105 GHz−1 μm−3, which
is about three orders of magnitude larger than the Q-TLS
density.

Finally, we show that certain statistical analyses, such as
the Allan deviation, are not able to capture the fluctuation
characteristics of a given time series (e.g., the number of T-
TLSs contributing to the stochastic process). Instead, a direct
analysis of the time series provides a more accurate descrip-
tion of the stochastic processes due to TLSs.

The paper is organized as follows. In Sec. II, we review
the theory necessary to describe the stochastic fluctuations of
T1. In Sec. III, we explain the methods required to perform
experiments and simulations. In Sec. IV, we present our main
results. In Sec. V, we provide an in-depth discussion on some
of our main results. Finally, in Sec. VI, we summarize our
findings and suggest a road map for future work.

II. THEORY

In this section, we introduce physical models of TLSs
(Sec. II A); we then describe the qubit–Q-TLS and Q-TLS–T-
TLS interaction (Secs. II B and II C); finally, we amalgamate
the previous concepts in order to explain qubit stochastic
fluctuations (Sec. II D).

A. Physical models of TLSs

The STM is a phenomenological model describing defects
in amorphous dielectric materials. The defects are commonly
assumed to be quantum-mechanical double-well potentials, or
TLSs, with energy barrier V . In the STM, the TLS tunneling
energy �0 is calculated by means of the Wentzel-Kramers-
Brillouin (WKB) approximation,

�0 � h�0 exp

(
−d

h̄

√
2 m V

)
. (1)

In this equation, �0 is the attempt frequency (assumed to be
the same for both wells), d is the spatial distance between the
two wells, and m is the mass of the physical entity associated
with the TLS (e.g., a molecular mass) [31].

The unperturbed Hamiltonian of a TLS reads as ĤTLS =
(� ˆ̄σz + �0 ˆ̄σx )/2, where � is the asymmetry energy between
the two wells of the TLS; ˆ̄σz and ˆ̄σx are the usual Pauli
matrices in the so-called diabatic (“left” and “right”) basis.
By diagonalizing this Hamiltonian we obtain ĤTLS = E σ̂z/2,
where

E =
√

�2 + �2
0 (2)

is the TLS energy and σ̂z = [ ˆ̄σz cos(θ ) + ˆ̄σx sin(θ )]/2 is the
Pauli matrix in the energy basis; θ = arctan(�0/�) is the
rotation angle used to perform the diagonalization.

One of the hypotheses in the STM is that � and �0 are
uncorrelated quantities with joint probability density

f�,�0 =
⎧⎨⎩

D

�0
, for � � 0 and �0 � Emin;

0, otherwise.
(3)

In this equation, D is the TLS density in units of inverse
energy and volume and Emin is the minimum tunneling energy.
A further hypothesis is that interactions between TLSs are
very weak and, thus, negligible.

The hypotheses behind the STM prevent this model from
explaining a variety of features observed in devices affected
by TLS defects. Among other phenomena, the STM cannot
explain the temperature dependence of the frequency noise of
superconducting resonators [22] as well as the strong temper-
ature dependence of the relaxation rate of Q-TLSs measured
with qubits [32]. Most importantly, the STM cannot explain
the spectral diffusion dynamics observed both in the work of
Ref. [30] and in our experiments.

In order to resolve these shortcomings, it is necessary to
extend the STM to the GTM by making the following modifi-
cations:

(1) Interactions between TLSs are not neglected.
(2) The joint probability density is assumed to be nonuni-

form with respect to �,

f�,�0 =

⎧⎪⎪⎨⎪⎪⎩
1 + μ

�0

(
�

Emax

)μ

, for 0 � � � Emax

and Emin � �0 � Emax;

0, otherwise.

(4)

In this equation, μ < 1 is a small positive parameter and Emax

is a maximum energy cutoff dictated by the energy scales of
the system under consideration (see Sec. III B).

The interaction energy between any pairs of TLSs is as-
sumed to be a function of their spatial separation r,

U (r) = U0

r3
, (5)

where U0 is a material-dependent parameter associated with
electric or elastic interactions. It is worth noting that interac-
tions can occur between pairs of Q-TLSs or T-TLSs as well as
between a T-TLS and a Q-TLS.

In the study of superconducting planar qubits, both fq

and T1 are affected by the interactions hypothesized in the
GTM. These types of qubits interact (semi)resonantly with an
ensemble of Q-TLSs, where each Q-TLS can strongly interact
with one or more T-TLSs. Such interactions lead to stochastic
fluctuations in T1 and fq.

B. Qubit–Q-TLS interaction

The interaction between a qubit and a single Q-TLS leads
to perturbations in T1 and fq. These perturbations depend on
the coupling strength between the qubit and Q-TLS, g, and on
the difference between the Q-TLS transition frequency fQ-TLS

and fq, � f = fq − fQ-TLS. In this work, we consider only T1
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fluctuations because, for a tunable qubit, fq fluctuations are
dominated by other noise processes such as flux noise.

In the rotating frame of the qubit and after a rotating-wave
approximation, the Hamiltonian of the qubit coupled to the
Q-TLS reads as

Ĥq,Q-TLS = h� f σ̂+
q σ̂−

q + hg(σ̂+
q ⊗ σ̂−

Q-TLS + H.c.), (6)

where σ̂∓
q and σ̂∓

Q-TLS are the qubit and Q-TLS lowering and
raising operators in the energy basis and H.c. is the Hermi-
tian conjugate of the first term in parentheses. The coupling
strength g is due to the electric dipole moment �p of the Q-TLS
and the electric field �Eq of the qubit,2 hg = �p · �Eq.

The contribution to the energy relaxation rate of the qubit
due to the Q-TLS can be approximated by

�
q,Q-TLS
1 = �

Q-TLS
1 − �̃

q
1 − Re[�]

2
, (7)

where �
Q-TLS
1 is the energy relaxation rate of the Q-TLS due

to phononic interactions with the environment, �̃
q
1 is the bare

energy relaxation rate of the qubit,3 and

� =
√(

�̃
q
1 + 2i(2π� f ) − �

Q-TLS
1

)2 − 16(2πg)2, (8)

with i2 = −1. Equation (7) is valid when �
Q-TLS
1 > �̃

q
1, which

is typically the case in our devices. The derivation of Eq. (7)
is shown in Appendix A.

