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Electroluminescence and thermal radiation from metallic armchair carbon nanotubes with defects
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Bias-induced light emission and thermal radiation from conducting channels of metallic armchair carbon
nanotubes (CNTs) with defects are studied theoretically within the framework of nonequilibrium Green’s
function method based on a tight-binding model. Localized states induced by the single vacancy defect and
single Stone-Wales defect in the low-energy range enhance electroluminescence significantly while they reduce
thermal radiation under zero bias. The influence of the diameters of the CNTs with defects on the radiation is
discussed. Radiations from metallic CNTs in thermal equilibrium show black-body-like spectrum. For perfect
nanotubes with small diameter, their thermal radiations are nearly independent on the tube diameter due to the
confinement of the thermal excitations in the tube’s circular direction. Our study is important for optoelectronic
applications of CNTs with defects.
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I. INTRODUCTION

Single-walled carbon nanotubes (SWCNTs) are quasi-one-
dimensional materials possessing extraordinary electrical,
mechanical, and optoelectronic properties [1]. They can be
metallic, small-gap semiconducting or semiconducting [2,3].
The geometry of a SWCNT can be described by the tube’s
chiral vector, which is defined by a pair of integers (n, m) [1].
The band structure of a metallic SWCNT shows nearly linear
dispersion relation in the low-energy range around the Fermi
level. Optical transitions are forbidden in this low-energy
range under an external electric field along the tube axis [4].
When the CNTs are stimulated by electrons or photons, sig-
nificant light emissions can occur due to transitions between
pairs of van Hove singularities that are mirror symmetric with
respect to the Fermi level.

Electroluminescence (EL) and photoluminescence (PL)
from SWCNTs have been studied a lot in semiconduct-
ing CNTs experimentally [5–8]. In contrast, observations of
EL from metallic SWCNTs are much less frequent [9–11].
Electroluminescence from suspended metallic SWCNTs are
explained by Joule heating [9], and the emission spectrum is
different from black-body-like emissions discovered in nan-
otube bundles and multiwalled CNTs [12–14]. The important
role of phonons in light emission has been stressed in recent
experiments, where a side peak close to the main transition
peak due to phonon-assisted emission appears in the radiation
spectrum [10,11].

Defects in CNTs are widely studied and they are shown
to have significant influences on various properties of CNTs,
such as electric and magnetic properties [15–17], trans-
port properties [18–21], field emission [22], mechanical,
and optical properties [23–27]. Common atomic-scale de-
fects in CNTs are vacancies, adatoms, and Stone-Wales (SW)
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reconstruction [1,28]. Recent experiments showed that defects
can be engineered to tune the optic properties of the CNTs
[29], such as enhancing the PL and tuning the single photon
emission by sp3 defects [30–32]. In contrast, the influence of
defects on the EL from CNTs is challenging and less studied
[33–35]. A recent experiment showed that a local defect could
be induced by injecting tunneling electrons from a scanning
tunneling microscope (STM) tip to a multiwalled CNT and
corresponding changes of EL due to the defect were ob-
served [35]. Theoretically, bias-induced light emission from
the nanoscale system has received much attention in recent
years [36–41], especially in molecular junctions. However,
few works have taken into account of the full geometry of the
system at the atomic-scale level. Quantitative calculations of
EL from metallic SWCNTs and also taking into account of the
influence of defects would be helpful to related experiments.

In this work, we consider a two-terminal device to study
the EL from the conducting channels of metallic SWCNTs
under the influences of the single vacancy (SV) defect and
the single SW defect. The metallic carbon nanotubes studied
here are restricted to the gapless armchair nanotubes. We
consider electron transport in the ballistic regime without
electron-phonon interaction. This can be reasonable when the
length of the conducting channel is much smaller than the
electron mean free path of the metallic SWCNT, which is
about several micrometers [42]. By turning off the applied
bias in the device, we also study the thermal radiation from
perfect and defected CNTs.

