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Spin-orbit dependence of anisotropic current-induced spin polarization
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Studies of the current-induced spin polarization (CISP) have been recently reinvigorated due to the discoveries
of CISP in some burgeoning materials such as oxide interfaces, van der Waals, and topological quantum
materials. Here, we investigate the CISP in two-dimensional systems for different types of spin-orbit coupling
(SOC) using the Boltzmann transport theory. We find an anisotropic response of CISP to the current direction
which strongly depends on the type of SOC. We demonstrate that the CISP is nonlinear with respect to the SOC
magnitude, depends on the Fermi energy, and exhibits two different transport regimes for low or high carrier
density. Finally, we propose a magnetoresistance device which can exploit the predicted CISP anisotropy.
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I. INTRODUCTION

Current-induced spin polarization (CISP) is a nonequilib-
rium spin polarization induced in a conductor with spin-orbit
coupling (SOC) by passing an electric current [1,2]. Jointly
with the anomalous Hall effect (AHE) [3] and the spin Hall
effect (SHE) [4,5], the CISP represents a charge-to-spin con-
version which is interesting for spintronics [6]. However,
unlike the AHE/SHE and tunneling AHE/SHE [7,8] generat-
ing spin accumulation at the edges of the conductor, the CISP
is spatially homogeneous. The CISP effect was originally pro-
posed by Ivchenko and Pikus [9] for semiconductors lacking
space-inversion symmetry. Later, it was theoretically explored
in a two-dimensional electron gas (2DEG) with Dresselhaus
SOC (DSOC) by Aronov et al. [10,11] and Rashba SOC
(RSOC) by Edelstein [12]. The latter phenomenon is known
as the Edelstein effect. Owing to the spin polarization being
generated and controlled in nonmagnetic materials by purely
electrical means, the CISP offers promising applications in
all-electric spintronic devices [13–17]. Recently, CISP has
been experimentally observed in various 2D systems such
as a Bi/Ag bilayer [18,19], surface of topological insulator
Bi2Se3 [20,21], oxide interfaces LaAlO3/SrTiO3 [22–24], a
van der Waals heterostructure [25], and ferroelectric materials
[26,27]. In the above systems, the combination of broken
inversion symmetry and strong SOC derived from heavy el-
ements results in RSOC, which is critical for generation of
CISP.

On the theoretical side, CISP has been extensively stud-
ied for 2DEGs [28–34]. For example, Silsbee developed a
theoretical model for the detection of CISP via electrical
measurements [28]. Trushin and Schliemann investigated the
anisotropy of CISP for the 2DEG with RSOC and DSOC in
the high-density limiting case [29]. Johansson et al. explored
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the anisotropy of electron mass and RSOC on the CISP within
the semiclassical Boltzmann transport theory [33]. Most of
these works, however, focused on RSOC and derived formula
for CISP formula up to the linear order in SOC magnitude and
under high-density regime approximation. Here, using Boltz-
mann transport theory, we provide a systematic investigation
of anisotropic CISP for different types of SOC and explore
the Fermi energy dependence beyond the linear order in SOC
approximation. We show that the CISP is highly anisotropic,
both in magnitude and direction, and strongly depends on the
type of SOC. We demonstrate a very different behavior of the
CISP as a function the Fermi energy, depending on the Fermi
contour topology.

The rest of the paper is organized as follows. In Sec. II,
we describe the Hamiltonian model and present the theoret-
ical formalism and general formula for CISP calculation. In
Sec. III, we present the results for spin textures and discuss
the topology of the Fermi contours. In Sec. IV, we present the
analytical results of CISP for different types of SOC based on
the Boltzmann transport theory. Finally, in Sec. IV, we discuss
the obtained results and make conclusions.

II. THEORETICAL FORMALISM

We consider a single-particle Hamiltonian describing a 2D
system with SOC as follows:

H = h̄2k2

2m
+ � • σ. (1)

Here the first term is the kinetic energy with m being
the electron effective mass, � the reduced Planck’s constant,
and k = (kx, ky) = k(cosφ, sinφ) the wave vector given in
the Cartesian or polar coordinates where φ is the azimuthal
angle. The second term represents the SOC with � being the
spin-orbit field (SOF) defined in k space and σ = (σx, σy, σz )
the Pauli vector. Note that m is assumed to be isotropic in k
space. The eigenvalues Eks with s = ±1 being the spin index
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and normalized eigenstates ψks of Hamiltonian (1) take the
form

Eks = h̄2k2

2m
+ s� (2)

and

ψks = eik•r

√
2�(� − s�z )

[
�x − i�y

s� − �z

]
, (3)

respectively, where � =
√

�2
x + �2

y + �2
z . The expectation

values of the spin operator can be obtained as

sks = h̄

2
〈ψks|σ|ψks〉 = s

h̄

2�
(�x,�y,�z ). (4)

Being considered as a function of wave vector k, Eq. (4)
determines the spin texture in k space.

