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Aharonov-Bohm effect in three-dimensional higher-order topological insulators

Kun Luo,1 Hao Geng,1,2 Li Sheng,1,2 Wei Chen ,1,2,* and D. Y. Xing1,2

1National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

(Received 1 February 2021; revised 4 August 2021; accepted 5 August 2021; published 25 August 2021)

One-dimensional hinge states are the hallmark of three-dimensional (3D) higher-order topological insulators
(HOTIs), which may lead to interesting transport properties. Here, we study the Aharonov-Bohm (AB) effect
in an interferometer constructed by the hinge states in normal metal-HOTI junctions with a transverse magnetic
field. We show that the AB oscillation of the conductance can clearly manifest the spatial configurations of such
hinge states. The magnetic fluxes encircled by various interfering loops are composed of two basic ones, so
that the oscillation of the conductance by varying the magnetic field contains different frequency components
universally related to each other. Specifically, the four dominant frequencies ωx,y and ωx±y satisfy the relations
ωx±y = ωx ± ωy, which generally hold for different magnetic fields, sample sizes, bias voltages, and weak
disorders. Our results provide a unique and robust signature of the hinge states and pave the way for exploring
the AB effect in 3D HOTIs.
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I. INTRODUCTION

Over the past two decades, topological phases of matter
such as topological insulators and superconductors have be-
come an active research field of condensed matter physics
[1,2]. These materials are characterized by nontrivial band
topology and the resultant gapless (d − 1)-dimensional edge
states. Very recently, the concepts of higher-order topological
insulators (HOTIs) and superconductors were theoretically
proposed, which are featured by the (d − 2)-dimensional edge
states [3–17]. Specifically, for three-dimensional (3D) HO-
TIs there exist one-dimensional (1D) gapless states along the
hinges of the sample, so-called hinge states, while the surface
and the bulk states are both insulating. Recent progress has
shown evidence of hinge states in bismuth by scanning tun-
neling spectroscopy and Josephson interferometry [17], which
paves the way for exploring more intriguing properties of such
topological states in HOTIs.

The 1D nature of the hinge states indicates that it is a
good playground for exploring various interference effects,
such as the Aharonov-Bohm (AB) and Fabry-Pérot inter-
ferometers [18–23]. Actually, the chiral edge states of the
quantum Hall phase have become an important platform for
the study of mesoscopic physics, in which a variety of novel
phenomena have been observed [20,24–26] due to its long
coherence length and high adjustability. Compared with the
chiral edge states, the hinge states in HOTIs open additional
possibilities for the implementation of novel effects due to
their 3D configurations, which enrich the way of interfering
in real space. Moreover, such effects cannot be realized in any
two-dimensional (2D) systems, which, in turn, can serve as
deterministic evidence of hinge states.

The manifestation of the AB effect in an electron system
is the periodic oscillation of conductance as a closed trajec-
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tory of electrons encircles a magnetic flux � [27–32]. The
dominant period of oscillation is equal to the flux quantum
�0 = h/e, with a main frequency 2π/�0. The frequency of
oscillation can be found by taking the fast Fourier transform
(FFT) of the conductance pattern [28–30]. Recently, the AB
effect has been used as an effective way to detect edge states
in various topological systems, such as the edge states of
topological insulators [33–36], Majorana fermions of topo-
logical superconductors [37–40], surface states of topological
semimetals [41,42], and non-Abelian anyons of fractional
quantum Hall systems [23,43–46].

