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Quantum fluctuation-dissipation theorem far from equilibrium
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Fluctuations associated with relaxations in the far-from-equilibrium regime is of fundamental interest for a
large variety of systems within broad scales. Recent advances in techniques such as spectroscopy have generated
the possibility for measuring the fluctuations of the mesoscopic systems in connection to the relaxation processes
when driving the underlying quantum systems far from equilibrium. We present a general nonequilibrium
fluctuation-dissipation theorem (FDT) for quantum Markovian processes where the detailed-balance condition
is violated. Apart from the fluctuations, the relaxation involves extra correlation that is governed by the quantum
curl flux emerged in the far-from-equilibrium regime. Such a contribution vanishes for the thermal equilibrium,
so that the conventional FDT is recovered. We finally apply the nonequilibrium FDT to the molecular junctions,
elaborating the detailed-balance-breaking effects on the optical transmission spectrum. Our results have the
advantage of and exceed the scope of the fluctuation-dissipation relation in the perturbative and near equilibrium
regimes, and is of broad interest for the study of quantum thermodynamics.
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I. INTRODUCTION

Quantum thermodynamics is an active subject of statistical
mechanics emergent from quantum mechanics. Recent excit-
ing advances raised subtle questions about the fluctuations
related to heat and work in the nanoscaled systems driven far
from equilibrium [1–4]. The heat dissipation is linked to the
fluctuations, intrinsically through the fluctuation-dissipation
theorem. However, the traditional fluctuation-dissipation re-
lation only holds for the quantum systems either at thermal
equilibrium where the detailed balance is strictly obeyed or
being weakly deviated from equilibrium [5–7]. The extension
of a similar relation to the far-from-equilibrium regime is
urgent now, as desired by the progress of quantum thermo-
dynamics [8–11]. This is, however,an open issue such that an
underlying microscopic theory is still lacking.

The fluctuation is a fundamental subject of the study in
the fields broadly ranging from statistical mechanics and
spectroscopy to economy and social sciences [10,12–14].
The development of conventional statistical mechanics has
enriched the study of fluctuations for the systems at finite
temperature, which provided deeper insights for understand-
ing the critical phenomena and phase transitions [15,16]. For
those systems slightly deviated from thermal equilibrium,
the fluctuations have been exploited using the perturbative
method that leads to the thermal (mass) transport near the
equilibrium as a result of thermal and electric conductivity
[6,17,18]. Despite this progress, the study of fluctuations
of the systems driven far from equilibrium is still far from
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complete. Recent technical advances made it accessible to
measure the forward and backward transitions of the par-
ticles for Markovian quantum dynamics that leads to the
fluctuation theorem (FT) at the microscopic level [19–22].
There are various degrees of contexts to express the FT,
e.g., the Crook relation emphasizing irreversible work fluc-
tuation [23,24], and entropy fluctuation in both close and
open systems [25–29]. As an important result, the Jarzyn-
ski equality naturally follows the FTs for both classical and
quantum systems [30–32], and has been validated in recent
experiments [33,34]. Nevertheless, the FTs can reduce to the
fluctuation-dissipation relation close to equilibrium, retriev-
ing the Green-Kubo formula for transport coefficient [35].
This yields the fluctuation-dissipation theorem (FDT) in the
near-equilibrium regime. However, the connection of the fluc-
tuation to dissipation in the far-from-equilibrium regime is
still elusive, which needs to be found out explicitly. This
desires the approaches going beyond the perturbative treat-
ment in stochastic dynamics, e.g., the Boltzmann equation.
For the classical systems far from equilibrium, the FDT have
been developed using the Fokker-Planck equation for the
stochastic dynamics [36–39]. For the nonequilibrium quantum
systems as a counterpart of classical systems, the fluctuation-
dissipation relation is an open issue.

The nonequilibrium density matrix plays the key role for
the purpose, as the microscopic dynamics breaking the de-
tailed balance is involved. The propagation of the density
matrix bridges the gap between the microscopic dynamics and
statistics, responsible for the relaxation and the spectroscopic
line shape [40–42]. The corresponding equations of motion
giving the underlying laws which the ensemble obeys lay
the foundation of the nonequilibrium statistical mechanics.
This is on equal footing with the ensemble theory under
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equilibrium assumption which leads to the grand canonical
ensemble. In this work, we develop a universal quantum me-
chanical fluctuation-dissipation relation for the steady states
far from equilibrium, via the curl flux theory quantifying
the detailed-balance violation [37,43–45]. The quantum curl
flux can enable us to calculate the far-from-equilibrium dis-
tributions of the population and the coherence, beyond the
specific models. These may provide the fundamental build-
ing blocks for nonequilibruim quantum statistical mechanics.
Generically differing from the conventional FDT, our results
elaborate an extra term dictated by the curl flux in the re-
sponse function in terms of the fluctuations [17,35,46]. This
prominently characterizes the nonequilibrium nature due to
the violation of detailed balance. We further calculate the lin-
ear transmission spectrum of a molecular junction model as a
typical nonequilibrium quantum system that can be measured
in the spectroscopic experiments nowadays.

