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The quasiparticle band-gap renormalization induced by the doped carriers is an important and well-known
feature in two-dimensional semiconductors, including transition-metal dichalcogenides (TMDs), and it is of
both theoretical and practical interest. To get a quantitative understanding of this effect, here we calculate the
quasiparticle band-gap renormalization of the electron-doped monolayer MoS2, a prototypical member of TMDs.
The many-body electron-electron interaction induced renormalization of the self-energy is found within the
random phase approximation and to account for the quasi-2D character of the Coulomb interaction in this system
a Keldysh-type interaction with a nonlocal dielectric constant is used. Considering the renormalization of both
the valence and the conduction bands, our calculations reveal a large and nonlinear band-gap renormalization
upon adding free carriers to the conduction band. We find a 410 meV reduction of the band gap for the monolayer
MoS2 on SiO2 substrate at the free carrier density n = 4.9 × 1012 cm−2 which is in excellent agreement with
available experimental results. We also discuss the role of exchange and correlation parts of the self-energy on
the overall band-gap renormalization of the system. The strong dependence of the band-gap renormalization on
the surrounding dielectric environment is also demonstrated in this work, and a much larger shrinkage of the
band gap is predicted for the freestanding monolayer MoS2.
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I. INTRODUCTION

The quasiparticle band gap, defined as the energy gap
between the quasiparticle conduction and valence bands, is
a fundamental feature in semiconductor physics and also an
important parameter in design and fabrication of electronic
and optoelectronic devices such as transistors and solar cells.
In this regard, the ability to tune the quasiparticle band gap
via external factors can be of great importance from both the-
oretical and practical aspects. Among several possibilities of
external manipulation in semiconductors, creating free carri-
ers is the most common one which can be achieved by doping
or generating photoexcited carriers in the system. The pres-
ence of these extra carriers not only changes the phase-space
filling of the system and increases the number of interactions,
but also it can affect the interaction itself through the modifi-
cations made in the screening. The overall outcome of these
effects is a renormalization in the quasiparticle band gap of the
system. This exchange-correlation induced renormalization
of the intrinsic band gap of semiconductors is the so-called
band-gap renormalization (BGR) effect.

Beyond evoking a great experimental interest, studying
the band-gap renormalization and its dependence on carrier
density has also been a long-standing and challenging many-
body problem. The attempts to appreciate the nature of the
band-gap shrinkage began in mid-1960s by studying the bulk
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semiconductors [1–7] and it was continued by exploring the
renormalization process in quantum wells and semiconduc-
tor heterostructures as the primary platforms of the 2D and
quasi-2D electron liquid [8–13]. In these systems, the addition
of free carriers and the subsequent interaction modification
can renormalize the quasiparticle band gap of maximally tens
of meV. A considerably larger band-gap shrinkage of about
several hundred meV was also detected in one-dimensional
semiconducting carbon nanotubes [14].

In the past couple of years, there has been a growing inter-
est in transition-metal dichalcogenide (TMD) monolayers as
a new realization of 2D semiconductors [15–20]. Monolayer
MoS2 as a prototypical member of this vast class of materials
has been the focus of huge amounts of research for many
years. Beside several interesting and distinguished properties
of this system, its quasiparticle and many-body features are of
both fundamental and practical interest [21–25]. Poor screen-
ing and large Coulomb interaction, as well as the possibility
of external manipulation of quantum properties, have made
monolayer MoS2 a potential candidate for surveying the quan-
tum and many-body problems. Exploring the exact band gap
and band-gap renormalization in this system is one of these
challenging problems which has gained attention in the past
few years.

Several experimental and theoretical attempts (mostly
based on density functional simulations) have been made to
measure or predict the band-gap renormalization in TMDs
including monolayer MoS2 and to investigate the role of
the doped or photoexcited carriers in this process [22,26–
32]. All of these studies agree in an exceptionally large
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renormalization of the gap upon adding free carriers to the
system. On the other hand, it is now evident that the size of
the band gap in TMDs is strongly sensitive to the dielectric
features of the surrounding medium [26,31,33–35]. This is an
interesting feature for practical purposes such that choosing
the appropriate environment, we can have the desired band
gap. Although the role of the environment on the intrinsic
size of the band gap has been widely studied using optical
proprieties and the binding energy of the excitons, its effect
on the band-gap renormalization of the doped system has not
been much explored.