At the equilibrium conditions, the system is characterized
by the equilibrium Fermi distribution function f 0

ks and the
net spin polarization is zero namely s = ∑

s

∫
sks f 0

ksdk = 0.
This follows from time-reversal symmetry, which enforces
sk = −s−k and f 0

ks = f 0
−ks. When an external electric field ε

is applied, the Fermi contour in k space is displaced by δk,
which is antiparallel to the direction of ε. The magnitude of
δk is determined by the collisions of electrons with impurities
and phonons [35]. Under the nonequilibrium conditions, time
reversal symmetry breaks and the distribution function fks

deviates from f 0
ks, so that fks = f 0

ks + δ fks resulting in the
nonzero net spin polarization δs given by

δs =
∑

s

∫
sksδ fksdk. (5)

To obtain δs from Eq. (5), one needs first to calculate sks

using Eq. (4) and δ fks by solving the Boltzmann transport
equation. The latter is generally given by [35]

∂ f 0
ks

∂Eks
(vks • eε) =

∑
k′s′

(δ fks − δ fk′s′ )Qks
k′s′ , (6)

where vks is the group velocity and Qks
k′s′ is the scattering

probability from state |k′s′〉 to state |ks〉. According to the
Fermi golden rule, Qks

k′s′ takes the form

Qks
k′s′ = 2π

h̄
|〈ks|V |k′s′〉|2δ(Eks − Ek′s′ ), (7)

where V is an impurity scattering potential. Assuming that the
scattering potential is short-ranged, i.e., V (r) = V0δ(r), and
using Eq. (3), we arrive at the following equation for Qks

k′s′ :

Qks
k′s′ = 2πnV 2

0

h̄
[1 + ss′ cos (γk − γk′ )]δ(Eks − Ek′s′ ). (8)

Here n is the impurity concentration, γk = tan−1(�y/�x ),
and we assume �z = 0. Plugging Eq. (8) into Eq. (6), we
obtain

∂ f 0
ks

∂Eks
(vks • eε) = nV 2

0

2π h̄

∑
s′

∫
dk′(δ fks − δ fk′s′ )

× [1 + ss′ cos (γk − γk′ )]δ(Eks − Ek′s′ ).

(9)

TABLE I. The SOFs � and spin textures s for four different SOC
types. α, β, γ and λ are the linear SOC parameters.

SOC � s (in h̄/2)

RSOC α(−ky, kx, 0) ±(−ky, kx, 0)/k
DSOC β(kx, −ky, 0) ±(kx, −ky, 0)/k
WSOC γ (kx, ky, 0) ±(kx, ky, 0)/k
PSOC λ(kx − ky )(1, 1, 0) ±sgn(kx − ky )(1, 1, 0)/

√
2

In the following, we adopt the constant relaxation
time approximation, which has been widely used pre-
viously [1,28,31,36]. Within such approximation, δ fks =
eτ (vks • ε)∂ f 0

ks/∂Eks, where τ is the constant relaxation time.
In a zero-temperature limit, −∂ f 0

ks/∂Eks = δ(Eks − EF ), and
the integration in Eq. (5) can be carried out over the Fermi
contour SF , namely [31,36]

δs = − eτ

(2π )2

∑
s

∫
sks(vks • ε)

h̄|vks| dSF . (10)

Analogously, the current density je is given by [35]

je = e2τ

(2π )2

∑
s

∫
vks(vks • ε)

h̄|vks| dSF . (11)

Since δs is an implicit function of je, one can obtain δs as
a function of je by combining Eqs. (10) and (11).