II. CURL QUANTUM FLUX DECOMPOSITION

The quantum dynamics of systems such as molecules
can be described by quantum dissipative equation of mo-
tion, in the presence of energy dissipation and dephasing
from the surrounding environments, such as phonons, low-
frequency vibrations and solvent. Recalling the Born-Markov
approximation applicable for smooth spectral density of the
environments, the equation of motion (EOM) is of the most
general form

∂

∂t

(
ρp

ρc

)
=

(
Mp Mpc

Mcp Mc

)(
ρp

ρc

)
, (1)

where the density matrix is partitioned into population and
coherence components in Liouville space, i.e., |ρ〉〉 = |ρp〉〉 ⊕
|ρc〉〉 and the inner product is defined as 〈〈A|B〉〉 = Tr(A†B).
Notice that Eq. (1) is capable of describing a large variety of
the open quantum dynamics, including the quantum master
equation, stochastic Liouville equation, and hierarchical equa-
tion of motion. All the details about molecular structures and
environments are contained in matrix M. ρp and ρc include the
diagonal and off-diagonal elements of the density matrix in
certain representations, respectively. By absorbing the coher-
ence component, we can further obtain the reduced quantum
dissipative equation of motion involving the populations only,
through the Laplace transform

|ρ̃c(s)〉〉 = (s − Mc)−1(Mcp|ρ̃p(s)〉〉 + |ρ̃c(0)〉〉), (2)

where |ρ̃c(s)〉〉 = ∫ ∞
0 e−st |ρc(t )〉〉dt . The inverse Laplace

transform leads to

|ρc(t )〉〉 = eMct |ρc(0)〉〉 +
∫ t

0
eMc(t−τ )Mcp|ρp(τ )〉〉dτ. (3)

Inserting Eq. (3) into Eq. (2) we find the reduced EOM for the
population

|ρ̇p(t )〉〉 = Mp|ρp(t )〉〉 +
∫ t

0
MpceMc(t−τ )Mcp|ρp(τ )〉〉dτ, (4)

where Mp and Mc are the population and coherence blocks
of the full matrix M, whereas they couple with each other

through the blocks Mpc and Mcp. These two blocks character-
ize the quantum coherence effects, distinct from the classical
dissipative EOM that will be clarified later on.

It is worth noting that the coherence decays faster than the
population in many circumstances, for instance, the atomic
coherence in lasing medium and the electronic coherence
in conjugated molecules [47–49]. We can proceed via the
approximation of the stationary coherence at the time of
population: |ρc(t )〉〉 = −M−1

c Mcp|ρp(t )〉〉. This results in the
following form of the reduced EOM:

|ρ̇p〉〉 = (
Mp − MpcM−1

c Mcp
)|ρp〉〉 (5)

and for each element

ρ̇nn =
∑
m �=n

(Lnn,mmρmm − Lmm,nnρnn), (6)

where L ≡ Mp − MpcM−1
c Mcp, and Lnn,nn = −∑

m �=n Lmm,nn

due to the probability conservation. Equation (6) implies in
general the nonvanishing net quantum flux from the state m to
the state n with the quantum transition rate Lnn,mm, induces the
curl quantum flux

cmn = Lnn,mmρmm − min(Lnn,mmρmm, Lmm,nnρnn) (7)

as illustrated in Fig. 1(a), and cmn � 0. The rate matrix
tmn = Lnn,mmρmm collecting the transition rate between the
states can be decomposed into the symmetric and asym-
metric parts therein. The flux cmn renders the asymmetric
part breaking the detailed balance while the symmetric part
min(Lnn,mmρmm, Lmm,nnρnn) obeys the detailed balance. It has
been proved rigorously that cmn is a superposition of loop
fluxes being divergence free, if (1) cmn � 0 for m �= n and
cnn = 0, (2) cmncnm = 0 for m �= n and (3)

∑
m cmn = ∑

n cmn

[50,51].
Obviously, the curl quantum flux in Eq. (7) satisfies the

conditions listed above. Conditions (1) and (2) derive the
unidirectional nature of the curl flux, resulting in the detailed-
balance violation. Condition (3) conserves the population.
The quantum curl flux provides an intrinsic driving force to
the irreversible dynamics of quantum particles, responsible
for the out-of-equilibrium effects, such as the current and its
fluctuation associated with the quantum transport.

Equation (6) resembles the classical rate equation, but has
completely different physics: it essentially involves the coher-
ence while the classical description does not. Two prominent
examples can be found in the Fröhlich coherence of THz
molecular vibrations and the exciton motion in photosynthesis
[10,52].

