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Excitonic two-photon absorption in monolayer transition metal dichalcogenides:
Impact of screening and trigonal warping
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Two-photon spectroscopy is an important tool for detection of states that are dark in single-photon spectra.
We calculate two-photon absorption spectra for monolayer transition-metal dichalcogenides including excitonic
effects based on a Bethe-Salpeter equation approach. Both spin-orbit coupling and trigonal warping are included.
Our results reveal that otherwise dark p states dominate the two-photon response. However, weakly allowed
two-photon transitions coinciding with single-photon s-state resonances appear due to trigonal warping. The
angular momentum character of participating excitons is analyzed and we study the sensitivity to screening by
dielectric surroundings and discuss the free-carrier limit. Biexciton contributions to the high-energy two-photon
response are estimated using a simplified Wannier approach. Finally, a brief comparison with recent experiments
is given.
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I. INTRODUCTION

The two-photon absorption (TPA) process was first pre-
dicted by Göppert-Mayer [1] and since applied in a range of
laser-based applications such as microfabrication [2], imaging
[3], power limiting [4], and data storage [5]. In addition, TPA
spectra provide important information on electronic states
since the optical selection rules are distinct from single-
photon absorption (SPA) transitions [6]. This follows from
the fact that TPA may be seen as two successive SPA
events proceeding via an intermediate state. In particular, in
inversion-symmetric systems, one-photon transitions connect
opposite-parity states, whereas TPA couples states with iden-
tical parity [6]. In low-dimensional semiconductors, SPA very
precisely identifies the lowest optically bright excitons [7–10].
Yet, to determine their binding energy, excitonic resonances
must be compared to the quasiparticle band gap, at which
a continuum of transitions sets in. This onset is often diffi-
cult to locate in SPA spectra, particularly in low-dimensional
semiconductors. In contrast, TPA probes higher excitons that
are dark or only weakly bright in SPA. Hence, using Wan-
nier excitons as an illustrative example, SPA mainly probes
bright 1s excitons while TPA reveals the location of 2p and
higher dark states. The combined information in these spectra
has recently enabled the extraction of quantitative exciton
binding energies and band gaps using TPA spectroscopy in
carbon nanotubes [11] as well as three of the most important
transition-metal dichalcogenides (TMDs) WSe2 [12,13], WS2

[14], and MoS2 [15]. In addition, the very large TPA response
demonstrated in MoS2 [16,17] is promising for technological
applications.

In the present paper, we explore excitonic TPA in mono-
layer TMDs using a four-band model of the band structure
including spin-orbit (SO) coupling. Excitons are then modeled
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on top of the band structure using the Keldysh potential to
incorporate electron-hole interaction. We describe the non-
linear optical response within a length-gauge approach that
has previously been shown to accurately capture the response,
even if the number of bands considered is severely truncated
[18]. Moreover, semianalytical results are obtained using a
simplified trigonal-warping Hamiltonian [19] and we discuss
the free-carrier limit of the response. Our focus is on the
role of screening in TPA and we find that TPA resonances
remain visible even in highly screened cases such as hBN
encapsulation. Theoretical analyses of the TPA response in
TMDs including selection rules have previously been made
in Refs. [20,21]. While no quantitative predictions for TPA
were given in Ref. [20], a detailed velocity-gauge analysis of
the spectral response was presented in Ref. [21]. In that work,
however, the sum over intermediate states was approximated
by replacing actual intermediate energies by their average.
This replacement has the great advantage of allowing for an
analytic evaluation of the sum. In turn, a Wannier-exciton
model can be applied to express the TPA amplitude in terms of
the final-state gradient [21]. Using instead length gauge, as in
the present paper, the intensity of individual intermediate-state
contributions can be accurately described. In length gauge,
accurate inter-exciton matrix elements are obtained in terms
of generalized derivatives of exciton wave functions, even if a
very restricted set of bands is included [18]. We can therefore
decompose the total TPA response into dominant transition
paths. We also uncover the role of trigonal warping break-
ing Wannier-exciton selection rules based on definite angular
momentum. In fact, we predict weak TPA features coinciding
with SPA resonances due to trigonal warping. Furthermore,
the role of screening by a dielectric environment is studied in
detail, including the free-carrier limit appropriate for cases of
very large screening. Finally, we include exciton-exciton in-
teractions through biexciton contributions to the TPA response
showing that these add significantly to the high-energy part of
the spectrum.
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II. TWO-PHOTON ABSORPTION

We will consider a two-dimensional (2D) material un-
der excitation by a monochromatic electric field �E (t ) =
1
2 ( �E0e−iωt + �E∗

0 eiωt ). In this case, the induced sheet current
density oscillating as e−iωt is

�Jω(t ) = 1
2σ (1) �E0e−iωt + 1

2σ (3) �E0 �E∗
0

�E0e−iωt + higher order.