In this paper, we investigate the AB effect in an interfer-
ometer composed of the hinge states of a quadrangular HOTI
by imposing an external magnetic field. The insulating bulk
and surface states indicate that an electron can only propagate
along the hinges of the sample, by which the enclosed mag-
netic flux can lead to a coherent oscillation of the transmission
probability. Different from the edge states in any 2D systems,
a 3D network of hinge states results in peculiar interfering
trajectories, which rely not only on the magnitude of the mag-
netic field but also on its orientation. The AB interferometer
is sketched in Fig. 1(a), where the HOTI is connected to
two leads made of a normal metal and a magnetic field B =
(Bx, By) = B(cos θ, sin θ ) is applied in the x-y plane, with θ

being the polar angle. The electrons injected from the leads
propagate along four chiral hinge states, which comprise a
variety of interfering loops; see Figs. 1(b)–1(e). The elemental
interfering loops shown in Figs. 1(b) and 1(c) are exactly
the boundaries of the (±1, 0, 0) and (0,±1, 0) surfaces. The
basic loops in Figs. 1(b) and 1(c) encircle a magnetic flux of
�x = B cos θSx and �y = B sin θSy, respectively, with Sx,y the
surface areas. Accordingly, the frequency components ωx =
2π cos θSx/�0 and ωy = 2π sin θSy/�0 naturally appear in
the oscillating pattern of the conductance as the magnetic field
B is varied. Interestingly, the magnetic flux in other interfer-
ing loops can all be interpreted by the two elemental ones,
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FIG. 1. (a) The interferometer constructed by a HOTI (green
block) and normal metal electrodes (orange blocks). The magnetic
field B is imposed in the x-y plane with a polar angle θ . (b), (c) Two
elemental interfering loops with an encircled flux �x, �y. (d), (e)
The other two dominant interfering loops with fluxes �x + �y,
|�x − �y|.

among which two typical loops in Figs. 1(d) and 1(e) contain
a flux of �x±y = �x ± �y, and the corresponding oscillat-
ing frequency components satisfy ωx±y = ωx ± ωy. It turns
out that the aforementioned four interfering loops and the
corresponding oscillating frequencies dominate the coherent
oscillation of the conductance. The relations ωx±y = ωx ± ωy

generally hold independent of various parameters such as the
magnetic field, sample size, bias voltage, and weak disorder,
thus providing a universal and deterministic signature of the
hinge states and HOTIs.

The rest of this paper is organized as follows. In Sec. II,
we elucidate the model of the HOTI adopted in our work. In
Sec. III, we apply the scattering matrix approach to analyze
the coherent transport through the interferometer and the AB
oscillation of the conductance. Detailed numerical simula-
tions on the lattice model are conducted in Sec. IV, which
verify the universality of the physical results. Finally, a brief
summary and outlook are given in Sec. V.

II. MODEL OF HOTI

We adopt the model of 3D chiral HOTIs introduced by
Schindler et al. [7] as

HHOTI =
(

M + t
∑

i

cos ki

)
τzσ0 + �1

∑
i

sin kiτxσi

+ �2(cos kx − cos ky)τyσ0,

(1)

where σi=x,y,z and τi are the Pauli matrices acting on the
spin and orbital space, respectively. For 1 < |M/t | < 3 and
�1,�2 �= 0, the system lies in a chiral 3D HOTI phase.
The energy spectra are gapped in both the bulk and four
surfaces parallel to the z axis. Importantly, the mass term is
opposite in sign between adjacent surfaces that results in the
Jackiw-Rebbi-type bound states [47] propagating only along
the ±z direction, or the so-called topological hinge states.
Time-reversal symmetry is broken in Eq. (1), so that the hinge
states are unidirectional or chiral, without any backscattering
states within a given hinge. Notably, gapless Dirac cones pro-

tected by Ĉz
4T̂ symmetry persist on the surfaces perpendicular

to the z axis [7]. Therefore, it is beneficial to explore the
pure signature of the hinge states through transport in the z
direction.