III. RELAXATION AND FLUCTUATION-DISSIPATION
RELATION

A central problem in stochastic thermodynamics is the
spontaneous fluctuations related to the relaxation dynamics
governed by Eq. (7) which breaks the time reversibility. The
latter is imprinted from the population transfer and decoher-
ence that are important aspects in the spectroscopic study of
the molecular relaxation and radiative processes. To elaborate
this, we can send a weak probe field to drive the quantum
system of interest away from the steady state. Let V (t ) denote
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FIG. 1. (Left) Multilevel quantum system subject to energy pumping and dissipation. ki→ j is the transition rate from the ith level to the jth

level and pi is the probability of the system at ith level. A group of loop fluxes exist as a result of detailed-balance breaking. The magnitude
and statistics of these loops quantify at microscopic level the detailed-balance breaking. (Right) Optical transmission of a molecular junction
driven far from equilibrium in the presence of large voltage bias. The role of electrodes is to exchange electrons with the molecules in between,
so that the electric current is a result of the loop fluxes.

the time-dependent interaction with the four warnings probe
field, the quantum dynamics reads

|ρ̇〉〉 = [M − i f (t )V−(t )]|ρ〉〉, (8)

where f (t ) is classical external field. We denote the ex-
pectation of an observable in Liouville space as 〈�〉(t ) =
〈〈1|�L|ρ(t )〉〉. Solving the dynamics equation in the inter-
action picture and transforming back to the Schrödinger
picture, we have |ρ(t )〉〉 = G(t )T̂ e−i

∫ t
−∞ f (τ )Vint,−(τ )dτ |ρint,ss〉〉,

where ρint,ss is the steady state density matrix in the interaction
picture. Up to the first-order expansion of the solution with
respect to the coupling to the probe field, the response of the
observable considered is given by

〈δ�〉(t ) = −i
∫ t

−∞
dt ′〈〈1|�LG(t − t ′)V−(t ′)|ρss〉〉 f (t ′), (9)

where 〈δ�〉(t ) ≡ 〈�〉(t ) − 〈�〉ss = 〈〈1|�L|ρ(t ) − ρss〉〉 is the
expectation value of the response given the perturbation
f (t )V (t ). Here, the operator G(t ) = eMt is the free propagator
of the system in the absence of the probe field, Vint,−(t ) =
G−1(t )V−(t )G(t ) and |1〉〉 = ∑

n |nn〉〉 is the Liouville-space
representation of the identity operator. The subscript L (R)
denotes the multiplication from the left (right), i.e., �L|ρ〉〉 ≡
|�ρ〉〉, (�R|ρ〉〉 ≡ |ρ�〉〉). The notation V− is defined by V− ≡
VL − VR. The response function can be subsequently defined
from Eq. (9).

It follows straightforwardly that Eq. (9) reduces to the
Kubo formula for thermal equilibrium ρss = Z−1e−H/T . But
we have to raise the question: what will happen for the quan-
tum systems driven far from equilibrium? The thermodynamic
reversibility is essentially broken, violating the detailed bal-
ance when driving the systems away from equilibrium. This
must come into effect in the response of the system. To elab-
orate on this, we recast the density matrix into

Lnn,nnρ
ss
nn = −

∑
m �=n

[
cmn + min

(
Lnn,mmρss

mm, Lmm,nnρ
ss
nn

)]
(10)

via the curl flux for the steady state, and the coherence ρss
ml =∑

n Kml,nnρ
ss
nn, m �= l where K = −M−1

c Mcp. From Eqs. (10)

and (9) and letting W ≡ I + K it follows that

R(1)(t − t ′) = i[〈〈1|�LG(t − t ′)V−W SD|ρss〉〉
+ 〈〈1|�LG(t − t ′)V−W Vss|ρss〉〉] (11)

in a compact form for t � t ′. I , LD, SD, and Vss

are operators in the population subspace such that I =∑
n |nn〉〉〈〈nn| is the identity operator in the population sub-

space and L−1
D = ∑

n L−1
nn,nn|nn〉〉〈〈nn|. The operator SD =∑

n Snn,nn|nn〉〉〈〈nn|, and Vss = ∑
n

∑
k �=n

ckn
Lnn,nnρss

nn
|nn〉〉〈〈nn|,

where Snn,nn = L−1
nn,nn

∑
k �=n min(Lnn,kk

ρss
kk

ρss
nn

, Lkk,nn). Vss con-
sists of the reduced curl flux as a reminiscence of the classical
flux [37,45]. Obviously, SD preserves the detailed balance
because each term in the summation is symmetric under the
exchange k ↔ n. As dictated by the curl flux, Vss measures
the detailed-balance violation. Taking Fourier transform of
Eq. (11) we obtain the linear transmission of the system

ImR(1)(ω) = Re〈〈1|�LG(ω)V−W SD|ρss〉〉
+ Re〈〈1|�LG(ω)V−W Vss|ρss〉〉, (12)

where G(ω) = ∫ ∞
0 G(t )eiωt dt denotes the Green’s function in

the frequency domain. The nonequilibrium fluctuation dissi-
pation relation (FDR) as given above conveys the information
of how the system responds without the equilibrium statistics
assumed. After choosing � = V and restraining to the thermal
equilibrium, the coherence terms in the density matrix and
the second term in Eq. (12), which is proportional to the
nonequilibrium flux, vanish. Then, Equation (12) written in
terms of density matrix is

ImR(1)(ω) = Tr{Vint (ω)Vint (0)ρint,ss − Vint (ω)ρint,ssVint (0)}

=
∫ ∞

0
eiωt 〈[Vint (t ),Vint (0)]〉dt . (13)

This returns to the ordinary quantum FDR given by

coth(h̄ω/2kBT )Im[R(1)(ω)] = S(ω) + S(−ω), (14)

where the fluctuation is given by S(ω) =∫ ∞
0 eiωt 〈V (t )V (0)〉dt . The LHS of the equation represents
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the dissipation and the RHS encrypts the information
of the fluctuation. In this case, the second term on the
RHS of Eq. (12), which is responsible for the quantum
flux contribution for the out-of-equilibrium system, is
zero. The nonequilibrium FDR reveals that not only the
steady-state fluctuation influences the relaxation process,
the detailed-balance breaking sector, as quantified by
the steady-state quantum flux between the states, also
substantially contributes to the relaxation dynamics. This is
a fundamental distinction from equilibrium systems where
the relaxation is uniquely determined by the spontaneous
fluctuations of the equilibrium quantum states.