(1)

Here, σ (1) is the linear conductivity tensor while σ (3) =
σ (3)(ω; ω,−ω,ω) is the third-order contribution, also denoted
the optical Kerr effect. Both conductivities are sheet quantities
obtained by integrating currents over the perpendicular (z)

dimension. Up to third order, the absorbed power density
is Pabs = 1

2 Re{ �E∗
0 σ (1) �E0 + �E∗

0 σ (3) �E0 �E∗
0

�E0}. For transmission
through a fully isotropic system (scalar conductivities), the
reduction of the optical intensity I = 1

2ε0c|E0|2 is determined
by the transmittance T = 1 − Pabs/I = 1−α − βI with α =
Reσ (1)/(ε0c) and β = 2Reσ (3)/(ε0c)2 the single- and two-
photon absorptance, respectively.

We apply the length-gauge excitonic density matrix ap-
proach developed in Refs. [18,19]. In those works, the only
third-order process considered was third-harmonic generation
J3ω. Hence, for the present purpose, we extend our previous
work by collecting the third-order response at the fundamental
frequency, which is given by

σ
(3)
μηαβ (ω) = − e4h̄

m2A

∑
m,n,l

X α
0l�

η

lnQμ
nmX β

m0[h̄2ω2(4Em + En) + h̄ω(ElEn − EmEn − 4El Em) + 3ElEmEn](
h̄2ω2 − E2

l

)(
h̄2ω2 − E2

m

)
(2h̄ω − En)En

+ e4h̄

m2A

∑
m,n,l

�
μ

0lQ
η

lnQα
nmX β

m0[h̄ω(4Em − En) − 3EmEn]

(h̄ω − El )
(
h̄2ω2 − E2

m

)
(2h̄ω − En)En

+ (ω → −ω)∗. (2)

In this expression, greek indices indicate Cartesian directions, A is the sample area, Ei is the energy of the ith state measured
relative to the ground state E0, and m, n, and l each run over all states including the ground state. In general, care should be
taken due to the divergence encountered when n = 0 (see Ref. [22]). This term, however, does not contribute to TPA at finite
frequency and, hence, can be ignored. The matrix elements are dipole type:

X α
0m =

∑
�k

ipα

vc�k
Ecv�k

ψ
(m)
�k , Qβ

mn = i
∑

�k
ψ

(m)∗
�k

[
ψ

(n)
�k

]
;kβ

, (3)

as well as momenta �α
i j . Here, [ψ (n)

�k ];kβ
≡ dψ

(n)
�k /dkβ − i(
β

cc�k−

β

vv�k )ψ (n)
�k denotes the generalized derivative of the nth exciton

wave function ψ
(n)
�k expressed in terms of the Berry connection �
mm�k [23]. Also, pα

vc�k is a Cartesian component of the interband
momentum matrix element and Ecv�k is the corresponding transition energy for a pair of valence (v) and conduction (c)
bands. The momenta are converted to dipole matrix elements using [19] �

μ

0l = −iElX
μ

0l and �
μ

ln = i(El − En)Qμ

ln. In TMDs,
the nonvanishing third-order tensor elements are related via σ (3)

xxxx = σ (3)
xxyy + σ (3)

xyxy + σ (3)
xyyx in addition to an identical set with

x ↔ y interchange. With circular polarization �E0 = (x̂ ± iŷ)E0/
√

2, the response is �Jω = σ (3)
xxxx(x̂ ± iŷ)E3

0 . In the degenerate
(i.e., monochromatic) case, such as the present, only the sum σ (3)

xxyy + σ (3)
xyxy + σ (3)

xyyx has physical meaning and we, therefore, need
only consider the diagonal response

σ (3)
xxxx(ω) = ie4h̄

m2A

∑
m,n,l

X x
0lQ

x
lnQx

nmX x
m0Fmnl (ω)(

h̄2ω2 − E2
l

)(
h̄2ω2 − E2

m

)
(2h̄ω − En)En

+ (ω → −ω)∗, (4)

where

Fmnl (ω) = h̄2ω2
(
8EmEl − 4EmEn − E2

n

) + h̄ω(Em − El )E
2
n − 3ElEmE2

n . (5)

From this expression, it is clear that both single-photon (h̄ω =
Em or El ) and two-photon resonances (2h̄ω = En) contribute
to the response. For the present purposes, we focus on the two-
photon resonance. Replacing En by 2h̄ω in the real part of the
TPA response means that Fmnl (ω) = −4h̄2ω2(Em + h̄ω)(El +
h̄ω), such that

Reσ (3)
xxxx(ω) = 2πe4h̄2ω

m2A

∑
n

∣∣∣∣∣
∑

m

X x
0mQx

mn

Em − h̄ω

∣∣∣∣∣
2

δ(En − 2h̄ω).

