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Experimental and theoretical investigation of the thermal
effect in the Casimir interaction from graphene
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We present the results of an experiment on measuring the gradient of the Casimir force between an Au-coated
hollow glass microsphere and graphene-coated fused silica plate by means of a modified atomic force microscope
cantilever-based technique operated in the dynamic regime. These measurements were performed in high vacuum
at room temperature. The energy gap and the concentration of impurities in the graphene sample used have been
measured utilizing scanning tunneling spectroscopy and Raman spectroscopy, respectively. The measurement
results for the gradients of the Casimir force are found to be in a very good agreement with theory using the
polarization tensor of graphene at nonzero temperature depending on the energy gap and chemical potential
with no fitting parameters. The theoretical predictions of the same theory at zero temperature are experimentally
excluded over the measurement region from 250 to 517 nm. We have also investigated a dependence of the
thermal correction to the Casimir force gradient on the values of the energy gap, chemical potential, and on the
presence of a substrate supporting the graphene sheet. It is shown that the observed thermal effect is consistent
in size with that arising for pristine graphene sheets if the impact of real conditions such as nonzero values of the
energy gap, chemical potential, and the presence of a substrate is included. Implications of the obtained results to
the resolution of the long-standing problems in Casimir physics are discussed. In addition to the paper published
previously [M. Liu et al., Phys. Rev. Lett. 126, 206802 (2021)], we present measurement results for the energy
gap of the graphene sample, double the experimental data for the Casimir force, and perform a more complete
theoretical analysis.
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I. INTRODUCTION

An investigation of different effects in graphene brought
to light that this material possesses a variety of unusual prop-
erties which are of much interest to fundamental physics. It
is well known that graphene is characterized by a minimum
electrical conductivity and low absorbance expressed in terms
of fundamental constants [1–4] and provides possibilities for
experimentally testing the Klein paradox [5], the effect of
Schwinger pair creation from vacuum in external electric field
[6–9], and the relativistic quantum Hall effect [10]. This is
a consequence of graphene being a two-dimensional material
which at low energies is well described not by the Schrödinger
equation but by the relativistic Dirac equation where the speed
of light c is replaced by the much lower Fermi velocity vF

[11–13].
One of the challenging problems is the experimental and

theoretical investigation of the thermal Casimir interaction in
graphene systems. The Casimir force [14] is the relativistic
generalization of a more familiar van der Waals force. This
is an entirely quantum phenomenon which originates from
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the zero-point and thermal fluctuations of the electromagnetic
field whose spectrum is altered by the presence of material
boundaries, no matter be they three- or two-dimensional. The
fundamental unified theory of the van der Waals and Casimir
forces was created by Lifshitz [15,16]. In the framework of
this theory, the Casimir free energy and force are expressed
via the reflection coefficients of electromagnetic fluctuations
on the boundary surfaces. In the original formulation, only the
plane boundaries were considered but currently the Lifshitz
theory is generalized to the case of arbitrarily shaped bodies
[17–21].

Precise measurements of the thermal Casimir force be-
tween metallic test bodies using the present-day laboratory
techniques revealed a puzzling problem. In many experiments
performed by different experimental groups, it was found that
the predictions of the Lifshitz theory come into conflict with
the measurement data if the much-studied relaxation proper-
ties of conduction electrons at low frequencies are taken into
account in computations [22–34] (see also monograph [35]
and reviews [36–38]). Note that in Ref. [39] an agreement
was obtained by subtracting a hypothetical electrostatic force
between a centimeter-size spherical lens and a plate which
was ten times larger than the Casimir force. This result, how-
ever, ignored imperfections of the lens surface which have an
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important effect on the measured force [40]. What is even
more surprising, an agreement between experiment and theory
is restored if computations are performed with simply dis-
carded relaxation properties of conduction electrons [22–38].
Specifically, experiments using magnetic metal surfaces
[27–29] and isoelectronic difference force measurements [30]
have reconfirmed this conclusion with an extraordinary preci-
sion.

It should be emphasized that the reflection coefficients
used in the standard Lifshitz theory are expressed via the
dielectric permittivities of boundary materials which in turn
are found from the available optical data for the complex index
of refraction [41] extrapolated down to zero frequency. The
best-known method for extrapolation is by means of the Drude
model. Under certain assumptions, this model can be derived
from Boltzmann transport theory or the Kubo formula and
finds full verification in the area of electromagnetic phenom-
ena other than the Casimir effect [42]. The Drude model takes
proper account of the relaxation properties of conduction
electrons in metals by means of the temperature-dependent
relaxation parameter. However, the Lifshitz theory using the
Drude model predicts a relatively large thermal effect in the
Casimir force at short separation distances [43] which was
excluded by the experiments mentioned above.

Graphene provides great advantages for the resolution of
this problem. The point is that at energies below a few electron
volts characteristic for the Casimir force at separations ex-
ceeding 100 nm, graphene can be considered in the framework
of the Dirac model as a set of massless or very light electronic
quasiparticles. The response function of such a simple system
to the electromagnetic field can be found on the basis of
the first principles of quantum electrodynamics at nonzero
temperature without resort either to phenomenological ap-
proaches or simplified models.

There is an extensive literature on the theory of the Casimir
interaction in graphene systems using the Kubo formal-
ism, density-density correlation functions, two-dimensional
Drude, and other models [44–61]. Specifically, using the
formalism of correlation functions in the random phase ap-
proximation, which is ultimately equivalent to the Lifshitz
theory, Gómez-Santos predicted a large thermal effect in the
Casimir interaction between two parallel graphene sheets even
at separations of tens of nanometers at room temperature
[45]. This prediction relates to an order of magnitude shorter
separations compared to the thermal effect between metallic
plates predicted using the Drude model which was already
excluded experimentally [22–38].

The question arises on whether or not an unusually big
thermal effect exists for graphene. This question should be
answered both theoretically and experimentally. Rigorous the-
oretical description of the Casimir interaction in graphene
systems is based on the Lifshitz theory supplemented by the
response function of graphene to quantum fluctuations. The
latter is given by the polarization tensor of graphene which
can be found in the framework of the Dirac model (see, e.g.,
Ref. [62]).

Real graphene sheets are characterized by some value of
the chemical potential, which depends on the concentration of
impurities, and of the energy gap which is caused by structural
defects, impurities, interelectron interactions, and the pres-

ence of a substrate [12,13]. The exact polarization tensor of
graphene at zero temperature was found in Ref. [63] and at
nonzero temperature in Ref. [64] (the latter results are valid
only at the pure imaginary Matsubara frequencies). The exact
expressions for the polarization tensor of gapped graphene
valid over the entire plane of complex frequencies, including
the real frequency axis, was found in Ref. [65] and generalized
for the case of nonzero chemical potential in Ref. [66].

The formalism of the polarization tensor was used to in-
vestigate the thermal Casimir and Casimir-Polder forces in
graphene systems [67–80]. Specifically, in Ref. [69] it was
shown that the polarization tensor leads to more exact results
than several phenomenological approaches used in the litera-
ture. According to the results of Ref. [76], the formalisms of
the polarization tensor and of the density-density correlation
functions are eventually equivalent. In fact, from the exact
components of the polarization tensor it has been possible
to find the respective density-density correlation functions
at nonzero temperature which were not known until then.
Most importantly, calculations using the polarization tensor
confirmed [69,77] the prediction of an unusually big thermal
effect in the Casimir force from graphene at short separations
[45]. Thus, an experimental discovery of this interesting effect
has assumed great importance for both fields of graphene and
Casimir research.

The first experiment on measuring the Casimir force be-
tween an Au-coated sphere and a graphene-coated SiO2 film
deposited on a Si substrate was performed using an atomic
force microscope (AFM)-based technique operated in the dy-
namic regime [81]. The measurement results were found in
good agreement with theory using the polarization tensor of
graphene [82]. Because of the thin SiO2 film used, it was not
possible, however, to separate the unusual thermal effect from
the total force gradient. According to Ref. [74], observation of
the thermal effect from graphene would become possible by
increasing the thickness of an underlying SiO2 film.

Using this approach, the thermal Casimir interaction from
graphene was recently measured in the configuration of an
Au-coated sphere and a graphene sheet deposited on thick
SiO2 substrate [83]. The measured gradients of the thermal
Casimir force were found to be in a very good agreement with
theoretical predictions calculated using the polarization tensor
accounting for the chemical potential of graphene determined
by means of Raman spectroscopy. An estimated range of the
energy gap values was included as a part of the theoretical
error. By comparing with respective theoretical results at zero
temperature, an unusual thermal effect from graphene was
reliably demonstrated over the separation region between a
sphere and a graphene sheet from 250 to 590 nm at room
temperature.

