
PHYSICAL REVIEW B 104, 085424 (2021)

Fourier modal method for moiré lattices

Natalia S. Salakhova and Ilia M. Fradkin *

Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
and Moscow Institute of Physics and Technology, Institutskiy pereulok 9, Moscow Region 141701, Russia

Sergey A. Dyakov and Nikolay A. Gippius
Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia

(Received 3 June 2021; revised 3 August 2021; accepted 5 August 2021; published 23 August 2021)

In recent years twisted bilayers of two-dimensional (2D) materials have become very popular in the field
due to the possibility to totally change their electronic properties by simple rotation. At the same time, in the
wide field of photonic crystals, this idea still remains almost untouched, and only some particular problems
have been considered. One of the reasons is the computational difficulty of accurate consideration of moiré
superlattices that appear due to the superimposition of misaligned lattices. Indeed, the unit cell of the complex
lattice is typically much larger than the original crystals and requires many more computational resources for the
computations. Here, we propose a moiré-adapted Fourier modal method (MA-FMM) in the form of scattering
matrices for the description of twisted one-dimensional (1D) gratings’ stacks. We demonstrate that MA-FMM
allows us to consider sublattices in close vicinity to each other and account for their interaction via the near field.
In the developed numerical scheme, we utilize the fact that each sublattice is only 1D periodic and therefore
simpler than the resulting 2D superlattice, as well as the fact that even a small gap between the lattices filters out
high Fourier harmonics due to their evanescent origin. Such approach accelerates the computations from 1 up to
3 or more orders of magnitude for typical structures depending on the number of harmonics. In turn, the high
computational speed paves the way for rigorous study of almost any photonic crystals of the proposed geometry
and demonstration of specific moiré-associated effects.
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I. INTRODUCTION

The moiré effect, known for centuries, is a result of
superimposing similar but misaligned lattices. Probably,
everyone has seen moiré fringes as an occasional effect
(recognizable patterns on silk clothes and curtains) or as
a side effect (prominent grids on photos of LCD screens
and computational-grid-assisted artefacts on map graphs),
but the most important effects are their practical applica-
tions. For example, the moiré pattern underlies the widely
known Vernier scale, which is implemented in microme-
ters and other measuring devices. Also, the moiré effect has
been successfully applied in strain analysis [1–3], optical
alignment [4–7], medicine [8], biosensors [9–11], the de-
tection of document counterfeiting [12–15], and many other
spheres [16,17]. Nevertheless, the original principle of the
complex superlattice design by the superimposition of iden-
tical or similar sublattices is still widely applied to observe
the associated phenomena. In the last few years, there has
been a breakthrough in the field of twisting two-dimensional
(2D) materials. The possibility to observe superconductiv-
ity [18–20], ferromagnetism [21–24], and other impressive
effects [25–28] has been demonstrated just by the appropriate
choice of the rotation angle between two layers. The obvious
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success attracted attention to moiré lattices and even led to the
rise of the separate field of twistronics.

In this paper, we consider moiré patterns in the context of
nanophotonic metasurfaces. All kinds of photonic crystals and
metasurfaces have been studied intensively for the last several
decades, and their optical properties are known in great de-
tail. In recent years there has been a growth in attention to
stacks of metasurfaces [29–38] due to the new opportunities
that they provide for the control and manipulation of light.
Simultaneously, many fewer studies have considered the in-
teraction of crystals that do not have a mutual lattice because
of either the period discrepancy or even misalignment of crys-
tallographic axes. The rise of twistronics attracted deserved
attention to this field and gave it a significant boost. As a
result, currently, there are a number of studies available that
demonstrate various effects in photonic moiré metasurfaces.
Twisted stacks have been used to demonstrate topological
transitions of the guided modes [39–45], light localization
in moiré supercells [46–48], tunable metasurfaces [49], and
chirality enhancement [49–51]. Also, it has been shown that
in the near-field radiative heat transfer between parallel planar
metasurfaces [52–57], the heat flux can be controlled by twist-
ing one of the corrugated plates relative to the other [45,58–
61]. Some of the studies utilize laser interference lithography
to obtain stacks of large-area lattices [49] and single-layer,
gradient moiré metasurfaces [16,62]. Nevertheless, the gen-
eral understanding of the optical moiré physics and potential
capabilities are still to be understood.
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The available calculation approaches for predicting prop-
erties of such structures do not provide the full picture.
Most papers have proposed either to apply an effective
medium approximation [39] or to build a transfer/scattering
matrix approach for the main (zeroth) diffraction chan-
nel [44,63–69], and only the most recent studies have
suggested some advanced approaches [70–72]. The first two
approaches undoubtedly boost and simplify the calculations
but have strongly limited application area. The effective
medium approximation typically describes very dense and
thin metasurfaces, whereas the main diffraction order approx-
imation requires a large distance between the sublattices to
prevent their interaction via the evanescent waves forming
the near field. In this way, none of the approaches allows
considering the hybridization of typical quasiguided modes
of twisted photonic structures, the backbone of plenty of
physical systems. Universal computational methods such as
the finite-element method (FEM), the finite-difference time
domain (FDTD) method, and the Fourier modal method
(FMM) [73], also known as the rigorous coupled-wave anal-
ysis method [74], are not efficient in the application of such
structures. On the one hand, the unit cell of the moiré su-
perlattice is larger (and often much larger) than the unit cells
of the original gratings, which significantly complicates the
real-space-based calculations (FEM, FDTD). On the other
hand, a large unit cell corresponds to a small Bragg vector
in reciprocal space, and in turn, a large number of Fourier
harmonics have to be accounted for to reach the convergence
of reciprocal-space-based FMM. Remarkably, the brightest
twistronic effects are observed for identical materials rotated
on very small angles [18,20–22,26], which corresponds to
extremely large periods of the resulting superlattice. This
configuration, together with nontwisted sublattices with very
close periods, is the hardest-to-compute structure. Thus, there
is great need for a fast and universal computational method
specialized for considering stacks of twisted metasurfaces.