It is worth noting the classical limit of the the nonequi-
librium FDT given in Eq. (12) as K → 0. As such, the
population equation in Eq. (6) reduces to the classical master
equation in which Lnn,mm measures the incoherent transition
rates [53]. This classical version of FDT not only can describe
the incoherent processes of quantum systems such as ballistic
charge transfer, but may also be applied to a large variety of
classical dissipative systems including protein dynamics and
gene-expression control. This will be presented elsewhere.

While the present formalism of the FDT is for the
finite-dimensional quantum systems, the nonequilibrium FDT
for infinite-dimensional quantum systems may be an ex-
tensive issue in the forthcoming study. This is subject
to an infinite-dimensional representation of the Lie group,
yielding a classical limit dramatically different from the finite-
dimensional systems [46].

IV. DISCUSSION

Besides the first term on the right side that also appears
in the FDT for equilibrium case, we observe an additional
term breaking the thermodynamic reversibility as a result of
the detailed-balance violation. This detailed-balance-violation
term does vanish whereas the first term still survives when
the system returns to the thermal equilibrium, so that the
conventional FDT is obtained. This is due to Vss = 0 given the
curl flux css

mn = 0. Nevertheless, the FDR given in Eq. (12) is
general in the sense of involving the systems largely deviated
from equilibrium, not restricted by the linear regime close to
equilibrium. At the thermodynamic level the extra correlation
governed by the curl flux in Eq. (12) is therefore responsible
for a deeper understanding of the quantum systems driven
far from equilibrium. Moreover, the equilibrium component
of the relaxation given by the first term is not completely
exclusive to the nonequilibrium component. This can be seen
from the fact that the curl flux depends on the population
distribution. Notably, such correlation may be originated from
the nonorthogonality between the driving forces from poten-
tial landscape and curl flux. This has been clarified for the
classical stochastic systems involving Langevin noise [37,54].

In support of the universal nonequilibrium FDR in Eq. (12),
the charge transport in a molecular junction will be taken as
an example to illustrate the above results.

Fluctuation-dissipation relation for molecular junctions

To study the optical transmission of molecular junctions
carrying electric current as a typical application of the uni-

versal FDT developed above, we adopt the simplest model
for the open junctions where two coupled electronic states are
subject to two electrodes having chemical potential bias. The
Hamiltonian reads

H0 = ω1c†
1c1 + ω2c†

2c2 − �(c†
1c2 + c†

2c1) + Uc†
1c†

2c2c1,

(15)

where the c’s are the fermionic annihilation operators, i.e.,
{ci, c†

j } = δi j . U quantifies the Coulomb interaction causing
the blockade effect. Since we are interested in the strong
blockade, single-electron transport dominates therein. We
proceed via the polarization of the junction subject to a weak
electric field E (t ), and the dipolar interaction reads V (t ) =
−μ̂E (t ) where μ̂ = ∑2

j=1 μe j g|e j〉〈g| + h.c. and μe j g is the
matrix element of the transition dipole. The homodyne detec-
tion, as illustrated in Fig. 1(b), gives rise to the measurement
of the transmission such that T (ω) = Im[E∗(ω)P(ω)] where
P(ω) = ∫

P(t )eiωt dt is the Fourier component of the polar-
ization as a result of the grating and P(t ) gives the far-field
dipolar radiation. Solving for the nonequilibrium density ma-
trix, we find the linear response function for the junction

R(1)(ω) = −i〈〈1|VLG(ω)V−|ρss〉〉. (16)

This can be alternatively obtained by specifying the observ-
able � in Eq. (9) to the dipole V . To evaluate the Green’s
function G(ω), we propagate the real-time dynamics of the
electronic coherence ρg,e j following the equation(

ρ̇g,e1

ρ̇g,e2

)
=

(
iωe1,g − 	

2 ( f̄2 + 1) −i�
−i� iωe2,g − 	

2 ( f̄1 + 1)

)

×
(

ρg,e1

ρg,e2

)
, (17)

where f̄ j = [e(ωe j g−μ j )/T + 1]−1 is the Fermi-Dirac distri-
bution and μ j denotes the chemical potential of the j-th
electrode. 	 is the rate of exchanging an electron between
molecule and electrodes. Knowing the matrices Mc, Mcp, K ,
and L for the junctions, we find the nonequilibrium contribu-
tion to the linear transmission spectrum

TNE(ω) = ImRNE(ω) = |d|2JRe[G(ω)], (18)

where J denotes the magnitude of the curl flux in the junc-
tion and ImRNE(ω) is the nonequilibrium contribution to the
dissipation corresponding to the last term in Eq. (12). We have
assumed μe j ,g � d and G(ω) as given in the Appendix TNE(ω)
is closely related to quantum transport, evident by the flux
involved in Eq.(18). This will be elaborated later on. Because
only a single loop exists in the three-level systems, therefore,