III. SCATTERING MATRIX ANALYSIS

In this section, we study the coherent transport of electrons
through the interferometer sketched in Fig. 1(a) based on
the low-energy effective model of the hinge states using the
scattering matrix approach. The scattering matrix of the whole
interferometer can be obtained by combining those at two
normal metal-HOTI interfaces and the matrix of phase accu-
mulation during propagation in the hinge states. The matrix at
the lower interface [cf. Fig. 1(a)] can be parametrized as

Sl =

⎛
⎜⎜⎜⎜⎝

r1 r3 t ′
1 t ′

3

r2 r4 t ′
2 t ′

4

t1 t3 r′
1 r′

3

t2 t4 r′
2 r′

4

⎞
⎟⎟⎟⎟⎠, (2)

which relates the incoming (al ) and outgoing (bl ) waves in
the normal metal and the HOTI via bl = Slal . The matrix
is assumed to be 4 × 4 such that two incoming/outgoing
waves are taken into account on both sides. For the HOTI,
the number of channels corresponds to that of pairs of hinge
states. The unitary condition SlS

†
l = I is ensured by the law of

current conservation. Here, t1,...,4 are the transmission ampli-
tudes from the normal metal to the chiral hinge states of the
HOTI and r1,...,4 are the corresponding reflection amplitudes.
The scattering amplitudes corresponding to the incident waves
from the hinge states of the HOTI are defined by t ′

1,...,4, r′
1,...,4

in a similar way. The scattering matrix for the upper interface
can be defined as

Su =

⎛
⎜⎜⎜⎜⎝

ru
1 ru

3 t u′
1 t u′

3

ru
2 ru

4 t u′
2 t u′

4

t u
1 t u

3 ru′
1 ru′

3

t u
2 t u

4 ru′
2 ru′

4

⎞
⎟⎟⎟⎟⎠. (3)

The phase modulation of the wave function due to the mag-
netic field can be described by the matrix as

Sm =

⎛
⎜⎜⎜⎜⎝

0 0 eiφ̃1 0

0 0 0 e−iφ̃2

e−iφ2 0 0 0

0 eiφ1 0 0

⎞
⎟⎟⎟⎟⎠, (4)

where the phases φ1, φ2, φ̃1, φ̃2 are related by the magnetic
fluxes through φ1 + φ̃1 = φ2 + φ̃2 = φx = 2π�x/�0,
φ1 − φ̃2 = φ2 − φ̃1 = φy = 2π�y/�0, φ1 + φ2 = φx+y =
2π�x+y/�0, and φ̃1 + φ̃2 = φx−y = 2π�x−y/�0, with φx,y

and φx±y being gauge invariant.
By combining three matrices Sl , Sm, Su in a standard way

we obtain the total scattering matrix for the whole system.
Here, we focus on the periods of the AB oscillation and an
overall phase shift of the pattern is unimportant. Therefore,
we can choose Sl , Su to be real for simplicity, which will not
change the main results. For an electron incident from the
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FIG. 2. (a) The conductance pattern calculated by the scatter-
ing matrices. (b) The FFT spectrum of the oscillation pattern. The
relevant scattering coefficients are set to t1 = t3 = t4 = r′

1 = ru
1 =

ru
2 = √

0.4, t2 = r′
3 = √

0.3, r1 = r′
2 = √

0.2, r2 = r3 = r4 = t u
1 =

t u
2 = t u

3 = √
0.1, r′

4 = t u
4 = −√

0.1, ru
3 = ru

4 = −√
0.4.

lower terminal, its transmission probability T to the upper
terminal is obtained after some algebra as

T = F−1[C + CX cos φx + CY cos φy + CXY cos φx+y

+ C′
XY cos φx−y],

F = MC + MXY cos φx+y + M ′
XY cos φx−y + M2X cos(2φx )

+ M2Y cos(2φy) − MX cos φx − MY cos φy, (5)

where the explicit forms of the relevant parameters are given
in the Appendix. The numerator of the transmission in Eq. (5)
shows that there are four dominant periodic terms contributed
by four interference loops in Figs. 1(b)–1(e) which correspond
to four frequencies related by ωx,y, ωx±y = ωx ± ωy. Note that
such relations are stabilized by the spatial configurations of
the hinge states, thus offering a clear and robust signature for
their detection, which relies little on the sample details and the
energy. Although a magnetic field in different directions will
change the values of frequencies it does not affect the general
relations between them.