II. MODEL AND METHOD

We describe the Hamiltonian of the electrons in the CNT
using the nearest-neighbor (NN) tight-binding (TB) model

H0 = −
∑
〈i j〉

ti jc
†
i c j, (1)
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FIG. 1. Illustration of a two-terminal transport device of a
SWCNT. (a) The left (L) and right (R) leads are semi-infinite ex-
tensions of the pristine carbon nanotube with diameter d , and central
region is the conducting channel with a finite length l . The interaction
of electrons with the EM field is included only in the central region.
The driving current in the central channel induces light emission.
(b) A single vacancy defect in the channel, with the missing atom
denoted by a blue ring. (c) A Stone-Wales defect in the channel. The
structures of nanotubes are drawn using VESTA 3 [43].

where ti j is the hopping parameter, c†
i (c j) is the electron

creation (annihilation) operator on site i (site j), the angular
bracket 〈i j〉 denotes NN sites. We introduce the coupling of
the electrons with the electromagnetic field in free space by
using the Peierls substitution, i.e., substituting in Eq. (1) via
ti j → ti jeiθi j , with the phase factor θi j = e

h̄

∫ ri

r j
A · dl . Here e =

−|e| is the electron charge, h̄ is the reduced Planck constant,
and A is the vector potential for describing the free-space
electromagnetic field. The coupling of the electrons with the
electromagnetic field in the lowest-order approximation can
be obtained by expanding θi j in terms of A to the linear term,
given by

Hint =
∑
〈i j〉

∑
k

∑
μ=x,y,z

Mkμ
i j c†

i c jAμ(rk ). (2)

Here the electron-photon coupling matrix is Mkμ
i j =

i e
2h̄ ti j (ri − r j )μ(δki + δk j ).

The EL from a SWCNT is considered by a typical two-
terminal device under a bias voltage, as shown in Fig. 1(a).
The device consists of three parts. The left and right leads
are semi-infinite extensions of the pristine CNT. The central
part is the conducting channel and it has a finite length. We
take into account the interaction of electrons with the EM field
only in the central region. Upon applying a bias voltage, an
electric current flows through the channel, and photons are
excited and emitted due to the inelastic scattering of electrons
interacting with the electromagnetic field. The cases that the
channel contains a SV defect or a single SW defect are shown
in Figs. 1(b) and 1(c), respectively. The SV defect is modeled
by using a large onsite energy of 106 eV for the vacant atom,
and the SW defect is formed by rotating a C–C bond by 90
degrees. The effects of structure relaxations due to the defects
are not considered in this paper. Also, we consider the NN
hopping parameter ti j = t as a constant.

Radiation from the device is calculated using the nonequi-
librium Green’s function (NEGF) method based on our
previous work [44–47]. The important quantity is the local

current-current correlation function. Its lesser component can
be expressed in the random phase approximation as

�<
μν (ri, r j ; ω)

= −ih̄
∫ ∞

−∞

dE

2π h̄
Tr[Miμg<(E )M jνg>(E − h̄ω)], (3)

where Tr[· · · ] stands for trace over the electron degrees
of freedom. The electron’s lesser (greater) Green’s function
(GF) without coupling to the EM field is given by g<(>) =
gr�

<(>)
leads ga, with the retarded GF gr (E ) = [(E + iη)I − H0 −

�r
leads]

−1
, and advanced GF ga = (gr )†. I is the identity matrix

and η is the GF infinitely small quantity. �r
leads is the total

self-energy of the two semi-infinite leads, which are calcu-
lated by using the recursive GF method [48]. Each lead is in
equilibrium and follows the fluctuation-dissipation theorem,
obeying the relation �<

p = − fp(�r
p − �a

p), with p = L, R be-

ing the lead indices. fp(E , μp) = 1/[exp( E−μp

kBTp
) + 1] is the

Fermi distribution function, kB is the Boltzmann constant, μp

and Tp are the temperature and chemical potential of the lead,
respectively.

Using the monopole approximation and ignoring the
screening effect on current fluctuations, the radiation power
and rate of the photon counts (number of photons emitted per
unit time) in the far field are given by [46]

P = −
∫ ∞

0

dω

2π

h̄ω2

3πε0c3

∑
μ

Im
[
�tot,<

μμ (ω)
]
, (4)

dN

dt
= −

∫ ∞

0

dω

2π

ω

3πε0c3

∑
μ

Im
[
�tot,<

μμ (ω)
]
, (5)

where ε0 is the vacuum permittivity, c is the speed of light,
and �tot,<

μν (ω) = ∑
i j �

<
μν (ri, r j ; ω) is the total current-current

correlation function.

III. NUMERICAL RESULTS AND DISCUSSION

In the numerical calculation, we set the bias voltage be-
tween the two leads to be symmetric, with μL = −μR =
eV/2. The C–C bond length is a = 1.42 Å. The NN hopping
parameter is t = 2.7 eV [49]. We use η = 0.10 meV for
the ballistic transport. In this work, we consider the metallic
CNTs to be armchair type and we do not consider spins of
electrons. Temperatures for the two leads are both set to be
300 K unless stated otherwise. Restricted by the computa-
tional cost, we use the central CNT channel with the length
l = 10

√
3a.

