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Magic numbers for vibrational frequency of charged particles on a sphere
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Finding minimum energy distribution of N charges on a sphere is known as the Thomson problem. Here, we
study the vibrational properties of the N charges in the lowest energy state within the harmonic approximation for
10 � N � 200 and for selected sizes up to N = 372. The maximum frequency ωmax increases with N3/4, which
is rationalized by studying the lattice dynamics of a two-dimensional triangular lattice. The N dependence of
ωmax identifies magic numbers of N = 12, 32, 72, 132, 192, 212, 272, 282, and 372, reflecting both a strong
degeneracy of one-particle energies and an icosahedral structure that the N charges form. N = 122 is not
identified as a magic number for ωmax because the former condition is not satisfied. The magic number concept
can hold even when an average of high frequencies is considered. The maximum frequency mode at the magic
numbers has no anomalously large oscillation amplitude (i.e., not a defect mode).

DOI: 10.1103/PhysRevB.104.094105

I. INTRODUCTION

Magic numbers play an important role in understanding the
energetic stability of nanoparticles or clusters. The structures
at magic numbers are highly symmetric and have particularly
low energies, as shown in unary and binary Lennard-Jones
clusters [1,2], fullerenes [3], and other metallic clusters;
see Ref. [4] for an extensive review on nanoclusters. More
recently, the magic number concept has been extended to col-
loidal clusters, irrespective to negligibly small inter-particle
interactions [5].

In general, the ground-state structure for a cluster is equal
to the global minimum of potential energy surface (PES) char-
acterized by Nd dimensional space, where N is the number of
particles and d is a space dimension in which the particles
can move. At finite temperature, the clusters will oscillate
around the minimum of the PES. Such a vibrational property
will be sensitive to the geometry and/or curvature around
the minimum of the PES because the force constant matrix
is constructed by the Hessian of the potential energy as a
function of particle positions. Magic numbers will thus appear
in the sequence of vibrational frequency as a function of N .
However, to the best of our knowledge, the presence of such
anomalies has not been explored.

As a model, we consider N charges on a unit sphere that is a
platform in the Thomson problem and/or the Smale’s seventh
problem [6]: to determine the minimum energy configuration
of N charges confined to the surface of a unit sphere. The
global and local minima of the PES have been investigated
for this system [7–12], while many related problems have also
been studied [13–20]. Through the total energy calculations
for N � 200, N = 12, 32, 72, 122, 132, 137, 146, 182, 187,
and 192 have been identified to be magic numbers [7].

In this paper, we demonstrate that magic numbers are
present in the vibrational frequency of N charges on a unit
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sphere. By considering the range 10 � N � 200 and study-
ing the lattice vibration of two-dimensional (2D) triangular
lattice, we find that the maximum frequency is significantly
small at N = 12, 32, 72, 132, and 192. On the other hand,
no anomalies are found at N = 122, 137, 146, 182, and 187
that are identified as the magic numbers from total energy
calculations. We also identify N = 212, 272, 282, and 372
as magic numbers by calculating the vibrational frequency.
The presence of magic numbers for the maximum frequency
can be attributed to a strong degeneracy of the one-particle
energies that will be derived from its icosahedral structures of
distribution of charges. The magic number concept is valid as
long as an average of high frequencies is considered. Finally,
the maximum frequency mode at the magic numbers can be
assigned to a delocalized mode.

II. THEORY

A. Lattice dynamics on a sphere

We apply the theory of lattice dynamics (see Ref. [21] for
example) to vibrations of N charged particles confined to the
surface of a sphere with a unit radius. The Lagrangian of the
system is given by

L = 1

2

N∑
i=1

[(
dθi

dt

)2

+ sin2 θi

(
dφi

dt

)2]
− V, (1)

where θi and φi are the spherical coordinates of charge i with
a unit mass. The first term is the kinetic energy and the second
term V is the potential energy given by

V =
N∑

i=1

εi, (2)

with the one-particle energy

εi = 1

2

N∑
j �=i

1

ri j
. (3)
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The factor of 1/2 in Eq. (3) accounts for the double counting
of the interaction energy between charges i and j that is
inversely proportional to the Euclidean distance ri j expressed
by

ri j =
√

2[1 − sin θi sin θ j cos �φi j − cos θi cos θ j]
1
2 , (4)

with �φi j = φi − φ j . With the analytical mechanics, the
equations of motion for θi and φi are given by

d2θi

dt2
= −∂V

∂θi
+ sin θi cos θi

(
dφi

dt

)2

, (5)

sin2 θi
d2φi

dt2
+ 2 sin θi cos θi

dθi

dt

dφi

dt
= − ∂V

∂φi
. (6)

Using Eq. (6), we can show the relation

d

dt

(∑
i

sin2 θi
dφi

dt

)
= −

∑
i

∂V

∂φi
= 0, (7)

which states that the total angular momentum is conserved.
The coupled Eqs. (5) and (6) determine the time (t) evolution
of N charges on a sphere given an initial condition.