Next, we provide numerical verification of such an
observation using specific scattering amplitudes. The AB os-
cillation of the conductance as a function of B and its FFT
spectrum are shown in Figs. 2(a) and 2(b), respectively. The
polar angle of the magnetic field is set to θ = π/6 and the
unit of frequency is chosen as 1/B0 with B0 = �0/(2πS)
and S = Sx = Sy the surface area. One can find multiple pe-
riods in the conductance spectrum in Fig. 2(a). The FFT
spectrum in Fig. 2(b) shows that there are four dominant fre-
quencies with ωx = 0.86/B0, ωy = 0.5/B0, ωx−y = 0.36/B0,
ωx+y = 1.36/B0, which conforms the aforementioned rela-
tions ωx±y = ωx ± ωy. Higher frequencies such as ω2x, ω2y

should also appear as that in the conventional 2D AB effect.
In stark contrast, the frequencies ωx±y can only exist in a
3D HOTI, which thus provides unique evidence of the hinge
states.

IV. LATTICE MODEL SIMULATION

Based on the scattering matrix analysis, we see that there
are four dominant frequencies satisfying the universal rela-
tions ωx±y = ωx ± ωy. In this section, we perform numerical
simulation to give rigorous results. We write the model in
Eq. (1) on a cubic lattice as [48]

HLattice
HOTI =

∑
i

c†
i Mσ0τzci

+
{∑

i

c†
i+x

[
eiϕx

2
(�2σ0τy + tσ0τz + i�1σxτx )

]
ci

−
∑

i

c†
i+y(�2σ0τy + tσ0τz + i�1σyτx )ci

+
∑

i

c†
i+z

eiϕz

2
(tσ0τz + i�1σzτx )ci + H.c.

}
, (6)

where ci = (ca,↑,i, cb,↑,i, ca,↓,i, cb,↓,i ) are the annihilation op-
erators at lattice site i with two spin (↑,↓) and two orbit
(a, b) components. The Peierls phase ϕx,z = e

h̄

∫ r j

ri
A(r) · dr,

where A(r) = (Byz, 0, Bxy) is the vector potential under the
Landau gauge. The lattice model of the normal metal elec-
trodes is

HNM =
∑

i

(−6t + U )c†
i ci +

∑
i

t (c†
i+xci

+ c†
i+yci + c†

i+zci ) + H.c. (7)

An AB interferometer constructed of a 3D HOTI (green
block) and normal metal leads (two orange blocks) is shown
in Fig. 1(a). The blue arrowed lines denote the chiral hinge
states. The cross section of the HOTI in the x-y plane is set as
30a × 30a and that for the normal metal leads is 5a × 5a with
a being the lattice constant. The magnetic field B exists only
in the HOTI region and is parallel to the x-y plane.

Consider an electron impinging from the normal metal to-
wards the HOTI with its energy lying in the bulk gap (�0.7|t |)
and surface gap (�0.32|t |) of the HOTI, so that only the
hinge channels are available for propagation. Backscattering
can occur at the interfaces, giving rise to various interference
loops. The two-terminal conductance G is calculated using
the KWANT package [49] and the AB conductance oscillation
for different incident energies (ie) and polar angles θ of the
magnetic field are shown in Fig. 3(a) (curves are offset by
2e2/h for clarity). To get the dominant frequencies, we per-
form FFT calculations whose spectra are shown in Figs. 3(b)
and 3(c).