In our previous paper, we studied some many-body prop-
erties of the monolayer MoS2 such as quasiparticle energy,
spectral function, renormalization constant, and renormalized
effective Fermi velocity, and we discussed the impact of ex-
ternal variables on these quasiparticle features [36]. Pursuing
the same theoretical procedure here, we focus specifically on
the quasiparticle band-gap renormalization as one of the most
important and practical properties of the system. Considering
the important roles of the doped carriers and also the dielectric
medium, we present a theoretical investigation of the band-
gap renormalization in monolayer MoS2 at zero temperature
over a wide range of densities using the G0W approximation
in the presence of various dielectric environments. Following
our previous study, the dynamical screening of the carriers
is considered within the many-body random phase approx-
imation (RPA) which is a more accurate approximation in
comparison with the simple plasmon-pole approximation, and
furthermore, it is exact for remarkably large charge den-
sity [37]. The effect of the environmental screening is also
considered assuming different substrates for the monolayer.
On the other hand, to mimic a more realistic model, we
have captured the effect of the out-of-plane extension of the
monolayer on the band-gap renormalization using a modi-
fied Coulomb interaction of Keldysh type with a nonlocal
dielectric screening [38–40]. We have previously shown the
crucial impact of this nonlocal screening on the quasiparticle
properties of the monolayer MoS2 [36] which also holds in the
case of band-gap shrinkage. Our calculations reveal that the
electron-electron interaction in the presence of free carriers
decreases the quasiparticle band gap by more than 400 meV
for n = 4.9 × 1012 cm−2 which is in an excellent agreement
with recent experimental findings [32]. We also discuss the
important effect of different substrates on band-gap renormal-
ization in this system.

The paper is organized as follows. In Sec. II, we present
the theoretical framework including a brief introduction to the
effective Hamiltonian and the Keldysh-type electron-electron
interaction. We also provide the theoretical formulation of
the RPA-based self-energy and band-gap renormalization cal-
culation. In Sec. III the numerical results of the band-gap
renormalization are presented and discussed and we compare
our findings with the available experimental and previous
theoretical predictions. Finally, in Sec. IV we provide a brief
summary.

II. THEORETICAL FORMULATION

In Ref. [36] we have explained in more detail the ef-
fective low-energy Hamiltonian and the quasi-2D Coulomb

interaction used to explore the quasiparticle properties of the
monolayer MoS2. For the sake of completeness, we briefly re-
view the key points here. In order to model our electron-doped
monolayer of MoS2 we use a minimal two-band Hamiltonian
of the massive Dirac fermions [41]. The energy dispersion of
the carriers in the conduction and valence bands is then given
by Es

k = s
√

(h̄vF k)2 + �2. Here vF ≈ 5.33 × 105 m/s is the
Fermi velocity, 2� = 2.7 eV is the electronic energy gap
between the valence (s = −) and conduction bands (s = +)
which is the value predicted by ab initio calculations and
experimental measurements [30,42]. The Fermi wave vector
is also defined as kF = √

4πn/g where n is the carrier density
and g is the band degeneracy factor. For monolayer MoS2

we have g = gsgv = 4 where gs = 2 accounts for the spin
degeneracy and gv = 2 is related to the valley degeneracy of
the system. In this work we ignore the spin splitting of the
valence band which is much smaller than the electronic band
gap and does not have a significant effect on the quasiparticle
properties of the system.

Considering a pristine system with no electron-impurity
scattering and neglecting the electron-phonon interaction, the
electrons in the conduction and valence bands interact with
each other through Coulomb interaction. In our calculations
the intervalley interactions are ignored and to consider the
important effect of the out-of-plane extension of the mono-
layer and the subsequent nonlocal screening of the dielectric
environment, we use a Coulomb interaction of Keldysh type
[38–40]

V (q, a) = 2πe2

ε(q + aq2)
, (1)

where ε = (ε1 + ε2)/2 is the average dielectric constant of
the environment and a is a characteristic length related to the
polarizability of the 2D layer and it depends on ε through
a = 36/ε Å [22,43]. Fortunately, due to weak van der Waals
interaction between monolayer MoS2 and substrate, the strain
induced by the lattice mismatch is not noticeable here and we
can consider a system without strain [44–46].