(6)

This relation is equivalent to derivations based on Fermi’s
“golden rule” [24]. In practical applications, we include line-
shape broadening by adding a small imaginary part to the
frequency ω → ω + i and replace the Dirac delta function
by a Lorentzian:

σ (3)
xxxx(ω) = 2ie4h̄2ω

m2A

∑
n

∣∣∣∣∣
∑

m

X x
0mQx

mn

Em − h̄ω

∣∣∣∣∣
2

1

En − 2h̄ω
, (7)

where ω is now understood to be complex. In this expression,
m is the intermediate state while n is the final state. In the
cylindrically symmetric Wannier approximation, the ground
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state zero is only dipole coupled to s type excited states, which
determine the SPA response. In TPA, the intermediate state
m would be s type and, in turn, the final state n must be
p type. As explained in Ref. [20] and demonstrated below,
such simple selection rules apply only approximately due to
trigonal warping.

III. EXCITONIC RESPONSE

The effective four-band model introduced in Ref. [25]
captures the essential physics of monolayer TMDs in the
low-energy regime. Briefly, a two-site hexagonal lattice with
spin-orbit coupling is considered, leading to four bands with
band gaps located at the K and K′ Dirac points. Moreover,
states are diagonal in spin such that, in fact, the model reduces
to two decoupled two-band systems, one for each spin. How-
ever, only the combined four bands preserve time-reversal
symmetry. The simplicity of the model makes it feasible to
incorporate exciton effects with a dense k-point grid. Based
on this band structure, we model exciton states by solving
the Bethe-Salpeter (BSE) equation using a 100 × 100 k-point
grid. We describe electron-hole interactions using the Keldysh
potential [26] with a nonlocal screening ε(q) = κ + r0q,
where κ is the average of sub- and superstrate dielectric
constants and r0 is the TMD screening length. A slightly
modified version of this model has been found to apply to
TMD heterostructures as well [27]. Different values of κ

represent (1) suspended TMDs κ = 1, (2) TMDs on SiO2

substrates κ = 1.55, (3) hBN encapsulated TMDs κ = 4.5,
and (4) free-carrier limit κ = 100. The large κ value applied to
simulate free-carrier response can be compared to the analytic
free-carrier limit derived in the Appendix.

Before discussing the optical response, we investigate the
exciton levels in the representative TMDs MoS2 and WSe2.
The former has a moderate SO splitting, while SO coupling
in the latter is sufficient to shift B excitons into the contin-
uum formed by A excitons. The band structure follows from
diagonalizing the Hamiltonian [25]:

↔
H =

(
� + σλg −γ f

−γ f ∗ −� − σλg

)
(8)

with

f (�k) = eikxa/
√

3 + 2e−ikxa/2
√

3 cos(kya/2),

g(�k) = 2{sin(kxa
√

3/2 + kya/2) − sin(kya)

− sin(kxa
√

3/2 − kya/2)}. (9)

Here, ±� is the staggered on-site potential of the two
sublattices, λ is the effective spin-orbit coupling, γ is the
nearest-neighbor hopping parameter, and a is the lattice con-
stant. The band gaps of the two valleys are EK = 2�−σ6

√
3λ

and EK′ = 2� + σ6
√

3λ, respectively. Hence, for spin-up
electrons (σ = 1), the true band gap Eg = 2�−6

√
3λ is at

the K point. All parameters are taken from Ref. [28] with
the exception that we use � = 1.08eV for WSe2 to match
the experimental band gap. Also, in Ref. [28], � was de-
termined without considering spin-orbit coupling, i.e., using
� ≈ Eg/2. Hence, to ensure a more accurate value, a shift
� → � + 3

√
3λ is applied in the present paper. Finally, the

FIG. 1. Exciton levels in MoS2 (upper panel) and WSe2 (lower
panel) vs substrate screening. Main panels show K valley spin-up
spectra, while the upper inset depicts the corresponding K′ states for
MoS2. The lower inset is a schematic illustration of TPA and SPA
processes and their distinct selection rules.

role of a screening environment κ on the band gap must
be addressed. Physically, the band gap contains a quasiparti-
cle contribution, which is sensitive to κ . The bare band-gap
parameter � corresponds to the suspended case κ = 1. To
correct for screening, we will therefore rely on the experi-
mental observation that the fundamental 1s exciton resonance
is largely independent of κ , i.e., occurs at approximately the
same energy irrespective of substrate [29]. This can be seen
as a cancellation between shifts of quasiparticle and exciton
binding energies. Hence, for κ 
= 1 we adjust � to keep the
fundamental 1s exciton at the energy found in the unscreened
case κ = 1.