In this paper, we study the dynamics of the N charges
within the harmonic approximation around the equilibrium

configurations (θ0
i , φ0

i ) with i = 1, . . . , N . By assuming θi =
θ0

i + uiθ and φi = φ0
i + uiφ with the displacements (uiθ , uiφ ),

the equations of motion can be written as

miα
d2uiα

dt2
= −

∑
jβ

Di j
αβu jβ, (8)

where the terms proportional to (dφi/dt )2 and
(dθi/dt )(dφi/dt ) in Eqs. (5) and (6) are omitted. α(β )
indicates θ or φ, and miα is an effective mass defined as
miα = δαθ + δαφ sin2 θ0

i that originates from the confinement
of the surface of the sphere. The force constant matrix is
given by

Di j
αβ = D ji

βα = ∂2V

∂αi∂β j

∣∣∣∣
0

, (9)

where the derivative is taken at the equilibrium configurations.
Assuming a stationary solution uiα (t ) = εiαeiωt with the fre-
quency ω and the polarization εiα , one obtains the eigenvalue
equation:

miαω2εiα =
∑

jβ

Di j
αβε jβ. (10)

Analytical expressions of Eq. (9) are given by

Dii
θθ =

∑
j( �=i)

(
3

r5
i j

[− cos θi sin θ j cos �φi j + sin θi cos θ j]
2 − 1

r3
i j

[sin θi sin θ j cos �φi j + cos θi cos θ j]

)
, (11)

Dii
θφ =

∑
j( �=i)

(
3

r5
i j

[− cos θi sin θ j cos �φi j + sin θi cos θ j] sin θi sin θ j sin �φi j − 1

r3
i j

cos θi sin θ j sin �φi j

)
, (12)

Dii
φφ =

∑
j( �=i)

(
3

r5
i j

[sin θi sin θ j sin �φi j]
2 − 1

r3
i j

sin θi sin θ j cos �φi j

)
, (13)

Di j
θθ = 3

r5
i j

[− cos θi sin θ j cos �φi j + sin θi cos θ j][− sin θi cos θ j cos �φi j + cos θi sin θ j]

+ 1

r3
i j

[cos θi cos θ j cos �φi j + sin θi sin θ j], (14)

Di j
θφ = 3

r5
i j

[− cos θi sin θ j cos �φi j + sin θi cos θ j][− sin θi sin θ j sin �φi j] + 1

r3
i j

cos θi sin θ j sin �φi j, (15)

Di j
φφ = − 3

r5
i j

[sin θi sin θ j sin �φi j]
2 + 1

r3
i j

sin θi sin θ j cos �φi j, (16)

with i �= j for Eqs. (14)–(16). Due to the rotational in-
variant around the z axis, we can prove that

∑N
j=1 Di j

θφ =∑N
j=1 Di j

φφ = 0.
To determine the lowest energy structures for 10 � N �

200, we started various configurations of (θi, φi ) for i =
1, . . . , N , where θi and φi are random values restricted to 0 <

θi < π and 0 < φi < 2π . More than 200 random distributions
were considered to find the lowest energy structure for each
N . The optimization of V (≡ Eopt ) was performed by using the
Broyden-Fletcher-Goldfarb-Shanno algorithm [22]. We found
that the lowest energy structures had no imaginary frequencies
and the values of Eopts were exactly equal to those in the
Cambridge Cluster Database (CCD) [23] except for some
Ns. For N = 171, 177, 191, and 197, the Eopts obtained were

higher than those in the CCD by less than 0.1: the difference
was maximum at N = 191, where Eopt = 16783.5248378 and
ECCD = 16783.4522193. We also found that for N = 177 and
197, the value of Eopt is equal to that obtained by genetic
algorithm approach [7]. This implies that the basin-hopping
approach used in Ref. [10] is suitable for finding the lowest
energy structure in the Thomson problem. We thus referred
to the CCD [23] to obtain the position of charges for N =
171, 177, 191, and 197. For later use, we also referred to the
CCD for N = 212 + k, 252 + k, 312 + k, 272 + k, 282 + k,
and 372 + k with k = 0,±1. When | sin θi| < 10−6, we re-
garded that the charge i is located at the north or south
poles on a sphere and did not use Eq. (6) for i in solving
Eq. (10) because miφ = 0. For each N , we obtained ω

(N )
i with
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FIG. 1. The phonon dispersion curve of 2D triangular lattice.
ω0 = Ca−3/2

0 with a unit mass and C = 3.383698.

i = 1, . . . , 2N by solving Eq. (10). The ω
(N )
i s with i = 1, 2,

and 3 are zero because the corresponding modes are the rota-
tion around the x, y, and z axes. Below, the maximum value of
ω

(N )
i (i.e., ω

(N )
2N ) will be denoted as ωmax(N ) or simply ωmax.