In this paper, we present the moiré-adapted Fourier modal
method (MA-FMM) in the form of scattering matrices [73]
to consider twisted stacks of one-dimensional (1D) periodic
metasurfaces. Scattering matrices of each sublattice are cal-
culated efficiently, accounting for their 1D-periodic origin,
which makes the procedure efficient. To calculate the scat-
tering matrix of the whole stack, we additionally propose to
ignore high-k‖ evanescent waves that decay in the gap-layer
between sublattices in such a fast way that do not affect the
coupling between them at all. Both procedures strongly boost
the calculations without a noticeable loss of accuracy and
pave the way to study the optical properties of the twisted
stacks in a reasonable amount of time. To demonstrate the
proposed approach performance, we compare its computation
speed with the standard FMM and show acceleration of 1
to 3 or more orders of magnitude. Finally, we demonstrate
the possible applications using examples of both plasmonic
and dielectric twisted stacks. The plasmonic stack, which is
one of the most difficult for computations, allows controlling
the shape of the plasmon dispersion just by a relative rota-
tion of the sublayers. We also show that the chiral diamond
photonic crystal slab with inclusions of graphite is able to
generate circularly polarized thermal emission (as well as to
route the radiation from the circularly polarized emitter) for

FIG. 1. Schematic of the twisted stack consisting of two arbitrary
1D-periodic lattices twisted around a common axis.

appropriate twisting angles. The accurate study of these and
many other effects becomes possible with the help of our
approach.

II. SCATTERING MATRICES CALCULATIONS

Here, we are going to consider twisted stacks of 1D-
periodic gratings that form a 2D-periodic moiré pattern, as
shown in Fig. 1. The upper and lower sublattices might be dif-
ferent and have different periods and arbitrary rotation angles,
as depicted in Figs. 1 and 2.

Each separate 1D lattice has a corresponding 1D reciprocal
lattice [Figs. 2(a) and 2(b)], which is formed by the Bragg
vectors G1 and G2, which might be imparted by the lattices to
the in-plane wave vector of the incident wave k‖. The optical
properties of the upper and lower sublattices can be described
in terms of the scattering matrices that connect the amplitudes
of incoming and outgoing waves. Nevertheless, the relative
rotation and different periods of the lattices result in misalign-
ment and mismatch of their reciprocal lattices [see Figs. 2(a)
and 2(b)]. In such configuration, each diffraction harmonic
of the light passed through one of the lattices generates a
new family of harmonics after the diffraction on the second
one. Therefore, the structure consisting of upper and lower
sublattices is essentially two-dimensional, and its scattering
matrix should connect all the corresponding harmonics [see
Fig. 2(c)].

The straightforward approach to calculate the spectra of
such stacks is just to consider each 1D-periodic sublayer as
a 2D-periodic metasurface [see the right column in Figs. 2(a)
and 2(b)]. For the desired convergence, 2D structures typically
require us to take into account many more harmonics than 1D
ones. Given that the calculation time scales cubically with the
number of harmonics [73], 2D calculations are relatively slow
and resource consuming. The straightforward approach be-
comes especially inefficient for plasmonic lattices, for which
even 1D sublattices require a huge number of harmonics to
resolve the high-gradient fields. Brute-force calculation of
such structures is challenging even in a single dimension
and almost unachievable in two dimensions. Moreover, for
moiré lattices, this issue might be even more critical than for
typical 2D crystals. As already mentioned, the moiré pattern
composed of sublayers with close vectors of reciprocal lattices
|G1 − G2| � k (where k is the typical wave vector of light
in ambient media) has a large number of open diffraction
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FIG. 2. Sketches of the (a) upper and (b) lower sublattices and (c) their stack in real and reciprocal spaces. The left column in (a) and
(b) schematically shows the structure of the rotated 1D-periodic sublattices and their reciprocal lattices with respect to the coordinate axes
and wave vector of the incident light k‖. The right column in (a) and (b) formally considers the same sublattices as structures with mutual 2D
periodicity. Each sublattice binds harmonics of either a common row or column. (c) shows the superimposing of 1D sublattices resulting in the
formation of the true 2D-periodic structure, which substantially connects all the harmonics. The dashed circle in the bottom plot contains the
harmonics that fulfill condition (26) |k‖ + nG1 + mG2| <

√
εglω2/c2 + (− ln �/H )2 for real εgl and therefore are used for the calculation of

twisted lattices coupling.

channels. Thus, in this case, the achievement of full conver-
gence for some structures could be especially challenging,
which will be discussed for a practical example below.

Nevertheless, we do not consider 2D photonic crystals of
the general form and focus our attention on a rather narrow
class of the structures. Using the distinctive features of this
class makes it possible to simplify and boost the correspond-
ing calculations.

A. Scattering matrix of the 1D lattice

We start with the consideration of the first (upper) 1D sub-
lattice. It is important to note that the derivations will be based
on the assumption that the lattice is sandwiched between two
homogeneous layers (see Fig. 3). Such an environment makes

it possible to consider the eigenmodes of the boundary layers
as plane linearly polarized waves, which simplifies the deriva-
tions. Although the proposed configuration does not describe
the arbitrary structure, we can implement it without losing
generality. Indeed, the virtual zero-thickness homogeneous
layer can always be inserted, for example, between two back-
to-back gratings.

Let us separate out the layer bounded by horizontal dashed
lines [see Figs. 2(a) and 3] that includes the upper sublattice
in a specially aligned x′-y′ coordinate system. Looking ahead,
a similar layer for the lower sublattice should be chosen to
stand back to back with the first one; that is, the gap interlayer
is virtually divided in an arbitrary ratio between the layers.
Incident light determines the in-plane components of the main
harmonic wave vector k‖ = kxx̂ + kyŷ = kx′ x̂′ + ky′ ŷ′, where
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FIG. 3. Scheme of the 1D lattice sandwiched between homoge-
neous adjacent layers. Long-dashed lines separate the periodic part
of the structure from the outer dielectric environment and lie in
homogeneous layers; short-dashed lines denote the boundaries of the
unit cells. Arrows illustrate the incoming and outgoing harmonics
that are connected via the scattering matrix.

x̂, ŷ, x̂′, and ŷ′ are unit vectors defining the direction of the
corresponding axes. The interaction of light with the lattice
leads to the emergence of diffraction harmonics that have
corresponding wave vectors that might be arranged in hyper-
vectors:

[ �K1
x′ �K1

y′
] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1,−N
x′ K1,−N

y′

K1,−N+1
x′ K1,−N+1

y′
...