The numerical results are consistent with those by the
scattering matrix analysis in Fig. 2(b). For different incident
energies, the oscillation patterns in Fig. 3(a) appear to be
starkly different. However, the dominant frequencies remain
almost the same; see Fig. 3(b). To check the general relations
between oscillation frequencies, we first locate two notable
peaks ωx and ωy by the dashed lines and the other two peaks
ωx±y = ωx ± ωy are marked accordingly in Fig. 3(b). One can
see that the dominant peaks match the dashed lines very well
apart from a small deviation from ωx+y for ie = 0.1, which is
attributed to the limit of the numerical calculations. For dif-
ferent polar angles θ , similar results can be seen in Fig. 3(c).

085427-3



LUO, GENG, SHENG, CHEN, AND XING PHYSICAL REVIEW B 104, 085427 (2021)

FIG. 3. (a) Conductance oscillation for different incident ener-
gies and angles θ by the lattice simulation. An offset 2e2/h is
imposed to adjacent curves for clarity. (b), (c) Corresponding FFT
spectra of the conductance patterns. Four dominant frequencies are
marked by the dashed lines. The model parameters are set to t = −1,
M = 2.3, �1 = 0.8, �2 = 0.5, U = 2. The lattice of the HOTI is set
to a 30a × 30a × 30a cube, where a = 1 is the lattice constant.

Although the locations of the peaks change for different θ , the
general relations between them persist.

In Fig. 4, we present more general results by varying
both the polar angle θ and the thickness of the HOTI in the
z direction. Each pair of parameters generates one point in
both Figs. 4(a) and 4(b), with its coordinates extracted in the
same way as done in Fig. 3(b). The reference planes therein
correspond to the frequency rule ωx±y = ωx ± ωy. One can
see that the numerical results labeled by the black and or-
ange dots are well located around the reference planes, which
indicates the universality of the frequency rules. Note that
there are a few dots of negative frequencies in Fig. 4(b) for
ωx < ωy. In experiments, one should rather measure |ωx − ωy|
instead.

Disorder generally exists in real samples and it can be
expected that topological chiral hinge states and thus the AB
effect should be robust, the same as that in the quantum
Hall edge states. We show numerical results for the disorder
distributed in the whole HOTI region in Fig. 5 with different
strengths α. For a weak disorder strength α < 0.7|t | (the gap
of the bulk states), the oscillation pattern and frequency rules
ωx±y = ωx ± ωy are retained. For a strong disorder α > 0.7|t |,
the oscillation pattern quenches stem from disorder-induced
coupling between the surface/bulk states and the hinge states.
Therefore, as long as the disorder in the sample of HOTI is not
too strong, the AB effect can be hopefully observed. A similar
conclusion also holds for the surface roughness. Although
the AB effect is quite robust against the disorder effect, the
observation should be carried out within the phase coherence
length of the system. The dephasing effect always reduces the
visibility of the coherent oscillation until it vanishes [30,50].
One more remark is that the interference here is all of the AB
type without an Al’tshuler-Aronov-Spivak (AAS)-type con-

FIG. 4. (a) ωx+y and (b) ωx−yas a function of elemental frequen-
cies ωx and ωy. Black and orange dots denote numerical results for
different lengths of the HOTI and polar angles θ of the magnetic
field. The reference planes satisfy ωx±y = ωx ± ωy. Insets: Side view
of the plots which reveal the deviation of the dots from the planes.
The parameters are the same as those in Fig. 3.

tribution [51–53]. The model in Eq. (1) breaks time-reversal
symmetry so that the AAS effect is absent.

FIG. 5. (a) Conductance patterns with different disorder
strengths α. (b) FFT spectra of the conductance. The incident
energy is ie = 0.1 and the polar angle of the field is θ = π/6. Other
parameters are the same as those in Fig. 3.
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V. SUMMARY AND OUTLOOK

In summary, we have investigated the AB effect in the
chiral hinge states of a 3D HOTI. Due to the spatial con-
figurations of the hinge states, different types of interfering
loops appear compared with 2D AB interference. Importantly,
we predict a universal relations ωx±y = ωx ± ωy between the
dominant oscillating frequencies, which offers a unique signa-
ture of the hinge states as well as the HOTI. Our study can be
generalized straightforwardly to the AB effect in 3D HOTIs
with helical hinge states.