J = Le2e2,e1e1ρe1,e1 − min
(
Le2e2,e1e1ρe1,e1 , Le1e1,e2e2ρe2,e2

)
(19)

in the present model for molecular junctions.
It turns out that the electric current inevitably results from

the weighted superposition of the loop fluxes [43]. In the
present model, the electric current is proportional to the flux
itself, i.e., ie ∝ Imρe1,e2 ∝ J , resulting from the Heisenberg
equation of motion. This would make TNE(ω) accessible in
the experiments measuring the electron counting across the
junctions.
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FIG. 2. (a) Total transmission against the probe frequency at
μ1(2) = 1 ± �μ and at μ1 = 1 and μ2 = 0.5. (b) Nonequilibrium
contribution vs probe frequency. It shows the nonequilibrium com-
ponent of the transmission TNE against the probe frequency at the
chemical potential biases �μ. Various probe frequencies are shown
in the small panel. (c) The equilibrium contribution vs probe fre-
quency. The transmission due to the detailed-balance preserving
contribution against the probe frequency under the same condi-
tion. Parameters are set to be T1 = T2 = 0.3, � = 0.01, ωe1g =
1.06, ωe2g = 0.94, 	 = 0.02.

We plot the transmission spectrum of the molecular junc-
tion in Fig. 2, taking the parameters close to reality [55,56].
Figure 2(a) shows that the junction absorbs the light differ-
ently for the excited modes when varying the voltage bias.
When increasing the chemical potential bias, a prominent
absorption of photons at higher excited state is observed,
whereas the photon absorption by lower excited state is atten-

uated. This is attributed to the population imbalance coming
from the detailed-balance violation. To gain a deeper under-
standing of such a nonequilibrium effect, we plot in Fig. 2(b)
the detailed-balance-breaking part of the response function,
and in Fig. 2(c) the part of the response function keeping
the detailed balance. Figure 2(b) illustrates the remarkable
difference between the light absorption of the two electronic
states, as increasing the voltage of the electrodes. Recall-
ing the curl flux J ∝ Le2e2,e1e1ρe1,e1 − Le1e1,e2e2ρe2,e2 and the
absorption intensity ∝ (ρg,g − ρei,ei ), the detailed-balance vio-
lation essentially results in a much larger population of higher
excited state, giving rise to the intense light absorption by
the higher excited state rather than the lower excited state.
This can be further elaborated in the small panel of Fig. 2(b),
where the peak intensity against the bias is shown. Figure 2(c)
shows that the equilibrium part of response function closely
resembles the features of the full transmission spectrum as
depicted in Fig. 2(a), within the near-to-equilibrium regime
(�μ = 0 and �μ = 0.1 for the dotted red and solid blue
lines, respectively) where the reversibility is slightly broken.
While in the far-from-equilibrium regime such that the curl
flux is greatly enhanced (�μ = 0.2 and �μ = 0.3 for the or-
ange and green lines, respectively), the nonequilibrium nature
becomes significant in the linear transmission, by comparing
Fig. 2(b) with Fig. 2(a).

Figures 2(b) and 2(c) reveal very different physics: the
nonequilibrium component of the relaxation is uniquely
governed by the curl flux in Eq. (18) while the equilib-
rium component mostly relies on the population distribution.
Although the equilibrium component is not completely in-
dependent of the nonequilibrium one, the second term in
Eq. (12) violating the reversibility characterizes the intrinsic
nonequilibrium nature with the energy dissipation. This may
lead to the experimental observations when measuring the
electric current across the molecular junctions.

Lastly, one may notice in Fig. 2(a) the dip in the trans-
mission spectrum for a different set of parameters. An optical
gain is thus indicated, resulting from the population inversion
(ρg,g − ρei,ei ) ∝ absorption rate. This may reveal the lasing
mechanism and cooperative radiation in molecular junctions,
which will be presented elsewhere.

V. CONCLUSION

In summary, we developed a universal relation be-
tween the fluctuations and the relaxation for nonequilibrium
quantum systems. Using the curl flux theory, our work re-
veals the generic nature of the thermodynamic irreversibility
such that the system relaxation consists of two distinct contri-
butions: the spontaneous fluctuations showing the reversibility
and the detailed balance breaking where the flux is pre-
dominately involved. This demonstrates completely different
physics from the conventional FDT. The flux-induced contri-
bution to the relaxation may lead to experimental observations
when measuring the energy/charge transport via the electron
or photon counting statistics that may bridge the gap be-
tween the quantum thermodynamics and the spectroscopy. As
an example, we use the quantum master equation approach
to derive the evolution of the density matrix, obtaining the
coherence dynamics and steady-state solution of molecular
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junctions. The molecule is subject to two electrodes that
are modeled as fermionic reservoirs. The interaction with the
reservoirs results in the exchange of electrons, responsible
for the current across the junction. We derive the response
function of nonequilibrium systems in Liouville space similar
to the ultrafast spectroscopic work (Refs. [13,57]), which is
essential for incorporating the quantum curl flux to elaborate
the roles of nonequilibriumness and transition pathways. For
the detailed model calculations, we adopted the Born-Markov
approximation to find the steady-state solution of the density
matrix for the molecular junction model and further propagate
the electronic coherence. The approach used in our work
can be extended to nonlinear responses. Recent advances in
multidimensional spectroscopy and thermodynamics provide
a platform to study the nonlinearity of the quantum systems
driven far from equilibrium [33,34,57–62].
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APPENDIX A: CURL FLUX AND MOLECULAR
JUNCTION MODEL

In this Appendix, we provide the details of obtaining
the curl flux from the quantum master equation as well as
the important steps in deriving the generalized fluctuation-
dissipation relation in the model of molecular junctions.