To calculate the band-gap renormalization (BGR), we
should know how the interaction changes the conduction- and
valence-band edges of the system. In an interacting system,
the quasiparticle energy in band s in the on-shell approxima-
tion is given by [37]

E s
Q(k) � ξ s

k + Re �s
(
k, ξ s

k

)
, (2)

where ξ s
k = Es

k − EF is the noninteracting energy measured
from the Fermi level and �s(k, ξ s

k ) is the self-energy of band
s associated with the electron-electron interaction. In this sys-
tem and at zero temperature, T = 0, the retarded self-energy
of the homogeneous electron liquid of band s within the G0W
approximation is given by [37,47]

�s(k, ω) = −
∑

s′

∫
d2q

(2π )2
F ss′

k,k+q

∫ ∞

−∞

d�

2π i

Vq

ε(q,�)

× G0s′ (k + q, ω + �), (3)

where G0s is the noninteracting Green’s function of
the system, Vq is the short form of V (q, a) given by
Eq. (1), ε(q,�) = 1 − Vqχ

0(q,�) is the dynamical dielec-
tric function within the RPA, χ0(q,�) is the noninteracting
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polarization function of the system [48], and F ss′
k,k+q is the wave

function overlap factor of the states s and s′ [49].
The self-energy in Eq. (3) consists of a static exchange or

Hartree-Fock term �ex
s (k) and a dynamical correlation part

�cor
s (k, ω). A formal way of decomposing the correlation

self-energy is the standard line-residue decomposition which
has been explained in more detail in Ref. [36]. The total
self-energy of the system is then given by

�s(k, ω) = �ex
s (k) + �line

s (k, ω) + �res
s (k, ω), (4)

where

�ex
s (k, ω) = −

∑
s′

∫
d2q

(2π )2
VqF ss′

k,k+q

(−ξ s′

k+q

)
(5)

is the exchange part and for the correlation part we have

�line
s (k, ω) = −

∑
s′

∫
d2q

(2π )2
VqF ss′

k,k+q

×
∫ ∞

−∞

d�

2π

[ 1

ε(q, i�)
− 1

] 1

ω + i� − ξ s′
k+q

(6)

and

�res
s (k, ω) =

∑
s′

∫
d2q

(2π )2
Vq

[ 1

ε[q, ω − ξs′ (k + q)]
− 1

]

× F ss′
k,k+q

[



(
ω − ξ s′

k+q

) − 

( − ξ s′

k+q

)]
. (7)

We can see that each of these terms also contains the interband
and intraband self-energies which result from considering
both interband and intraband interactions between electrons.
Considering k = 0 in Eq. (2) for s = + and s = −, the
interaction-induced shift of the conduction-band minimum
and the valence-band maximum can be found. It should be
noted that before populating the conduction band, the va-
lence band has already been full and since we are always
interested in the changes of the self-energy, the self-energy
of the undoped system should be subtracted from its doped
counterpart [1,4]. Therefore, the quasiparticle dispersion of
the conduction-band minimum is given by

Ec
Q(k = 0) � ξ+

0 + Re �̃+(0, ξ+
0 ), (8)

with

�̃+(0, ξ+
0 ) = �+(0, ξ+

0 ) − �ex,inter
+ (0), (9)

where the second term on the right-hand side is the self-energy
of the conduction band for the undoped system which is
an interband exchange term [50] and is found from Eq. (5)
putting s = + and s′ = −.

In the same way, for the valence-band maximum we have

Ev
Q(k = 0) � ξ−

0 + Re �̃−(0, ξ−
0 ), (10)

with

�̃−(0, ξ−
0 ) = �−(0, ξ−

0 ) − �ex,intra
− (0), (11)

where the self-energy of the valence-band edge for the un-
doped system is given by an intraband Hartree-Fock term
considering the s = − and s′ = − case in Eq. (5).
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FIG. 1. The band-gap renormalization (in units of eV) of doped
monolayer MoS2 on SiO2 substrate with effective dielectric constant
ε = 2.5 as a function of the electron doping density (in units of
1012 cm−2). Inset: The conduction-band minimum and valence-band
maximum renormalization (CBR and VBR) as functions of the dop-
ing density. Notice that the intraband interactions in the conduction
band and the interband interactions in the valence band grow upon
adding free carriers; however, the former is greater than the latter
owing to the large gap between the bands.