Note added. Recently, we became aware of a related work
[54], which focuses on different aspects.
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APPENDIX: SPECIFIC FORMS OF COEFFICIENT
FOR ANALYSIS CALCULATION

In Eq. (5) of the main text, the coefficients are expressed as

C = (
t2
1 + t2

3

)(
W 2

0 + W 2
1 + W 2

2 + X 2
0 + X 2

1 + X 2
2

) + (
t2
2 + t2

4

)(
Y 2

0 + Y 2
1 + Y 2

2 + Z2
0 + Z2

1 + Z2
2

)
,

CX = 2(W0W1 + X0X1)
(
t2
1 + t2

3

) + 2(Y0Y1 + Z0Z1)
(
t2
2 + t2

4

) + 2(W0Y2 + W2Y0 + X0Z2 + X2Z0)(t1t2 + t3t4),

CY = 2(W0W2 + X0X2)
(
t2
1 + t2

3

) + 2(Y0Y2 + Z0Z2)
(
t2
2 + t2

4

) + 2(W0Y1 + W1Y0 + X0Z1 + X1Z0)(t1t2 + t3t4),

CXY = 2(W0Y0 + W0Y0)(t1t2 + t3t4),

C′
XY = 2(W1W2 + X1X2)

(
t2
1 + t2

3

) + 2(Y 1Y2 + Z1Z2)
(
t2
2 + t2

4

) + 2(W1Y1 + W2Y2 + X1Z1 + X2Z2)(t1t2 + t3t4),

MXY = 2M1M4 + 2M2M3, M ′
XY = 2M1M3 + 2M2M4, M2X = 2M1M2, M2Y = 2M3M4,

MX = 2M0M1 + 2M0M2, MY = 2M0M3 + 2M0M4, MC = M2
0 + M2

1 + M2
2 + M2

3 + M2
4 ,

(A1)

which contain the parameters defined by the elements of the scattering matrices as

W0 = t u
1 , W1 = t u

3 r′
2ru

1 − t u
1 r′

2ru
3 , W2 = t u

3 r′
4ru

2 − t u
1 r′

4ru
4 ,

X0 = t u
2 , X1 = t u

4 r′
2ru

1 − t u
2 r′

2ru
3 , X2 = t u

4 r′
4ru

2 − t u
2 r′

4ru
4 ,

Y0 = t u
3 , Y1 = t u

1 r′
3ru

4 − t u
3 r′

3ru
2 , Y2 = t u

1 r′
1ru

3 − t u
3 r′

1ru
1 ,

Z0 = t u
4 , Z1 = t u

2 r′
3ru

4 − t u
4 r′

3ru
2 , Z2 = t u

2 r′
1ru

3 − t u
4 r′

1ru
1 ,

M0 = 1 + r′
1ru

1r′
4ru

4 + r′
3ru

2r′
2ru

3 − r′
1ru

3r′
4ru

2 − r′
3ru

4r′
2ru

1 ,

M1 = r′
2ru

3 , M2 = r′
3ru

2 , M3 = r′
4ru

4 , M4 = r′
1ru

1 .

(A2)
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[14] D. Călugăru, V. Juričić, and B. Roy, Phys. Rev. B 99, 041301(R)

(2019).
[15] Z. Yan, Phys. Rev. B 100, 205406 (2019).
[16] Z. Yan, F. Song, and Z. Wang, Phys. Rev. Lett. 121, 096803

(2018).
[17] F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook, A.

Murani, S. Sengupta, A. Y. Kasumov, R. Deblock, S. Jeon, I.
Drozdov et al., Nat. Phys. 14, 918 (2018).

[18] W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham,
and H. Park, Nature (London) 411, 665 (2001).