First, we consider a typical metallic SWCNT with chiral
index (7, 7) for the two-terminal device. We compare the
results in each plot of Fig. 2 for the cases that the CNT channel
containing a single SW defect (SWD), a single SV defect
(SVD), and no defect, respectively. As shown in Fig. 2(a),
for a perfect CNT, with the increasing of the bias voltage,
the photon counts are very small and little changed in the
low bias range until the onset of bias at about 2.4 V, which
implies the opening of the M11 transition between the two van
Hove singularities shown by the density of states (DOS) in
Fig. 2(c). Below the onset of bias, thermal radiation is small
but dominant for the perfect CNT.

085422-2



ELECTROLUMINESCENCE AND THERMAL RADIATION … PHYSICAL REVIEW B 104, 085422 (2021)

104

106

108

0 1 2 3 4 5

M11 M22
0

1

2

3

0 1 2 3
1

10

100

−2 −1 0 1 2

M11

M22

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

10−11

10−10

10−9

10−8

10−7

10−6

1 2 3 4 5
0

1

2

3

0 1 2 3 4 5

M11 M22

0

2

4

6

8

10

−2 −1 0 1 2

C
ou

n
ts

/s
ec

Bias (V)

SWD
SVD
perfect

(a)

S
p
ec

tr
u
m

(n
W

/e
V

)

Photon energy (eV)

(b)
×10−3

D
O

S
(a

rb
.

u
n
it

s)

E (eV)

(c)

C
u
rr

en
t

(m
A

)

Bias (V)

(d)
Y

ie
ld

s

Bias (V)

(e)

S
p
ec

tr
u
m

(n
W

/e
V

)

Photon energy (eV)

(f)

C
on

d
u
ct

an
ce

(e
2 /

h
)

E (eV)

(g)

FIG. 2. Results for the two-terminal device of the CNT with chiral index (7, 7). Three curves are shown in each figure, for the CNTs with
a single SW defect, a single SV defect, and the perfect one without defect respectively. (a) Photon counts per second and (e) yields from the
CNT under a bias voltage. (b) and (f) show the spectrum of the radiation power under the bias voltages 2.0 V and 5.0 V, respectively. (c) The
total density of states of the electrons in the channel. (g) The conductance and (d) the I-V curve.

However, when the CNT channel contains a single SW
defect or a single SV defect, the photon counts for the two
cases increase almost exponentially in the low bias range,
while the first is about two times as large as the second. We
plot in Figs. 2(b) and 2(f) the spectrum of the radiation power,
which is defined as S(ω) = − ω2

6π2ε0c3

∑
μ Im[�tot,<

μμ (ω)] from
the integrand of Eq. (4), setting the bias below and above
the onset of bias for the M11 transition, respectively, with
V = 2.0 V and V = 5.0 V. The spectrum in Fig. 2(b) shows
that the average energy of the emitted photons from the CNT
with a SW defect is larger than that from the CNT with a
SV defect. The radiation spectra for the perfect CNT and the
defected CNTs under a large bias show little difference in
Fig. 2(f), where the influence of the defects on the radiation
is not obvious due to the strong transitions from high-energy
bands. To analyze the enhancement of EL in the low-energy
range, we plot in Fig. 2(c) the DOS of the CNT channel.
There are extra peaks of the DOS in the low-energy range
induced by the defects. These localized states account for the
EL in the low bias range. For the CNT with a SV defect,
the localized state locates near the Fermi level, and for the
case with a SW defect, the localized states are away from the
Fermi level, close to the edge of the first pair of the van Hove
singularities. Thus, the localized states due to a SW defect
induce transitions to emit photons with higher energy on av-
erage than that with a SV defect. Also, compared with that
of the perfect CNT, the electric current in Fig. 2(d) decreases
more significantly for the case with a SV defect than that with
a SW defect in the low bias range. The localized states due to
the defects in the low-energy range reduce the conductance by
one quantum unit, as shown in Fig. 2(g). The emission yield,
i.e., the number of photons emitted per electron injected into
the device channel, is an important quantity to characterize
the emission efficiency of the device. Here, the defects can
enhance the counts and decrease the electric current, thus they
enhance the yields of the EL, as shown in Fig. 2(e). The yields

can reach the order of 10−7 in the high bias range, which is
consistent with experimental values [50].