Finally the electron-electron induced BGR is given by

BGR = �Eg = Re �̃+(0, ξ+
0 ) − Re �̃−(0, ξ−

0 ), (12)

where the first term on the right-hand side shows the
conduction-band minimum renormalization (CBR) while the
second term gives the renormalization of the valence-band
maximum (VBR). It is important to note that to avoid the
wrong and inaccurate numerical results for the BGR, the
integrals in Eqs. (5)–(7) should be rewritten for the special
case k = 0.

III. BAND-GAP RENORMALIZATION RESULTS

In Fig. 1 we show our results for the total BGR of an
electron-doped monolayer MoS2 on SiO2 substrate with ef-
fective dielectric constant ε = 2.5 as a function of doping
density. A very large band-gap renormalization of about
0.55 eV is achieved when the density is increased up to
n = 6 × 1013 cm−2. The most significant part of this non-
linear and large renormalization belongs to the low-density
region such that about 70% of the band-gap shrinkage occurs
with n = 3 × 1012 cm−2 showing that even a light doping
can strongly decrease the band gap of a monolayer MoS2.
In the inset, we show separately the conduction-band (CBR)
and the valence-band (VBR) contributions in the total band-
gap renormalization. We can see that the interaction leads to
a downward shift of the conduction-band minimum and at
the same time it causes an approximately identical upward
shift in the valence-band maximum. It turns out that adding
free carriers to the conduction band leads to a reduction
of the interaction in the valence band and finally results in
an upward shift in this band. As the doping density is in-
creased, the conduction-band renormalization starts to exceed
the renormalization in the valence band. This is because upon
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FIG. 2. Exchange (ex), residue (res), and line contributions of the
total self-energy in conduction- and valence-band renormalization
as functions of the doping density. Inset: The enlarged plot of the
residue and exchange terms in the valence band.

adding free carriers in the conduction band, the intraband
interactions in this band and the interband interactions in the
valence band grow, but due to the large gap between the
bands, the former is greater than the latter. Our results of the
band-gap renormalization calculation are in good agreement
with the experimental findings of Ref. [32]. In that paper,
the authors report a band-gap reduction of about 0.4 eV for
an n-doped monolayer MoS2 on SiO2 substrate at n = 4.9 ×
1012 cm−2 (before optical excitation). At the same doping,
our calculations show a 0.41 eV band-gap renormalization
which obviously indicates a very good quantitative agreement
with the measured reduction of the band gap. To perceive
the impact of many-body electron-electron interaction, the
contributions of different terms of the total self-energy are
illustrated separately in Fig. 2 for both the conduction-band
minimum and the valence-band maximum. Note that here the
exchange self-energy of the conduction band contains only
the intraband term while that of the valence band shows the
interband term. We can see that in the conduction band the
negative exchange self-energy tends to reduce the band-edge
energy through altering the electron occupation. On the other
hand, the overall correlation self-energy [�line

+ + �res
+ ] being

negative in a low-density regime helps in sharper reduction
of the conduction-band minimum. As the density is increased
this term changes sign and grows gradually with the density
and decelerates the reduction of the band-edge energy in the
high-density regime.

Looking at the correlation parts separately, it turns out that
the absolute value of �line

+ which expresses the effect of carrier
screening on the self-energy of the system has an abrupt
decrease at low densities (reducing the electron-electron in-
teraction) and a saturating behavior at high densities. The
�res

+ term is also a density-dependent term and at the same
time the changes in phase-space filling affect this term. At
the conduction-band edge, the interband interactions have no
contribution in the residue term, and we can see that this
term is very similar to the exchange self-energy but with the
opposite sign especially at low densities. In fact, the combi-
nation of the residue and the exchange self-energies at the

band edge is approximately equal to the so-called screened
exchange self-energy which grows linearly with the density
and is much weaker than the unscreened exchange self-energy.
In the case of the valence band, the line term is the same as that
of the conduction band but with the opposite sign which shows
that the screening of the free carriers weakens the interaction
of the electrons in the valence band and causes an upward
shift in the energy of the band-edge quasiparticles. Contrary
to the conduction band, the residue term here only contains
an interband term and that is why both the residue and the
exchange self-energies are very small. In fact the poor overlap
between the wave functions of the valence and the conduction
band reduces the value of these terms.