K1,0
x′ K1,0

y′
...

K1,N
x′ K1,N

y′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1
...

1
...

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[
kx′

ky′

]T

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−N
−N + 1

...

0
...

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[
G1

x′

G1
y′

]T

, (1)

where G1
x′ and G1

y′ are projections of the Bragg vector on
the denoted axes and the number of harmonics that are taken
into account is Ng = 2N + 1. The finite number of these har-
monics makes it possible to build the scattering matrix that
connects the amplitudes of incoming [ �d ′

−, �u′
+]T and outgoing

[ �d ′
+, �u′

−]T waves on the boundaries of the considered layer
(horizontal dashed lines in Fig. 3). Since the consideration is
held in the primed basis, we consider the matrix S′

1(ω, k‖) =
S′

1(ω, [kx′ , ky′ ]T) as a function of kx′ and ky′ projections:[ �d ′
+

�u′
−

]
= S′

1(ω, [kx′ , ky′ ]T)

[ �d ′
−

�u′
+

]
, (2)

where �u′± and �d ′± are hypervectors of amplitudes correspond-
ing to the upward and downward propagating waves and +
and − signs indicate the sections that have the larger and
smaller z coordinates, correspondingly. Each of the hypervec-
tors �u′

±, �d ′
± describes 2Ng modes of different polarizations,

whereas the scattering matrix S′
1 has a size of 4Ng × 4Ng. If

the boundaries of the considered layer are located inside a
homogeneous environment (the case which we consider here),

then according to our definition, amplitudes correspond to x′-
and y′-polarized plane waves:

�u′
± =

[�u±,x′

�u±,y′

]
, �d ′

± =
[ �d±,x′

�d±,y′

]
, (3)

where the amplitudes are sorted in accordance with hyper-
vectors [ �K1

x′ , �K1
y′ ] in such a way that the field of up- and

downgoing waves can be found as follows:[
E±,x′ (r‖)
E±,y′ (r‖)

]
=

N∑
n=−N

([
un

±,x′

un
±,y′

]
+

[
dn

±,x′

dn
±,y′

])
eiK1,n

‖ r‖ , (4)

where index n indicates the nth component of the hypervec-
tors, K1,n

‖ = K1,n
x x̂ + K1,n

y ŷ and r‖ = xx̂ + yŷ.

B. Scattering matrix of the rotated sublattice

The scattering matrix S′
1 fully describes the optical proper-

ties of the considered layer and can be found with standard
FMM realizations. This matrix is a function of frequency
ω and the in-plane component of the wave vector k‖ but
also depends on the structure’s parameters. The scattering
matrix’s transformation with the rotation of the lattice can be
easily found and does not require additional computations. To
demonstrate this, we consider the first lattice rotated by an
angle α and find the connection of the scattering matrix in
the x-y coordinate system S1(ω, k‖) = S1(ω, [kx, ky]T) with
matrix S′

1(ω, k‖) = S1(ω, [kx′ , ky′ ]T) defined in the x′-y′ basis
[see Fig. 2(a)]. The latter has already been considered:⎡

⎢⎣
d+,x′

d+,y′

u−,x′

u−,y′

⎤
⎥⎦ = S′

1

(
ω, [kx′ , ky′ ]T

)
⎡
⎢⎣

d−,x′

d−,y′

u+,x′

u+,y′

⎤
⎥⎦. (5)

Hypervectors that are connected by the scattering matrix
might be easily expressed in the original x-y coordinate
system:⎡
⎢⎣

d+,x

d+,y

u−,x

u−,y

⎤
⎥⎦ = Rα

⎡
⎢⎣

d+,x′

d+,y′

u−,x′

u−,y′

⎤
⎥⎦,

⎡
⎢⎣

d−,x

d−,y

u+,x

u+,y

⎤
⎥⎦ = Rα

⎡
⎢⎣

d−,x′

d−,y′

u+,x′

u+,y′

⎤
⎥⎦,

Rα =

⎡
⎢⎢⎣

cos(α)Î − sin(α)Î 0̂ 0̂
sin(α)Î cos(α)Î 0̂ 0̂

0̂ 0̂ cos(α)Î − sin(α)Î
0̂ 0̂ sin(α)Î cos(α)Î

⎤
⎥⎥⎦,

(6)

where Rα is the rotation matrix of the hypervectors, Î is
the Ng × Ng identity matrix, and 0̂ is the Ng × Ng zero ma-
trix. Due to the fact that both scattering matrices describe
the same mapping in different bases, we can easily obtain
the final expression for the scattering matrix in the original
coordinates:

S1(ω, [kx, ky]T) = RαS
′
1(ω, R̂−α[kx, ky]T)R−α, (7)

where[
kx′

ky′

]
= R̂−α

[
kx

ky

]
, R̂α =

[
cos(α) − sin(α)
sin(α) cos(α)

]
. (8)

We should remember that the in-plane components of the
wave vectors of the diffraction harmonics, K1,n

‖ = K1,n
x x̂ +
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K1,n
y ŷ = K1,n

x′ x̂′ + K1,n
y′ ŷ′, are transformed accordingly:

[
K1,n

x (k‖)
K1,n

y (k‖)

]
=

[
kx

ky

]
+ n

[
G1

x

G1
y

]

= R̂α

[
K1,n

x′ (k‖)

K1,n
y′ (k‖)

]
= R̂α

[
kx′

ky′

]
+ nR̂α

[
G1

0

]
, (9)

where G1 is the absolute value of the Bragg vector of the first

lattice (G1 = G1
x′ =

√
G1

x
2 + G1

y
2).