In this paper, we present additional experimental infor-
mation and a more complete theoretical analysis regarding
the experiment on measuring the thermal Casimir interaction
from graphene. While the conclusions made in Ref. [83] were
based on one measurement set consisting of 21 runs with a
step in separation distances of 1 nm, we have now performed
the second measurement set and made an averaging procedure
over a more representative wealth of evidence which includes
42 runs. Another important innovation is that the value of
the energy gap for a graphene sample used in the experiment
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was measured by means of scanning tunneling spectroscopy.
As a result, it has been possible to compute the theoretical
force gradients using the polarization tensor with the definite
values of both the chemical potential and the energy gap of
graphene rather than include an estimated range of the energy
gap values in the theoretical error as was done in Ref. [83].
Although the measured value of the energy gap turned out to
be somewhat outside the range estimated in Ref. [83], we have
clearly confirmed the presence of an unusual thermal effect in
the graphene sample used within the separation region from
250 to 517 nm.

On the theoretical side, we have performed calculations
elucidating the physical nature of the unusually big thermal
effect in the Casimir interaction from graphene at short sepa-
rations and its dependence on the chemical potential, energy
gap, and the presence of a substrate for real graphene samples.
The case of a pristine graphene was also considered. A com-
parison between experiment and theory was made on the basis
of first principles of quantum electrodynamics at nonzero tem-
perature with no fitting parameters and a very good agreement
was demonstrated. Implications of the obtained results to a
long-standing problem of the thermal Casimir force between
metallic test bodies are discussed.

The paper is organized as follows. In Sec. II, we consider
the experimental procedures used for measuring the gradient
of the Casimir force between an Au-coated sphere and a
graphene-coated SiO2 substrate. Section III describes mea-
surements of the impurity concentration and energy gap in
the experimental graphene sample. In Sec. IV, theory of the
Casimir interaction using the polarization tensor of graphene
is briefly considered in application to the experimental config-
uration. In Sec. V, we calculate the magnitude of the unusually
big thermal effect in different graphene systems and elucidate
its physical nature. Section VI contains the comparison be-
tween experiment and theory. In Sec. VII, the reader will find
our conclusions and a discussion of the obtained results and
their implications.

II. MEASURING THE CASIMIR FORCE GRADIENT
FROM GRAPHENE USING A CUSTOM ATOMIC

FORCE MICROSCOPE CANTILEVER-BASED SETUP
IN THE DYNAMIC REGIME

Measurements of the gradient of the Casimir force between
an Au-coated hollow glass microsphere and a graphene-
coated fused silica glass (SiO2) plate have been performed
by means of a custom-built AFM cantilever-based technique
operated in the dynamic regime at a temperature T = 294.0 ±
0.5 K in high vacuum below 9 × 10−9 Torr. Similar setups
have already been used in previous experiments on measuring
the gradient of the Casimir force between metallic surfaces
[26–29,31–33] (the schematic can be found in Fig. 1 of
Ref. [33] but here the UV- and Ar-ion cleaning is not used
to avoid damaging the graphene sheet). Below we consider
only the most important features connected with the use of
graphene sample.

The main test body in this experiment was made from a
large-area graphene sheet which was chemical vapor depo-
sition grown on a Cu foil [84]. This sheet was transferred
onto a polished JGS2 grade fused silica double side optically

polished substrate of 10-cm diameter and 0.05-cm thickness
[85]. This was made through an electrochemical delamination
procedure [84,86]. Then a 1 × 1 cm2 piece of the graphene-
coated fused silica substrate was cut from the entire sample
and used as the test body in measuring the force gradient.
After the force gradient measurements have been performed,
the rms roughness of the graphene sheet on a fused silica
substrate was measured to be δg = 1.5 ± 0.1 nm by means
of an AFM. This is used in Sec. VI for comparison between
experiment and theory.

The second test body is an Au-coated hollow glass mi-
crosphere with the diameter 2R = 120.7 ± 0.1 μm measured
by means of a scanning electron microscope. In doing so,
the thickness of Au coating was measured to be 120 ± 3 nm
using an AFM. After the experiment was completed, the rms
roughness of the Au coating on the sphere δs = 0.9 ± 0.1 nm
was measured by means of an AFM.

A hollow glass microsphere is attached to the end of an
Au-coated tipless AFM cantilever using silver epoxy and then
coated with Au [87]. Before attaching the sphere and Au
coating, the cantilever spring constant was reduced through
chemical etching (see Ref. [33] for details). As a result, the
corresponding resonant frequency of the cantilever was de-
creased from 5.7579 × 104 to 3.5286 × 104 rad/s by etching
in 60% potassium hydroxide solution at 75 ◦C with stirring
for 100 s. Note also that, prior to etching, the cantilever was
washed in a buffered oxide etch solution and deionized water
for 1 min each. After the Au coating, the resonant frequency
of the complete cantilever-sphere system in vacuum was mea-
sured to be ω0 = 6.1581 × 103 rad/s.

The vacuum chamber containing the cantilever-sphere sys-
tem and graphene sample on a fused silica substrate was
pumped using an oil-free scroll pump and then followed by
a turbo pump connected in series, and finally an ion pump for
further pressure reduction. During the force measurements,
only the ion pump was used, thereby reducing the mechanical
vibrations (see Refs. [26,31–33] for details). In the dynamic
measurement regime used, the cantilever with the attached
sphere was set to oscillate above the graphene plane. The
oscillation frequency of the cantilever and movement of the
graphene sample were monitored by two fiber interferometers
with laser light sources of 1550 and 500.1 nm wavelength,
respectively. Small changes in the separation distance be-
tween sphere and graphene due to mechanical drift during
the measurement were monitored and corrected as described
in Refs. [26,32,33]. The frequency shifts of the cantilever
oscillation induced by any external force (electric or Casimir)
were recorded using a phase lock loop (PLL) [26]. To stay in
the linear regime, the oscillation amplitude of the cantilever
was maintained at 10 nm, and the resolution of the PLL was
measured to be 55.3 mrad/s.

The total force acting on the sphere is given by

Ftot (a, T ) = Fel(a) + F (a, T ). (1)

Here, Fel is the electric force caused by the constant volt-
ages Vi applied to the graphene sheet using ohmic contacts
while the sphere remains grounded and by the residual po-
tential difference V0, F (a, T ) is the Casimir force, a is the
separation distance between the sphere and graphene sheet,
and T is the temperature.
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Under the influence of an external force (1), the resonant
frequency ω0 of the cantilever-sphere system is modified to
ωr (a, T ) and the frequency shift

�ω(a, T ) = ωr (a, T ) − ω0 (2)

was recorded by the PLL at every 0.14 nm while the graphene-
coated fused silica plate was moved by the piezo actuator
toward the sphere starting at the maximum separation. Using
interpolation, the values of �ω can be recalculated with a step
of 1 nm. We recall that all measurements were performed at
constant T = 294 K. The argument T in the Casimir force is
discussed during comparison with the theory in Secs. IV–VI.

In the linear regime, the frequency shift (2) is given by
[26,88]

�ω(a, T ) = −CF ′
tot (a, T ) = −CF ′

el(a) − CF ′(a, T ). (3)

Here, the calibration constant C = ω0/(2k), k is the spring
constant of the cantilever, and the gradient of the electrostatic
force in a sphere-plate geometry is given by [26,35]

F ′
el(a) = X ′(a, R)(Vi − V0)2,

X ′(a, R) = 2πε0√
a(2R + a)

∞∑
n=1

csch(nτ ){n coth(nτ )

×[n coth(nτ ) − coth τ ] − csch2τ + n2csch2(nτ )},
(4)

where cos τ ≡ 1 + a/R, ε0 is the permittivity of vacuum, and
the absolute separations between the zero levels of roughness
on the sphere and graphene surfaces are determined from

a = zpiezo + z0, (5)

where zpiezo is the distance moved by the graphene-coated
plate and z0 is the closest separation between this plate and
the sphere.

As a result, the gradients of the Casimir force can be
expressed using Eq. (3) via the measured frequency shift

F ′(a, T ) = − 1

C
�ω(a, T ) − F ′

el(a), (6)

where all the necessary parameters, C, z0, and V0, are
determined by means of electrostatic calibration which is per-
formed simultaneously with measurements of the frequency
shifts (see Refs. [26,35] for details).