III. SPIN TEXTURE AND FERMI CONTOUR TOPOLOGY

Here we consider four different types of SOC, namely
RSOC, DSOC, Weyl (WSOC), and persistent-spin-texture
(PSOC) types. The corresponding SOFs � and calculated spin
textures s are listed in Table I. Figure 1 shows the schematic
plots of the Fermi contours and spin textures when Fermi
energy EF > 0. From Eq. (2) and Table I, the energy splitting
E+ − E− for RSOC, DSOC, and WSOC is proportional to k,
indicating the isotropic energy splitting in k space, as seen
from Figs. 1(a), 1(b), and 1(c). While for PSOC, the energy
splitting E+ − E− is proportional to k|cos φ− sin φ|, indicat-
ing that the energy splitting is maximum at φ = 3π/4, 7π/4,
and zero at φ = π/4, 5π/4, as seen from Fig. 1(d). For
RSOC, when moving over the Fermi contour, the spin rotates
in the same direction as φ and is always perpendicular to k.
In the case of DSOC, the spin rotates in the opposite direction
to φ and thus can make any angle to k depending on φ. For
WSOC, the spin is ether parallel or antiparallel to k. In the
case of PSOC, the spin is unidirectional and thus independent
of k. The above different types of SOC appear in realistic
materials [37], such as RSOC in 2D materials [38,39], DSOC
in ferroelectric HfO2 [40], WSOC in elemental Te and Se
[41,42], and PSOC in BiInO3 [43].

It is noteworthy that the topology of the Fermi contour
depends on EF . Figure 1 assumes that the Fermi energy EF

crosses both energy branches E+ and E−, i.e. EF > 0. How-
ever, for EF < 0, as shown in Fig. 2(a) for RSOC, DSOC,
and WSOC, the EF crosses only the lower band E− and
the Fermi contour is an annulus. EF crosses both bands
only when EF > 0, where the Fermi contour evolves into
two circles [Fig. 2(b)]. In the case of PSOC, for EF < 0,
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FIG. 1. Schematic Fermi contours (EF > 0 case) and spin tex-
tures for (a) RSOC, (b) DSOC, (c) WSOC, and (d) PSOC. Arrows
indicate the spin directions while the red and blue contour lines
represent the E+ and E− energy branches, respectively.

the EF crosses only the lower band E− and the Fermi con-
tours are two well-separated circles centered at wave vectors
mα/h̄2(−√

2,
√

2) and mα/h̄2(
√

2, −√
2), which are EF in-

dependent [Fig. 2(c)]. For EF > 0, the EF crosses both E+
and E−, and the Fermi contour is characterized by two in-
tersecting circles centered at

√
2m2α2 + mEF /h̄(−1, 1) and√

2m2α2 + mEF /h̄(1, −1), which are EF dependent. We see
that the topology of the Fermi contour changes as EF varies,
and there is a topological transition point at EF = 0. As we
will demonstrate in the following sections, the topology of the
Fermi contour strongly affects the CISP.

IV. CURRENT-INDUCED SPIN POLARIZARION

In this section, we derive the expressions for CISP for four
different types of SOC. The electric field is assumed to have
the form ε = ε(cos ϕ, sin ϕ), where ϕ is the azimuthal angle
in the polar coordinate system.

A. Rashba type

From Eq. (2) and Table I, the eigenvalue Es for RSOC is
given by Es = h̄2(k + skR)2/(2m) − ER, where kR = mα/h̄2

and ER = mα2/(2h̄2). Accordingly, the group velocity can
be calculated as vs = h̄k/m + sαk/(h̄k). From Es = EF , we
obtain the Fermi wave vector as follows:

kFη = kR − η

√
k2

R − k2
0 , Ec < EF � 0

kFs =
√

k2
R + k2

0 − skR, EF > 0, (12)

where η = ±1, Ec = −ER denotes the band minimum and
k0 =

√
2m|EF |/h̄2.

FIG. 2. Schematic Fermi contours for (a), (b) RSOC, DSOC or
WSOC and (c), (d) PSOC. (a), (c) for EF < 0, and (b), (d) for EF > 0.
The gray shaded regions represent the electron occupied states. In
(c), φ1,2 (φ1 + φ2 = 3π/2) denotes the critical angles separating the
electron occupied and unoccupied states. Red and blue contour lines
represent the E+ and E− energy branches, respectively.

When Ec < EF � 0, from Eqs. (10) and (11), δs is calcu-
lated as

δs =
∑

η

eετ

8π2

∫ 2π

0

(− sin φ

cos φ

)
cos (φ − ϕ)(−ηkFη )dφ

= eετ
√

2m(EF + ER)

4π h̄

(− sin ϕ

cos ϕ

)
, (13)

and je is calculated as

je =
∑

η

e2τε

4π2h̄

∫ 2π

0

∣∣∣∣ h̄kFη

m
− α

h̄

∣∣∣∣kFηcos2(φ − ϕ)dφ

= e2τε

π h̄2

√
ER(EF + ER). (14)

When EF > 0, in a similar way, δs is calculated as

δs = −
∑

s

eετ

8π2

∫ 2π

0

(− sin φ

cos φ

)
cos (φ − ϕ)skFsdφ

= eετ
√

2mER

4π h̄

(− sin ϕ

cos ϕ

)
, (15)

and je is calculated as

je =
∑

s

e2τε

4π2h̄

∫ 2π

0

h̄

m

√
k2

R + k2
0kFscos2(φ − ϕ)dφ

= e2τε

π h̄2 (EF + ER). (16)
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Thus, δs as a function of je and EF for RSOC is given by