The same procedure holds for the second lattice, which is
rotated on an angle β and is aligned with the double-primed
axes:

S2(ω, [kx, ky]T) = RβS
′′
2 (ω, R̂−β [kx, ky]T)R−β. (10)

The corresponding basis is as follows:
[

K2,m
x (k‖)

K2,m
y (k‖)

]
=

[
kx

ky

]
+ m

[
G2

x

G2
y

]
= R̂β

[
kx′′

ky′′

]
+ mR̂β

[
G2

0

]
.

(11)

The number of harmonics for this case is denoted Mg =
2M + 1.

C. Scattering matrix of the stack in the mutual basis

We have obtained the scattering matrices of the rotated 1D
metasurfaces, but our final goal is to construct the scatter-
ing matrices derived in a mutual basis, which requires us to
consider them formally as 2D crystals. The mutual, reciprocal
lattice for both sublattices might be found as the direct sum of
their own 1D reciprocal lattices. In practical calculations, we
take into account only a finite number of harmonics, and the
easiest approach is also to take the direct sum of finite sublat-
tices, as shown in the right column in Figs. 2(a) and 2(b). Such
an approach is not the only one, but it is highly convenient for
practical implementation.

The wave vectors of the 2D superlattice harmonics might
be arranged in a single hypervector in different orders. The
straightforward approach is to place wave vectors of the 2D
lattice “row” after “row” or “column” after “column.” In other
words, harmonics of the mutual basis can be constructed as a
concatenation of sets of harmonics of 1D lattices for different
wave vectors of the main harmonic.

For the consideration of the first (upper) lattice, it is con-
venient to arrange the wave vectors in the order, which we
indicate by the letter A [see the right column of Figs. 2(a)
and 2(b)]:[

A �K2D
x

A �K2D
y

]

=

⎡
⎢⎢⎢⎣

�K1
x (k‖ − MG2) �K1

y (k‖ − MG2)
�K1

x (k‖ + (−M + 1)G2) �K1
y (k‖ + (−M + 1)G2)

...
...

�K1
x (k‖ + MG2) �K1

y (k‖ + MG2)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

�K1
x

(
K2,−M

‖ [k‖]
) �K1

y

(
K2,−M

‖ [k‖]
)

�K1
x

(
K2,−M+1

‖ [k‖]
) �K1

y

(
K2,−M+1

‖ [k‖]
)

...
...

�K1
x

(
K2,M

‖ [k‖]
) �K1

y

(
K2,M

‖ [k‖]
)

⎤
⎥⎥⎥⎦, (12)

where the expression �K1
x/y(q) indicates that the corresponding

hypervector is calculated for the wave vector of the main
harmonic equal to q.

With such a choice of the basis, each block of the scat-
tering matrix of the first lattice (considered a 2D one) splits
into subblocks that describe the internal coupling of each
row’s harmonics. Since the lattice is fundamentally one-
dimensional, all the interrow connections are equal to zero,
which makes the scattering matrix AS1 of the first lattice
formally considered a 2D crystal sparse. To demonstrate this,
we first represent the scattering matrices in the form in which
each block is responsible for either reflection or transmission
of x- or y-polarized incident light to the x- or y-polarized
channels:

AS1(ω, k‖) =

⎛
⎜⎜⎜⎝

AS11
1

AS12
1

AS13
1

AS14
1

AS21
1

AS22
1

AS23
1

AS24
1

AS31
1

AS32
1

AS33
1

AS34
1

AS41
1

AS42
1

AS43
1

AS44
1

⎞
⎟⎟⎟⎠,

S1(ω, k‖) =

⎛
⎜⎜⎜⎝
S11

1 S12
1 S13

1 S14
1

S21
1 S22

1 S23
1 S24

1

S31
1 S32

1 S33
1 S34

1

S41
1 S42

1 S43
1 S44

1

⎞
⎟⎟⎟⎠, (13)

where blocks AS i j
1 are size NgMg × NgMg, whereas blocks Si j

1
are size Ng × Ng. In turn, the blocks are obviously connected
as follows:

AS i j
1 (ω, k‖) =

⎛
⎜⎜⎜⎝
Si j

1 (K2,−M
‖ [k‖]) 0̂ . . . 0̂
0̂ Si j

1 (K2,−M+1
‖ [k‖]) . . . 0̂

...
...

. . .
...

0̂ 0̂ . . . Si j
1 (K2,M

‖ [k‖])

⎞
⎟⎟⎟⎠. (14)

Next, we need to build the scattering matrix of the second lattice AS2 in the same basis, A. However, it is hard to do it
immediately, and therefore, we first consider the scattering matrix of the second lattice in its natural basis, denoted B [see the
“chains” in the right column of Fig. 2(b)]:

BS i j
2 (ω, k‖) =

⎛
⎜⎜⎜⎝
Si j

2 (K1,−N
‖ [k‖]) 0̂ . . . 0̂
0̂ Si j

2 (K1,−N+1
‖ [k‖]) . . . 0̂

...
...

. . .
...

0̂ 0̂ . . . Si j
2 (K1,N

‖ [k‖])

⎞
⎟⎟⎟⎠, (15)
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where the harmonics are sorted as follows:[
B �K2D

x
B �K2D

y

]

=

⎡
⎢⎢⎢⎢⎣

�K2
x (K1,−N

‖ [k‖]) �K2
y (K1,−N

‖ [k‖])
�K2

x (K1,−N+1
‖ [k‖]) �K2

y (K1,−N+1
‖ [k‖])

...
...

�K2
x (K1,N

‖ [k‖]) �K2
y (K1,N

‖ [k‖])

⎤
⎥⎥⎥⎥⎦. (16)

The blockwise computation of the matrices (similar
to [70]) is faster than a straightforward approach. Indeed, the
calculation time of each scattering matrix scales cubically
with the number of harmonics. Therefore, the straightfor-
ward consideration of each sublayer as 2D crystal takes τsf ∝
N3

g M3
g , whereas our blockwise-calculation approach for the

first and second lattices scales as τ1 ∝ N3
g Mg and τ2 ∝ NgM3

g ,
which is much faster in practice, especially for the large num-
ber of harmonics.