In presence of amorphous dielectric materials, the qubit
is coupled to an ensemble of Q-TLSs. In this case, Eq. (7)
represents the individual contribution to the energy relaxation
rate of the qubit due to the kth Q-TLS, �

q,Q-TLS
1 → �

q,k
1 ; each

Q-TLS is now characterized by its own coupling strength gk ,
frequency fk , and energy relaxation rate �k

1. The effective
qubit relaxation rate is therefore given by

�
q
1 = 1

T1
= �̃

q
1 +

∑
k

�
q,k
1 . (9)

C. Q-TLS–T-TLS interaction

We intend to calculate the frequency shift experienced by
a Q-TLS due to the interaction with a T-TLS. We assume
that the unperturbed energy and eigenstates are E = ET-TLS

and {|−〉, |+〉} for the T-TLS and E = EQ-TLS 
 ET-TLS and
{|0〉, |1〉} for the Q-TLS. These two TLSs form a quantum-
mechanical system with Hamiltonian given by Eq. (11) in
the work of Ref. [23]. Assuming the interaction energy U
between the T-TLS and Q-TLS is given by Eq. (5), the four
eigenenergies of the system are

E∓
0 = −EQ-TLS

2
∓

√(
ET-TLS

2

)2

+ U� + U 2 (10a)

and

E∓
1 = +EQ-TLS

2
∓

√(
ET-TLS

2

)2

− U� + U 2, (10b)

2The electric field �Eq is the field associated with the qubit capacitor,
which is described in Sec. III A and Appendix E.

3This is the rate caused by all dissipation sources other than TLSs.

where � is the asymmetry energy of the T-TLS.
The frequency shift δf ∓ of the Q-TLS due to the interaction

with the T-TLS reads as

h δf ∓ = E∓
1 − E∓

0 − EQ-TLS, (11)

which is negative when the T-TLS is in |−〉 and positive
otherwise.

A T-TLS is thermally activated because of the condition
ET-TLS < kBT and, thus, switches state in time. This causes
the sign of δf ∓ to change, affecting the time evolution of the
frequency of the Q-TLS coupled to it.

D. Qubit stochastic fluctuations

We assume that the state of a T-TLS over time is modeled
by an RTS with switching rate

γ = γ0 exp

(
− V

kBT

)
, (12)

where γ0 is a heuristic proportionality constant and V is im-
plicitly given by Eq. (1).

A Q-TLS is generally coupled to several T-TLSs, where
the �th T-TLS is characterized by a certain value of γ� and
δf ∓

� . Given the state (|∓〉) of each T-TLS at a time t , we
can approximate the effective frequency shift of the Q-TLS
by summing the individual values of δf ∓

� (t ). Since the T-TLS
state is modeled by an RTS, the effective shift varies with t
leading to a time series

fQ-TLS(t ) = EQ-TLS

h
+

∑
�

δf ∓
� (t ). (13)

For the kth Q-TLS, fk fluctuates in time according to Eq. (13).
As a consequence, �

q
1 fluctuates because of its dependence

on �
q,k
1 , which, in turn, depends on fk through Eq. (8). The

stochastic fluctuations of �
q
1 = 1/T1 are the main subject of

this paper.

III. METHODS

In this section, we describe the methods used to perform
the experiments on T1 fluctuations (Sec. III A) and the corre-
sponding simulations (Sec. III B).

A. Experiments

In this work, we use an Xmon transmon qubit to probe TLS
defects. The main goal of our experiments is to characterize
fluctuations in T1 over long time periods and for different
values of fq. We measure T1 by means of a standard energy
relaxation experiment, a “T1 experiment.” Details on the qubit
and setup are given in Appendix B.

In a T1 experiment, we prepare the qubit in the excited
state |e〉 by means of a π pulse. We then measure the average
population of |e〉, Pe, for many values of a delay time spaced
logarithmically between 1 ns and 200 μs. Due to the various
relaxation channels affecting the qubit, including TLS interac-
tions, Pe decays exponentially in time. We obtain T1 by fitting
the exponential decay and acquire between 36 and 38 points
for each T1 experiment.

094106-3



J. H. BÉJANIN et al. PHYSICAL REVIEW B 104, 094106 (2021)

TABLE I. Experimental parameters for the three data sets intro-
duced in Sec. IV.

Data set Nf fq range �t tobs

(−) (GHz) (s) (h)

1 16 [4.369,4.669] 640 42.5

2 31 [4.500,4.560] 1000 47.2

3 31 [4.500,4.530] 1000 48.1

We measure T1 for different values of fq by setting a qua-
sistatic flux bias φ

qs
Z applied to the qubit. The correspondence

between φ
qs
Z and fq is obtained from a qubit parameter cali-

bration. Depending on the experiment, we set fq over different
bandwidths varying between 30 and 300 MHz. We select Nf

linearly spaced values of fq for each T1 experiment. The T1

measurements are repeated continuously at a repetition period
�t over an observation time tobs, leading to matrices of data
points as detailed in Appendix C. These matrices constitute
the spectrotemporal charts of T1 presented in Sec. IV. The
experimental parameters for the three data sets shown in this
work are reported in Table I.

B. Simulations

The procedure to simulate the effect of TLSs on the
stochastic fluctuations in T1 is composed of three main steps:
(I) Generate an ensemble of Q-TLSs interacting with the
qubit. (II) Generate several T-TLSs interacting with each
Q-TLS. (III) Generate a time series for each T-TLS and prop-
agate the effect of the T-TLSs’ switching state to each Q-TLS,
and, finally, to the qubit.

Before detailing each step of the procedure, it is worth
introducing a few general assumptions:

(i) We consider that all TLSs are distributed uniformly in
the oxide layers at the SA and MA interfaces of the qubit de-
vice. The thickness of these layers is assumed to be tox = 3 nm
for both interfaces [18,33,34].

(ii) All the TLS parameters used in this procedure are
assumed to be fixed for the entire duration of each simulation
(see Appendix D); for each T-TLS, for example, γ is constant
in time.