The exciton energy levels of MoS2 and WSe2 are illus-
trated in Fig. 1 as functions of surrounding screening κ . The
fundamental 1s exciton is located at approximately 1.92 and
1.64 eV in the two materials, respectively. Since the present
model does not have exact rotational symmetry, angular mo-
mentum assignment, i.e., s, p, d , etc., is only approximate.
In practice, we assign an angular momentum l by projecting
exciton wave functions on circular eigenstates exp(ilθ ) and
locate the largest projection. Two distinct 2p states (2p±) are
found in this manner. These would have been degenerate in
case of perfect circular symmetry but are split by trigonal
warping. Above these, 2s and 3d states appear, with the latter
nearly degenerate with 3p states. The corresponding states
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FIG. 2. SPA (right axes) and TPA (left axes) spectra of MoS2 (a) and WSe2 (b). Designations are included for the dominant resonances
including angular momentum and valley. In the top panels, vertical blue lines indicate exciton levels and the dashed lines show the band gap.
In the lower panels, the impact of substrate screening is illustrated in four cases. The solid black curves are analytical free-carrier spectra. For
WSe2, an experimental spectrum from Ref. [13] is added (circles).

in the K′ valley, as shown in the upper inset in Fig. 1, are
similar but shifted upwards by the spin-orbit splitting. Also,
if spin-down states are considered, K and K′ valley states are
interchanged.

The TPA process is shown schematically in the lower
inset of Fig. 1. Because of the intermediate state, the selec-
tion rules are opposite to those of the SPA process. Hence,
whereas SPA is dominated by s states, the final state in TPA
is predominantly p type. With perfectly circular symmetry
(and within the dipole approximation), these selection rules
would be exact. Trigonal warping, however, relaxes symmetry
requirements and in TPA small contributions from s and d
states are expected. In Fig. 2, we compare SPA and TPA
spectra for MoS2 and WSe2. In both cases, a line broadening
of h̄ = 10 meV is applied. The single-photon response is
reported in terms of the real part of the conductivity σ cal-
culated in the standard manner [18,19] and normalized by the
conductivity quantum σ0 = e2/4h̄. Pronounced resonances in
the SPA spectra at the 1sA and 1sB states of the two valleys
are observed but higher s states are visible as well. Despite
trigonal warping, it is seen that p states have little intensity in
the linear response. In contrast, TPA spectra are dominated by
p states. However, a small but clearly visible peak at the 1sA

energy is observed, as are shoulders on the high-energy side
of 2pB. These features are consequences of trigonal warping,
as demonstrated below.

The lower panels in Fig. 2 illustrate the evolution of the
TPA spectra as screening by the surroundings is increased
from the vacuum limit κ = 1 to the free-carrier limit κ � 1,

where exciton effects are completely suppressed. We also
include two technologically relevant cases, namely, κ = 1.55
and 4.5, that describe screening by SiO2 substrates and hBN
encapsulation, respectively. We stress that, in all cases, the
1sA resonance is kept fixed at the unscreened value. As a
consequence, all higher excitons redshift as screening is in-
creased (see Fig. 1). With the assumed broadening, discrete
p resonances are still clearly visible even in cases of sub-
stantial screening such as hBN encapsulation. However, the
background free-carrier contribution becomes increasingly
dominant with increased screening.

Figure 2 also includes a comparison of theory with exper-
imental TPA data for WSe2 from Ref. [13] since no data for
monolayer MoS2 exist. The measurements are for WSe2 on
SiO2 substrates and reported in terms of Im{χ (3)}, which is
equivalent to β(ω)/ω. In the figure, experimental data have
been scaled to match theory near the low-energy side of the
main resonance around 2h̄ω = 1.8eV. In this spectral range,
experiment and calculation are in good agreement. However,
we note that the measured main resonance does not coincide
with the calculated 2pA position, in contradiction to theory.
Rather, a broad resonance overlapping with both 2pA and 3pA

is observed without a discernable dip in between. A similar
conclusion was reached in Ref. [13] by applying the SPA spec-
trum to locate the band gap and a Keldysh model similar to the
present one to compute p-state energies. We speculate that the
discrepancy is at least partly due to anomalous homogeneous
and inhomogeneous broadening that is not accounted for in
the model, in addition to relatively poor spectral resolution
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FIG. 3. Four dominant TPA paths in the K valley (a) with participating transitions shown in red with line thickness indicating intensity.
(b), (c) TPA spectra of suspended MoS2 (b) and WSe2 (c) decomposed into dominant paths.

in the experiment. It is well known that a simple model with
fixed broadening cannot quantitatively account for the SPA
spectrum [30]. Thus, distinct 2s resonances are predicted from
theory if the empirical 1s broadening is adopted for the full
SPA spectrum. In contrast, measured 2s resonances only show
up as very weak spectral features. This discrepancy can be
largely resolved by including energy-dependent broadening
mechanisms involving quasiparticle effects [30]. It is possible
that similar state-dependent broadening could improve the
agreement in the TPA case as well. Finally, we note that
the magnitude of the TPA response, even at resonance, is
somewhat smaller than the single-frequency absolute values
reported in Refs. [16,17] for monolayer MoS2.