The knowledge of the AS1(ω, k‖) and BS2(ω, k‖) matrices
is still not enough to obtain the stack scattering matrix. To
do that, we need to consider matrices of both sublayers in a
mutual basis. In our case, bases A and B differ only by the
order of their elements, and therefore, one of them can be
reduced to another by simple rearrangement. The transition
matrix that connects them can be easily derived.

Indeed, when we consider basis A, the (n, m) harmonic
[see Fig. 2(a)] has index number pA = (m + M )Ng + n +
N + 1. The same harmonic in basis B [see Fig. 2(b)] has
index number pB = (n + N )Mg + m + M + 1. In these terms
the matrices in the A and B representations are connected in a
very simple way:

AS i j
2,pAqA

= BS i j
2,pBqB

, (17)

where indices i j indicate one of 16 blocks [see Eq. (13)] and
the indices pA/BqA/B run inside each of the blocks.

In practice, there are several possible ways to implement
the described permutation. The most obvious is just to iterate
over all the indices in a loop to find the scattering matrix
components. Nevertheless, a much more effective approach
is to build the mappings pA = TAB(pB) and pB = TBA(pA)
between the representations in advance and apply them on de-
mand. TAB and TBA are primitive functions tabulated according
to the described rule. In this way, we need to apply just the
permutation operation, which is available in most packages
for numerical computations:

AS i j
2,pAqA

= BS i j
2,TBA(pA )TBA(qA ). (18)

The resulting matrix AS2 is still sparse but is no longer block
diagonal, which results in the “mixing” of blocks related to the
upper and lower sublattices and rise of specific moiré-induced
physical effects.

Once we get scattering matrices of both sublayers in mu-
tual basis A (or any other one), the total scattering matrix
of the whole stack AS = AS1 ⊗ AS2 might be found via the
well-known formulas [75] (from here on we omit the index A,
implying that all the matrices are derived in the same basis):

Sdd = Sdd
2

(
Î − Sdu

1 Sud
2

)−1Sdd
1 , (19)

Sdu = Sdu
2 + Sdd

2

(
Î − Sdu

1 Sud
2

)−1Sdu
1 Suu

2 , (20)

Sud = Sud
1 + Suu

1

(
Î − Sud

2 Sdu
1

)−1Sud
2 Sdd

1 , (21)

Suu = Suu
1

(
Î − Sud

2 Sdu
1

)−1Suu
2 , (22)

where the matrices are considered in terms of large 2NgMg ×
2NgMg blocks:

S (ω, k‖) =
(
Sdd Sdu

Sud Suu

)
, (23)

S1(ω, k‖) =
(Sdd

1 Sdu
1

Sud
1 Suu

1

)
, (24)

S2(ω, k‖) =
(Sdd

2 Sdu
2

Sud
2 Suu

2

)
. (25)

Each of formulas (19)–(22) contains the inversion of the
sparse matrices for which, to our knowledge, there are no
effective specialized algorithms. In this way, since the time
of the matrix inversion scales cubically with its size, the total
computation time for the stack scattering matrix has the same
cubic asymptote τ ∝ N3

g M3
g as the naive approach. Neverthe-

less, even the efficient calculation of each sublattice matrix, as
we will show below, accelerates the whole procedure multiple
times.

III. FILTRATION OF HARMONICS

In most practical cases, calculation of the moiré stack scat-
tering matrix might be additionally boosted as well. If there
is a thin, but finite, homogeneous gap layer of thickness H
(see Fig. 1) between twisted metasurfaces, then additional
physical-based simplification can be implemented. Indeed,
high-k‖ evanescent waves (requiring a large number of har-
monics in the calculation to be accounted for) might be needed
to accurately describe the optical properties of separate upper
and lower lattices. Nevertheless, these harmonics decay in the
gap in such a fast way that they make almost no contribution
in the interaction of upper and lower sublayers. Therefore, it
is easy to formulate the criterion for taking harmonics into
account for the calculation of matrix combination:

e−Im[
√

εglω2/c2−(k‖+nG1+mG2 )2H ] > �, (26)

where εgl is the permittivity of the gap layer and � is the cutoff
level, which determines the tolerance of the fully converged
results and should be in the range of 10−2–10−10 for most of
the structures. Harmonic filtering is schematically illustrated
in Fig. 2(c). The fulfillment of the introduced condition results
in throwing away a significant number of corresponding rows
and columns from matrices S1 and S2 and a subsequent drastic
increase in the calculation speed for Eqs. (19)–(22). Moreover,
the number of remaining harmonics saturates rapidly, making
the computation time of matrix combination almost constant
as well. In this case, the asymptotic time scaling will be
determined by the sublattices τ ∝ max(N3

g Mg, NgM3
g ). If one

is not satisfied with the �-limited precision, it is possible to
reduce the cutoff level synchronously with the increase in
the number of harmonics. Such approach would worsen the
asymptotic behavior but guarantee the ultimate precision with
a remaining great gain in speed.

It is important that despite the filtration, we still account for
the near field of the metasurfaces and the potential coupling
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of their guided modes by the near-field interaction. Crucially,
even though high harmonics are not in demand in the last com-
putational stage, accounting for the interaction between the
sublayers, they are vital to obtaining the low-k‖ cores of the
S1 and S2 matrices since sublattices might efficiently “mix”
all the harmonics. Therefore, the number of harmonics NgMg

used to calculate S1 and S2 should be, in general, significantly
larger than the number which fulfills condition (26).

In the case of zero or extremely small H , the filtering tech-
nique is not applicable and does not increase the calculation
efficiency. However, this case corresponds to tightly bound
lattices that form a true 2D crystal, and it is reasonable that the
simplification based on the concept of complex independent
structures connected via the limited number of channels is
irrelevant.

Further development

Computational approaches presented in the previous sec-
tions provide a fast and efficient calculation of twisted moiré
stack spectra, which will be demonstrated below. Neverthe-
less, the computations can be further improved, which might
be vital in most complicated cases.