(iii) We assume that all T-TLSs belong to a single species
(see Sec. V A).

(iv) We set �̃
q
1 = 1/27 MHz, which is the value estimated

for our device.
(v) For all distributions used in this work, we determine

the probability density function (PDF) by normalizing a given
distribution [e.g., that represented by Eq. (4)] over the chosen
boundary values; we also find the cumulative density function
(CDF). In order to pick a random value from a distribution, we
generate a random quartile value between 0 and 1. We then
calculate the random value corresponding to the generated
quartile either by inverting the CDF or via root finding.

For step (I), we follow a similar procedure as in the work
of Ref. [7]. Each Q-TLS is characterized by a 3-tuple of
fundamental parameters ( fQ-TLS, g, �Q-TLS

1 ). We pick fQ-TLS

uniformly at random from a frequency range relevant to our

experiments. Since fq ∼ 4.5 GHz, we generate Q-TLSs with
fQ-TLS ∈ [4, 5] GHz.

In order to generate g, we need a numerical value for both
the effective electric dipole moment, p̃,4 and || �Eq|| at the
position of the Q-TLS.

We pick p̃ from a known probability density that has been
experimentally measured, e.g., in the work of Ref. [8],

f p̃ =

⎧⎪⎪⎨⎪⎪⎩
1

p̃

√
1 −

(
p̃

p̃max

)2

, for p̃min � p̃ � p̃max;

0, otherwise.

(14)

In this equation, we set the minimum and maximum value
of p̃ to be p̃min = 0.1 debye and p̃max = 6 debye; we choose
p̃max as in Ref. [7] and p̃min assuming that any smaller dipole
moment is negligible.

The position of a Q-TLS can be randomly picked at any
point within the qubit oxide layers. We may then determine
�Eq at each of these points by means of a conformal mapping
technique. This technique allows us to transform the electric
field of the qubit capacitor, �Eq, into the known field of a
parallel-plate capacitor. Details on this procedure are given in
Appendix E.

Finally, we assume that �
Q-TLS
1 ∝ �2

0 [3], where the tun-
neling energy of the Q-TLS, �0, is picked from an inverse
probability distribution. We choose the bounds such that the
resulting decay rates range between 1 and 100 MHz, with
most rates at the low end of this range.

In order to complete step (I), we need to know the to-
tal number of Q-TLSs, NQ-TLS, and their associated 3-tuple
parameters. The Q-TLSs are hosted within an interaction
region with volume determined by the length of the two
CPW segments forming the qubit Al island (see Appendix B)
and the same cross-sectional area used to pick �Eq (see
Appendix E), Vint = 96 μm × 3 nm × 376 μm × 2. Given a
Q-TLS bandwidth BQ-TLS = 1 GHz, assuming a Q-TLS den-
sity D = 200 GHz−1 μm−3 (see Sec. V B), and disregarding
all Q-TLSs with g < 70 kHz, we obtain NQ-TLS ∼ 570.

In step (II), each T-TLS is characterized by a 2-tuple
of fundamental parameters (δf ∓, γ ). We generate δf ∓ from
Eq. (11), where � and �0 are picked from the GTM distri-
bution of Eq. (4). We assume Emin/h = 125 MHz, Emax/h =
1 GHz, and μ = 0.3 [23]. The interaction energy U (r) is
calculated from Eq. (5), where U0 = kB × 10 K nm3 and r is
the Q-TLS–T-TLS distance; this distance must be picked at
random. Given a cylindrical region with radius r and height
tox centered on the Q-TLS and a uniform T-TLS density, the
CDF for the number of T-TLSs is proportional to r2. As a
consequence, the PDF is linear in r, fr ∝ r. We pick r from
fr assuming rmin = 15 nm and rmax = 60 nm as bounds (see
Sec. V B for a discussion on rmax).

We then generate γ from Eq. (12). In addition to the param-
eters used to generate δf ∓, we need T = 60 mK, γ0 ≈ 0.4 Hz,
�0 = 1 GHz, m = 16 u, and d = 2 Å (see Sec. V A for a dis-
cussion on the physical meaning of these parameters). Note
that the effective qubit temperature T = 60 mK corresponds

4The angle η between �p and �Eq is integrated in the distribution for
p̃, i.e., p̃ = || �p|| cos η [8].
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FIG. 1. Experimental [(a), (b), and (c); data sets 1, 2 and 3, respectively, in Table I] and simulated [(d), (e), and (f)] spectrotemporal charts
of T1 vs fq and t , where the panels in each column display an experiment and the corresponding simulation. Spectral-diffusion patterns in the
experiments are highlighted with boxes. Band-limited diffusive: dashed purple boxes. Fast narrow-band telegraphic: solid orange boxes. Slow
wide-band telegraphic: dashed-dotted red boxes. In the simulations, we add a background time series of Gaussian white noise with a standard
deviation of 2 kHz, which is comparable to the fitting error of our T1 experiments.

to a qubit ground-state population of 2.7 %, which is approxi-
mately the value observed in our experiments.

Similarly to step (I), in order to complete step (II) we need
to select the number of T-TLSs interacting with each Q-TLS,
NT-TLS. We generate a set of NT-TLS = 10 T-TLSs, ensuring
that each of them additionally fulfills the condition E+

0 −
E−

0 =
√

E2
T-TLS + 4U (� + U ) < Emax = kBT/2. We choose

half of the thermal energy as our activation threshold, al-
though similar values would work as well.

In step (III), we generate the simulated spectrotemporal
charts for �

q
1 (and, thus, T1). Stochastic fluctuations are due to

a T-TLS switching state randomly between the left and right
well. We simulate these fluctuations as an RTS with a single
γ for both the left and right well, i.e., assuming a symmetric
noise process. For an RTS, the probability of spending a time
t in a certain state is given by the PDF ft = γ exp(−γ t ).
Starting from a random state, we produce a list of times spent
in each T-TLS state until reaching tobs. In order to generate a

time series for the T-TLS state, we sample the time list at �t
intervals. The values of both �t and tobs used in the simula-
tions are the same as for the experiments and are reported in
Table I.