For this purpose, in the first measurement set reported in
Ref. [83], ten different voltages from 0.083 V to 0.183 V
with a step 0.01 V but with exception of 0.133 V and 11
voltages equal to 0.133 V were applied to the graphene sheet.
At each separation a between the graphene-coated plate and
the sphere 21 values of the frequency shift �ω were measured
and the value of V giving the maximum in the parabolic
dependence of �ω on Vi in Eqs. (3) and (4), determining the
value of V0, was found with the help of a χ2-fitting proce-
dure. Using the same fit, from the curvature of the parabola
mentioned above, we have determined the values of z0 and
C. In Fig. 1(a), taken from Ref. [83], the obtained values of
V0 are shown as the function of separation between a sphere
and a graphene-coated plate for the first measurement set.
To check that the obtained values of V0 do not depend on
separation, we have performed the best fit of V0 to the straight
line V0 = d + θa, where a is measured in nanometers, and
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FIG. 1. The residual potential difference between an Au-coated
sphere and a graphene-coated fused silica plate is shown by the
dots as a function of separation (a) for the first and (b) second
measurement sets.

found that d (1) = 0.1326 V and θ (1) = −2.73 × 10−7 V/nm
[83]. This demonstrates an independence of V0 on a in this
set of measurements up to a high precision. The mean value
of V0 in the first measurement set was V (1)

0 = 0.1324 V.
In a similar way, the values of z0 and C were determined

from the fitting procedure at each separation and found to
be separation-independent, leading to the mean values z(1)

0 =
236.9 ± 0.6 nm and C(1) = (4.599 ± 0.003) × 105 s/kg.

As mentioned above, at each separation the frequency shift
�ω was measured for 21 times with different applied volt-
ages. The respective experimental values of the gradient of
the Casimir force were calculated by Eq. (6) and their mean
values F ′

(1)(a, T ) were found with a step of 1 nm. The random
errors of these mean values were determined at the 67% con-
fidence level. The systematic errors, which are mostly caused
by the errors in measuring the frequency shift indicated above,
were combined in quadrature with the random errors resulting
in the total experimental errors of the first measurement set
�

(1)
exptF

′(a, T ). The error in measuring the absolute separations
was found to be �a = 0.6 nm.

In addition to the first measurement set reported in
Ref. [83], second set of measurements was performed with
the same graphene sample, applied voltages, and using the
same experimental procedures. This resulted in values of the
residual potential difference shown in Fig. 1(b) as a function
of separation. The best fit of these values to straight line results
in d (2) = 0.1322 V and θ (2) = −3.41 × 10−7 V/nm. The ob-
tained parameters are only slightly different from those in the
first set of measurements and again demonstrate an indepen-
dence of the residual potential difference on separation. In the
second measurement set, the mean value of V0 was determined
to be V (2)

0 = 0.1320 V.
The values of the separation on contact and the calibration

constant in the second measurement set were also found to
be independent of separation resulting in the following mean
values: z(2)

0 = 238.8 ± 0.5 nm and C(2) = (4.712 ± 0.003) ×
105 s/kg.

The independence of the residual potential difference on
the sphere-graphene separation in both measurement sets
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FIG. 2. The mean gradient of the Casimir force obtained from the two measurement sets is shown by the crosses as a function of separation
within four separation intervals. The upper and lower theoretical bands are computed at the laboratory temperature T = 294 K and at T = 0 K,
respectively (see the text for further discussion).

confirms that in this experiment performed in high vacuum
the role of patch potentials on an Au-coated sphere and of
spurious electrostatic interactions induced by charges on the
SiO2 substrate supporting graphene is negligibly small for
the separations reported here. A similar situation holds for
the experiments [22–34] performed in high vacuum with
two Au or Ni-coated test bodies where a smallness of the
electrostatic effects was confirmed by independent measure-
ments employing Kelvin-probe microscopy [89]. Note that
the graphene sheet is connected to a power supply which is
a reservoir for compensating charges. As the graphene sheet
is a two-dimensional conducting layer with high conductivity
determined by the very light Dirac quasiparticles, which is
connected to a power supply, it effectively screens out the
role of possible charges on the SiO2 substrate. This is con-
firmed by the measurements of mean impurity concentration
in graphene presented in Sec. III. By contrast, the cases, where
the role of patch effects can be relatively large, are considered
in the experiments of Ref. [90] performed in ambient air with
30% relative humidity.

These results were used to find the experimental values
of the gradients of the Casimir force at each separation and
their mean F ′

(2)(a, T ) with a step of 1 nm. Following the
same procedure as described above, the total experimental
errors in the second measurement set �

(2)
exptF

′(a, T ) were
determined.

In each measurement set, the total experimental error is
mostly determined by the systematic error which is almost the
same for both sets. In doing so, an advantage of using the two
sets of measurements is in the decreased impact of possible
accidental systematic deviations.

Finally, we have calculated the experimental gradients of
the Casimir force, F ′

expt (a, T ), by averaging the mean values
obtained in two measurement sets. In a similar way, the total
experimental error of the measured gradients, �exptF ′(a, T ),
was obtained by averaging the total experimental errors found
in the first and second measurement sets.

The measurement results for F ′
expt (a, T ) obtained from the

two sets of measurement are shown as crosses in Figs. 2(a)–
2(d) over the separation range from 250 to 700 nm. The
vertical and horizontal arms of the crosses have the lengths
2�exptF ′(a, T ) and 2�a, respectively, determined by the total
experimental errors. For visual clarity, we have indicated all
data points in Fig. 2(a), each second data point in Figs. 2(b)
and 2(c), and each third data point in Fig. 2(d). The top
and bottom bands indicated in Fig. 2 refer to the compar-
ison between experiment and theory which is discussed in
Sec. VI. Note that the minimum separation distance of 250 nm
chosen in the experimental data reported here is typical for
measurements of the Casimir force by means of an AFM in
the dynamic mode [26–29,31–33]. This is done to not enter a
nonlinear regime of the oscillator system used. On the theoret-
ical side, the relative thermal effect in the Casimir interaction
from graphene becomes more sensible just at a > 250 nm (see
below in Sec. V, Fig. 6).

III. MEASUREMENTS OF THE IMPURITY
CONCENTRATION AND ENERGY GAP OF GRAPHENE
SHEET DEPOSITED ON A FUSED SILICA SUBSTRATE

It is well known that real graphene sheets are characterized
by some small but nonzero mass of electronic quasiparticles
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which leads to the presence of an energy gap � in their
spectrum [12,13]. In a similar manner, real graphene sam-
ples contain some fraction of impurities and, as a result, are
characterized by some nonzero chemical potential μ [12,13].
For pristine graphene sheets, it holds � = μ = 0. One should
know the values of both the energy gap and chemical potential
to calculate the response of a graphene sample to electromag-
netic fluctuations. Because of this, it is desirable to determine
both of them before comparing measurement results of the
Casimir interaction in graphene systems with theoretical
predictions.

We begin with determining the value of the chemical po-
tential which is caused by the concentration of impurities.
The impurity concentration in the graphene sample was de-
termined using Raman spectroscopy after the measurement
of the Casimir force gradient. The Raman spectroscopy was
carried out using a Horiba Labram HR 800 system with
532-nm laser excitation (Laser Quantum, 65 mW power). A
100x objective lens with NA = 0.9, which renders a laser spot
size of 0.4 μm2 and corresponding spot diameter of 709 nm
was used. The measurements were done at a temperature of
294 ± 0.5 K. The spectrometer used a grating with
600 lines/mm to ensure the spectral range from 1450 cm−1 to
2900 cm−1 which includes both G and 2D peaks of graphene.
The spectral resolution was maintained at 2 cm−1 for the
precise detection of the G peak blueshift. The spectra were
collected at 18 equidistant points on the sample to understand
the spatial distribution of the impurity concentration. Prior to
acquiring the spectra, to ensure that the sample was positioned
at the focal plane, the signal intensity was maximized by
adjusting the focus of the microscope. The spectra collected
at each point are the accumulated results over ten acquisitions
with each acquisition spanning over 10 s.

The G-peak spectra were fitted to a Lorenzian to iden-
tify the precise location of the peak. The values of the G
peak were compared to G-peak shifts modified by charge
concentration that are reported in Ref. [91] and the corre-
sponding impurity concentration was identified as shown in
Fig. 3. Here, the solid triangles are the data from Ref. [91]
and the gray solid line is a fit to the data. The measured G
peaks are shown by the horizontal lines. The mean value of
the impurity concentration from all the measured G peaks is
n̄ = (4.2 ± 0.3) × 1012 cm−2, where the random and system-
atic errors were summed to obtain the maximum possible
error. Na is expected to be the dominant impurity type based
on the transfer process used [86]. Figure 4 presents a spatial
distribution of the impurity concentration from Fig. 3 mea-
sured over the area 0.6 × 0.8 cm2 of the sample. In accordance
with Fig. 3, the light gray, gray, and dark gray areas in the field
of Fig. 4 correspond to the impurity concentrations varying
from 3 × 1012 to 4 × 1012 cm−2, 4 × 1012 to 5 × 1012 cm−2,
and from 5 × 1012 to 6 × 1012 cm−2, respectively.