B. Lattice dynamics on 2D triangular lattice

The optimized configuration on a unit sphere is like a
triangular lattice, whereas deformation of a triangle will be
observed due to a finite curvature, producing five-coordinated
charges. For comparison, the lattice dynamics of the Coulomb
crystal in the 2D triangular structure was considered. Due to
the repulsive potential, the periodic boundary condition must
be imposed to produce the dynamical stability of charged par-
ticles. The dynamical matrix was constructed by considering
the central force potential model [24]. For the wave vector
q = (qx, qy), it is written as

D̃αβ (q) = −2
∑
j �=0

sin2

(
q · R j

2

)
D j

αβ, (17)

with α, β = x, y. The position of the jth particle is given by
R j , a linear combination of the primitive vectors a1 = (a0, 0)
and a2 = a0(−1/2,

√
3/2) with the lattice constant a0. The

force constant matrix is expressed by

D j
αα = 1

r3
j

− 3α2
j

r5
j

, D j
αβ = −3α jβ j

r5
j

, (18)

with r j = |R j |, r2
j = x2

j + y2
j , and α �= β. In the present paper,

no out-of-plane displacements were considered, whereas the
2D triangular lattice has shown to be unstable if the particle
can move perpendicular to the 2D surface [25]. Due to the
long-range Coulomb forces, the summation of Eq. (17) was
taken over the particles up to r j = 2500a0. It should be noted
that a0 is only the characteristic length in the 2D triangular
structure under the Coulomb potential. From Eqs. (17) and
(18), the phonon frequency ω is proportional to a−3/2

0 .
Figure 1 shows the dispersion curve of a 2D triangular

lattice along the symmetry lines. At low ω, the longitudinal
and transverse branches show the different q dependence:
ω ∝ q1/2 and q, respectively, with q = |q| [26]. The longi-
tudinal modes have the maximum frequency ω0 at the point
M(0, 1/3).

FIG. 2. The N dependence of (a) Eopt − Efit, (b) ωmax, and
(c) ωmax − ωeff , where Efit and ωeff are expressed by Eqs. (19) and
(20), respectively. Dashed lines in (a) and (c) indicate the magic
numbers for Eopt, i.e., N = 12, 32, 72, 122, 132, 137, 146, 182, 187,
and 192 identified in Ref. [7].

III. RESULTS AND DISCUSSION

The optimized energy Eopt is proportional to N2/2 that is
exactly equal to the electrostatic energy stored by a spherical
capacitor of a unit radius. The energy corrections proportional
to N3/2 and N1/2 have been proposed in Refs. [7,27],

Efit (N ) = 1
2 (N2 − aN3/2 + bN1/2), (19)

with the parameters of a = 1.10461 and b = 0.137.
Figure 2(a) shows the difference between Eopt and Efit

as a function of N . Anomalously low energies are found
at N = 12, 32, 72, 122, 132, 137, 146, 182, 187, and 192,
which agree with the magic numbers identified in Ref. [7].
These structures have icosahedral symmetry except for
N = 137, 146, 182, and 187 [23].
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TABLE I. The values of εi with i = 1 to 7 for several Ns. The figure in parenthesis indicates the degeneracy.

N ε1 ε2 ε3 ε4 ε5 ε6 ε7

12 4.097 (12) – – – – – –
32 12.872 (20) 12.901 (12) – – – – –
72 31.307 (60) 31.379 (12) – – – – –
122 54.854 (30) 54.903 (60) 54.912 (20) 55.029 (12) – – –
132 59.630 (60) 59.665 (60) 59.777 (12) – – – –
192 88.304 (60) 88.336 (60) 88.376 (60) 88.528 (12) – – –
212 97.904 (20) 97.933 (60) 97.935 (60) 98.000 (60) 98.151 (12) – –
272 126.836 (60) 126.847 (60) 126.886 (60) 126.904 (20) 126.954 (60) 127.146 (12) –
282 131.672 (30) 131.689 (120) 131.724 (60) 131.787 (60) 131.976 (12) – –
372 175.284 (60) 175.291 (60) 175.322 (60) 175.334 (60) 175.356 (60) 175.447 (60) 175.668 (12)