The T-TLS state corresponds to a particular δ f ∓. There-
fore, as explained in Sec. II D, the time series fQ-TLS(t ) for
each Q-TLS can be calculated by means of Eq. (13). Finally,
we evaluate Eq. (9) for all values of interest of fq; in order to
match the spectrotemporal charts measured in the experiment,
we choose fq and Nf for the ranges and values reported in
Table I.

The simulations are performed using the Julia Program-
ming Language [35]. The computer code QUBITFLUCTUA-
TIONS.JL can be obtained from a GitLab repository [36].

IV. RESULTS

The main results of this work are presented in Fig. 1, which
shows the experimental and simulated spectrotemporal charts
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FIG. 2. Three spectral-diffusion patterns. (a) Q-TLS frequency fQ-TLS vs t for Q-TLS 1 (left purple line), 2 (middle orange line), and 3
(right red line). (b), (c) Simulated spectrotemporal charts of T1 vs fq and t for g = 50 and 100 kHz, respectively. The color map for T1 is the
same as in Fig. 1.

of T1. Details on the experiments and simulations are de-
scribed in Secs. III A and III B, respectively, with parameters
reported in Table I. Each realization of a simulation is random
due to the very nature of the method (because, e.g., fQ-TLS is
distributed uniformly). We thus choose to display simulated
spectrotemporal charts that resemble the experiments.

A visual inspection of the T1 stochastic fluctuations in
Fig. 1 reveals three distinct spectral-diffusion patterns:

(1) Band-limited diffusive.
(2) Fast narrow-band telegraphic.
(3) Slow wide-band telegraphic.
Generally, it is also possible to observe combinations of

such patterns.
The three patterns can be qualitatively explained by per-

forming ad hoc simulations using a similar method as in
Sec. III B. However, instead of randomly generating the 3-
and 2-tuple of steps (I) and (II), we set these tuples by hand.
We simulate the effect of several T-TLSs on one Q-TLS,
considering three T-TLS sets with different ranges of δf ∓ and
γ . For clarity, we choose three Q-TLSs with distinct values of
fQ-TLS, Q-TLS 1, 2, and 3, one for each set of T-TLSs.

In broad strokes, the band-limited diffusive process is re-
produced by simulating the effect of many (∼10) T-TLSs on
Q-TLS 1; we select T-TLSs with low values of 1/γ (ranging
between tens of minutes and hours) and small values of δf ∓
(<1 MHz). The fast narrow-band telegraphic process, instead,
is generated by considering a few (�3) T-TLSs acting on
Q-TLS 2; in this case, we select high values of 1/γ (on the
order of hours) as well as small values of δf ∓ (<1 MHz).
Similarly to the case of the fast narrow-band process, the slow
wide-band telegraphic process is created assuming also a few
(�3) T-TLSs, this time coupled to Q-TLS 3; in this instance,
however, we select very high values of 1/γ (on the order of
days) and large values of δf ∓ (� 20 MHz). Figure 2 illustrates
the results of the simulation of the three patterns. Figure 2(a)
exemplifies the effect of the three different sets of T-TLSs
on Q-TLS 1, 2, and 3. Figures 2(b) and 2(c) demonstrate the
impact of each Q-TLS on the spectrotemporal chart of T1 for

a small (a) and large (b) value of g. The T-TLS and Q-TLS
parameters used in the simulations are reported in Table II.

Q-TLS 1 is affected by many T-TLSs that switch contin-
uously during observation. The T-TLSs act additively on the
Q-TLS, resulting in a diffusive shift of fQ-TLS [see Eq. (13)].
Different from Brownian diffusion, the shift in fQ-TLS does
not exceed the sum of the individual frequency shifts induced
by each T-TLS at any observation time. The diffusive process
is thus characterized by a limited frequency bandwidth, as
shown in Fig. 2(a). The spectrotemporal chart of T1 displays a
similar behavior; T1 fluctuates in time over a finite-frequency
range, exhibiting moderate and strong variations in Figs. 2(b)
and 2(c), respectively.

Q-TLS 2, which is affected by a few T-TLSs, switches
mainly between two values of fQ-TLS (low and high); for both
states, much smaller fluctuations at higher switching rates
are noticeable. The telegraphic nature of this process affects

TABLE II. T-TLS and Q-TLS parameters used in the simulations
of Fig. 2.

Q-TLS fQ-TLS �
Q-TLS
1 γ δf ∓

(GHz) (MHz) (Hz) (MHz)

2 × 10−5 0.9
5 × 10−5 0.7
8 × 10−5 0.7
1 × 10−4 0.6

1 4.510 10
2 × 10−4 0.6
3 × 10−4 0.5
4 × 10−4 0.3
1 × 10−3 0.1

3 × 10−5 0.8
2 4.531 5 8 × 10−5 0.2

2 × 10−4 0.1

6 × 10−6 20
3 4.570 90

8 × 10−6 3
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dramatically the spectrotemporal chart of T1 when fQ-TLS �
fq. This is the case in the example of Fig. 2(a) when Q-TLS 2
dwells in the low-frequency position. In this state, T1 becomes
largely reduced compared to when the Q-TLS resides in the
high-frequency position, as displayed in Figs. 2(b) and 2(c).
The low value of �

Q-TLS
1 leads to a narrow-band process,

with more pronounced T1 variations in Fig. 2(b) compared to
Fig. 2(c).

It is worth noting that, in our example, the high-frequency
position lies between two values of fq [vertical solid light-
gray lines in Fig. 2(a)] but is too far from either of them to
significantly impact T1. This effect shows that the frequency
resolution of our experiments [i.e., the x-axis “pixeling” in
Figs. 2(b) and 2(c) and, thus, in Fig. 1] affects the spectrotem-
poral chart of T1.

Q-TLS 3 behaves similarly to Q-TLS 2, although one of
the T-TLSs has a significantly larger value of δf ∓. Due to low
values of γ , Q-TLS 3 undergoes telegraphic frequency shifts
only a couple of times during observation. The high value of
�

Q-TLS
1 strongly damps the effect on T1, resulting in a wide-

band process. In fact, the effect is barely visible in Fig. 2(b),
even when the Q-TLS is almost on resonance with the qubit.
In presence of a strong coupling, however, the impact on the
spectrotemporal chart of T1 is clearly identifiable; as shown in
Fig. 2(c), the effect extends over a large frequency range.