The respective value of the chemical potential of our
graphene sample at zero temperature is given by [92]

μ = h̄vF

√
π n̄ = 0.24 ± 0.01 eV, (7)

where the Fermi velocity vF ≈ c/300. According to Ref. [93],
due to the relatively large value of the chemical potential, as
in Eq. (7), it is almost independent on temperature. Because of

FIG. 3. The measured G-peak values from Raman spectroscopy
compared to the charge concentration in graphene from Ref. [91].
The solid triangles are the values from Ref. [91] and the solid
gray line is a best fit to the data. The G-peak values measured
at equidistant points on the sample are shown by horizontal lines.
The intersection identifies the impurity concentration. The average
impurity concentration is shown by the arrow.

this, one can use the obtained value (7) both at zero and room
temperatures.

We proceed now to measurements of the energy gap �.
The energy gap of the graphene mounted on the fused sil-
ica was determined using scanning tunneling sprectroscopy

FIG. 4. The impurity concentration measured at different points
over the 0.6 × 0.8 cm2 area of the sample from Fig. 3 is shown by the
light gray, gray, and dark gray regions where it varies from 3 × 1012

to 4 × 1012 cm−2, 4 × 1012 to 5 × 1012 cm−2, and from 5 × 1012 to
6 × 1012 cm−2, respectively.
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(STS) [94]. The STS measurements were performed using a
Nanosurf Nano scanning tunneling microscope (STM). The
probe was fabricated by mechanically cutting a Pt-Ir wire,
generating a sharp tip. The graphene sample on the fused silica
substrate was cut into 5 × 5 mm2 pieces and mounted onto
metal puck holders using a conductive adhesive. Conduction
between graphene surfaces and the metal puck was achieved
by using the same conductive epoxy.

All experiments were performed in air at 22 ± 1 ◦C. The
STM was kept in an enclosed environment on a floating op-
tical table to minimize thermal and vibrational fluctuations.
To select an appropriate region free from surface wrinkles
and corrugations, rough microscopic scans (50 × 50 nm2 to
10 × 10 nm2) of the surface topography were performed prior
to spectroscopic measurements. The microscopic scans were
performed with a bias voltage of 50 mV and a tunneling
current of 1 nA.

The spectroscopic scans were performed in current-voltage
mode where the measurement position and tip-sample separa-
tion distance were checked to be constant by monitoring the
initial tunneling current prior to the spectroscopic scans. For
the spectroscopic scans, the bias voltage was linearly ramped
from –1.2 V to 1.2 V over a 100-ms period. As the experi-
ments were carried out at room temperature, experiments at
different periods of 10 ms and 50 ms were also tried and
verified to lead to similar results. The final spectroscopic scans
were all carried out with a 100-ms period and the tunneling
currents were recorded at 256 equal time intervals during each
ramp from –1.2 V to +1.2 V. The experiment was repeated
3–4 times till a reproducible spectrogram was obtained. The
entire experiment was repeated at 50 different positions on
three different samples.

From the tunneling current I as a function of the bias volt-
age Vbias, the differential conductance, dI/dVbias as a function
of the bias voltage was determined. An averaged differen-
tial conductance as a function of Vbias from the 50 different
measured spectra obtained from the three different samples is
shown in Fig. 5. The average minimum value of the differen-
tial conductance measured is shown as a horizontal dashed
line. A U-shaped parabolic dependence of the differential
conductance with bias voltage was observed. The V-shape
differential conductance with bias voltage reported for a pris-
tine graphene at low temperature was not observed due to
room-temperature measurement as well as the presence of an
energy gap from the presence of impurities [95,96] and the
mechanical strain from the substrate [97,98], both of which
modify the local density of states.

Previous Raman spectroscopy mapping of charge impuri-
ties on the sample (see Fig. 4) shows that the impurity density
varies with position leading to variations in the differen-
tial conductance at different positions. The substrate-induced
roughness also leads to similar variations with position
[97–99]. To determine the band edge at negative voltage
bias, the differential conductance curve in that region was
extrapolated to intersect with the line of minimum dI/dVbias

[100]. The extrapolation was done using a semilog plot of
the differential conductance. Uncertainties in the extrapola-
tion are recorded as uncertainties in the determination of the
band edge. This was repeated for the differential conductance
curve at the positive bias to identify the band edge in that

FIG. 5. The average differential conductance dI/dVbias, mea-
sured from the scanning tunneling spectroscopy of the graphene
sample as a function of the bias voltage. For clarity, the error bars
are shown only at every fifth data point. The horizontal dashed line
is the minimum average differential conductance measured.

region. The width of the energy gap was thus determined to
be � = 0.29 ± 0.05 eV using this procedure.

The obtained values of the energy gap and chemical po-
tentials are used in Secs. V and VI, where the gradients of
the Casimir force are computed using the formalism of the
polarization tensor.

IV. THEORY OF THERMAL CASIMIR INTERACTION
FROM GRAPHENE USING THE POLARIZATION TENSOR

IN THE EXPERIMENTAL CONFIGURATION

As mentioned in Sec. I, there are many theoretical ap-
proaches used in the literature for a description of the Casimir
interaction in graphene systems. Here, we describe the gra-
dient of the Casimir force in the experimental configuration
by means of the Lifshitz theory which is valid for any planar
layered structures with appropriately found reflection coef-
ficients. In doing so, the response of Au and fused silica
to the electromagnetic field is described by their frequency-
dependent dielectric permittivities, whereas the response of
graphene can be found precisely in the framework of the Dirac
model using the polarization tensor in (2+1)-dimensional
space-time. An employment of the Dirac model is fully jus-
tified because even at the shortest separation considered in
our experiment (a = 250 nm), the characteristic energy of
the Casimir force h̄ωc = h̄c/(2a) = 0.4 eV is well within the
application region of the Dirac model of graphene (according
to recent results it is applicable up to 3 eV [101]). Because of
this, one need not take into consideration the absorption peak
of graphene at λ = 270 nm which corresponds to much higher
energy h̄ω = 2π h̄c/λ ≈ 4.59 eV.

Using the proximity force approximation (PFA) [35] (cor-
responding error in this experiment is very small and is taken
into account below), the gradient of the Casimir force be-
tween an Au-coated sphere and a graphene-coated SiO2 plate
calculated at the laboratory temperature T takes the form
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[74,77,82]

F ′(a, T ) = 2kBT R
∞∑

l=0

′ ∫ ∞

0
ql k⊥dk⊥

×
∑

σ

[
r−1
σ (iξl , k⊥)R−1

σ (iξl , k⊥, T )e2aql − 1
]−1

.

(8)

In this equation, kB is the Boltzmann constant, the prime on
the first summation sign divides the term with l = 0 by 2, k⊥
is the magnitude of the wave vector projection on a graphene
plane, the Matsubara frequencies are ξl = 2πkBT l/h̄, ql =√

k2
⊥ + ξ 2

l /c2, and the summation in σ is over the two po-
larizations of the electromagnetic field, transverse magnetic
(σ = TM) and transverse electric (σ = TE).

Now it is necessary to define the reflection coefficients rσ

and Rσ entering Eq. (8). In doing so, taking into account the
sufficiently thick Au coating on the sphere and large thickness
of the SiO2 plate, the sphere can be considered as all-gold
and the plate as a semispace [35]. Then, the coefficients rσ on
the boundary between Au and vacuum take the standard form
[35–37]

rTM(iξl , k⊥) = ε
(1)
l ql − k(1)

l

ε
(1)
l ql + k(1)

l

, rTE(iξl , k⊥) = ql − k(1)
l

ql + k(1)
l

,

(9)

where

k(n)
l = k(n)

l (k⊥) =
√

k2
⊥ + ε

(n)
l

ξ 2
l

c2
(10)

and ε
(n)
l = ε(n)(iξl ) are the dielectric permittivities of Au (n =

1) and SiO2 (n = 2) calculated at the pure imaginary Matsub-
ara frequencies.

The reflection coefficients Rσ on the boundary between the
vacuum and graphene-coated plate are more involved because
the plate material is described by the dielectric permittivity
ε

(2)
l whereas graphene — by the polarization tensor in (2+1)-

dimensional space-time

�βγ ,l ≡ �βγ (iξl , k⊥, T,�,μ), (11)

where β, γ = 0, 1, 2. This tensor depends on temperature
T and on the energy gap � and chemical potential μ of a
graphene sheet. In fact, it has only two independent compo-
nents [64–66]. It is most convenient to express the reflection
coefficients via �00,l and the following combination of the
components �l defined as

�l = k2
⊥�

β

β, l − q2
l �00,l , (12)

where �
β

β, l (the summation in β is implied) is the trace of the
polarization tensor.