δs =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2mh̄ je

4e
√

ER

(− sin ϕ

cos ϕ

)
, Ec < EF � 0

√
2mERh̄ je

4e(EF + ER)

(− sin ϕ

cos ϕ

)
, EF > 0

. (17)

In the high-density regime, i.e., when EF � ER, δs be-
comes linearly dependent on the RSOC parameter α, which is
consistent with the previous work [30–32]. In general, how-
ever, δs is a nonlinear function of α. Moreover, as follows
from Eq. (17), δs is inversely proportional to α in the low
density regime when Ec < EF � 0. It is noteworthy that the
relaxation time τ is assumed to be spin dependent in some
previous works [1,28,31], namely τs = τ (1−skR/k0) up to
linear order in α when EF � ER. Taking this into account,
δs will be modified accordingly as

δs = eετ
√

2mER

4π h̄

(
1 +

√
1 + ER

EF

)(− sin ϕ

cos ϕ

)
, (18)

and je is

je = e2τε

π h̄2

[
EF + ER

(
1 +

√
1 + ER

EF

)]
. (19)

Eqation (17) is thus modified as

δs =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2mh̄ je

4e
√

ER

(− sin ϕ

cos ϕ

)
, Ec < EF � 0

√
2mERh̄ je

2e(EF + 2ER)

(− sin ϕ

cos ϕ

)
, EF > 0

. (20)

It is seen that there is a factor of 2 difference when EF �
ER between Eqs. (17) and (20), which is in line with previous
work [31]. On the other hand, as seen from Eqs. (13) and
(15) describing ε dependence of δs and Eq. (17) describing
je dependence of δs, the ER dependence of δs is completely
different for a constant-voltage experiment and a constant-
current experiment. For the former, δs ∼ √

EF + ER when
Ec < EF � 0 and δs ∼ √

ER when EF > 0. For the later, δs ∼
1/

√
ER when Ec < EF � 0 and δs ∼ √

ER/(EF + ER) when
EF > 0.

B. Dresselhaus type

For DSOC, the eigenvalue Es is given by Es=h̄2(k+skD)2/

(2m) − ED, where kD = mβ/h̄2 and ED = mβ2/(2h̄2). In a
similar way as in Sec. IV A above, we obtain for δs a function
of je and EF :

δs =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2mh̄ je

4e
√

ED

( cos ϕ

− sin ϕ

)
, Ec < EF � 0

√
2mEDh̄ je

4e(EF + ED)

( cos ϕ

− sin ϕ

)
, EF > 0

, (21)

where Ec = −ED denotes the band minimum.

C. Weyl type

For WSOC, the eigenvalue Es is given by Es=h̄2(k+skW )2/

(2m) − EW , where kW = mγ /h̄2 and EW = mγ 2/(2h̄2).

Using a similar calculation, we obtain for δs a function of je
and EF :

δs =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2mh̄ je

4e
√

EW

(cos ϕ

sin ϕ

)
, Ec < EF � 0

√
2mEW h̄ je

4e(EF + EW )

(cos ϕ

sin ϕ

)
, EF > 0

, (22)

where Ec = −EW denotes the band minimum.

D. PST type

For PSOC, the eigenvalue Es is given by Es = h̄2(k+skφ )2/

(2m) − Eφ , where kφ = √
2mλ|cos φ − sin φ|/h̄2 and Eφ =

mλ2(cos φ− sin φ)2/h̄2. Accordingly, the group velocity
is calculated as vs = h̄k/m + s

√
2λ/h̄sgn(cos φ − sin φ)

(1,−1). From Es = EF , we obtain for the Fermi wave vector

kFη = kφ − η

√
k2
φ − k2

0 , Ec < EF � 0

kFs =
√

k2
φ + k2

0 − skφ, EF > 0, (23)

where Ec = −2mλ2/h̄2 = −EP denotes the band minimum.
When Ec < EF � 0, δs can be calculated as

δs = eετ
√

m(EF + EP )

3
√

2π2h̄
√

EP

(cos ϕ − sin ϕ)

(
1
1

)
, (24)

and je is calculated as

je = e2τε

π2h̄2

[
2(EF + EP )

+
(

14

15
EF + 2

15
EP + 4E2

F

5EP

)
sin 2ϕ

]
. (25)