As shown in Fig. 2(b), the value of ωmax also increases
with N . To understand the N dependence of ωmax, we consider
the case that the averaged surface area 4π/N is equal to the
unit cell area of the 2D triangular lattice

√
3a2

eff/2 with the
effective lattice constant aeff . By performing the numerical
calculations, we obtain the maximum frequency of 2D trian-
gular lattice C = 3.383698 when a0 = 1 (see Fig. 1). We thus
propose an effective frequency

ωeff = Ca−3/2
eff , aeff =

(
8π√
3N

)1/2

, (20)

which behaves as ωeff ∝ N3/4. The calculated ωmax is well
fitted by Eq. (20), indicating that the maximum frequency is
approximately determined by the particle density.

To find magic numbers, we plotted the difference between
ωmax and ωeff versus N in Fig. 2(c). For large N , Eq. (20)
underestimates ωmax, which will be due to the curvature effect:
the maximum distance between charges on a sphere is twice
a radius, whereas that on the 2D triangular lattice is infinite.
A larger potential energy will be stored in the former system,
giving rise to enhance the magnitude of force constants. More
importantly, a significant decrease of ωmax is observed at N =
12, 32, 72, 132, and 192 and these are also the magic numbers
derived from the total energy calculations in Fig. 2(a). On
the other hand, no significant decrease in ωmax is found at
N = 122, 137, 146, 182, and 187. The behavior at N = 122
is anomalous because the icosahedral structure does not yield
a small ωmax.

To understand an origin of the magic numbers for ωmax,
we focus on the distribution of εi defined in Eq. (3). Table I
lists the εis in an ascending order and its degeneracy for N =
12, 32, 72, 122, 132, and 192. For N = 12, all the charges
have the same energy because the charges are distributed
at the vertices of a regular icosahedron. For larger Ns, 12
charges have the highest εi because they have not six but five
coordination numbers arising from geometrical constraint. It
is interesting that at N = 72, 132, and 192, the degeneracy for
low εss is 60 except for the highest εi. On the other hand, at
N = 122, the degeneracy is scattered, i.e., 20, 60, 30, and 12.
This is visualized in Fig. 3, where the charges at the center of
the hexagon colored orange are not equivalent to those colored
blue. The one-particle energies are thus split into ε1 and ε3.
In general, when strain stored is equally distributed over the
structure, εi will be strongly degenerated. We thus hypothesize

that strongly degenerated εi will cause small curvature of the
PES around the equilibrium, yielding a small value of ωmax.
In addition to the presence of a highly symmetric structure,
strong degeneracies of εis will be important in the appearance
of magic numbers.

To check the validity of our hypothesis, we next study the
cases of N = 212 + k, 272 + k, 282 + k, and 372 + k with
k = 0,±1 because these N charges form an icosahedral struc-
ture as the lowest energy state [23]. We find that the values of
εis are strongly degenerated: the degeneracy is also 60 for low
εis and 12 for the highest εi (see also Table I). The values of
ωmax for k = 0 are smaller than those for k = ±1, as listed
in Table II. We thus identify N = 212, 272, 282, and 372 as
magic numbers. Note that a small value of degeneracy, such
as 20 and 30 of ε1 in N = 212 and 282, respectively, listed in
Table I, will have a minor contribution to Eopt and thus to ωmax

for N � 200.
For relatively large Ns, it is nontrivial to find global

minimum energy structures due to the presence of many lo-
cal minima in the PES. For 400 � N � 4352, the energetic
stability has been investigated for only selected Ns [11].
Only N = 1632 and 1902 have been identified to show an
icosahedral structure as its lowest energy state, where topo-
logical defects different from a pentagonal shape shown in
Fig. 3 are located at 12 vertices of the icosahedral structure.

FIG. 3. The distribution of N = 122 charges on a sphere. Four
pentagons are colored red. Two pentagons share a hexagon colored
orange. Three hexagons share a vertex colored blue.
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TABLE II. The value of ωmax(N ) for N = 212 + k, 272 +
k, 282 + k, and 372 + k with k = 0, ±1.

N ωmax(N − 1) ωmax(N ) ωmax(N + 1)

212 25.903 25.656 26.066
272 31.209 31.017 31.258
282 32.019 31.950 33.540
372 39.858 39.293 39.535

Furthermore, as N increases, grain boundaries start to appear
in the Voronoi representation. It will be interesting to study
how these defects influence the vibrational frequencies and/or
the presence of magic numbers.