In the limit of infinite screening, the excitonic theory
should agree with usual free-carrier expressions. In practice,
a formal demonstration of this agreement can be complicated,
however. A useful strategy to this end is to express the re-
sponse in terms of exciton Green’s functions that become
diagonal in k space if Coulomb effects are ignored. In the Ap-
pendix, we show that this procedure leads to a simple integral
over k space [see Eq. (A3)]. Moreover, an excellent analytical
approximation to the integral is given in Eqs. (A5) and (A6).
These agree with previous results for gapped graphene [31]
and semiconductor quantum wells [32]. In Fig. 2, we compare
the results of Eq. (A3) with the numerical solution of the
exciton model using very large screening κ = 100. These
are shown as solid black and dotted red lines, respectively,
and show excellent agreement. The exciton model therefore
clearly converges to the correct free-carrier limit as screening
increases.

The TPA response in TMDs directly probes a set of tran-
sitions that are not readily accessible in SPA. Hence, it is
a potential source of important information about exciton
states, in addition to the previously documented ability to
estimate exciton binding energies [11–15]. To discuss the
contributions from distinct excitons it is useful to consider

the semianalytical k-space model developed in Ref. [19].
In this model, excitons are expanded in states of definite
angular momentum ψl (k, θ ) = φl (k) exp(ilθ ) that couple to
ψl±1(k, θ ). States with l = {−3,−2,−1, 0, 1} in the K valley
are identified as {d−, p−, s , p+, d+}, respectively. A simi-
lar designation applies to the K′ valley under the exchange
l± → −l∓. Due to the coupling between angular momenta,
however, the l designation is not exact but only represents the
dominant character, and the degeneracy between l± states is
raised. In addition, optical excitation produces a complicated
landscape of couplings, with trigonal warping responsible
for coupling between angular momenta l and l ± 2, l ± 4.
As a consequence, K valley dipole matrix elements between
the ground state zero and {p−, d+} become weakly allowed.
When summed over spin, the two valley contributions are
identical.

In Fig. 3, we decompose the full TPA response into
dominant contributions using the semianalytical model. Ex-
citon states are computed by discretizing on a radial
k-grid writing [33] k = tan( π

2 x) and applying a 300 point
Gauss-Laguerre quadrature grid for x ∈ [0, 1]. For angular
momentum l , Coulomb matrices of the form Dl (k, q) =∫ 2π

0 cos(lθ )v[(k2 + q2 − 2kq cos θ )1/2]dθ with interaction
v(q) = 1/[q(κ + r0q)] are required. We compute these by ex-
panding in partial fractions v(q) = 1/(κq) − r0/[κ (κ + r0q)]
such that the first term can be integrated analytically in
terms of elliptic integrals, while the second is regular and
easily handled using numerical integration. The first term
has singular diagonal entries Dl (k, k), which we avoid by
using Dl (k, k) ≈ 2[1 + ln(16k/�k)]/(κk) obtained by aver-
aging over q ∈ [k, k + �k]. This procedure ensures very fast
convergence of exciton energy with k-grid size.

Comparing Figs. 2 and 3, it is immediately clear that the
semianalytical model is in excellent agreement with the BSE
results. Importantly, this allows us to assess the contribu-
tions from specific angular momenta in the TPA response.
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In Fig. 3(a), the dominant transition paths are illustrated. The
intense |0〉 → |s〉 transition is shown as a thick line. Similarly,
weaker transitions with �l = ±1 that do not require trigo-
nal warping are indicated by thin lines. Finally, transitions
with �l = ±2,±4 that only arise when angular warping is
included are shown as thin dashed lines. Overall, the dominant
TPA paths T1 and T2 proceed with |s〉 as the intermediate state
and |p±〉 as final states. From their decomposition it is seen
that their resonances occur at slightly different two-photon
energies, in agreement with the lifted degeneracy between the
two p states.