In Fig. 3, we discuss the influence of the diameter of
the CNT to the EL. Specifically, We consider four different
armchair CNTs with the chiral index (n, n) ranging from
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FIG. 3. Photon counts per second (left panel) and conductance
(right panel) for the two-terminal device using CNTs with different
diameter, with the chiral index (n, n) ranging from n = 4 to n = 7.
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n = 4 to n = 7. Their diameters are d = 5.42 Å, 6.78 Å,
8.14 Å, and 9.49 Å, respectively. There are distinct features
for the ELs from the CNTs with different diameters, though
the overall trends are similar, as shown in Figs. 3(a) to 3(c).
First, plots for the counts from CNTs with different diameters
formed some “bubbles” in the high bias range for the CNTs
with defects in Figs. 3(a) and 3(b), and the perfect CNTs in
Fig. 3(c). This is due to the fact that the transition energy cor-
responding to the M11 gap decreases with the increasing of the
tube diameter, which is shown from the conductance plots in
Figs. 3(d) to 3(f). Second, the dependence of the counts on the
tube diameter is very different for perfect CNTs and defected
CNTs under low bias. When the bias is smaller than the onset
bias of M11 transition, photon counts are inversely propor-
tional to the tube diameter for SW defected CNT, and they
are proportional to the tube diameter for SV defected CNT,
while they are nearly independent of the tube diameter for the
perfect CNT, as shown in Figs. 3(a) to 3(c), respectively. In
the low bias range, thermal radiation is dominant over the EL
for the perfect CNTs. The energy dispersion relation in the
low-energy range accounts for the electron transport in the
longitudinal direction along the tube axis and it is of little
difference for the CNTs with different diameters, so they show
little dependence of thermal radiation on the tube diameter in
Fig. 3(c).

We plot in Fig. 4 the thermal radiation from the CNT
channel of the two-terminal device by turning off the bias volt-
age. Figure 4(a) shows that the radiation power of the perfect
CNT and the defected CNTs versus the temperature follows
the T 4 scaling law as the black-body (BB) radiation. How-
ever, the intensity is about two orders of magnitude smaller
than the black-body radiation. Figure 4(b) shows the spectrum
of the thermal radiation. Both the perfect and defected CNTs
show black-body-like radiation, i.e., their spectra fit well with
that of the black-body radiation despite the magnitude is
smaller. The fitting of the spectrum with the black-body radia-
tion is shown in Fig. 4(c), with the perfect CNT as an example.

Why do the thermal radiations from the quasi-one-
dimensional CNTs follow the black-body-like spectrum and
they are reduced by the defects? To understand this, we start
from the general expression in Eq. (4) to analyze the spectrum
of the radiation power. The optical conductivity is related
to the retarded component of the current-current correlation
function as σ (ω) = i

Aω
�r (ω), with A = πdl the area of the

central CNT channel. Using the fluctuation-dissipation re-
lation in thermal equilibrium �<(ω) = iNB(ω)2Im[�r (ω)],
with NB(ω) the Bose distribution function, we can write from
Eq. (4) the spectrum of the radiation power in thermal equi-
librium as

S(ω) = Aω3

3π2ε0c3
Re[σ tot(ω)]NB(ω). (6)

Here we use the notation σ tot(ω) = ∑
μ=x,y,z σμμ(ω). The op-

tical conductivity is calculated by

σμν (ω) = 1

A

∫ ∞

−∞

dE

2πω

∑
i j

Tr
[
Miμgr (E )M jνg<(E − h̄ω)

+ Miμg<(E )M jνga(E − h̄ω)
]
. (7)
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FIG. 4. Results of thermal radiation from the conducting channel
of the two-terminal device using (7,7) CNT under zero bias. Tem-
peratures of the two leads are the same. (a) Radiation intensity as a
function of the temperature. (b) Spectrum of the radiation power with
temperature T = 300 K. (c) The radiation spectrum using the perfect
CNT under different temperatures are compared with the spectrum
of the black-body radiation with the same area as the CNT channel.

The longitudinal and transverse components of the conduc-
tivity are given by σ‖ = σzz, and σ⊥ = σxx + σyy, respectively.
The spectrum of black-body radiation with the same area is
SBB(ω) = Aω3