V. DISCUSSION

In this section, we discuss the physical characteristics of
a T-TLS (Sec. V A); we then discuss the density of TLSs
(Sec. V B); finally, we provide insight on the interpretation
of the Allan deviation and power spectral density (Sec. V C).

A. Physical characteristics of a T-TLS

The two quantities required to represent T-TLSs in the
simulations shown in Fig. 1 are δf ∓ and γ of Eqs. (11) and
(12), respectively. The former is determined only by param-
eters chosen according to the GTM. The latter requires the
knowledge of additional physical characteristics of T-TLSs:
m and d , as well as �0; explicitly,

γ = γ0 exp

[
−

(
h̄

d

)2 1

2m

(
ln

h�0

�0

)2/
(kBT )

]
. (15)

The T-TLS mass m must be between that of a very light el-
ement such as an electron and that of heavier elements such as
atoms or molecules. That is, it can vary over several orders of
magnitude. The interwell distance d should be on the order of
angstroms. Electrons and atoms cannot get displaced by more
than the interatomic bond length. In the case of molecules, the
commonly accepted fluctuation model involves the collective
motion of atoms, where each individual atom also cannot
move more than the interatomic bond length [2,31].

In our simulations, we assume a single species of T-TLSs.
In order to obtain simulated spectrotemporal charts that re-
semble the experimental ones, the product d2m in Eq. (15)
must lie within one order of magnitude of 10−45 m2 kg. Con-
sidering that d is confined within a few angstroms, the value
of m cannot be chosen arbitrarily. If there was clear evidence
of multiple T-TLS species characterized by different ranges

of γ , they could be modeled assuming different values of m
and d . For example, lighter particles would have higher values
of γ .

We assume that TLSs, and thus T-TLSs, are hosted in oxide
layers at the SA and MA interfaces (see Sec. III B; we assume
the SM interface to be clean due to our fabrication process).
The oxide layers are composed of molecules with an oxygen
(O) atom bound to a pair of neighboring atoms. A T-TLS
can be modeled as an O atom with mass m = 16 u tunneling
between two wells (i.e., states) at a distance d from each other.
It is reasonable to assume that d is comparable to the bond
length between the O atom and a neighboring atom [3]. In
many applications, using Si or sapphire substrates and Al as
a metal results in amorphous Si or Al oxide interfacial layers.
The bond length between the O and Si or Al atoms is on the
order of 2 Å [37,38]; this is why in our simulations we choose
d = 2 Å.

Equation (1) is valid only when V � 0. Accordingly, it
must be that h�0 � �0 for all values of �0 picked from the
GTM distribution. On the one hand, choosing a value h�0 ∼
�0 leads to V ∼ 0, which would correspond to a single- rather
than a double-well potential. On the other hand, we cannot
choose �0 to be arbitrarily large due to its relationship to γ

in Eq. (15). In fact, there is a small range of values of �0 that
result in a distribution of γ similar to that empirically inferred
from the spectrotemporal charts of Fig. 1. We choose �0 =
1 GHz to match the experimental range γ ∈ [10−6, 10−2] Hz
(i.e., a period from days to minutes) as closely as possible. In
this case, we obtain T-TLSs with V/h � 1.8 GHz.

B. Density of TLSs

The TLS density D is estimated by counting the number
N of TLSs within a certain interaction region with volume
Vint and bandwidth B, D = N/(Vint B). In the case of Q-TLSs,
their number NQ-TLS can be readily obtained by counting the
interactions between a qubit and a Q-TLS in spectroscopy
experiments [5,7,17,39]. For qubits where Q-TLSs are hosted
in a volume of native oxide, the estimated density is DQ-TLS ∼
100 GHz−1 μm−3. In order to reproduce well our experi-
mental spectrotemporal charts, in the simulations we choose
DQ-TLS = 200 GHz−1 μm−3.

Spectroscopic methods cannot be used to count the number
of T-TLSs because, at such low frequencies, the qubit is in an
incoherent thermal state. The experimental spectrotemporal
charts reveal that Q-TLSs are generally affected by multiple
sources of telegraphic noise, as clearly shown by the band-
limited diffusive pattern in Fig. 1. This observation makes
it possible to infer the number of T-TLSs coupled to each
Q-TLS, NT-TLS; in the simulations, we choose NT-TLS = 10.
These T-TLSs are assumed to be contained inside an inter-
action region with volume Vint centered on their host Q-TLS.
It is worth pointing out that our choice of NT-TLS = 10 can
still result in both the fast narrow-band and slow wide-band
telegraphic patterns in Fig. 1; this is because δ f ∓ and γ are
distributed over a large parameter range possibly leading to a
single predominant T-TLS.

The experiment of Fig. 1(c) allows us to resolve T-TLSs
with interaction strengths U (r)/h � 1 MHz. According to
Eq. (5), this condition corresponds to a maximum interaction
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distance rmax = 60 nm. Notably, this condition is similar to
that hypothesized in the work of Ref. [23]. As explained in
Sec. III B, the T-TLS interaction region is a cylinder with
radius rmax and a height of tox; the volume associated with
this region is Vint ≈ 3.4 × 10−5 μm−3.5

Given B = (Emax − Emin)/h = 500 MHz, we finally obtain
DT-TLS ≈ 6 × 105 GHz−1 μm−3. This value is much larger
than DQ-TLS, suggesting that D varies significantly in fre-
quency and is higher at lower frequencies. This finding is
in contrast with the typical assumption made by the STM
practitioners that TLSs are uniformly distributed in frequency.
It is worth noting that a result similar to ours has been recently
reported in the work of Ref. [30], although our value for
DT-TLS is even larger than in that work.