For EF > 0, analytic expressions for δs and je can be
obtained within the high-density regime assumption, i.e.,
EF � EP. For δs we find

δs = eετ
√

m(EP )3/2

16
√

2π h̄
√

EF (EF + EP )
(cos ϕ − sin ϕ)

(
1
1

)
, (26)

and for je we find

je = e2τε

4π h̄2√EF + EP

[
4EF

√
EF + 5EP

√
EF − 2E2

P√
EF

+
(

2E2
P√

EF
− EP

√
EF

2

)
sin 2ϕ

]
. (27)

Details of the derivation of Eqs. (24)–(27) are presented
in the Appendix. Noteworthy is the fact that, although the
analytic expressions given by Eqs. (26) and (27) are derived
within the high-density regime, the ϕ dependent functional re-
lationships δs ∼ (cos ϕ − sin ϕ) and je ∼ sin 2ϕ hold exactly,
as seen from Eqs. (A3) and (A4).

Figure 3 shows δs as a function of ϕ including magnitude
δs (blue lines) and direction (red arrows). For RSOC, DSOC,
and WSOC, shown in Figs. 3(a)–3(c), from Eqs. (17), (21),
and (22), we see that δs is ϕ independent, indicating that
δs is isotropic. However, the direction of δs is strongly ϕ

dependent. In fact, the δs orientation mirrors the spin textures
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FIG. 3. δs as a function of the direction of the electric field ϕ

in polar coordinates for (a) RSOC, (b) DSOC, (c) WSOC and (d)
PSOC. Blue lines represent the magnitude while the red arrows
indicate the direction of δs.

shown in Figs. 1(a)–1(c) (the inner branches indicated by red
lines). In the case of PSOC, from Eqs. (24) and (26), δs as
a function of ϕ is determined by |cos ϕ−sin ϕ|, indicating
perfect anisotropy of δs, so that δs is zero at ϕ = π/4, 5π/4
and δs is maximum at ϕ = 3π/4, 7π/4. Like for the other
types of SOC, the direction of δs for PSOC mirrors the spin
texture [Fig. 1(d)], the inner branch indicated by red line).

Figure 4(a) shows the EF dependence of the CISP effi-
ciency δs/ je, which is defined as the ratio of the magnitudes of
δs and je. For PSOC and the energy range of EF > 0, δs/ je is
obtained using numerical calculations. As seen from Fig. 4(a),
in the case of RSOC, DSOC, and WSOC, when Ec < EF � 0,
δs/ je is a constant. When EF > 0, δs/ je decreases monotoni-
cally as EF increases, consistent with Eqs. (17)–(22). Similar
behavior was also observed in the graphene on a transition
metal dichalcogenide monolayer with combination of RSOC
and Zeeman SOC [44].

Such a dissimilar behavior of δs/ je versus EF can be
understood from the analysis the Fermi contour topology.
Taking RSOC as an example, we see from Fig. 2(a) that
for Ec < EF � 0, the Fermi surface represents two SOC-split
concentric circles with the same spin configurations. As a
result, both δs and je are proportional to the sum of the their
perimeters, which according to Eq. (12) is proportional to√

EF + ER. This yields the same EF dependence of δs and
je, i.e. δs ∼ je ∼ √

EF + ER, and hence the constant δs/ je.
On the contrary, when EF > 0, as seen from Fig. 2(b), the
two SOC-split concentric Fermi circles have opposite spin
configurations. As a result, while je is still proportional to
the sum of the circumferences, δs is proportional to their
difference. This leads to the different EF dependence of δs
and je, which according to Eq. (12) is given by δs ∼ √

ER and

FIG. 4. (a) CISP efficiency δs/ je as a function of EF (in units
of |Ec|) for RSOC, DSOC, and WSOC (black line) and PSOC when
ϕ = 0 (red line), ϕ = π/8 (orange line) and ϕ = 3π/4 (blue line).
(b) CISP efficiency δs/ je (color) as a function of EF and the di-
rection of the electric field ϕ for PSOC. The SOC parameters are
assumed to be α = β = γ = 2λ = 1.0 eV Å and electron effective
mass is m = 0.5, under which the band minima Ec are the same for
the different types of SOC. The vertical dashed lines indicate the
topological transition point of the Fermi contour.

je ∼ √
EF + ER, resulting in δs/ je ∼ 1/

√
EF + ER. The same

argument applies to DSOC and WSOC.
In the case of PSOC, the two Fermi contours do not repre-

sent concentric circles [Figs. 2(c) and 2(d)] and the behavior
of δs/ je as a function of EF is more complicated. As seen from
Fig. 4(a), when ϕ = 0 (red line), δs/ je is a constant in the en-
ergy range Ec < EF � 0 and decreases monotonically when
EF > 0, consistent with Eqs. (24) and (25). When ϕ = 3π/4
(blue line), δs/ je increases (decreases) monotonically in the
range Ec < EF � 0 (EF > 0) as EF increases, indicating that
δs/ je reaches maximum at the transition point EF = 0. When
ϕ = π/8 (orange line), δs/ je decreases monotonically in the
whole energy range. Fig. 4(b) shows the δs/ je for PSOC as a
function of EF and electrical field direction ϕ (with period π ).
It is seen that the optimal condition, at which δs/ je reaches
maximum, appears at EF = 0 and ϕ = 3π/4.