1. Curl flux and open quantum dynamics

The density matrix offers a powerful description for the
dynamics of the quantum systems embedded in dense medi-
ums. In a nonequilibrium process, the dynamics of the system
can be decomposed into the detailed balance preserving com-
ponent and the detailed balance breaking component. The
detailed balance preserving component represents the equilib-
rium feature of the microscopic processes, while the detailed
balance breaking is the intrinsic feature of the nonequilib-
riumness and its strength can be effectively represented by
the curl flux decomposition [37,63]. In this section, we will
use the quantum master equation as a prominent example of
dissipative quantum dynamics to elaborate the EOM in main
text.

The environments consist of a group of harmonic oscil-
lators having the Hamiltonian HB = ∑

m

∑
s v(m)

s B(m),†
s B(m)

s

where [B(m)
s , B(n),†

s′ ] = δmnδss′ and m labels the individual en-
vironment. The system-environment interaction is assumed to
be bilinear

V (t ) =
∑
i, j

∑
m

∑
s

λ
(m)
i j,sAi j (t )

(
B(m)

s e−iv(m)
s t + B(m),†

s eiv(m)
s t

)
(A1)

in the interactive picture with Ai j = |ψi〉〈ψ j | + |ψ j〉〈ψi| be-
ing the transition operator of the system. Suppose the

environments are characterized by a smooth spectral den-
sity, the Born-Markoff approximation is applicable, allow-
ing the second-order truncation of the system-environment
interaction

ρ̇ = i[ρ, H] − e−iHt
∫ t

0
dt ′TrB[V (t ), [V (t ′), ρ ⊗ ρB]]eiHt ,

(A2)

where the full density matrix of joint system-environment
composition is ρT (t ) = ρ(t ) ⊗ ρB(0) + ρc with the higher-
order term ρc. H is the Hamiltonian of the reduced quantum
system of interest. Equation (A2) neglects the higher-order
term of the density matrix, assuming the back influence from
the environments to the system has been neglected. This is
because the environments contain a large number of particles
so that their relaxation may be much faster than the system.
Writing Ai j = A+

i j + A−
i j where A+(−)

i j stands for the raising
(lowering) operator between the i-th and j-th levels and adopt-
ing the rotating wave approximation (RWA), some algebra
recasts Eq. (A2) into the quantum master equation (QME)

ρ̇ = i[ρ, H] +
∑
i, j

∑
k,l

γ
(+)

i j (ωi j )(A
+
i jρA−

kl − A−
kl A

+
i jρ)

+ γ
(−)

i j (ωi j )(A
−
i jρA+

kl − A+
klA

−
i jρ) + H.c. (A3)

where γ
(+)

i j (ωi j ) and γ
(−)

i j (ωi j ) give the upward and down-
ward transitions caused by environments, respectively.
γ

(+)
i j (ωi j )/γ

(−)
i j (ωi j ) = e−ωi j/T for thermal equilibrium in

which T is the bath temperature. In Liouville space, the QME
in Eq.(A3) falls into the matrix form of the EOM given in
Eq. (1). This will be beneficial for developing the real-time
Green’s function approach to study the quantum dynamics.

2. Fluctuation-dissipation relation for molecular junctions

To picturize the nonequilibrium FDT we have developed,
elaborate efforts have to be further devoted to specific sys-
tems. We will hereafter apply the general formalism of FDT
to the molecular junctions carrying the electric current, where
the open junctions are modeled by two coupled electronic
states subject to two electrodes having chemical potential bias
[64]. In this section, we applied the QME approach to obtain
the equations of motion for the reduced density matrix of the
system and use the time-evolution operator derived from the
QME to calculate the free propagator and the linear response
function. The details of the derivations are provided as fol-
lows.