The most obvious improvement is associated with the fil-
tration of harmonics. In most practical cases we keep a rather
limited number of low-k‖ harmonics that lie in a circle defined
by the cutoff level in Eq. (26). Without loss of generality, if we
consider the upper lattice, then it becomes obvious that most
of the chains of the harmonics [right column in Fig. 2(a)] are
not related to the low k‖ in which we are interested. Therefore,
the corresponding blocks of the scattering matrices can be
excluded, which additionally improves the time calculation
asymptote τ ∝ max(N3

g , M3
g ). Such an approach requires a

slightly more complicated procedure for the choice of the mu-
tual basis and harmonics of individual lattices, which should
account for the cutoff level. Nevertheless, this procedure is
straightforward and might be easily realized in the spirit of
the technique presented in this study. Potential interest in
efficient calculations might be attracted by the choice of other
alternative 2D harmonics sets that are not direct sums of any
other 1D harmonics sets.

One more opportunity to improve the computations for the
weakly coupled metasurfaces lies in a simplified accounting
of their interaction. Indeed, in such cases it is most likely
possible to develop some sort of perturbation theory. Appar-
ently, it will be associated with substituting expressions with
inversion of the matrices with series expansion [see Eqs. (19)–
(22)]. Potentially, the use of only sparse matrix multiplication,
which is a fast operation, might significantly boost the calcu-
lations. Nevertheless, this approach requires separate detailed
consideration and rigorous study of its potential applicability.

Yet another acceleration can be applied for the hard-
to-compute moiré superlattices of large moiré periods. As
already discussed, similar sublattice superimposition results
in the formation of a very dense reciprocal lattice, and ac-
cording to the described procedure, one needs to calculate the
blocks of matrices that connect very closely located chains
of harmonics. Therefore, corresponding scattering matrices
might be found not directly, but from the interpolation of
precalculated matrices on a mesh in reciprocal space. Such

an approach not only strongly reduces the number of re-
peated calculations but also helps us to choose the optimum
for the problem set of harmonics (not necessarily direct sum
generated).

IV. PERFORMANCE

In the previous sections, we have proposed an effective
computational approach and estimated its asymptotic time
consumption. Nevertheless, it is important to observe the ac-
celeration in practice. To do that, we have chosen one of the
hardest-to-compute structures: the stack of two 1D plasmonic
lattices in silica (εSiO2 = 1.462). Figure 4(a) indicates the di-
mensions of perpendicular gold lattices that are identical to
each other. The optical properties of gold are described by
Johnson and Christy’s optical constants [76].

As an illustration, we consider the normal incidence of
x-polarized 1200-nm light on the structure. Figures 4(b) and
4(c) show the dependence of the absorption and the calcula-
tion time, respectively, on the number of Fourier harmonics
taken into account (we take Ng = Mg for all the computa-
tions). The green line and circles show the application of the
standard Fourier modal method (enhanced by Li’s factoriza-
tion rules [77,78]) to a 2D grating (straightforward approach)
and act as reference values. One can see from Fig. 4(c) that
on logarithmic axes, single-processor calculation time almost
immediately goes to a straight line of almost constant slope,
≈2.5, which is slightly smaller than the theoretical asymp-
totic limit of 3. The last computed point corresponding to
472 = 2209 Fourier harmonics takes approximately 600 s.
Nevertheless, due to the peculiarities of the metal properties,
the absorption value is still far from convergence even for as
large a number of harmonics as 2209 (see Fig. 4).

The application of the techniques proposed in this paper
allows us to accelerate the calculations significantly. For the
zero cutoff level [yellow line and circles in Figs. 4(b) and 4(c)]
there is no filtration of high-k‖ harmonics at all, which results
in the same asymptotic time scaling [Fig. 4(c)] and identical
absorption [Fig. 4(b)], which matches the standard FMM up
to machine precision. Nevertheless, the optimal approach for
calculating the sublayer scattering matrices makes the com-
putations approximately 1 order of magnitude faster, which
is clearly seen from the gap between the parallel green and
yellow lines [Fig. 4(c)]. The reason is the number of the most
asymptotically expensive mathematical operations is reduced
approximately tenfold, which gives us the possibility to ac-
count for a much larger number of harmonics for the same
computational time.

Nevertheless, even more promising results are demon-
strated by the approximate method that filters out high Fourier
harmonics in the stage of calculating the combination of
sublayer scattering matrices. Even such a small cutoff level
as � = 10−10 results in a total change in the computation
time dependence [red line in Fig. 4(c)]. Indeed, while the
number of harmonics is relatively small [all of them fit inside
the dashed circle in Fig. 2(c)], none of them is ignored [in
Fig. 4(c), the red and yellow lines coincide], but as soon
as their number overcomes the threshold of approximately
670 harmonics, which can easily be estimated [some of the
harmonics come out of the circle in Fig. 2(c)], the time to
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FIG. 4. Study of the computation convergence with the number
of harmonics used to calculate the absorption of normally incident
x-polarized light in the plasmonic stack depicted in (a). (b) shows the
dependence of the absorption on the total number of harmonics taken
into account in a logarithmic scale. The inset employs the linear scale
for the square root of the harmonics to demonstrate the details of the
oscillations near the expected limit. (c) shows the calculation time
scaling with the number of harmonics for the different approaches.
The green line and circles correspond to the reference FMM, and the
yellow line and circles correspond to our approach without filtration,
whereas red and blue ones correspond to different filtration cutoff
levels.

compute the scattering matrix combination stops growing.
This results in a bend in the graph line and a flattening of
its asymptote, which is reached when the time required to

compute upper and lower sublayer scattering matrices domi-
nates the their combination time. As shown before, theoretical
estimation gives the quadratic scaling of the computation time
τ ∝ (NgMg)2 (for Ng = Mg), but in practice, we see a power of
approximately 1.7. In this way, the harmonics filtration results
in an additional strong acceleration of the computations, and
moreover, this acceleration becomes greater as more harmon-
ics are taken into account. It is also important that although
the filtration-based approach is approximate, the computed
absorption values match perfectly the previous results, and
no significant deviation is seen [see Fig. 4(b)]. Therefore, the
level of filtration-specified precision does not prevent obtain-
ing almost the full convergence potentially.