Figure 5 shows the CISP efficiency δs/ je as a function of
SOC parameters. In the case of RSOC, DSOC, and WSOC
shown in Fig. 5(a), when Ec < EF � 0, δs/ je decreases
monotonically as α increases due to δs/ je ∼ 1/α as seen
from Eq. (17). When EF > 0, δs/ je becomes maximum at the
critical point α = h̄

√
2EF /m, as obtained from Eq. (17). In the

case of PSOC shown in Fig. 5(b), the λ dependency of δs/ je
shows qualitatively similar behavior.
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FIG. 5. CISP efficiency δs/ je as a function of SOC parameters
α and λ for (a) RSOC/DSOC/WSOC type and (b) PSOC type. The
other parameters are assumed to be m = 0.5, |EF | = 27.2 meV and
ϕ = 3π/4 in (b). The dashed lines denote the critical points, at which
δs/ je reaches maximum when EF > 0.

V. DISCUSSION AND CONCLUSIONS

We would like to emphasize the different dependence
of the CISP efficiency on the Fermi energy below and
above the topological transition point. For RSOC, the CISP
efficiency is higher below the transition point than that
above the transition point. This follows from reversal of
the spin texture at the inner Fermi contour which enhances
the induced spin polarization below the transition point
due to parallel spin directions on the two SOC-split Fermi
contours.

In this low carrier density regime, i.e., when Ec < EF � 0,
the CISP is inversely proportional to α [Eq. (17)], which
seems to be counterintuitive. However, one should take into
account the fact that reducing α implies, for a given EF ,
reducing je [Eq. (14)] due to the reduced carrier density.
From Eq. (12), the electron density n can be calculated
as

n(EF ) =
{

2N0
√

ER(EF + ER), Ec < EF � 0

N0(EF + 2ER), EF > 0
, (28)

where N0 = m/(π h̄2) is the density of states for a free 2DEG.
The critical density at the transition point EF = 0 is n0 =
m2α2/(π h̄4), which depends quadratically on the RSOC pa-
rameter α.

We estimate the critical carrier density n0 for realistic sys-
tems. For a LaAlO3/SrTiO3 2DEG, the Rashba parameter α

ranges from 0.015 to 0.043 eV Å [45], m = 0.4 m0, and we ob-
tain n0 varying from 2.0×109 cm–2 to 1.6×1010 cm–2. These
values of n0 are much smaller than the typical carrier den-
sity of the 2DEG varying from ∼1×1013 to ∼1×1014 cm–2.
Therefore, the high carry density regime is well justified for a
LaAlO3/SrTiO3 2DEG.

The situation is, however, very different for a Bi/Ag sys-
tem [19], where α = 3.05 eV Å, m = 0.35 m0, and therefore
n0 ≈ 6.2×1013 cm–2. The measured electron density is in
the range from 0.5×1013 to 4.0×1013 cm–2, which is less
than the critical carrier density. This corresponds to the low
carrier density regime, where an “anomalous” behavior of
the CISP is expected. It would be interesting to experi-
mentally verify the validity of Eq. (17) by investigating the
CISP efficiency for a Bi/Ag system with varying carrier
concentration.

In this work, we limit our investigation to SOC linear in
k and the higher order contributions are neglected, which
is appropriate for the description of systems with C2v and
C4v point symmetries [46]. However, for the system with C3v