Using the above notations, the reflection coefficients Rσ are
given by [77,79,82]

RTM(iξl , k⊥, T ) = h̄k2
⊥
[
ε

(2)
l ql − k(2)

l

] + qlk
(2)
l �00,l

h̄k2
⊥
[
ε

(2)
l ql + k(2)

l

] + qlk
(2)
l �00,l

,

RTE(iξl , k⊥, T ) = h̄k2
⊥
[
ql − k(2)

l

] − �l

h̄k2
⊥
[
ql + k(2)

l

] + �l

. (13)

To calculate the gradient of the Casimir force using
Eqs. (8)–(13) one needs to have the values of the dielectric
permittivities ε

(n)
l and of the quantities �00,l and �l as input

information. As mentioned in Sec. I, the quantities ε
(n)
l are

obtained from the measured optical data for the complex
index of refraction [41]. In the case of one test body coated
with a graphene sheet, the reflection coefficient RTE(0, k⊥, T )
turns out to be very small. Because of this, the gradients
of the Casimir force calculated by Eqs. (8)–(13) are almost
independent of the type of extrapolation of the optical data to
zero frequency discussed in Sec. I. Therefore, one can safely
employ the values of ε

(n)
l available in the literature [35–37]

obtained using any extrapolation (i.e., taking into account
or disregarding the relaxation properties of conduction elec-
trons), leading to coinciding results. This gives the possibility
to consider the reflection coefficients rσ as independent of T .

The quantities �00,l and �l are conveniently presented as
the sums of two contributions:

�00,l = �
(0)
00,l + �

(1)
00,l , �l = �

(0)
l + �

(1)
l . (14)

The first terms on the right-hand sides of these equations
are related to the polarization tensor of an undoped graphene
with μ = 0, arbitrary value of the energy gap �, at zero
temperature T = 0, but calculated at the pure imaginary Mat-
subara frequencies ω = iξl . This means that the quantities
�

(0)
00,l and �

(0)
l take into account only an implicit dependence

of the polarization tensor on temperature through the Matsub-
ara frequencies. The second terms on the right-hand sides of
Eq. (14) result from an explicit dependence of the polarization
tensor on temperature T and on the chemical potential μ. In
so doing, they also depend on �.

The explicit expressions for �
(0)
00,l and �

(0)
l are given by

[63,64]

�
(0)
00,l = αh̄k2

⊥
q̃l

�(Dl ), �
(0)
l = αh̄q̃l�(Dl ), (15)

where α = e2/(h̄c) is the fine structure constant and

q̃l =
(

v2
F

c2
k2
⊥ + ξ 2

l

c2

)1/2

, Dl = �

h̄cq̃l
,

�(x) = 2

[
x + (1 − x2) arctan

1

x

]
. (16)

The exact expressions for �
(1)
00,l and �

(1)
l are more involved.

They can be conveniently presented in the form [66,79]

�
(1)
00,l = 4αh̄c2q̃l

v2
F

∫ ∞

Dl

du

( ∑
κ=±1

1

eBl u+κ
μ

kBT + 1

)

×
[

1 − Re
1 − u2 + 2iγl u(

1 − u2 + 2iγl u + D2
l − γ 2

l D2
l

)1/2

]
,

�
(1)
l = −4αh̄q̃lξ

2
l

v2
F

∫ ∞

Dl

du

( ∑
κ=±1

1

eBl u+κ
μ

kBT + 1

)

×
[

1 − Re

(
1 + iγ −1

l u
)2 + (

γ −2
l − 1

)
D2

l(
1 − u2 + 2iγl u + D2

l − γ 2
l D2

l

)1/2

]
,

(17)
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where γl ≡ ξl/(cq̃l ) and Bl ≡ h̄cq̃l/(2kBT ).
To gain better insight into the meaning of two contribu-

tions in Eq. (14), we note that the quantity (17) can be also
presented as

�
(1)
00,l = A00,l (�,μ) + B00,l (T,�,μ),

�
(1)
l = Al (�,μ) + Bl (T,�,μ), (18)

where A00,l and Al do not depend on T and go to zero with
vanishing μ whereas B00,l and Bl go to zero with vanishing T .

In practical computations, it is convenient to consider sep-
arately the contributions to Eq. (8) with l = 0 and with all
l � 1. Thus, from Eqs. (14), (15), and (17) for l = 0 one
obtains

�00,0 = αh̄c
k⊥
vF

�(D0) + 8αkBT c

v2
F

∑
κ=±1

ln(eκ
μ

kBT + e− �
2kBT ) − 4αh̄ck⊥

vF

∫ √
1+D2

0

D0

du

( ∑
κ=±1

1

eB0u+κ
μ

kBT + 1

)
1 − u2√

1 − u2 + D2
0

,

�0 = αh̄
vF k3

⊥
c

�(D0) + 4αh̄
vF k3

⊥
c

∫ √
1+D2

0

D0

du

( ∑
κ=±1

1

eB0u+κ
μ

kBT + 1

)
−u2 + D2

0√
1 − u2 + D2

0

, (19)

where, according to the above notations, D0 = �/(h̄vF k⊥)
and B0 = h̄vF k⊥/(2kBT ).

At room temperature and a > 100 nm one can obtain also
much simpler approximate expressions for �00,l and �l with
l � 1 than the exact ones given by Eqs. (14), (15), and (17).
For this purpose, the condition ξ1 	 vF /(2a) should be used
leading to [77,79]

�00,l ≈ αh̄c
k2
⊥
ξl

[
�

(
�

h̄ξl

)
+ Yl (T,�,μ)

]
,

�l ≈ αh̄ξl
k2
⊥
c

[
�

(
�

h̄ξl

)
+ Yl (T,�,μ)

]
, (20)

where

Yl (T,�,μ) = 2
∫ ∞

�/(h̄ξl )
du

( ∑
κ=±1

1

eBl u+κ
μ

kBT + 1

)

×
u2 + (

�
h̄ξl

)2

u2 + 1
. (21)

It was shown [77,79] that numerical computations of the
Casimir force using the exact expressions (14), (15), and
(17) for the polarization tensor and, alternatively, the exact
expressions (19) for l = 0 but the approximate expressions
(20) for l � 1 at room temperature and a � 100 nm lead to
computational results differing by less than 0.01%.

Below we consider not only the gradient of the Casimir
force between an Au-coated sphere and graphene-coated sub-
strate but also the thermal correction to it defined as

�T F ′(a, T ) = F ′(a, T ) − F ′(a, 0). (22)

The gradient of the Casimir force at zero temperature,
F ′(a, 0), can be calculated by the Lifshitz formula (8) where a
summation over the discrete Matsubara frequencies should be
replaced with an integration over the axis of pure imaginary
frequency according to

kBT
∞∑

l=0

′ → h̄

2π

∫ ∞

0
dξ . (23)

This means that in Eq. (8) one should replace ξl and ql with
ξ and q. The respective replacements, which also include the

changes of k(n)
l for k(n), q̃l for q̃, �00,l for �00, and �l for �,

should be made in Eqs. (9)–(17).
To calculate the gradients of the Casimir force at zero tem-

perature, one also needs explicit expressions for the quantities

�00 ≡ �00(iξ, k⊥, 0,�,μ),

� ≡ �(iξ, k⊥, 0,�,μ). (24)

They can be obtained using Eqs. (14), (15), and (17) by per-
forming integration with respect to u. The obtained results in
the cases 2μ > � and 2μ � � are different. For the graphene
sample used in our experiment the condition 2μ > � is satis-
fied (see Sec. III) and after calculation one arrives at [79]

�00 = 8αcμ

v2
F

− αh̄k2
⊥

q̃

{
2MIm

(
y�,μ

√
1 + y2

�,μ

)
+ (2 − M )

[
2Im ln

(
y�,μ +

√
1 + y2

�,μ

) − π
]}

,

� = −8αξ 2μ

cv2
F

+ 2αh̄q̃k2
⊥

[
MIm

(
y�,μ

√
1 + y2

�,μ

)

− (2 − M )Im ln
(
y�,μ +

√
1 + y2

�,μ

) + π

2
(2 − M )

]
.