A relatively high cutoff level of � = 10−5 (blue lines and
circles) shifts the threshold of line bending to a much smaller
number of harmonics, so that it is no longer distinguishable
[Fig. 4(c)]. As seen from the graphs, this gives us a significant
acceleration for the middle number of harmonics (300–3000),
which can be the most practical in calculations of many struc-
tures. At the same time, the coincidence with the previous,
accurate calculations is perfect, which proves the remaining
high level of precision [Fig. 4(b)].

The optimal choice of the number of harmonics and the
cutoff level significantly depends on the materials and geome-
try of the structure, physical effects observed in the considered
frequency range, and, obviously, the desired precision. The
most attention should be paid to achieving the convergence
for NgMg and θ , although the computational time is essential
as well.

V. EXAMPLES

The high speed and precision of computations make it
much easier to compute spectra of moiré metasurfaces. In
particular, here, we explore the potential applications of the
computational approach for the examples of the already dis-
cussed plasmonic lattices (twisted on different angles) and a
membrane diamond photonic crystal slab.

A. Plasmonic crystal

Plasmonic crystals and inclusions of plasmonic nanoparti-
cles in photonic crystal slabs are well known for their ability
to localize light at the nanoscale and form hybrid high-Q
collective resonances [29,33,79–95]. Without a doubt, they
can become the basis for a variety of moiré superlattices as
well.

The natural way to study the optical properties of the
twisted plasmonic gratings is to consider isofrequency dis-
persion curves. In order to do that, we employ an auxiliary
high-index optical prism (εprism = 16) at a small distance from
the structure (see schemes in Fig. 5) and use it for excitation
of the guided modes. The absorption maps for p-polarized
1200-nm light, which excites surface plasmons in plasmonic
structures, are shown in Fig. 5. Figures 5(a) and 5(b) demon-
strate that solitary lattices [constituents of the stacks consid-
ered further in panels (c)-(d)] support plasmons propagating
along the gold sheets. Indeed, the longitudinally polarized
surface waves that propagate along the structure almost do
not feel the vertical walls of nanostrips and behave similarly
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FIG. 5. Absorption maps of p-polarized 1200-nm-wavelength light in four sketched SiO2-embedded plasmonic lattices illuminated through
the prism (kx/k0 and ky/k0 are in-plain wave vector components normalized by the wave vector in vacuum k0 = ω/c; x-y projections show
the bottom-up view, which is in accordance with other figures). (a) and (b) demonstrate the hyperboliclike behavior of plasmons in solitary
lattices placed at different distances from the prism. (c) and (d) show the mode hybridization in stacks of (c) perpendicularly and (d) 60◦-angle-
crossed identical plasmonic lattices. Green dashed lines indicate the boundaries of the 1D lattices Brillouin zones, whereas the cyan lines are
moiré-pattern-associated boundaries.

to plasmons in an infinite metal slab. At the same time, the
plasmonic modes polarized perpendicularly to the strips face
strong depolarization due to the subwavelength dimensions
of the latter one. For this reason such modes are naturally
associated with localized resonances that are observed for
smaller wavelengths. The fact that at the considered wave-
length plasmon waves can propagate in one direction but
cannot propagate in the other one leads to concavity of its dis-
persion. An effective anisotropic medium cannot accurately
describe these plasmons due to the proximity of the first
Brillouin zone boundaries (green dashed lines) to the disper-
sion curves. Nevertheless, the dispersion curves demonstrate
typical hyperboliclike behavior [96], which is widely spread
in various nanophotonic applications [39]. It is worth noting
that the modes of the structure located 100 nm from the prism
[Fig. 5(a)] are obviously more strongly excited than those of
the 165-nm-disposed structure [Fig. 5(b)] due to the decay of
evanescent waves in the SiO2 layer.

Hybridization of upper and lower lattice plasmons in a
stack is able to change their dispersion significantly. In-
terestingly, even the interaction of perpendicularly crossed
lattices leads to the formation of the closed squarelike
dispersion curve [see Fig. 5(c)]. This effect is very similar to a
topological transition in twisted graphene metasurfaces [39]

and probably can also be implemented for so-called field
canalization [39,97]. Nevertheless, like in the solitary lattices
[Figs. 5(a) and 5(b)], x-propagating plasmons are less pro-
nounced than y-propagating ones, which is explained just by
an asymmetric prism-assisted excitation.

Relative rotation of the lattices is a powerful tool to shape
the dispersion in a desired way. The 60◦ angle between
nanoribbons makes the first Brillouin zone (Wigner-Seitz
cell) a regular hexagon [see Fig. 5(d)], whereas the struc-
ture remains C2 symmetric. Two pairs of its boundaries
(shown by green dashed lines) originate from the recip-
rocal lattices of separate 1D sublattices, whereas the cyan
pair corresponds to a specific moiré-inspired effect asso-
ciated with both sublattices. The interaction of lattices is
most pronounced where the resonances of individual lat-
tices intersect [see Figs. 5(a) and 5(b) for corresponding
dispersions]. Indeed, we observe strong anticrossing of the
surface plasmons near the cyan boundary of the Brillouin
zone. Nevertheless, in this example, hybridization is mostly
due to the interaction through the main harmonic. The lat-
tice effect associated with the vicinity of the Brillouin zone
boundary and corresponding interaction with Bragg-vector-
coupled harmonics is very weak and does not significantly
affect the behavior of the structure. The shape of the newly

085424-9



SALAKHOVA, FRADKIN, DYAKOV, AND GIPPIUS PHYSICAL REVIEW B 104, 085424 (2021)

FIG. 6. (a) Absorption and (b) emission of 10-μm light from the twisted diamond photonic crystal slab with graphite inclusions (insets).
(a) shows the absorption of the right- and left-handed circularly polarized light as well as the degree of circular polarization in absorption as a
function of the rotation angle. (b) demonstrates the angle dependence of the upwards and downwards emission in the normal directions for the
circularly polarized σ± dipoles. The bottom panel shows the routing efficiencies η− = −η+, which almost reach the ultimate unitary value.

formed dispersion curve is obviously determined by the orig-
inal plasmons but strongly differs from them at the same
time. Most importantly, dispersion becomes convex, which
totally changes the behavior of the plasmon wave packet
propagation.