point symmetry [47], the cubic order correction to CISP is
also important and needs to be taken into consideration [48].
Second, the electron effective mass in Eq. (1) is assumed to
be isotropic in k space. In realistic materials, the effective
mass is expected to be k-direction dependent. It would be
thus interesting to explore the effect of mass anisotropy on
CISP in the future study. Third, we calculate the CISP based
on the constant relaxation time approximation. In general,
the scattering probability is spin and wave-vector dependent.
It would be therefore desirable to investigate the CISP be-
yond the constant relaxation time approximation. It is also
to be noted that the vertex corrections are neglected in the
relaxation time approximation [49] and the vertex corrections
could lead to quantitative changes of CISP, but it will not
alter our main results qualitatively. Furthermore, the SOC
effect due to the electron scattering with random potential
is ignored in this work. The effect of spin-orbit scattering
has been theoretically investigated by previous work [34].
Fourth, we limit our study to the nonmagnetic systems, where
the exchange coupling between conduction electron spin and
local magnetization is absent. However, CISP can also be
induced in magnetic systems with SOC [50]. The interaction
between CISP and local magnetization results in a spin torque
on the local magnetization [36,51,52]. In addition, the CISP
is expected to be dependent on the magnetization orientation
due to the magnetically controlled Fermi contours [53–55].
Lastly, a giant SOC has been demonstrated in certain three-
dimensional (3D) bulk systems, such as polar semiconductor
BiTeI [56] and ferroelectric crystals [57–59]. Some of these
3D systems exhibit giant SOC, orders of magnitude larger
than that in conventional semiconductors, which favors the
enhancement of CISP [31]. Besides the SOC magnitude, the
spin-torque efficiency, which is defined as the spin torque
divided by the current density, is enhanced in 3D systems
with RSOC and exchange interaction as compared to 2D
systems [60]. It is thus interesting to explore the effect of
dimensionality on the CISP efficiency. Finally, the switchable
SOC parameters in ferroelectrics by electrically controlled po-
larization [40,57–59] enables the nonvolatile electric control
of CISP.

In summary, we have investigated the anisotropic CISP in
two dimensions with different types of SOC using the Boltz-

FIG. 6. Schematic illustration of magnetoresistance device due
to the interplay of current-direction (je, white arrow) dependent CISP
δs (red arrow) in SOC conductor layer and local magnetization M
(yellow arrow) in ferromagnetic (FM) layer.
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mann transport theory. We demonstrated the strong spatial
anisotropy of CISP in terms of direction as well as magni-
tude. Additionally, we showed the CISP efficiency behaves
differently as a function of the Fermi energy below and
above the topological transition point of the Fermi contour.
The anisotropy of CISP can be further used to explore the
spin-dependent transport properties. For example, the elec-
trical conductivity of a bilayer system, which consists of a
conducting layer with SOC and ferromagnetic metal layer, is
expected to depend on the current direction, as schematically
shown in Fig. 6. Such a magnetoresistance effect arises from
the interplay between current-direction dependent CISP and

local magnetization, as has been recently reported in ferro-
magnet/heavy metal bilayers [61] and magnetic topological
insulator based heterostructures [62,63]. Conversely, measur-
ing the current direction dependent magnetoresistance offers
an efficient way to quantify the type of SOC.
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APPENDIX: DERIVATION OF EQS. (24)–(27)

From Eq. (10), when Ec < EF � 0, δs can be calculated as

δs =
∑

η

eετ

8
√

2π2

(
1
1

)∫ 2π

0
sgn(cos φ − sin φ)(v̂k • ε̂)kFηdφ

=
√

meετ

8π2
√

EF + EP

(
1
1

) ∫ 2π

0
sgn(cos φ − sin φ)

[(
2mλ2

h̄3 (1 − 2 sin 2φ) − h̄k2
0

m

)
cos (φ − ϕ) + 2mλ2

h̄3 sin (φ + ϕ)

]
dφ

= −
√

meετ

4π2
√

EF + EP

(
1
1

) ∫ φ2

φ1

[(
2mλ2

h̄3 (1 − 2 sin 2φ) − h̄k2
0

m

)
cos (φ − ϕ) + 2mλ2

h̄3 sin (φ + ϕ)

]
dφ

= −
√

meετ

4π2
√

EF + EP

(
1
1

)[
h̄k2

0

m
(cos φ1 − cos φ2) − 8mλ2

3h̄3

(
cos3φ1 − cos3φ2

)]
(cos ϕ − sin ϕ)

= eετ
√

m(EF + EP )

3
√

2π2h̄
√

EP

(cos ϕ − sin ϕ)

(
1
1

)
, (A1)

where the critical angles φ1,2 [see Fig. 2(c)] are given by φ1,2 = sin−1(
√

2h̄2k0
4mλ

±
√

1
2 − h̄4k2

0
8m2λ2 ), as obtained from |kφ| = |k0|. From

Eq. (11), the current density je is calculated as

je =
∑

η

e2τε

4π2h̄

∫ 2π

0
|vFη|(v̂k • ε̂)2kFηdφ

=
√

me2τε

2
√

2π2h̄
√

EF + EP

∑
η

∫ φ2

φ1

[
h̄2k3

Fη

m2

(
cos2φcos2ϕ + sin2φsin2ϕ

) + 2
√

2λk2
Fη

m

(
cos φcos2ϕ − sin φsin2ϕ

)