[19] B. J. van Wees, L. P. Kouwenhoven, C. J. P. M. Harmans, J. G.
Williamson, C. E. Timmering, M. E. I. Broekaart, C. T. Foxon,
and J. J. Harris, Phys. Rev. Lett. 62, 2523 (1989).

[20] Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, and H.
Shtrikman, Nature (London) 422, 415 (2003).

[21] N. Ofek, A. Bid, M. Heiblum, A. Stern, V. Umansky,
and D. Mahalu, Proc. Natl. Acad. Sci. U.S.A. 107, 5276
(2010).

[22] D. T. McClure, Y. Zhang, B. Rosenow, E. M. Levenson-Falk,
C. M. Marcus, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett.
103, 206806 (2009).

085427-5

https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1103/PhysRevB.98.201114
https://doi.org/10.1103/PhysRevLett.123.216803
https://doi.org/10.1103/PhysRevB.97.205136
https://doi.org/10.1103/PhysRevResearch.2.043223
https://doi.org/10.1103/PhysRevB.102.094503
https://doi.org/10.1103/PhysRevLett.123.177001
https://doi.org/10.1103/PhysRevB.99.041301
https://doi.org/10.1103/PhysRevB.100.205406
https://doi.org/10.1103/PhysRevLett.121.096803
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1038/35079517
https://doi.org/10.1103/PhysRevLett.62.2523
https://doi.org/10.1038/nature01503
https://doi.org/10.1073/pnas.0912624107
https://doi.org/10.1103/PhysRevLett.103.206806


LUO, GENG, SHENG, CHEN, AND XING PHYSICAL REVIEW B 104, 085427 (2021)

[23] J. Nakamura, S. Fallahi, H. Sahasrabudhe, R. Rahman, S. Liang,
G. C. Gardner, and M. J. Manfra, Nat. Phys. 15, 563 (2019).

[24] M. Henny, S. Oberholzer, C. Strunk, T. Heinzel, K. Ensslin, M.
Holland, and C. Schönenberger, Science 284, 296 (1999).

[25] I. Neder, N. Ofek, Y. Chung, M. Heiblum, D. Mahalu, and V.
Umansky, Nature (London) 448, 333 (2007).

[26] E. Weisz, H. Choi, I. Sivan, M. Heiblum, Y. Gefen, D. Mahalu,
and V. Umansky, Science 344, 1363 (2014).

[27] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
[28] R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz,

Phys. Rev. Lett. 54, 2696 (1985).
[29] G. W. Holloway, D. Shiri, C. M. Haapamaki, K. Willick, G.

Watson, R. R. LaPierre, and J. Baugh, Phys. Rev. B 91, 045422
(2015).

[30] A. Lahiri, K. Gharavi, J. Baugh, and B. Muralidharan, Phys.
Rev. B 98, 125417 (2018).

[31] I. L. Aleiner, A. V. Andreev, and V. Vinokur, Phys. Rev. Lett.
114, 076802 (2015).

[32] Y. Tserkovnyak and B. I. Halperin, Phys. Rev. B 74, 245327
(2006).

[33] H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C.
Zhang, Z.-X. Shen, and Y. Cui, Nat. Mater. 9, 225 (2010).

[34] J. H. Bardarson, P. W. Brouwer, and J. E. Moore, Phys. Rev.
Lett. 105, 156803 (2010).

[35] Y. Zhang and A. Vishwanath, Phys. Rev. Lett. 105, 206601
(2010).

[36] E. Xypakis, J.-W. Rhim, J. H. Bardarson, and R. Ilan, Phys. Rev.
B 101, 045401 (2020).

[37] J. Li, G. Fleury, and M. Büttiker, Phys. Rev. B 85, 125440
(2012).