B. Dielectric crystal

As an example of dielectric moiré structure, we explore
the optical properties of diamond photonic crystal slabs (see
the insets in Fig. 6) in the midinfrared frequency range (λ =
10 μm). These structures are diamond membranes in which
identical periodic series of grooves are cut from both sides.
The bottom of the grooves is covered by a thin, several-dozen-
nanometer layer of graphite, which is naturally formed during
the direct laser writing [98]. The grooves are twisted on an
angle α with respect to each other (the lower one is aligned
with the y axis, β = 0, whereas the upper one is rotated by
the angle α < 0); the exact dimensions of the structures are
indicated in Fig. 6. Diamond and graphite permittivities at
10-μm wavelength are εd = 5.6581 + 0.0004i and εg =
9.99 + 35.55i, respectively [98].

The considered structures do not have any mirror sym-
metry in the general case, which makes them chiral and
prospective for manipulating circularly polarized light. In this
way, we illuminate the structure by the normally incident
light of complementary circular polarizations and observe the
absorption, which occurs predominantly (but not completely)
in graphite. As we can see from Fig. 6(a), absorption strongly
depends on the angle α; there are many resonances that
are excited for different angles. We see that the degree of
circular polarization (DCP), (ARCP − ALCP)/(ARCP + ALCP),
for the absorption reaches the high level of approximately
73% for an approximately 57◦ angle of rotation [see the bot-
tom graph in Fig. 6(a)]. Even higher levels can be achieved
with a thinner layer of graphite, but the finite physically
meaningful thickness “blurs” the pure effect and limits its

maximal value. According to the Lorentz reciprocity princi-
ple, the shown effect means that the thermal emission of a
10-μm wavelength, which can be observed from the moiré
structure, will be strongly circularly polarized in the normal
direction. In this way, we can consider this structure a pas-
sive source of circularly polarized thermal emission, which
might potentially be implemented in radiative heat transfer
problems [45,58,60].

As for the angular dependence, it is clear that relatively
large angles such as 50◦–90◦ correspond to typical 2D lat-
tices, which have periods comparable to each other in two
directions. The periods of the structure, as well as its opti-
cal properties, slowly change with variation of the angle in
this range, and therefore, the resonances are wide in terms
of the angular width. Nevertheless, as we discussed before,
one of the structure periods tends to infinity with an angle
going to zero. This results in a large number of sharp res-
onances and Rayleigh anomalies that interchange with each
other in the range of 15◦–50◦. At the same time, the ef-
ficiency of the high-harmonics excitation rapidly falls with
decreasing angle, and as a result, the amplitude of the dense
modulation in Fig. 6(a) becomes negligible for 0◦–15◦. It
is important to emphasize once again that small angles of
rotation potentially require us to take into account a huge
number of harmonics, at least to cover open diffraction chan-
nels. Nevertheless, in practice, we observe that up to a high
level of precision, the convergence is achieved even when
not all the open channels are accounted for, which indi-
rectly proves the weak contribution of the ignored harmonics
to the properties of the whole structure. This effect paves
the way for potential studies of even larger moiré period
superlattices.

We consider the chiral structure, which has not only a z
axis possessing a twofold rotation but also two other axes of
the same kind lying in the x-y plane. Overall, the structure has
D2 point group symmetry, making it prospective for routing
the radiation from the circularly polarized dipole emitter [99].
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Indeed, let us consider a point dipole that is located in the
structure according to the inset in Fig. 6(b), in the middle of
each of the graphite strips (in terms of the x-y plane projec-
tion) and in the center of the slab (in terms of the z coordinate).
We denote the dipoles of complementary circular polariza-
tions P± = [1,±i, 0]T as σ±, respectively. In this way, due
to the symmetry of the structure, the intensity of light emitted
upwards at a normal angle by the σ+ dipole I+

u is equal to
the intensity of the σ− dipole downwards emission, I−

d = I+
u .

The same relation is valid for the complementary quantities,
I−
u = I+

d . This peculiarity simplifies the route of σ± dipole
emission to opposite directions. If we manage to nullify the
downwards emission of the σ− dipole I−

d = 0, the upwards
emission of the σ+ dipole would automatically be zero as
well, I+

u = 0, which means that each dipole would radiate in
its own direction. Such a routing effect in the D4-symmetric
structure was already studied in detail in our previous pa-
per [99].

It is convenient to evaluate the emission directivity numer-

ically via the efficiencies η± = I±
u −I±

d

I±
u +I±

d
, which are connected

to each other, and η+ = −η−. The accurate choice of the
geometric parameters allowed us to achieve almost perfect
routing (more than 99.5% efficiency) for an approximately
68◦ angle of rotation [Fig. 6(b)]. It is clear from the upper
graph in Fig. 6(b) that the strongest effect corresponds to the
nullification of the emission in one of the directions due to
the Fano line shape of the resonance (blue line). In principle,
the structure might be optimized to demonstrate this effect for

narrow, small-angle resonances that are observed in emission
as well.

VI. CONCLUSION

In this paper, we have proposed a moiré-adapted Fourier
modal method to consider twisted 1D lattices that form moiré
patterns. We have demonstrated the possibility of speeding
up the computations by 1 to 3 or more orders of magnitude
depending on the number of harmonics without a noticeable
decrease in the accuracy. Such an approach paves the way
for rigorous study of mode hybridization in twisted photonic
crystals slabs and the potential design of optical devices based
on them. As an example, we have demonstrated the tuning of
plasmonic modes dispersion in a stack of plasmonic lattices.
Also, the utilization of the diamond photonic crystal slab for
circularly polarized thermal emission in the midinfrared range
and emission routing from the circularly polarized dipole
source have been shown.
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