C. On the interpretation of the Allan deviation and power
spectral density

Time series experiments similar to those reported here are
frequently studied by means of statistical analyses such as the
Allan deviation (AD) or the power spectral density (PSD),
or both. For example, this approach has been pursued in
the works of Refs. [27,28]. It is tempting to ascribe simple
models to these statistical estimators in order to extract T-TLS
parameters such as their switching rate γ and number MT-TLS;
in this case, MT-TLS is the total number of T-TLSs affecting
the qubit by interacting with a single or multiple Q-TLSs. It is
common, however, to encounter scenarios where these models
are misleading.

Figure 3 presents two distinct scenarios that illustrate this
issue. The time series in Fig. 3(a) are obtained by simulating
one scenario with MT-TLS = 1 and another with MT-TLS = 4.
The simulations parameters are reported in Table III. As ex-
pected, there is a stark visual difference between the two time
series: In the first scenario, it is possible to clearly identify
one RTS; this is impossible in the second scenario. However,
this difference is not reflected in either the overlapping AD or
PSD. In both simulated scenarios, we observe a pronounced
peak in the overlapping AD and a lobe in the PSD. These
features are indicative of Lorentzian noise. However, they
appear to be practically the same for the two scenarios. In
fact, it is possible to fit the overlapping AD or PSD using a
simple model based on a single source of Lorentzian noise,
along with white noise. The model reads as

σ 2 = h0

2τ
+

(A0τ0

τ

)2(
4e−τ/τ0 − e−2τ/τ0 − 3 + 2τ

τ0

)
(16)

for the AD and

S = h0 + 4A2
0τ0

1 + (2π f τ0)2
(17)

5For the Q-TLS density used in our simulations, DQ-TLS =
200 GHz−1 μm−3, we can find a Q-TLS area density σQ-TLS =
DQ-TLS × 1 GHz × 3 nm = 0.6 μm−2. The average area per Q-TLS
is therefore 1/σQ-TLS. Assuming each Q-TLS is contained within a
square, the radius of the circle inscribed in each square is rQ-TLS =√

1/σQ-TLS/2 ≈ 600 nm. Since rmax � rQ-TLS, the T-TLS interaction
regions do not overlap on average and, thus, we are not double
counting T-TLSs.

FIG. 3. Comparison between the statistical analyses of two sim-
ulated time series. (a) Simulated time series of T1 vs t . The series
for MT-TLS = 1 is vertically offset by 40 μs for clarity. (b) Esti-
mated overlapping AD σ vs τ and associated fitting curves from
Eq. (16). We find A0 = 5.84(5) and 4.98(6) μs, h0 = 749(111)
and 583(119) μs2 Hz−1, and 1/τ0 = 195(7) and 195(10) μHz for
MT-TLS = 1 and 4, respectively. Note that we are fitting σ 2 with the
Levenberg-Marquardt algorithm but plotting σ . The overlapping AD
is computed at logarithmically spaced points. (c) Estimated PSD S
vs f . We use the fitting parameters from (b) to overlay the model of
Eq. (17) to the data. The PSD is estimated using the Welch’s method
with 25 h overlapping segments (rectangular window). The value of
τ0 fitted for MT-TLS = 1 matches (within the confidence interval) that
chosen in the simulations and reported in Table III; the fitted τ0 for
MT-TLS = 4, instead, does not match any of the values in Table III.

for the PSD, where τ and f are the analysis interval and
frequency, h0 and A0 are the white and Lorentzian noise am-
plitudes, and τ0 is the Lorentzian characteristic time [40].

Although the two simulated time series are associated with
entirely different scenarios, the simple models of Eqs. (16)
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TABLE III. Time-series simulation parameters used in Fig. 3.
The simulations are performed as described in Sec. III B; however,
instead of randomly picking all relevant parameters, we manually
specify them. Note that γ = 1/(2τ0 ).

MT-TLS fQ-TLS g �
Q-TLS
1 γ δf ∓

(GHz) (MHz) (MHz) (μHz) (MHz)

1 4.5011 0.04 15 100 0.6

4.5011 0.02 10 75 0.8
4.5015 0.02 10 70 0.6

4
4.4989 0.02 10 140 0.8
4.4986 0.02 10 75 0.4

and (17) fit accurately both the overlapping AD and PSD
for very similar values of τ0; we obtain 1/τ0 = 195(7) μHz
when MT-TLS = 1 and 1/τ0 = 195(10) μHz when MT-TLS = 4.
This conclusion can be qualitatively understood by noticing
that multiple physical sources of Lorentzian noise combine to
form a single wide-band peak in the overlapping AD (or lobe
in the PSD). As a consequence, this feature can be mistakenly
fitted with a model comprising a single Lorentzian term. For
this reason, we elect not to analyze our experimental results
by ascribing simple models to the AD (or PSD).

VI. CONCLUSIONS

We study the physics of TLSs by means of a frequency-
tunable planar superconducting qubit. We show that simu-
lations based on the TLS interacting model (or GTM) can
explain the spectrotemporal charts of T1 observed in the ex-
periments over long time periods. We find that the density of
T-TLSs is much larger than that of Q-TLSs, meaning TLSs are
nonuniformly distributed over large frequency bandwidths.
Our finding corroborates the results reported in the work of
Ref. [30].

Our experiments demonstrate that the additional dimension
provided by frequency tunability makes tunable qubits a better
probe to study spectral diffusion compared to fixed-frequency
devices. Hence, we suggest that future work on TLS stochastic
fluctuations should explore even wider frequency bandwidths.
A large bandwidth would increase the chances to encounter
a scenario where a pair of Q-TLSs interacts with a single
T-TLS, resulting in a synchronous fluctuation of the two
Q-TLSs. Such an experiment would conclusively prove the
validity of the TLS-TLS interaction hypothesis in the GTM.

It is well known that external strain or electric fields
applied to a qubit chip modify the Q-TLSs’ characteristic en-
ergies, � or �0, or both [17]. Therefore, we suggest to apply
external fields while exploring long-time qubit fluctuations.
Such an experiment may make it possible to indirectly observe
a similar change in the characteristic energies of the T-TLSs.
In fact, both � and �0 contribute to changes in δf ∓, whereas
γ is affected only by �0. In principle, this procedure would
allow us to perform an indirect spectroscopic study of T-TLSs
as a function of external fields.