From Eq. (7) it is tempting to conclude that all TPA res-
onances can be attributed to a single pair of intermediate m
and final n states. However, it must be remembered that the
sum over m runs over all intermediate states. Because the
sum is squared it is perfectly possible for transition paths such
as |0〉 → |s〉 → |p+〉 → |d+〉 → |0〉 and its reversed version
to appear when the intermediate sum includes both s and d
states. These two paths make up transition path T3, which
adds a significant contribution to the full response. Finally,
trigonal warping allows for transition path T4, in which the in-
termediate and final states are |p−〉 and |s〉, respectively. These
states are identical to those of T1, but taken in the opposite
order. In particular, X0p− is only nonzero in the presence of
trigonal warping, which makes the diagram inherently weak.
Importantly, however, two-photon resonances appear at 1sA

and 1sB for this diagram. It follows that weak TPA resonances
are expected at the location of intense SPA peaks, in contrast
to predictions based on cylindrical symmetry. These peaks
agree very well with the full BSE spectra in Fig. 2. This
is different from the case of third-harmonic generation, for
which the T4 diagram is negligible [19].

IV. WANNIER MODEL

We now apply the TPA model to Wannier excitons rather
than full Bethe-Salpeter states. Wannier excitons are expected
to be accurate approximations in cases of large screening.
Moreover, the Wannier model readily allows for inclusion
of other electron-hole complexes, in particular, biexcitons.
Such four-particle states are prohibitively complicated at the
Bethe-Salpeter level. A Wannier exciton in position space can
be defined as

ψm(�r) = 1√
A

∑
�k

ψ
(m)
�k ei�k·�r, (10)

with the inverse ψ
(m)
�k = A−1/2

∫
ψm(�r)e−i�k·�rd2r. Physically, �r

describes the relative electron-hole coordinate and the pref-
actor ensures that ψm(�r) is normalized. To estimate exciton
matrix elements, we now approximate transition energies and
momenta by the values at the band gap, i.e., Ecv�k ≈ Eg and
p

vc�k ≈ mvF with Fermi velocity vF = √
3aγ /(2h̄). Hence,

using a few elementary manipulations, it follows that

X x
0m ≈ imvF

Eg

√
Aψm(0), Qx

mn =
∫

ψ∗
m(�r)xψn(�r)d2r. (11)

The interpretation of the first of these is that electron and
hole positions must coincide in optical interband transitions.
Under the assumptions of isotropic effective-mass dispersion,

vanishing exchange interaction, and local screening ε(q) ≈
κeff with effective dielectric constant κeff , Wannier excitons
in position space become 2D hydrogenlike eigenstates. For
a 2D hydrogenlike 1s state ψ1s(�r) = √

8/π exp{−2r/aX }/aX

with effective Bohr radius aX , we get ψm(0) = √
8/π/aX . A

more accurate result for X x
0m is obtained if the full effective

mass dispersion Ecv�k ≈ Eg(1 + k2ρ2/4) with ρ = √
8h̄vF /Eg

is retained and leads to multiplication by an additional factor
1/(1 − ρ2/a2

X ) − ρ/aX cos−1(ρ/aX )/(1 − ρ2/a2
X )3/2. More-

over, using explicit 2D hydrogenlike bound np states with
n = 2, 3, 4, ... demonstrates that

Qx
1s,np = aX

(n − 1)n−5/2
(
n − 1

2

)5/2

nn+3/2
. (12)

While these expressions are less accurate than full Bethe-
Salpeter results, a great advantage of the Wannier approx-
imation is the straightforward inclusion of multiparticle
electron-hole complexes such as trions and biexcitons. In par-
ticular, generalizing the Wannier exciton model, biexcitons
are modeled as two electrons (e1 and e2) and two holes (h1
and h2) with effective-mass energy dispersion and interaction
via a locally screened Coulomb potential. After elimination
of the center of mass, these four-particle complexes are de-
scribed by relative vectors �r = �re1 − �rh1, �r′ = �re2 − �rh2 and
�R = �rh1 − �rh2. We consider a biexciton state formed by two
m excitons ψmm(�r, �r′, �R) and apply the Heitler approxima-
tion [34] ψmm(�r, �r′, �R) ≈ ψm(�r)ψm(�r′)�( �R). In the Wannier
model, the exciton-biexciton matrix element is found by set-
ting one electron-hole separation to zero and integrating over
the remaining degrees of freedom, i.e., [34]

X x
m,mm ≈ imvF

Eg

∫
ψ∗

m(�r)ψmm(�r, 0, �R)d2rd2R

≈ imvF

Eg
ψm(0)

∫
�( �R)d2R. (13)

The remaining integral can be estimated assuming a Gaussian
hole-hole distribution