The molecular Hamiltonian takes the form of

H0 = ωg|0〉〈0| + ω1c†
1c1 + ω2c†

2c2

− �(c†
1c2 + c†

2c1) + Uc†
1c†

2c2c1, (A4)

where the c’s are the fermionic annihilation operators
{cn, c†

m} = δnm. The fourth term in Eq. (A4) describes the
electron hopping between the two electronic states, and the
last term comes from the Coulomb blockade. For the single
electron transport, the molecular Hamiltonian may reduce to
the effective Hamiltonian

Heff = ωg|g〉〈g| + ω1|e1〉〈e1| + ω2|e2〉〈e2|
− �(|e1〉〈e2| + |e2〉〈e1|) (A5)
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by including the single-electron manifold only. Given the
molecules are subject to two electrodes, the quantum master
equation for the molecular junction is of the form

ρ̇ = i[ρ, Heff] +
2∑

j=1

	 j

2
[ f̄ j

(
2|e j〉〈g|ρ|g〉〈e j |−ρ|g〉〈g|−|g〉〈g|ρ)

+ (1 − f̄ j )
(
2|g〉〈e j |ρ|e j〉〈g| − ρ|e j〉〈e j | − |e j〉〈e j |ρ

)
],
(A6)

with the Fermi-Dirac distribution f̄ j = [e(ωe j g−μ j )/T + 1]−1

where μ j denotes the chemical potential of the j-th electrode.
In what follows we assume ω1 > ω2. We proceed via the
polarization of the junction subject to a weak electric field
E (t ), and the dipolar interaction reads V (t ) = −V E (t ) where

V =
2∑

j=1

μe j g|e j〉〈g| + H.c., (A7)

and μe j g is the matrix element of the electric dipole. The
homodyne detection gives rise to the measurement of the
transmission Im[E∗(ω)P(ω)] where P(ω) = ∫

P(t )eiωt dt is

the Fourier component of the polarization as a result of the
grating and P(t ) gives the far-field dipolar radiation. Quan-
tum mechanically, the far-field dipolar radiation is given by
Tr[V ρ(t )]. Solving for the density matrix up to the first-order
expansion with respect to molecule-field coupling, we find
P(ω) = R(1)(ω)E (ω) with the linear response function

R(1)(ω) = −i〈〈1|VLG(ω)V−|ρss〉〉 (A8)

for the molecular junctions, by specifying the observable �

to the dipole V in Eq. (A7). To evaluate the real-time Green’s
function of the junction, we essentially propagate the coher-
ence ρge j which obeys the equation(

ρ̇g,e1

ρ̇g,e2

)
=

(
iωe1,g − 	

2 ( f̄2 + 1) −i�

−i� iωe2,g − 	
2 ( f̄1 + 1)

)(
ρg,e1

ρg,e2

)
(A9)

according to Eq.(A6) approximating 	1 � 	2 = 	. The prop-
agator, which is essential in the calculation of the linear
response function, is given by the exponentiation of the
time-evolution matrix given in Eq. (A9). This gives rise to
approximate propagator of the junction in the “ge” block given
specifically as follows:

Gge1,ge1 (t ) = 1

2

[(
1 − ωe1,e2√

ω2
e1,e2

+ 4�2

)
e(iω−−γ− )t +

(
1 + ωe1,e2√

ω2
e1,e2

+ 4�2

)
e(iω+−γ+ )t

]
,

Gge2,ge2 (t ) = 1

2

[(
1 + ωe1,e2√

ω2
e1,e2

+ 4�2

)
e(iω−−γ− )t +

(
1 − ωe1,e2√

ω2
e1,e2

+ 4�2

)
e(iω+−γ+ )t

]
,

Gge1,ge2 (t ) = �√
ω2

e1,e2
+ 4�2

[e(iω−−γ− )t − e(iω+−γ+ )t ], Gge2,ge1 (t ) = Gge1,ge2 (t ),

γ± = 	

4

[
2 + f̄1 + f̄2 ∓ ωe1,e2 ( f̄1 − f̄2)√

ω2
e1,e2

+ 4�2

]
� 0, G{eg}(t ) = G{ge},∗(t ),

(A10)

where ω± = 1
2 (ωe1,g + ωe2,g ±

√
ω2

e1,e2
+ 4�2), ωei,g = ωi −

ωg is the excitation energy of the ith molecule, and ωe1,e2 =
ω1 − ω2 is the energy level bias between the two molecules.
The crossing terms are identically zero, i.e., Ggei,e j g =
Geg,ge j = 0.

The linear response function is defined as

ImR(1)(ω) = Re〈〈1|�LG(ω)V−(I + K )SD|ρss〉〉
+ Re〈〈1|�LG(ω)V−(I + K )L−1

D Vss|ρss〉〉,
(A11)

where K = −M−1
c Mcp, I = ∑

n |nn〉〉〈〈nn| is the identity ma-
trix in the diagonal subspace, L ≡ Mp − MpcM−1

c Mcp is the
time evolution operator in the population subspace. The rest

of the operators are given as follows:

L−1
D =

∑
n

L−1
nn,nn|nn〉〉〈〈nn|, Vss =

∑
n

∑
k �=n

ckn

ρss
nn

|nn〉〉〈〈nn|,

SD =
∑

n

1

Lnn,nn

∑
k �=n

min

(
Lnn,kk

ρss
kk

ρss
nn

, Lkk,nn

)
|nn〉〉〈〈nn|,

(A12)

where the definition of the curl flux cnm is given in Eq. (7).
To calculate the response function, we need to find the

expression of the operators K, L, Mp, Mc, and Mcp from the
QME. In the basis of {|gg〉〉, |e1e1〉〉, |e2e2〉〉, |e1e2〉〉, |e2e1〉〉},
the matrices Mc and Mcp defined in Eq. (1) are given as
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follows :

Mc =
(−iωe1,e2 − 	

2 (2− f̄1− f̄2) 0
0 iωe1,e2 − 	

2 (2 − f̄1 − f̄2)