+ 2λ2kFη

h̄2 + h̄2k3
Fη

2m2
sin 2φ sin 2ϕ − 2λ2kFη

h̄2 sin 2ϕ +
√

2λk2
Fη

m
(sin φ − cos φ) sin 2ϕ

]
dφ

=
√

me2τε√
2π2h̄

√
EF + EP

∫ φ2

φ1

[
h̄2

m2

(
4k3

φ − 3kφk2
0

)
cos2φ + 2

√
2λ

m

(
2k2

φ − k2
0

)
cos φ + 2λ2kφ

h̄2

+ h̄2

2m2

(
4k3

φ − 3kφk2
0

)
sin 2φ sin 2ϕ − 2λ2kφ

h̄2 sin 2ϕ − 2
√

2λ

m

(
2k2

φ − k2
0

)
cos φ sin 2ϕ

]
dφ

= e2τε

π2h̄2

[
2(EF + EP ) +

(
14

15
EF + 2

15
EP + 4E2

F

5EP

)
sin 2ϕ

]
. (A2)

When EF > 0, δs can be calculated as

δs = − eετ

8
√

2π2

(
1
1

) ∑
s

∫ 2π

0
sgn(cos φ − sin φ)(v̂ks • ε̂)skFsdφ

=
√

meετλ

4
√

2π2h̄
√

EF + EP

(
1
1

) ∫ 2π

0
[2(cos φ − sin φ) cos (φ − ϕ) − (cos ϕ − sin ϕ)]

√
k2
φ + k2

0dφ
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= −
√

meετλ

4
√

2π2h̄
√

EF + EP

(cos ϕ − sin ϕ)

(
1
1

)∫ 2π

0
sin 2φ

√
k2
φ + k2

0dφ

≈ −
√

meετλ

4
√

2π2h̄
√

EF + EP

(cos ϕ − sin ϕ)

(
1
1

)∫ 2π

0
sin 2φ

(
k0 + k2

φ

2k0

)
dφ

= eετ
√

m(EP )3/2

16
√

2π h̄
√

EF (EF + EP )
(cos ϕ − sin ϕ)

(
1
1

)
, (A3)

and je is calculated as

je =
∑

s

e2τε

4π2h̄

∫ 2π

0
|vks|(v̂ks • ε̂)2kFsdφ

=
√

me2τε

4
√

2π2h̄
√

EF + EP

∑
s

∫ 2π

0

[
h̄2k3

Fs

m2
cos2φ + s

2
√

2λk2
Fs

m
sgn(cos φ − sin φ) cos φ + 2λ2kFs

h̄2

+ h̄2k3
Fs

2m2
sin 2φ sin 2ϕ − 2λ2kFs

h̄2 sin 2ϕ − s

√
2λk2

Fs

m
|cos φ − sin φ| sin 2ϕ

]
dφ

=
√

me2τε

2
√

2π2h̄
√

EF + EP

∫ 2π

0

⎡
⎣ h̄2

√
k2
φ + k2

0

m2

(
4k2

φ + k2
0 − 8m2λ2

h̄4

)
cos2φ +

4λ2
√

k2
φ + k2

0

h̄2 sin 2φ

+
2λ2

√
k2
φ + k2

0

h̄2 (1 + sin 2ϕ) +
h̄2

√
k2
φ + k2

0

2m2

(
4k2

φ + k2
0 − 8m2λ2

h̄4

)
sin 2φ sin 2ϕ

⎤
⎦dφ

≈
√

me2τε

2
√

2π2h̄
√

EF + EP

∫ 2π

0

[
h̄2

m2

(
9

2
k0k2

φ − 4m2λ2k2
φ

h̄4k0
− 8m2λ2k0

h̄4 + k3
0

)
cos2φ + 4λ2

h̄2

(
k0 + k2

φ

2k0

)
sin 2φ

+ 2λ2

h̄2

(
k0 + k2

φ

2k0

)
(1 + sin 2ϕ) + h̄2

2m2

(
9

2
k0k2

φ − 4m2λ2k2
φ

h̄4k0
− 8m2λ2k0

h̄4 + k3
0

)
sin 2φ sin 2ϕ

]
dφ

= e2τε

4π h̄2√EF + EP

[
4EF

√
EF + 5EP

√
EF − 2E2

P√
EF

+
(

2E2
P√

EF
− EP

√
EF

2

)
sin 2ϕ

]
. (A4)
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