It is also worth noting that recent advances on the coupling
of superconducting devices to bulk acoustic waves [41] may

pave the way to the acoustic characterization of TLS-induced
qubit loss and fluctuations.

Lastly, we expect that performing experiments at different
operating temperatures would provide one more knob to mod-
ify the frequency bandwidth of thermally activated TLSs. This
approach would allow us to characterize the TLS density for
different frequency ranges.
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APPENDIX A: DERIVATION OF �
q,Q-TLS
1

In this Appendix, we derive Eq. (7). The master equation
in Lindblad form of a qubit–Q-TLS system reads as

d ρ̂

dt
= − i

h̄
[Ĥq,Q-TLS, ρ̂] +

∑
j

(
L̂ j ρ̂L̂†

j − 1

2

{
L̂†

j L̂ j, ρ̂
})

,

(A1)
where ρ̂(t ) is the density matrix, Ĥq,Q-TLS is given by Eq. (6),
j ∈ {q, Q-TLS}, and L̂ j and L̂†

j are Lindblad operators.
Our study is focused on the fluctuations in T1. Hence, in

Eq. (A1) we only account for the energy relaxation rates of
the qubit and Q-TLS. In this case, the Lindblad operators are

L̂q =
√

�̃
q
1 σ̂−

q and L̂Q-TLS =
√

�
Q-TLS
1 σ̂−

Q-TLS.

The quantity L̂ j ρ̂L̂†
j = 0 at all times because there is at

most one excitation in a qubit–Q-TLS coupled system. With
this assumption and by defining the effective non-Hermitian
Hamiltonian [42]

Ĥeff = Ĥq,Q-TLS − i

2

(
�̃

q
1 σ̂+

q σ̂−
q + �

Q-TLS
1 σ̂+

Q-TLSσ̂
−
Q-TLS

)
,

(A2)
the Lindbladian of Eq. (A1) can be written as a sim-
ple Schrödinger equation with a “decaying wave function”
|�(t )〉 = α(t )|e〉 + β(t )|1〉, where α(t ) and β(t ) are the time-
dependent complex amplitudes associated with the excited
state |e〉 of the qubit and |1〉 of the Q-TLS.

The exact result of the Schrödinger equation for α(t ) given
that α(t = 0) = 1 and β(t = 0) = 0 is

α(t ) = 1

2�

[
a exp

(
−�

4
t

)
+ b exp

(
�

4
t

)]
× exp

(
− �̃

q
1 + �

Q-TLS
1

4
t

)
, (A3)

where � is given by Eq. (8), a = � − (�Q-TLS
1 − �̃

q
1 ) +

4π i� f , and b = � + (�Q-TLS
1 − �̃

q
1 ) − 4π i� f .
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Since we are calculating a decay, we are only interested
in the envelope of α(t ), α̃(t ). We thus set Im[�] = 0 in the
two exponential terms of Eq. (A3) and calculate the envelope
probability P̃e(t ) = |α̃(t )|2 for the qubit to be in |e〉:

P̃e(t ) =
∣∣∣ a

2�

∣∣∣2
exp

[
−�

Q-TLS
1 + �̃

q
1 + Re[�]

2
t

]
+

∣∣∣∣ b

2�

∣∣∣∣2

exp

[
−�

Q-TLS
1 + �̃

q
1 − Re[�]

2
t

]
+ ab∗ + a∗b

|2�|2 exp

[
−�

Q-TLS
1 + �̃

q
1

2
t

]
. (A4)

When �
Q-TLS
1 > �̃

q
1, which is the regime of interest in our

experiments, the term proportional to |b|2 in Eq. (A4) is dom-
inant. Therefore, in order to find an approximate expression
for the Q-TLS contribution only, we subtract the qubit contri-
bution �̃

q
1 from the rate in the exponential proportional to |b|2.

This procedure results in Eq. (7) in the main text.

APPENDIX B: DEVICE AND SETUP

The superconducting Xmon transmon qubit [7] used in this
paper is the same as in our work of Ref. [5], with micrographs
shown in that paper. The qubit consists of an Al island in
parallel with a superconducting quantum interference device
(SQUID).

The Al island forms a capacitor that is composed of two
intersecting CPW segments in the shape of a Greek cross,
where each segment has length L = 376 μm. One segment
is formed by a center conductor, or strip, of width S = 24
μm and is separated by a distance W = 24 μm from a ground
plane on each side of the strip. The capacitance of the island
is Cq ≈ 100 fF (corresponding to a single-electron charge en-
ergy Ec/h ≈ 188.6 MHz).

The qubit capacitor is connected in parallel with the
SQUID, which is made of an Al loop interrupted by two
parallel Josephson tunnel junctions with critical current
Ic0 ≈ 17.4 nA (corresponding to a Josephson energy EJ/h ≈
8.6 GHz) for each junction. The SQUID forms the inductive
element of the qubit.

Due to the SQUID design, we are able to tune the SQUID
critical current Ic in situ during the experiment by threading
the SQUID loop with a flux φZ = MZ iZ , where MZ ∼ 3 pH is
the mutual inductance between the loop and an external circuit
with current iZ . A quasistatic flux bias φ

qs
Z allows us to set the

qubit frequency fq(φqs
Z ), i.e., the qubit bias point. The qubit

parameters given above result in a zero-bias fq(φqs
Z = 0) ≈

4.8 GHz.
The qubit can be controlled by means of X or Y microwave

pulses, which are applied through a capacitive network with
coupling capacitor of capacitance CXY ≈ 100 aF. The qubit
state is measured by means of a readout resonator with fr ≈
5 GHz, which is capacitively coupled with a coupling capac-
itor of capacitance CM ≈ 3.4 fF. We read out the qubit state
over 655 single-shot measurements to find Pe with a visibility
� 90 %.