[38] A. Ueda and T. Yokoyama, Phys. Rev. B 90, 081405(R) (2014).
[39] K. M. Tripathi, S. Das, and S. Rao, Phys. Rev. Lett. 116, 166401

(2016).
[40] T. C. Bartolo, J. S. Smith, B. Muralidharan, C. Müller, T. M.

Stace, and J. H. Cole, Phys. Rev. Research 2, 043430 (2020).
[41] L.-X. Wang, C.-Z. Li, D.-P. Yu, and Z.-M. Liao, Nat. Commun.

7, 10769 (2016).
[42] B.-C. Lin, S. Wang, L.-X. Wang, C.-Z. Li, J.-G. Li, D. Yu, and

Z.-M. Liao, Phys. Rev. B 95, 235436 (2017).
[43] E.-A. Kim, Phys. Rev. Lett. 97, 216404 (2006).
[44] B. I. Halperin, A. Stern, I. Neder, and B. Rosenow, Phys. Rev.

B 83, 155440 (2011).
[45] R. L. Willett, C. Nayak, K. Shtengel, L. N. Pfeiffer, and K. W.

West, Phys. Rev. Lett. 111, 186401 (2013).
[46] J. Nakamura, S. Liang, G. C. Gardner, and M. J. Manfra, Nat.

Phys. 16, 931 (2020).
[47] R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).
[48] B. A. Levitan and T. Pereg-Barnea, Phys. Rev. Research 2,

033327 (2020).
[49] C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Waintal,

New J. Phys. 16, 063065 (2014).
[50] R. Golizadeh-Mojarad and S. Datta, Phys. Rev. B 75,

081301(R) (2007).
[51] B. L. Al’tshuler, A. G. Aronov, and B. Z. Spivak, JETP Lett.

33, 94 (1981).
[52] D. Y. Sharvin and Y. V. Sharvin, JETP Lett. 34, 272 (1981).
[53] B. L. Al’tshuler, A. G. Aronov, B. Z. Spivak, D. Y. Sharvin, and

Y. V. Sharvin, JETP Lett. 35, 588 (1982).
[54] C.-A. Li, S.-B. Zhang, J. Li, and B. Trauzettel, Phys. Rev. Lett.

127, 026803 (2021).

085427-6

https://doi.org/10.1038/s41567-019-0441-8
https://doi.org/10.1126/science.284.5412.296
https://doi.org/10.1038/nature05955
https://doi.org/10.1126/science.1248459
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1103/PhysRevLett.54.2696
https://doi.org/10.1103/PhysRevB.91.045422
https://doi.org/10.1103/PhysRevB.98.125417
https://doi.org/10.1103/PhysRevLett.114.076802
https://doi.org/10.1103/PhysRevB.74.245327
https://doi.org/10.1038/nmat2609
https://doi.org/10.1103/PhysRevLett.105.156803
https://doi.org/10.1103/PhysRevLett.105.206601
https://doi.org/10.1103/PhysRevB.101.045401
https://doi.org/10.1103/PhysRevB.85.125440
https://doi.org/10.1103/PhysRevB.90.081405
https://doi.org/10.1103/PhysRevLett.116.166401
https://doi.org/10.1103/PhysRevResearch.2.043430
https://doi.org/10.1038/ncomms10769
https://doi.org/10.1103/PhysRevB.95.235436
https://doi.org/10.1103/PhysRevLett.97.216404
https://doi.org/10.1103/PhysRevB.83.155440
https://doi.org/10.1103/PhysRevLett.111.186401
https://doi.org/10.1038/s41567-020-1019-1
https://doi.org/10.1103/PhysRevD.13.3398
https://doi.org/10.1103/PhysRevResearch.2.033327
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1103/PhysRevB.75.081301
http://jetpletters.ru/ps/1501/article_22943.pdf
http://jetpletters.ru/ps/1518/article_23205.pdf
http://jetpletters.ru/ps/1327/article_20058.pdf
https://doi.org/10.1103/PhysRevLett.127.026803