The overall behavior of the exchange and correlation parts
of the self-energy indicates that at low density, the residue
and exchange terms are approximately equal but with opposite
signs and therefore the line part of the correlation self-energy
of the two bands determines the sharp shrinkage of the band-
gap renormalization in this regime. However, upon increasing
the free carrier density, both the saturating character of the
line term and the increasing value of �ex + �res play a role in
the ultimate evolution of the band-gap renormalization in this
regime.

As the behavior of the BGR in low densities is deter-
mined by the line part of the correlation self-energy, we can
conclude that the carrier screening is the dominant mecha-
nism in this limit. It has long been known that the BGR in
2D and quasi-2D semiconductors is larger than their three-
dimensional counterparts [9,10]. This is owing to the poor
intrinsic screening and consequently larger Coulomb interac-
tion in these systems. In this case, the system is very sensitive
to additional screening mechanisms such as free-carrier in-
duced screening or environmental screening. Therefore, the
screening induced by even a low density of doped carriers in
two-dimensional systems can strongly affect the interaction
and reduce the band gap of the system. This is also the case
when a moderate dielectric material is present in the vicinity
of the monolayer MoS2 where environmental screening plays
a role. In general, adding free carriers to the conduction band
introduces new poles to the screened interaction (or zeros
to the dielectric function), the so called plasmon excitations,
which lead to additional electronic screening effect due to
free carriers. This effect lies at the heart of the �line and is
crucial in determining its behavior. Unfortunately we can-
not find an analytical expression for the asymptotic behavior
of the BGR for the low-doping regime. This is due to the
complications associated with momentum and frequency in-
tegration of �line and also the complexity of the dielectric
function of the system calculated in the RPA. Meanwhile
our numerical results show an n1/7 behavior for the band-gap
renormalization at the low-doping regime with carrier density
in the range 1010–1012 cm−2. As the density is increased both
the saturating character of the line part and the positive in-
crease of �ex + �res lead to a smoother behavior of the BGR
(approximately n1/9 for 2 × 1013 < n < 6 × 1013 cm−2). We
have summarized some of our results for the conduction-
and valence-band renormalization (CBR and VBR) and the
discussed contributions of the total self-energy in Table I.

The effect of the substrate is also of great importance in the
results of the band-gap renormalization due to the vast impact
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TABLE I. Numerical values of the conduction- and valence-band renormalization (CBR and VBR) and the exchange (ex), residue (res),
and line contributions of the total self-energy in monolayer MoS2.

Conduction band Valence band

n (1012 cm−2) ex (eV) res (eV) line (eV) CBR (eV) ex (10−3 eV) res (10−3 eV) line (eV) VBR (eV)

1 −0.091 0.091 −0.166 −0.166 −0.01 0.01 0.166 0.166
5 −0.180 0.179 −0.205 −0.207 −0.14 0.14 0.205 0.205
10 −0.236 0.233 −0.223 −0.226 −0.36 0.35 0.223 0.223
20 −0.304 0.298 −0.241 −0.246 −0.87 0.84 0.241 0.240
40 −0.382 0.371 −0.258 0.269 −2.05 1.94 0.258 0.258
60 −0.433 0.417 −0.267 −0.283 −3.31 3.09 0.267 0.267