4π2c2 NB(ω). Comparing it with Eq. (6), we con-
clude that the strict condition for the shape of the radiation
spectrum of a metallic material to fit with that of the black-
body radiation is that the real part of the conductivity should
be a constant in the energy range of thermal excitation. The
black-body-like spectrum in Fig. 4(b) is determined to a large
extent by the intrinsic nature of thermal equilibrium fluctua-
tion, i.e., the factor ω3NB(ω) in Eq. (6), despite that the real
parts of the conductivities for the channels using the perfect
and defected CNTs in Fig. 5 are not strictly constant in the
energy range of thermal excitation. For both the perfect and
defected CNTs, the total conductivity is mainly contributed
by the longitudinal component in the low-energy range, not-
ing that the photon energy from thermal radiation is smaller
than 0.5 eV, while the transverse component is only signifi-
cant in the high-energy range. Thus, the thermal radiation is
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FIG. 5. Optical conductivity (real part) for the CNT channel of
the device using the (7,7) CNTs at T = 300 K. σ , σ‖, and σ⊥ are
the total conductivity, the longitudinal part and perpendicular part,
respectively.

constrained in the circular direction of the CNTs. Finally, a
quantitative analysis of the change of the magnitude of the
spectrum due to the defects of CNTs in Fig. 4(b) can be
attributed to the decrease of the optical conductivity by the
defects shown in Fig. 5.

Finally, we make a few remarks on our results. First, the
above numerical results are based on the ballistic transport
regime. Phonon scattering can reduce the electron lifetime
and broaden the electron density of states and the radiation
spectrum. Applying a bias voltage across the CNTs can en-
hance the phonon scattering [51]. We explore the influence
of the finite broadening effects due to electron-phonon in-
teraction under a constant-relaxation time approximation (see
the Appendix). We find that the broadening effects have very
small influence on the radiation from CNTs with defects. For
the perfect CNTs, they can enhance the radiation under the
bias slightly lower than the onset bias and they can decrease
the threshold bias. Second, we note that “metallic” zigzag
or chiral carbon nanotubes with small energy gap due to
strain or curvature effects [3,52] have very different optical
properties in the low-energy range compared with gapless
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FIG. 6. Photon counts per second from the conducting channel
of the two terminal device using (7,7) nanotubes at temperature
T = 300 K with different broadening factors. The very small η =
0.10 meV is used for the ballistic transport.

armchair nanotubes. Optical transition is significant in the
vicinity of the small energy gap, which has received intensive
study theoretically and has been supported experimentally by
observations of optical absorption in the far-infrared region
[53–56]. The interplay between the localized states induced
by the defects and the divergent joint density of states in
the vicinity of the small band-gap edge in the nonarmchair
“metallic” nanotubes are expected to play an important role in
the electroluminescence, which would be an interesting topic
for further study.

IV. SUMMARY

Using the NEGF method, we study EL and thermal
radiation from metallic armchair SWCNTs with defects
in the ballistic transport regime based on a tight-binding
model. We find that both the SV defect and SW defect can
enhance the EL, which increases exponentially in the low bias
range, while for the perfect nanotube only thermal radiation
contributes and the EL can be neglected. The enhancement
of radiation due to the defects is not obvious in the high
bias range, where strong radiation due to transitions between
high-energy bands becomes dominant. The enhancement of
the EL and the diameter of the CNT have a positive correlation
in the presence of a SW defect, while for the CNT with a SV
defect they have a negative correlation. Due to confinement of
thermal excitation in the transverse direction, the intensity of
the thermal radiation is independent of the nanotube diameter.
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Defects can reduce the optical conductivity of the CNT, and
they reduce the thermal radiation. This reducing effect is
more significant for the CNT with a SV defect than that with
a SW defect.
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APPENDIX: FINITE BROADENING EFFECTS

Due to electron-phonon interaction (EPI) in the CNTs, the
corresponding density of states of the electrons and radiation
spectrum would show some broadening effects compared to
the ballistic transport case without EPI. The simplest way to
consider the broadening effects is to use a constant relaxation-
time approximation, which corresponds to use a finite η in

the GF gr (E ) = [(E + iη)I − H0 − �r
leads]

−1
, i.e., by using

η = h/τ , with h the Planck constant and τ the relaxation
time. The electrons are scattered mainly by acoustic phonons
when the CNTs are under low bias, while the optical-phonon
scattering becomes dominant in the high bias range. A typical
relaxation time is τ ≈ 3.0 × 10−12 s for the first process and
τ ≈ 2.3 × 10−13 s for the second process [51], corresponding
to η = 1.38 meV, and η = 18.0 meV respectively.

It can be seen from Fig. 6 that very small decreasing of
the radiation from the CNTs with defects are observed due
to using a finite-broadening factor. For the perfect CNT, the
broadening effects can lower the threshold bias, and the ra-
diation can be enhanced a lot at the bias slightly lower than
the threshold bias. Here we note that our simple way for the
broadening effects by simply using a finite η can not account
for the influence of the local EPI around the defects, which re-
quires a more complex method combined with first-principle
calculations and it is a challenging topic.
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