�( �R) = 1√
πRhh

exp

{
− R2

2R2
hh

}
, (14)

where Rhh is the hole-hole root-mean-square dis-
tance, i.e., 〈�|R2|�〉 = R2

hh. In this way, X x
m,mm ≈

2
√

π imvF ψm(0)Rhh/Eg. The fact that matrix elements
are proportional to Rhh is a signature of the “giant oscillator
strength” effect associated with biexcitons. In fact, the result
is “pathological” in the sense that Xm,mm diverges in the limit
of vanishing biexciton binding, i.e., as Rhh → ∞ [35]. A
more satisfactory model is based on the bipolariton concept,
which explicitly accounts for Pauli-principle effects among
the two electrons and two holes in the four-particle complex
[35]. Effectively, the bipolariton model adds a multiplicative
factor �Emm/(2Em − 2h̄ω), with �Emm ≡ 2Em − Emm the
biexciton binding energy, to the matrix elements [35]. The
magnitude of this factor is unity exactly at resonance (for
real-valued frequencies). However, the pathological limit at
vanishing biexciton binding is removed due to the factor
�Emm. Hence, proper account of antisymmetry among
identical fermions is clearly important in biexcitons. We
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FIG. 4. TPA spectrum of suspended WSe2 in the Wannier model
split into exciton (red) and biexciton (blue) contributions.

emphasize that Pauli-principle effects do not affect excitons,
since electrons and holes are distinguishable.

The path having m excitons and mm biexcitons as in-
termediate and final states, respectively, leads to the TPA
contribution

σ (3,biex)
xxxx (ω) = 2ie4h̄2ω

m2A

∑
m

∣∣∣∣X x
0mX x

m,mm

Em − h̄ω

∣∣∣∣
2 1

Emm − 2h̄ω
. (15)

Eventually, including only the lowest exciton 1s and its asso-
ciated biexciton 1s1s,

σ (3,biex)
xxxx (ω) = 8ie4m2h̄2ωv4

F

πE4
g a4

X

R2
hh�E2

1s1s

|E1s − h̄ω|4(E1s1s − 2h̄ω)
.

(16)

Since E1s1s ∼ 2E1s, this term can give a large (multiply res-
onant) contribution near h̄ω = E1s. In the numerical results
below, we use a slightly increased broadening of 20 meV in
the biexciton response to account for the increased dephas-
ing of these states. We apply the above results to suspended
WSe2, for which accurate computed values of Rhh and �E1s1s

(46.9 Å and 20.2 meV, respectively) exist [36]. We determine
κeff by matching to the Bethe-Salpeter 1s energy, which, in
turn, leads to aX = a0κeff/μr with a0 the hydrogen Bohr ra-
dius and μr = Eg/(4mv2

F ) the relative reduced mass.
In Fig. 4, we illustrate the contributions from both Wannier

excitons and biexcitons. As a consistency check, we have
verified that the Wannier results agree with the semianalytical
k-space model used above, provided trigonal warping, band
nonparabolicity, and nonlocal screening are ignored. Com-
paring first the exciton spectrum to the Bethe-Salpeter one
in Fig. 2(b), several differences are noted. Even though 1s
energies agree by construction, p-state energies are overesti-
mated by the Wannier model. This is a consequence of the
well-known nonhydrogenic nature of the Keldysh potential
model, which leads to increased p-state binding energies com-
pared to hydrogenlike results. In addition, the intensity of
2p and 3p resonances in Wannier TPA spectra is overesti-
mated, partly because the energy denominator E1s − 1

2 Enp in
the sum over intermediate states is too small. Finally, since
unbound p states are omitted, the high-energy continuum
background is absent. The exciton spectrum in Fig. 4 also

feature peaks at twice the 1s energies. These are single-photon
resonances in the transition between ground and intermediate
state. Obviously, the simplified Eq. (6) cannot be applied in
this frequency range and the full frequency dependence of
Eqs. (4) and (5) must be retained.

Turning now to the biexciton contribution in Fig. 4, these
are seen to add substantial peaks to the TPA response but only
in the frequency range of single-photon resonances, i.e., at
energy h̄ω ≈ E1s and higher. This is expected, as the final-
state energy is close to twice the energy of the intermediate
1s state. In fact, the slight redshift relative to 2E1s due to the
biexciton binding energy is discernable in Fig. 4. Notably, the
intensity of biexciton peaks is quite large as a consequence of
the multiply resonant nature [see Eq. (16)]. Hence, biexciton
effects are of importance in the two-photon response of TMDs
similarly to observations in traditional semiconductors. We
stress, however, that their contribution is in the high-energy
range of single-photon resonances and, hence, does not in-
terfere with the low-energy range of two-photon resonances
studied with the Bethe-Salpeter model in the previous section.