As a generalized problem, it will be valuable to inves-
tigate whether the magic number concept is valid when
lower frequencies (i.e., ω(N )

i with i < 2N) are also considered.
Interestingly, the maximum frequency tends to be highly de-
generated at the magic numbers for vibrational frequency: for
the top D frequencies, the equalities ω

(N )
2N = ω

(N )
2N−1 = · · · =

ω
(N )
2N−D+1 can hold, where D = 2, 3, 4, or 5. We first define an

average of the top D highest frequencies for N charges as

ωave(N, D) = 1

D

D∑
i=1

ω
(N )
2N+1−i, (21)

with D = 1, . . . , 2N and next define the difference as

�ωave(N, D) = 2ωave(N, D) −
∑

j=N±1

ωave( j, D). (22)

If the magnitude of |�ωave(N, D)| is large, such an N can be
identified as a magic number.

Figure 4 shows the D dependence of �ωave(N, D) for
several Ns, where the value of D is changed from 1 to
2(N − 1) for each N . By assuming D = 2(N − 1) � 2N , the
value of �ωave(N, 2(N − 1)) can be regarded as the difference

FIG. 4. The D dependence of �ωave(N, D) for several Ns.

FIG. 5. The distribution of |dvi| versus εi of the charge i for N =
131, 132, and 133. The data is plotted for the top four frequency
modes.

between the average frequencies with an error of
ω

(N+1)
4 /(2N − 2) � 1. When D = 1, the value of

�ωave(N, D) is negatively large (less than −0.4) except
for N = 122, identifying the magic numbers as in Fig. 2(c)
and Table II. When D is increased, �ωave(N, D) approaches
zero and may become positive for the largest D. In this
way, for small Ds, the magic number concept can hold,
which may be due to the high degeneracy of the maximum
frequency. On the other hand, for large Ds, a small difference
between ωave(N, D)s needs to be studied to identify the magic
numbers.

We finally remark on the oscillation amplitude of charges
on a sphere. At a magic number of N for vibrational frequency,
the maximum frequency mode is a delocalized mode because
the charge distribution is ordered compared to that of N ± 1.
This produces no anomalously large displacement of charges.
To understand this, we consider the square of the displacement
vector of the charge i defined as

dv2
i = (

xi − x0
i

)2 + (
yi − y0

i

)2 + (
zi − z0

i

)2
, (23)

where (x0
i , y0

i , z0
i ) and (xi, yi, zi ) are the position of charges,

respectively, before and after a displacement along the
eigenvector, e.g., z0

i = cos θ0
i and zi = cos(θ0

i + uiθ ). As an
example, we consider the cases of N = 132 and 132 ± 1,
where the top four frequencies are degenerated at N = 132.
Figure 5 shows the distribution of |dvi| versus εi for the top
four frequencies (4N points for each N). For N = 132, the
|dvi| of the charge i having εi is about less than 0.1. For
N = 131 and 133, the εis are distributed around 59.2 and 60.1,
respectively, and the distribution of |dvi| is elongated up to
0.2. It is important to find that only a few points have large
|dvi|. This implies that the nonmagic number structures can
have localized modes at high-frequency regimes.

IV. CONCLUSION

We have studied the vibrational properties of N charges
on a sphere. The present paper shows that ωmax behaves
as N3/4, which is understood within the 2D triangular lat-
tice model. The value of ωmax is relatively small at N =
12, 32, 72, 132, 192, 212, 272, 282, and 372, so these Ns are
identified as magic numbers. However, the total number of
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magic numbers identified by the ωmax calculations is smaller
than that identified by the total energy calculations. This is
because the value of ωmax reflects a strong degeneracy of the
one-particle energies and the icosahedral symmetry of distri-
bution of N charges. The presence of nonequivalent charges
with the six coordination number weakens the degeneracy,
enhancing the value of ωmax as in N = 122, irrespective to
the icosahedral structure. We have also demonstrated that the
magic number concept can hold as long as an average of
the top D frequencies with a small D is considered and that
the charges at the magic numbers can have small oscillation
amplitude for the maximum frequency modes.

The present paper will pave the way to future inves-
tigations concerning magic numbers in realistic materials
because the one-particle energy has been used in many model
potentials such as Tersoff [28], embedded-atom [29], and
neural-network potentials [30]. Also, the present paper will
provide another perspective to the Thomson problem from a
point of view of magic numbers for vibrational frequency.
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