(25)

Here, the following notations are introduced:

M = 1 + D2, y�,μ = h̄ξ + 2iμ

h̄vF k⊥
√

M
. (26)

In the opposite case, 2μ � �, one has [79]

�00 = �
(0)
00 , � = �(0), (27)

where �
(0)
00 and �(0) are defined in Eq. (15) with a replacement

of ξl for ξ .
We postpone a comparison between theoretical predictions

of the above theory and the measurement data to Sec. VI. In
the next section, we consider the relative magnitudes of the
thermal correction and its constituents in the total Casimir
interaction for both real and pristine graphene samples and
provide a qualitative discussion of the origin and physical
nature of the unusually big thermal effect arising in graphene
systems at short separations.
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FIG. 6. The computational results for the relative thermal cor-
rection to the gradient of the Casimir force are shown as functions
of separation by the bottom and top pairs of lines for an Au-coated
sphere interacting either with real graphene sheet deposited on a SiO2

plate or with freestanding real graphene sheet in vacuum, respec-
tively. The solid and dashed lines in each pair are computed including
and neglecting the explicit dependence of the polarization tensor on
temperature as a parameter, respectively.

V. PHYSICAL NATURE AND MAGNITUDE
OF THE THERMAL EFFECT IN REAL AND

PRISTINE GRAPHENE SAMPLES

Let us calculate the relative thermal correction to the gradi-
ent of the Casimir force acting between an Au-coated sphere
of radius R = 60.35 μm and a graphene-coated SiO2 plate
which is given by

δT F ′(a, T ) = �T F ′(a, T )

F ′(a, 0)
, (28)

where the absolute thermal correction �T F ′ is defined in
Eq. (22). We consider the graphene sheet with the experimen-
tal parameters μ = 0.24 eV and � = 0.29 eV. Computations
of the quantity F ′(a, T ) are performed by Eqs. (8), (9), (13),
(19), and (20) and of the quantity F ′(a, 0) — by Eqs. (8), (9),
(13), (23), and (25).

The computational results for δT F ′ at T = 294 K as a
function of separation are presented by the bottom solid line in
Fig. 6. As seen in Fig. 6, at separations of a = 100, 200, 300,
and 400 nm, the relative thermal correction in the experimen-
tal configuration reaches 2.79%, 4.29%, 5.19%, and 5.73% of
the force gradient at T = 0, respectively. This effect is similar
in magnitude to that predicted by the Lifshitz theory for the
Casimir interaction between metallic test bodies described
with inclusion of the dissipation of conduction electrons. As
discussed in Sec. I, for metals this prediction was excluded by
the results of many experiments.

The bottom dashed line in Fig. 6 shows the computational
results for δT F ′ under a condition that the quantity F ′(a, T ) is
computed using the polarization tensor taken at T = 0. This
means that the thermal correction in this case is implicit, i.e.,
fully determined by a summation over the Matsubara frequen-
cies, whereas an explicit dependence of the polarization tensor
on temperature as a parameter is disregarded. As seen from
the bottom dashed line in Fig. 6, at separations of a = 100,

200 400 600 800 1000
0

100

200
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400

500

600

(nm)

FIG. 7. The computational results for the relative thermal cor-
rection to the gradient of the Casimir force are shown as functions
of separation by the bottom and top pairs of lines for an Au-
coated sphere interacting with the freestanding either real or pristine
graphene sheet in vacuum, respectively. The solid and dashed lines
in each pair are computed including and neglecting the explicit
dependence of the polarization tensor on temperature as a parameter,
respectively.

200, 300, and 400 nm, the implicit thermal correction is equal
to 1.53%, 3.10%, 4.24%, and 5.06%, respectively. Thus, with
increasing separation, the role of explicit dependence of the
polarization tensor on temperature gradually decreases and
becomes negligibly small at a � 700 nm.

To determine the role of a SiO2 substrate in the above
results, we repeat computations of the relative thermal cor-
rection δT F ′ for the configuration of an Au sphere and a
freestanding graphene sheet preserving unchanged all other
parameters of the experimental configuration. The computa-
tional results are shown by the top pair of solid and dashed
lines having the same meaning as the respective lines of
the bottom pair. As seen from the top solid line in Fig. 6,
at separations of a = 100, 200, 300, and 400 nm, the ther-
mal correction (28) reaches much larger values of 21.5%,
34.4%, 42.4%, and 47.5%, respectively. This means that in
the absence of a substrate, the thermal effect inherent to the
graphene sheet manifests itself more vividly. The top dashed
line in Fig. 6 illustrates the contribution of an implicit thermal
effect due to a summation over the Matsubara frequencies
to the total thermal correction in the case of a freestanding
graphene sheet interacting with an Au-coated sphere. As seen
in Fig. 6, at separations of a = 100, 200, 300, and 400 nm,
the implicit thermal effect contributes 15.9%, 29.6%, 39.4%,
and 46.1% of the force gradient at T = 0. At separations
exceeding 500 nm, an explicit dependence of the polarization
tensor on T does not lead to a noticeable contribution to the
thermal correction (28).

Up to this point, we have considered the graphene sample
with nonzero � and μ used in our experiment. It should be
noted that for a pristine graphene possessing � = μ = 0, the
thermal effect in the Casimir interaction at short separation
distances would be even much larger. To illustrate this, in
Fig. 7 the computational results for δT F ′ in the configura-
tion of an Au-coated sphere interacting with a freestanding
pristine graphene sheet are shown by the top pair of solid

085436-10



EXPERIMENTAL AND THEORETICAL INVESTIGATION OF … PHYSICAL REVIEW B 104, 085436 (2021)

TABLE I. Separation distances in μm where the zero-frequency term of the Lifshitz formula for the case of two parallel plates made of
materials indicated in column 1 contributes more than 90% (column 2), 95% (column 3), and 99% (column 4) of the total Casimir pressure at
larger separations.

Plate a (μm)

materials 90% of P 95% of P 99% of P

SiO2—Au 3.6 4.2 5.5
(SiO2+real graphene)—Au 3.1 3.7 5.0
(real graphene)—Au 0.8 1.3 2.7
(pristine graphene)—Au 0.7 1.15 2.5
(pristine graphene)—(pristine graphene) 0.11 0.17 0.38

and dashed lines as functions of separation (the total and
implicit thermal corrections, respectively). As seen in Fig. 7,
at separations of a = 100, 200, 300, 400, 700, and 1000 nm,
the thermal correction δT F ′ defined in Eq. (28) is equal to
53.7%, 115.5%, 179.8%, 245.6%, 447.1%, and 659.9%, re-
spectively. According to Fig. 7, for pristine graphene the
implicit thermal correction plays a smaller role than for the
experimental graphene sample. Thus, at a = 100, 200, 300,
400, 700, and 1000 nm, it is equal to 22.5%, 61.1%, 104.3%,
149.8%, 292.5%, and 439.9%, respectively. As a result, the
explicit thermal dependence of the polarization tensor con-
tributes 31.2%, 54.4%, 75.5%, 95.8%, 154.6%, and 212.0%
of F ′(a, 0) at the same respective separations and does not
disappear when the separation increases.

For comparison purposes, the bottom pair of solid and
dashed lines in Fig. 7 reproduces the top pair of lines in Fig. 6
related to the case of an Au-coated sphere interacting with a
freestanding real graphene sheet used in our experiment (with
� = 0.29 eV and μ = 0.24 eV). From Fig. 7, it is seen that
the replacement of a real with a pristine graphene sheet leads
to a qualitatively large increase of the thermal correction to
the gradient of the Casimir force at short separations.

From the above results, it is seen that even the presence
of a graphene sheet deposited on a substrate significantly
increases the thermal effect in the Casimir interaction at short
separations which constitutes only a small fraction of percent
for both metallic and dielectric materials. Because of this, it
is interesting to consider the so-called thermal regime of the
Casimir interaction in the presence of graphene which takes
place under the condition

F ′(a, 0) � �T F ′(a, T ), (29)

i.e., when the thermal correction (22) determines the ma-
jor part of the force gradient at temperature T . This is the
case when the term of the Lifshitz formula (8) with l = 0
becomes much larger than the sum of all remaining terms
with l � 1.

To determine the role of graphene in reaching the ther-
mal regime of the Casimir interaction, we have computed
separation distances between the parallel plates made of dif-
ferent materials such that at larger separations the Casimir
pressure given by the zero-frequency term of the Lifshitz
formula contributes more than 90%, 95%, and 99% of the
total Casimir pressure. The following cases were considered:
an Au plate and a SiO2 plate; an Au plate and a SiO2 plate
coated with real graphene sheet used in our experiment; an

Au plate and a real graphene sheet; an Au plate and a pristine
graphene sheet; two pristine graphene sheets. The obtained
computational results are presented in Table I [we recall that
according to PFA the Casimir pressure between two parallel
plates P = −F ′/(2πR), i.e., is proportional to the gradient
of the Casimir force in sphere-plate geometry used in our
experiment].