)
,

Mcp =
(

0 −i� i�
0 i� −i�

)
. (A13)

From the above information, we can find the representation of the operator K ≡ −M−1
c Mcp in the same subspace,

K =
⎛
⎝0 − �

ωe1,e2 −i 	
2 (2− f̄1− f̄2 )

�

ωe1,e2 −i 	
2 (2− f̄1− f̄2 )

0 − �

ωe1,e2 +i 	
2 (2− f̄1− f̄2 )

�

ωe1,e2 +i 	
2 (2− f̄1− f̄2 )

⎞
⎠. (A14)

The QME in Liouville space can be written as |ρ̇p〉〉 = (Mp − MpcM−1
c Mcp)|ρp〉〉 = L|ρp〉〉, and the Liouville operator L can be

obtained from the Liouville operators Mp and Mpc given as follows:

Mp =
⎛
⎝−	( f̄1 + f̄2) 	(1 − f̄1) 	(1 − f̄2)

	 f̄1 −	(1 − f̄1) 0
	 f̄2 0 −	(1 − f̄2)

⎞
⎠, and Mpc =

⎛
⎝ 0 0

−i� i�
i� −i�

⎞
⎠. (A15)

Therefore, the explicit form of the operator L is given as follows:

L =

⎛
⎜⎜⎝

−	( f̄1 + f̄2) 	(1 − f̄1) 	(1 − f̄2)

	 f̄1 −	(1 − f̄1) − �2	(2− f̄1− f̄2 )
ω2

e1,e2
+( 	

2 (2− f̄1− f̄2 ))2
�2	(2− f̄1− f̄2 )

ω2
e1 ,e2

+( 	
2 (2− f̄1− f̄2 ))2

	 f̄2
�2	(2− f̄1− f̄2 )

ω2
e1,e2

+( 	
2 (2− f̄1− f̄2 ))2 −	(1 − f̄2) − �2	(2− f̄1− f̄2 )

ω2
e1 ,e2

+( 	
2 (2− f̄1− f̄2 ))2

⎞
⎟⎟⎠. (A16)

From the explicit expression of Mc, Mcp, K and L, we can obtain the expression for the nonequilibrium contribution to the
response function defined as R′′

NE(ω) = Re〈〈1|VLG(ω)V−(I + K )L−1
D Vss|ρss〉〉 = |μ|2JRe[G(ω)] = |μ|2JRe[G+(ω) + G−(ω)]

in accordance with Eq. (A8) by invoking the RWA. The result is as follows:

G(+)(ω) =
[(

1

Lgg,gg
− 1 + Ke1e2,e1e1

Le1e1,e1e1

− Ke1e2,e2e2

Le2e2,e2e2

)
Ge1g,e1g(ω) +

(
1

Lgg,gg
− Ke2e1,e1e1

Le1e1,e1e1

− 1 + Ke2e1,e2e2

Le2e2,e2e2

)
Ge2g,e2g(ω)

+
(

1

Lgg,gg
− Ke2e1,e1e1

Le1e1,e1e1

− 1 + Ke2e1,e2e2

Le2e2,e2e2

)
Ge1g,e2g(ω) +

(
1

Lgg,gg
− 1 + Ke1e2,e1e1

Le1e1,e1e1

− Ke1e2,e2e2

Le2e2,e2e2

)
Ge2g,e1g(ω)

]
, (A17)

where we have assumed μe1,g � μe2,g = μ and that J denotes the magnitude of the curl flux. Similarly, we can obtain
G−(ω)(ω) = G(ω)(+),∗(−ω). Because only a single loop exits in three-level systems, J = cg,e1 = ce1,e2 = ce2,g, we can write
out the expression of the magnitude of the flux as follows:

J = Le2e2,e1e1ρ
ss
e1,e1

− min
(
Le2e2,e1e1ρ

ss
e1,e1

, Le1e1,e2e2ρ
ss
e2,e2

)
. (A18)

With the above information, the propagators in frequency space can be obtained by taking Fourier transform to Eq. (A10),

Ge1g,e1g(ω) = − sin2θ

i(ω − ω−) − γ−
− cos2θ

i(ω − ω+) − γ+
,

Ge2g,e2g(ω) = − cos2θ

i(ω − ω−) − γ−
− sin2θ

i(ω − ω+) − γ+
,

Ge1g,e2g(ω) = −sinθcosθ

[
1

i(ω − ω−) − γ−
− 1

i(ω − ω+) − γ+

]
,

Ge1g,e2g(ω) = −sinθcosθ

[
1

i(ω − ω−) − γ−
− 1

i(ω − ω+) − γ+

]
,

sin2θ = 2�√
ω2

e1,e2
+ 4�2

, cos2θ = ωe1,e2√
ω2

e1,e2
+ 4�2

. (A19)

From the homodyne detection Im[E∗(ω)P(ω)] where P(ω) is the Fourier component of the far-field dipolar radiation and P(ω) =
R(1)(ω)E (ω), the positive peaks in the spectrum correspond to the enhancement of the transmission after the signal passing
through the junction. Correspondingly, the negative peaks represent the absorption of the original signal.
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