V. SUMMARY

In summary, we modeled the TPA response due to ex-
citons in monolayer transition-metal dichalcogenides using
three approaches: the full numerical Bethe-Salpeter equation,
the k-space based semianalytical trigonal warping model, and
the analytical Wannier approximation. The distinct TPA se-
lection rules mean that otherwise dark equal-parity transitions
dominate the response. Combined with single-photon spectra,
this provides access to exciton series with different angular

FIG. 5. Two-photon absorption without excitonic effects for
MoS2 (top) and WSe2 (bottom). Red and green curves show results
of numerical integration and analytic approximations, respectively.
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momenta, including dark exciton binding energies. In fact,
trigonal warping means that odd-parity transitions are weakly
allowed in TPA spectra as well. We identify the dominant tran-
sitions and the role of trigonal warping in their intensity. The
effect of dielectric screening including relevant experimental
cases and the free-carrier limit is carefully analyzed. More-
over, a brief comparison with recent experiments for WSe2 is
made. Finally, biexciton transitions are described within the
Wannier approach and shown to contribute significantly to the
high-energy TPA response.
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APPENDIX: FREE-CARRIER TPA RESPONSE

In this appendix, we establish the free-carrier limit of the
general excitonic expression. This limit is appropriate when-
ever screening is sufficiently large that Coulomb interaction
can be ignored. It follows that excitonic theory should de-
scribe free-carrier response in this limit. A very convenient
way of extracting the limit is by introducing the exciton
Green’s function [23]

G(ω)
�k,�k′ =

∑
n

ψ
(n)
�k ψ

(n)∗
�k′

En − h̄ω
(A1)

that becomes G(ω)
�k,�k′ → δ�k,�k′ (Ecv�k − h̄ω)−1 in the free-carrier

limit. Applying Eq. (3), it then follows that

∑
m

X α
0mQβ

mn

Em − h̄ω
= −

∑
�k,�k′

pα

vc�k
Ecv�k

G(ω)
�k,�k′

[
ψ

(n)
�k′

]
;k′

β
→ −

∑
�k

pα

vc�k
[
ψ

(n)
�k

]
;kβ

Ecv�k (Ecv�k − h̄ω)
, (A2)

where the last expression is the free-carrier limit. Hence,

σ (3)
xxxx(ω) → 2ie4h̄2ω

m2A

∑
�k,�k′

px
vc�k

Ecv�k (Ecv�k − h̄ω)

px
cv�k′

Ecv�k′ (Ecv�k′ − h̄ω)

∑
n

[
ψ

(n)
�k

]
;kx

[
ψ

(n)∗
�k′

]
;k′

x

En − 2h̄ω

= 2ie4h̄2ω

m2A

∑
�k,�k′

px
vc�k

Ecv�k (Ecv�k − h̄ω)

px
cv�k′

Ecv�k′ (Ecv�k′ − h̄ω)

[
G(2ω)

�k,�k′

]
;kx ;k′

x
→ 2ie4h̄2ω

m2A

∑
�k

∣∣∣∣∣
( px

vc�k
Ecv�k (Ecv�k − h̄ω)

)
;kx

∣∣∣∣∣
2

1

Ecv�k − 2h̄ω
.

(A3)

Here, integration by parts was applied twice in the last reformulation before inserting the free-carrier limit of the Green’s
function. Expansion near a Dirac point demonstrates that∣∣∣∣∣

( px
vc�k

Ecv�k (Ecv�k − h̄ω)

)
;kx

∣∣∣∣∣
2

� 81m2a4γ 4
(
E2

cv�k − E2
gσ

)
2h̄2E8

cv�k
(A4)

with band gaps Egσ = 2� + σ6
√

3λ. Then, integration yields

Reσ (3)
xxxx(ω) � 27e4a2γ 2

128h̄

∑
σ=±1

E2
gσ − 4h̄2ω2

h̄6ω6
θ (2h̄ω − Egσ ). (A5)

It can be shown that a slightly more accurate result is

Reσ (3)
xxxx(ω) � 9e4a2γ 2

512h̄

(
E2

g − 4h̄2ω2
)(

3E2
g + 4h̄2ω2

)
h̄8ω8

θ (2h̄ω − Eg). (A6)

This expression agrees with the real part of the gapped Dirac model result [31]

σ (3)
xxxx(ω) ∝ i

h̄8ω8

(
3E2

g + h̄2ω2
)

ln

(
Eg − h̄ω

Eg + h̄ω

)
. (A7)

In Fig. 5, full band-structure and gapped Dirac model results, i.e., Eqs. (A3) and (A6), are compared for the cases of MoS2 and
WSe2. It is seen that, apart from smoothing due to broadening applied in the numerical integral, the expressions are in very good
agreement.
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