As seen in Table I, the presence of a graphene sheet signifi-
cantly decreases the minimum separation distance from which
the Casimir interaction is going into the thermal regime. The
thermal regime starts at especially short separations in the
absence of a material substrate and for the pristine graphene
sheets. Thus, for SiO2–Au plates, the full thermal regime
(99% of the Casimir pressure) is reached only at a � 5.5 μm,
whereas for two pristine graphene sheets it is achieved at
a � 0.38 μm.

In the end of this section, we present a qualitative discus-
sion of the physical reasons why for two pristine graphene
sheets the thermal regime starts at such short separations. It
is common knowledge that for ordinary materials the thermal
regime starts at separations a satisfying the condition [35]

1

2a
� ξ1

c
= 2π

kBT

h̄c
. (30)

This condition can be rewritten as

kBT 	 1

2π
kBTeff , kBTeff ≡ h̄c

2a
, (31)

where Teff is the so-called effective temperature. Thus, ac-
cording to numerical computations in Table I, for two plates
made of Au and SiO2, the full thermal regime is reached at
a = 5.5 μm, which corresponds to the effective temperature
Teff ≈ 208.3 K. In doing so, Teff/(2π ) ≈ 33.2 K so that at
room temperature the inequality (31) is well satisfied. Because
of this, the thermal regime is also called the high-temperature
limit. In the high-temperature limit, the Casimir pressure de-
termined by all Matsubara frequencies with l � 1 is of the
order of [35]

Pl�1(a, T ) ∼ exp

(
−2π

T

Teff

)
, (32)

i.e., is exponentially small.
For graphene, however, the situation is more complicated

because the reflection coefficients do not have the stan-
dard Fresnel form (9) but depend on the polarization tensor.
The major contribution to the Casimir pressure between two
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graphene sheets is given by the TM polarization. From Eq. (8),
we have

Pgr (a, T )≈−kBT

π

∞∑
l=0

′ ∫ ∞

0
qlk⊥dk⊥

r2
TM,gr (iξl , k⊥)e−2aql

1−r2
TM,gr (iξl , k⊥)e−2aql

,

(33)
where the reflection coefficient on a freestanding graphene
sheet rTM,gr is obtained from RTM defined in Eq. (13) by
putting the dielectric permittivity of a substrate ε

(2)
l equal to

unity:

rTM,gr (iξl , k⊥) = ql�00,l

2h̄k2
⊥ + ql�00,l

. (34)

To understand the qualitative physical reasons why
graphene already has a large thermal effect at relatively short
separations, we restrict ourselves to the polarization tensor
taken at T = 0 but calculated at the imaginary Matsubara fre-
quencies (an account of the explicit temperature dependence
may only increase the thermal effect). Then, from Eqs. (15)
and (27), one finds

�00,l = παh̄k2
⊥

q̃l
, (35)

where we have taken into account that for a pristine graphene
in accordance with Eq. (16), it holds �(0) = π .

Substituting Eq. (35) in Eq. (34), we obtain

rTM,gr (iξl , k⊥) = παql

παql + 2q̃l
, (36)

where ql is defined below Eq. (8) and q̃l in Eq. (16).
In the term of the Lifshitz formula (33) with l = 0, the

reflection coefficient (36) takes the value

rTM,gr (0, k⊥) = πα

πα + 2 vF
c

≈ 0.775. (37)

The distinctive feature of graphene is that the reflection
coefficient (36) depends on both c and vF . Because of this,
one can consider the region of separations where

vF

2a
� ξ1 � c

2a
. (38)

The latter of these two inequalities is just the opposite to
the condition (30) required for reaching the thermal regime
between ordinary materials. However, under the inequalities
(38), the reflection coefficient (36) with l = 1 can be approx-
imately presented in the form

rTM,gr (iξ1, k⊥) = πα

2a
(

πα
2a + 2 ξ1

c

) = πα

πα + 4aξ1

c

. (39)

Here, we used that the major contribution to Eq. (33) is
given by k⊥ ≈ 1/(2a) and that Eq. (38) results in q1 ≈ 1/(2a)
and q̃1 ≈ ξ1/c. Taking into account that according to Eq. (38)
vF � 2aξ1, one concludes from Eqs. (37) and (39) that

rTM,gr (iξ1, k⊥) < rTM,gr (0, k⊥). (40)

The left-hand side of this inequality further decreases if ξ1

is replaced for ξl with l > 1. Thus, under the condition (38),
a contribution of the zero-frequency term to Eq. (33) may
become dominant in accordance to the results of numerical
computations.

The first inequality in Eq. (38) can be identically rewritten
in the form

kBT 	 1

2π
kBT gr

eff , kBT gr
eff ≡ h̄vF

2a
, (41)

which is similar to Eq. (31). Thus, for graphene, in addition
to the standard effective temperature Teff defined in Eq. (31),
there exists one more effective temperature T gr

eff defined in
Eq. (41) which is lower than Teff by a factor of 300. Ac-
cording to Ref. [45], the big thermal effect in the Casimir
interaction between two graphene sheets at short separations
is controlled by the effective temperature T gr

eff . Our compu-
tational results and above qualitative estimations show that
the thermal regime of the Casimir interaction in graphene
systems is governed by two effective temperatures T gr

eff and
Teff . In doing so, at short separations, the thermal regime is
determined by the much lower temperature T gr

eff .

VI. COMPARISON BETWEEN EXPERIMENT
AND THEORY

The gradients of the Casimir force F ′(a, T ) between
an Au-coated sphere of R = 60.35 ± 0.05 μm radius and a
graphene-coated SiO2 substrate at T = 294.0 ± 0.5 K tem-
perature were computed by Eqs. (8), (9), (13), (19), and
(20) using the experimental values of the energy gap � =
2.9 ± 0.05 eV and chemical potential μ = 0.24 ± 0.01 eV
(see Sec. III).

It is well known that the Casimir interaction is influenced
by roughness on the interacting surfaces [35,36,102–104]. In
the case of small stochastic roughness with the rms amplitudes
δs = 0.9 ± 0.1 nm and δg = 1.5 ± 0.1 nm on the sphere and
graphene surfaces, respectively (see Sec. II), it can be taken
into account multiplicatively [35,36] resulting in the final
expression for the gradient of theoretical Casimir force:

F ′
theor (a, T ) =

(
1 + 10

δ2
s + δ2

g

a2

)
F ′(a, T ). (42)

This expression was used to compute the upper and lower
boundaries of the top theoretical bands in Fig. 2 presenting
allowed values of the Casimir force gradient at T = 294 K.
These boundaries were computed in the following most con-
servative way, taking a proper account of all errors which are
present in the parameters used.

Thus, the upper boundary lines of the theoretical bands
were calculated with the largest allowed value of the chemical
potential μ = 0.25 eV and the smallest allowed value of the
energy gap � = 0.24 eV. This is explained by the fact that
an increase of μ with fixed � leads to a larger F ′ whereas
an increase of � at a constant μ results in a smaller F ′ [79].
The obtained theoretical bands for F ′

theor were widened to take
into account the errors in the sphere radius and the 0.5% error
in the force gradients arising from uncertainties in the optical
data of Au and SiO2 (an error in the laboratory temperature
indicated above does not influence on the obtained results).

The theoretical bands for F ′
theor were also widened to take

into account small errors of PFA used in Eq. (8). As was
shown in the literature [105–109], when using the PFA, one
obtains slightly increased force gradients as compared to
the exact computational results in the sphere-plate geometry.
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Because of this, we did not correct the upper lines of the the-
oretical bands for the PFA error but introduced the maximum
possible correction factor of (1 − a/R) to the lower boundary
lines.

As seen in Fig. 2, the upper theoretical bands computed at
T = 294 K are in a very good agreement with the measured
gradients of the Casimir force indicated as crosses over the
entire measurement range from 250 to 700 nm. The question
arises as to whether the measurement data demonstrate the
presence of an unusually big thermal effect in the Casimir
force from graphene at short separations which is considered
in Sec. V.

To answer this question, we have computed the gradients
of the Casimir force, F ′(a, 0), at zero temperature by using
Eqs. (8), (9), (13), (23), and (25) for the same parameters of
the experimental configuration indicated above. The obtained
values of F ′(a, 0) were substituted to Eq. (42) and the values
of F ′

theor (a, 0) were calculated. The latter were used to find the
upper and lower boundaries of the theoretical bands for the
Casimir force gradient at T = 0 in the same conservative way
as described above in the case of T = 294 K. The results of
this calculation are presented by the bottom bands in Fig. 2.
As seen in Fig. 2, the bottom theoretical bands computed
at T = 0 are more narrow than the top ones computed at
T = 294 K. This is because our graphene sample possesses a
relatively large value of μ = 0.24 eV. Calculations show that
for such large values of the chemical potential an impact of
the energy gap on the polarization tensor (and, as a conse-
quence, on the reflection coefficients and force gradients) at
T = 0 is considerably suppressed, as compared to the case of
T = 294 K.