The qubit is fabricated by depositing and patterning thin-
film Al on thoroughly cleaned surfaces; we use the same
cleaning process as in our work of Ref. [4]. The Josephson

4.50 4.52 4.54 4.56

0

1

2

3

4

5

fq (GHz)

t
(h

)

FIG. 4. Scatter plot of T1 vs fq and t for data set 2 [same data
set as in Fig. 1(c)] at the actual measurement time; the color map for
T1 is the same as in Fig. 1. Note that the vertical axis is truncated at
t = 5 h to display the relative measurement times more clearly.

tunnel junctions are fabricated using a standard double-angle
Niemeyer-Dolan technique. The qubit is operated at the base
temperature of a dilution refrigerator, approximately 10 mK.
The control and measurement signals are applied through a
heavily filtered microwave network. The setup is the same as
in our work of Ref. [5], which shows a detailed diagram of the
control and measurement lines.

APPENDIX C: EXPERIMENTAL DETAILS

The spectrotemporal charts displayed in Sec. IV can be in-
terpreted as matrices of T1 values, with m rows and n columns;
m and n represent a time and frequency index, respectively.
The (1,1) entry is the bottom-left element of the matrix, such
that time increases from bottom to top. We set fq from low to
high values, completing one row of each matrix when reach-
ing the highest value of fq. Subsequent rows are measured
restarting always from the lowest value of fq. Hence, the
time tm,n at which each data point (m, n) is taken increases
from left to right for the mth row, starting at tm,1 and ending
at tm,Nf . The time difference between subsequent rows is a
constant value defined as �t = tm+1,1 − tm,1. Although each
measurement in any particular row is taken at a different
time, we choose to display the data on a rectangular matrix
where each row element is associated with the same time
value. As a comparison, Fig. 4 shows a scatter plot for which
each T1 value is plotted at the actual measurement time. This
figure elucidates two limitations of our experiments: (1) The
impossibility to measure an entire row at exactly the same
time. (2) The fact that tm,Nf ∼ tm+1,1. It additionally stresses a
difference between experiments and simulations, i.e., the fact
that in simulations all row elements are calculated at the exact
same time.

In order to keep �t constant, we must account for exper-
imental nonidealities. The time required to perform a single
T1 experiment is texp ≈ 16 s and varies slightly between ex-
periments. In addition, latencies in the electronic equipment
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FIG. 5. Time series of T1 vs t showing the relative time between
measurements for data set 1 (blue dots) and 3 (yellow triangles)
[same data sets as in Figs. 1(a) and 1(c)] and an additional data set
(green squares); all data sets are for fq = 4.529 GHz.

when setting a new value of fq result in a short time overhead.
To overcome these issues, we measure a test row and record
the corresponding measurement time. We then augment this
measurement time by a certain buffer time, which we estimate
to be sufficiently longer than any possible time variations due
to nonidealities. The sum of the measurement time of the test
row and the buffer time is �t . For example, for the data set
shown in Fig. 1(c), the time elapsed to acquire the data of
the test row is approximately 992 s. In this case, we choose
�t = 1000 s. The values of �t for each data set shown in
Sec. IV are reported in Table I.

APPENDIX D: LONG-TIME STABILITY

One of the assumptions in Sec. III is that the TLS parame-
ters do not change in time, i.e., they are considered to be static.
Thus, the only dynamically varying quantity is the state of a
TLS. In order to show that this is a reasonable assumption,
in Fig. 5 we display three experimental time series measured
at fq = 4.529 GHz. The first time series corresponds to a
column extracted from the spectrotemporal chart of Fig. 1(a);
the second series is an additional trace not included in the
spectrotemporal charts because it is too short compared to the
other traces; finally, the third series is a column from Fig. 1(c).
Each point in the three series is plotted at the actual time at
which it is measured relative to the first point of the first series.
It is worth noting that the frequency of these time series is not
captured in the spectrotemporal chart of Fig. 1(b).

The three time series are measured over the course of ap-
proximately three weeks. Despite the large time gap between
the first and third series, we observe a similar T1-drop pattern:
the T1 times are distributed around two values, 5 and 23 μs.
These results indicate a reproducible feature and suggest a
static TLS distribution.

It is well known that by cycling the sample temperature,
e.g., when warming up and cooling back down a device,
results in a strain field that can modify the TLS parameters.
However, when operating a sample at a constant temperature
and without exceedingly large excitation electric fields (as in
the experiments reported in this work), we expect a static TLS
distribution.

FIG. 6. Qubit electric field || �Eq|| for φ0 = 1 V vs width x at
one value of the height z = 1.5 nm. The origin of the graph is at
x = 0, corresponding to the middle point of the strip. Due to the
symmetry of the CPW segment with respect to its longitudinal axis
(i.e., the y axis; not shown), we display || �Eq(x)|| only for half of
the CPW segment, for x � 0. The extent of the conducting sections
of the CPW is indicated by the thick blue lines. The dashed black
vertical lines are placed at the edge of each conductor; the left line
corresponds to the edge of the strip and the right line to the edge of
the ground plane.

APPENDIX E: QUBIT ELECTRIC FIELD

As explained in Appendix B, the qubit capacitor is a Greek
cross formed by two CPW strips of length L. Since L 

S + W , we approximate the qubit capacitor as a CPW segment
of infinite length; we additionally assume that the capacitor
is made of an infinitesimally thin conducting sheet. When
determining �Eq, we can thus restrict ourselves to points within
the CPW vertical cross section.

We determine �Eq by means of a conformal mapping tech-
nique. A conformal map is a function that locally preserves
angles, allowing us to transform the CPW geometry into that
of a much simpler infinite parallel-plate capacitor; the map
function is given by Eq. (25) in the work of Ref. [43]. We
then use this map to transform the electric field of the parallel-
plate capacitor into that of the CPW. The electric field is
proportional to the qubit electric vacuum potential with re-
spect to ground, or zero-point voltage; given the qubit plasma
frequency fp = √

8EJEc/h, the zero-point voltage reads as

φ0 �
√

h fp

2Cq
= e

Cq

(
EJ

2Ec

)1/4

∼ 4 μV. (E1)

In order to generate g, we evaluate || �Eq|| at randomly
picked points (x, z) corresponding to Q-TLS positions. These
points are confined within the cross-section region introduced
above. The cross section is centered on the middle point of
the strip and has a length of 96 μm and a height of 3 nm; the
left and right edges of the cross section extend 12 μm into the
ground plane and the top edge corresponds to the oxide layer’s
top edge. Figure 6 shows || �Eq(x, z)||.
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