of the environmental screening on the strength of the Coulomb
interaction. In Fig. 3 we have compared the BGR results of
monolayer MoS2 on two different substrates: SiO2 with effec-
tive dielectric constant ε = 2.5 and Al2O3 with ε = 5 and also
the suspended monolayer MoS2 with ε = 1. We can see that
in comparison with the ε = 2.5 case with BGR ≈ 0.55 eV,
the band-gap renormalization reduces to 0.36 eV for ε = 5
while for a monolayer MoS2 with no substrate the band-gap
shrinkage is as large as 0.85 eV (for n = 6 × 1013 cm−2). This
effect has also been discussed in Ref. [31] for a photoexcited
monolayer MoS2 and although the treatment in doped and
photoexcited systems is not exactly the same, our findings are
remarkably similar for the suspended monolayer MoS2 and
also MoS2 on SiO2. We can also realize from this figure that
even a light doping in a system surrounded by a medium with
a small dielectric constant can lead to a large band-gap renor-
malization such that for a freestanding monolayer MoS2, 70%
of the band-gap shrinkage (≈0.6 eV) occurs with a density as
low as n = 1.2 × 1012 cm−2. Before concluding this part, we
want to mention that even in the case of undoped MoS2, the
dielectric constant of the surrounding medium plays a crucial
role in the intrinsic band gap of the system such that the band
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= 2.5

FIG. 3. Band-gap renormalization of doped monolayer MoS2 on
Al2O3 with ε = 5, SiO2 with ε = 2.5, and suspended monolayer
MoS2 with ε = 1 as functions of doping density. Notice that a
small dielectric constant can lead to a large band-gap renormal-
ization such that for a freestanding monolayer MoS2, significant
band-gap shrinkage (about 0.6 eV) occurs with a density as low as
n = 1.2 × 1012 cm−2.

gap of the undoped monolayer MoS2 varies from 1.8 eV to
2.8 eV depending on the environment [34]. Since the intrinsic
band gap is an input parameter in our calculations, we investi-
gate its impact on the BGR and find that changing the intrinsic
band gap from 1.8 eV to 2.8 eV does not cause a noticeable
change in the BGR. Meanwhile the system surrounded by a
smaller dielectric environment and higher densities is compa-
rably more affected such that for a freestanding monolayer
MoS2, the change in the calculated BGR is about 18 meV
in the low-density regime, n = 1012 cm−2 and 34 meV for
1013 cm−2. In the case of monolayer MoS2 on a substrate with
ε = 5 and for the same densities, the change in the BGR is not
more than 9 and 21 meV, respectively.

IV. SUMMARY

To summarize, we have obtained the quasiparticle band-
gap renormalization of the electron-doped monolayer MoS2

within G0W and the RPA. A large and nonlinear renormaliza-
tion of the band gap is found considering the contributions of
both conduction and valence bands. We have shown that upon
adding free carriers to the conduction band, an upward shift
in the valence-band edge together with an inverse downward
shift in the conduction-band minimum result in the overall
renormalization of the band gap. We have also discussed the
contributions from the exchange and correlation parts of the
self-energy on the valence- and conduction-band renormaliza-
tion in low- and high-density regimes. We should emphasize
that considering the nonlocal dielectric screening in this sys-
tem through a modified Coulomb interaction is absolutely
crucial in obtaining the final results, such that ignoring this
point we would find extremely large and nonphysical values
for the BGR due to exceptionally strong interactions.

Finally, the important and less-studied effect of the en-
vironmental dielectric medium has been considered in this
work, and we have found that the substrate-induced screening
has a major effect on the quasiparticle band-gap renormal-
ization in monolayer MoS2 such that a medium with smaller
effective dielectric constant gives rise to a much larger band-
gap renormalization in this system. Our results agree well with
recent experimental measurements and previous theoretical
findings and can pave the way for understanding the combined
effect of doping and dielectric medium on the band-gap renor-
malization of the monolayer MoS2.

This approach can also be generalized to calculate the
renormalized spin-orbit coupling in transition-metal dichalco-
genide monolayers for a hole-doped case. An improvement
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to this study is considering the finite-temperature impact on
BGR calculation. Qualitatively, we expect a decrease in BGR
as the temperature is increased. This is owing to the fact
that as we increase the temperature, the decaying channel
of quasiparticles into plasmons starts to wipe out and conse-
quently the contribution of plasmons in the dielectric function
of quasiparticles is washed out. Since this contribution plays
a major role especially in the line part of the self-energy, a
smaller renormalization in the band gap is expected at finite

temperature. But the quantitative estimation of the BGR and
its behavior at different doping regimes needs an exact finite-
temperature self-energy calculation.
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