From Fig. 2 it is seen that the measurement data exclude the
theoretical predictions at T = 0 shown by the bottom bands
over the wide separation region from 250 to 517 nm and,
thus, demonstrate the thermal effect in the Casimir interaction
arising from our graphene sample.

For a more illustrative demonstration of the observed
thermal effect, we also employ another way of comparison
between experiment and theory based on a consideration of
differences between the theoretical and mean experimental
force gradients [23,25,33,35,36],

F ′
theor (ai, T̃ ) − F ′

expt (ai, T ), (43)

where the experimental force gradients are given by the cen-
ters of the crosses in Fig. 2 and the theoretical ones are
computed with a step of 1 nm as described above.

In Fig. 8, we plot the quantity (43) as a function of separa-
tion by the top and bottom sets of dots obtained at T̃ = T =
294 K and T̃ = 0 K, T = 294 K, respectively. The confidence
bands for the quantity (43) found at T̃ = T = 294 K (solid
lines) and T̃ = 0 K, T = 294 K (dashed lines), respectively,
take into account both the theoretical and experimental er-
rors determined at the 67% confidence level. Note that in
addition to the theoretical errors considered previously, now
we also take into account an error arising from the fact that
the quantities F ′

theor (ai, T̃ ) in Eq. (43) are computed not over
some separation region but at the experimental separations ai

determined with an error �ai. The bands shown by the solid
and dashed lines are slightly different because, as discussed
above, for our graphene sample an error in the energy gap

300 400 500 600 700

1.0

0.5

0.0

(nm)

FIG. 8. The differences between theoretical gradients of the
Casimir force computed either at T̃ = 294 K (top set of dots) or at
T̃ = 0 K (bottom set of dots) and mean experimental gradients are
shown as functions of separation. The solid and dashed lines indicate
the borders of the confidence intervals for the top and bottom sets of
dots, respectively, found at the 67% confidence level.

leads to different errors in the force gradients at T̃ = 0 and at
T̃ = 294 K.

As seen in Fig. 8, within the entire range of separations
from 250 to 700 nm the top set of dots found at T̃ = 294 K
is inside the confidence band shown by the solid lines. This
means that the theoretical gradients of the Casimir force com-
puted at T̃ = 294 K are consistent with the measurement data.
At the same time, the bottom set of dots found at T̃ = 0 K
is outside the confidence band shown by the dashed lines
over the wide range of separations from 250 to 517 nm, i.e.,
the theoretical results computed at T̃ = 0 are experimentally
excluded. These conclusions are in agreement with those ob-
tained above based on Fig. 2.

The differences between the measurement data at T =
294 K and computed at T = 0 force gradients can be used
to plot the thermal correction �T F ′ defined in Eq. (22). In
Fig. 9, it is shown by dots as a function of separation in the
region where the theory at T = 0 is experimentally excluded
and cannot be used for interpretation of the measurement data.
The values of �T F ′ at different separations shown in Fig. 9
are consistent with the theoretical values of δT F ′ computed in
Sec. V for our graphene sample. This can be easily verified
by using the computational results for the gradients of the
Casimir force presented in Fig. 2. Thus, the performed ex-
periment demonstrates an unusual thermal effect in graphene
systems which becomes noticeable even at relatively short
separations of a few hundred nanometers.
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FIG. 9. The thermal correction to the gradient of the Casimir
force found as a difference between the mean experimental gradi-
ents measured at T = 294 K and the theoretical ones computed at
T = 0 K is shown by dots as a function of separation.

VII. CONCLUSIONS AND DISCUSSION

In the foregoing, we have described measurements of the
thermal Casimir interaction between an Au-coated sphere and
a graphene-coated substrate performed at T = 294 K in high
vacuum by means of a custom-built AFM cantilever-based
setup operated in the dynamic regime. Using the two sets of
measurements each of which contains 21 experimental runs,
we have obtained the mean gradients of the Casimir force and
determined their random, systematic, and total experimental
errors over the separation region between a sphere and a
graphene sheet from 250 to 700 nm. In doing so, all the
experimental parameters, including the absolute separations
and their errors, were determined by means of electrostatic
calibration. For the substrate supporting the graphene sheet,
a sufficiently thick fused silica plate has been used which,
as was proposed in Ref. [74], should make it possible to
observe the unusual thermal effect in graphene systems at
short separations predicted in Ref. [45].

According to the literature provided in Sec. I, an experi-
mental discovery of this effect for graphene would be of great
fundamental importance because a similar effect had long
been predicted by the Lifshitz theory for metals described
by the conventional Drude response function [43], but was
experimentally excluded by numerous precision experiments
[22–34].

We have performed measurements of the energy gap and
impurity concentration in the graphene sample used and com-
pared the experimental mean gradients of the Casimir force
with theory based on the first principles of quantum electrody-
namics at nonzero temperature with no fitting parameters. For
this purpose, the response function of graphene was described
by the polarization tensor at nonzero temperature depending
on the energy gap and chemical potential which is found in the
framework of the Dirac model. The experimental results are
in very good agreement with the theoretical ones computed
at T = 294 K over the entire measurement range within the
limits of experimental and theoretical errors. The theoretical
gradients of the Casimir force computed using the same theory

with the same experimental parameters at T = 0 K are conclu-
sively excluded by the measurement data over the separation
region from 250 to 517 nm. Thus, the presence of an unusual
thermal effect in graphene systems at short separations is
confirmed experimentally.

We have investigated the dependence of the thermal cor-
rection to the gradient of the Casimir force between a sphere
and a graphene sample, taking into account the values of the
energy gap and chemical potential of graphene and also the
presence of a substrate. The case of two parallel freestanding
sheets of a pristine graphene, originally studied in Ref. [45],
was also considered. It was confirmed that an observed size
of the thermal effect is in agreement with that for a pristine
graphene, taking into account respective decrease due to the
presence of a substrate and nonzero values of the energy gap
and chemical potential of the graphene sheet used.

An experimental verification of the thermal effect, which
is observed in the Casimir interaction with graphene at short
separations, offers a clearer view on why a similar effect
is experimentally excluded for metallic test bodies. The key
point is that for graphene the response function to quan-
tum fluctuations is determined theoretically on the basis of
first physical principles. It is nonlocal (i.e., depends both on
the frequency and on the wave vector) and pertains equally
to quantum fluctuations on the mass shell (the propagating
waves) and off the mass shell (the evanescent waves). Then, it
is reasonable that the theoretical predictions for the Casimir
interaction, which has contributions from both the propa-
gating and evanescent waves, obtained using this formalism
are confirmed experimentally. In comparison for metals, their
response functions are found partially experimentally from
tabulated values [41] and partially using the theoretical extrap-
olation both given by the effect of only propagating waves.
These response functions are reliably tested only in the area
of quantum fluctuations on the mass shell. Note that it is even
impossible to experimentally test the transverse components
of their spatially nonlocal generalizations in the off-mass-shell
area [42]. This may be the reason why the Lifshitz theory us-
ing the standard Drude model or its generalization for the case
of frequency-dependent relaxation parameter (the so-called
Gurzhi model) fails to predict the correct values of the Casimir
force between metallic test bodies [110].

Thus, information obtained from using graphene leads us
to conclude that the Casimir puzzle for metals could be re-
solved by making the spatially nonlocal modification of the
Drude model in the area of evanescent waves which leaves the
response to the propagating waves almost unchanged. Such an
attempt was already undertaken in Ref. [111]. The suggested
spatially nonlocal Drude-like response functions take into ac-
count the dissipation properties of conduction electrons, as
does the standard Drude model, and simultaneously bring
the Lifshitz theory in agreement with measurements of the
Casimir force between metallic surfaces. It is pertinent to note
that the Lifshitz theory using the nonlocal Drude-like response
functions introduced in Ref. [111] satisfies the Nernst heat
theorem both for metals with perfect crystal lattices and for
lattices with the structural defects [112] (we recall that the
Casimir entropy calculated using the standard Drude model
violates this fundamental theorem for metals with perfect
crystal lattices [35,36,38]).
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To conclude, the observation of an unusual thermal effect
in graphene systems at short separations, reported in this
paper, may stimulate resolution of several other fundamental
problems and also be useful for numerous applications of
graphene in physics and nanotechnology.
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