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Line shapes of electric dipole spin resonance in Pauli spin blockade
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Electric dipole spin resonance (EDSR) is a commonly used tool for manipulation and spectroscopy of
quantum-dot-based spin qubits. When an EDSR experiment is embedded in a transport setup and Pauli spin
blockade is used as a means for spin-state read-out, then measured resonant responses in the leakage current
indeed carry information about the level structure of the system under study. However, the actual line shape
of these current resonances differs substantially from experiment to experiment, varying from being symmetric
to asymmetric and from being a peak to a dip, a thorough understanding of which is still lacking. Here, we
investigate theoretically the detailed line shape of EDSR-induced resonances in the leakage current in the regime
of spin blockade, and we connect different line shapes to the different underlying physical mechanisms that
can enable the EDSR. We carry out both numerical and analytical investigations, producing simple analytic
expressions that give insight into the physics at play. Our results thus provide a means to extract more information
about the detailed system parameters of quantum dots hosting spin qubits from an EDSR experiment than just
their level structure based on the location of the resonances.
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I. INTRODUCTION

Semiconductor spin qubits and other spin-based nanos-
tructures require accurate mechanisms for spin manipulation
[1,2]. Spin qubits are encoded in the spin states of electrons
or holes localized in quantum dots, and manipulation of their
quantum state can thus most straightforwardly be achieved
by implementing some form of local spin resonance [3–5].
Since applying strongly localized oscillating magnetic fields
is very challenging in practice [6], a broadly used method for
manipulation is electric dipole spin resonance (EDSR) [7,8],
where via intrinsic or artificial [9,10] spin-orbit coupling the
spins can be controlled using oscillating electric fields. In-
deed, EDSR is a well-established tool to manipulate electron
[11–17] and hole [18–23] spin states in quantum dots.

A closely related and widely used application of EDSR in
quantum dots is to use it as a spectroscopic tool, to access
intrinsic parameters of the system. Indeed, apart from yielding
coherent spin rotations useful for quantum-information appli-
cations, the EDSR response of a system can be mapped out
as a function of, e.g., driving frequency and applied magnetic
field, which allows one to infer system parameters such as the
effective g factors on the quantum dots or characterize the
effects of hyperfine interaction and spin-orbit interaction in
the system [24–28].

EDSR-induced spin rotations, whether used for coherent
manipulation or spectroscopy, have to be detected in the end
by some type of spin-to-charge conversion. A commonly used
tool for this is Pauli spin blockade in a multidot setup: The
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EDSR experiment is concluded with inducing an interdot
charge tunneling event that is spin selective by virtue of the
Pauli principle [29]. Embedding this tunneling in a transport
setup, an EDSR response can then be detected in the form
of a resonant response in the current [27]. In the context
of spectroscopy, the location of this current response as a
function of driving frequency thus provides information about
the level structure of the system.

However, EDSR spectroscopy experiments often show
many intricate details in the data: variations in width and line
shape of the resonant response across parameter space, as well
as changes in sign of the response, i.e., both resonant peaks
and dips have been observed in the same experiment [30,31].
Although such features must contain additional information
about the physics underlying the EDSR, such as the detailed
nature of the spin-orbit interaction in the system, the exact
manifestation of the resonant EDSR response in Pauli spin
blockade still lacks a thorough theoretical understanding.

Here we investigate the EDSR line shape in Pauli spin
blockade in detail, with the aim to shed more light on the
physics underlying EDSR in quantum dots. We identify dif-
ferent ways in which various types of (effective) spin-orbit
coupling can leverage electric driving into an effective os-
cillating magnetic field acting on the spins of the localized
carriers. We establish a connection between each of these
mechanisms and qualitative features of the EDSR line shape,
which thus can be used to disentangle the contributions of
different types of spin-orbit interaction in experiment, thereby
providing more detailed understanding of the spin physics in
the system.

The rest of this paper is organized as follows. In Sec. II we
briefly explain the basics of EDSR in Pauli spin blockade and
identify the main mechanisms responsible for it. In Sec. III we
introduce the model we use to describe the EDSR, show how
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FIG. 1. (a) A double-dot structure can be created inside a semi-
conductor nanowire by depositing the wire on top of a set of electric
gates that can then be used to create tunnel barriers and to control the
electrostatic potentials on the dots. (b) Part of a typical double-dot
charge stability diagram. The system is tuned close to the (1,1)-(0,2)
transition, e.g., at the point marked by the blue star. (c) Simplified
level structure of the states involved in transport, at zero magnetic
field. In the spin-blockade regime, the only accessible (0,2) state is
a spin singlet; the other (0,2) states are separated by a large orbital
energy Eorb.

the different mechanisms we consider can be incorporated,
and proceed by reducing it to the simplest minimal model that
captures all essential physics. Section IV presents numerical
simulations that show how the line shape of the resonant
response can indeed differ qualitatively, ranging from sym-
metric to asymmetric and from peak to dip, depending on the
mechanism at play and the details of the interdot coupling.
We then proceed in Sec. V to derive approximate analytic
expressions for the resonant response of the leakage current in
the weak-driving limit, covering all mechanisms considered,
and show how the analytic results match the numerical sim-
ulations. Understanding the structure of our analytic results
finally allows us to connect specific features in the EDSR line
shape to the underlying mechanisms at play, as we discuss in
Sec. VI.

II. EDSR IN PAULI SPIN BLOCKADE

We study a system composed of two quantum dots in a
host material where the relevant carriers, electrons or holes,
experience strong spin-orbit interaction (SOI), such as InAs,
InSb, Si, or Ge [17,20–24,32–37]. The dots are tunnel coupled
to each other and to source and drain reservoirs [see Fig. 1(a)
where we assumed a nanowire-based setup]. The system is
then tuned to a regime of Pauli spin blockade, for instance
close to the (1,1)–(0,2) ground state charge transition, where
(n, m) denotes the state with n(m) excess carriers in the left
(right) dot [see Fig. 1(b)]. In the presence of a large enough
bias voltage, the transport cycle (0, 1) → (1, 1) → (0, 2) →

(0, 1) is then in principle allowed. However, due to the Pauli
principle and the large on-site orbital energy splitting, the tran-
sition (1, 1) → (0, 2) is spin selective, such that the transport
cycle can only be completed if the (1,1) state is a spin singlet.
Tunneling from (0,1) into one of the (1,1) triplets will lead to
blockade of the current, as illustrated in Fig. 1(c).

In order to escape from the blockade and contribute to a
finite leakage current a spin flip is required. At small magnetic
field, such spin mixing can be provided by the hyperfine
coupling to the fluctuating nuclear spin bath in materials with
a significant fraction of spinful nuclei [38,39]; increasing the
magnetic field to larger values will enable the SOI to con-
tribute to the spin mixing, by making the tunneling effectively
non-spin-conserving [40]. Indeed, in materials with strong
SOI the leakage current is usually significant, showing a dip-
like structure around zero magnetic field [25,41–44].

A typical EDSR-based spectroscopy experiment is per-
formed by additionally applying an oscillating voltage to
one of the gates controlling the on-site dot potentials, such
as shown in Fig. 1(a). Measuring the leakage current as
a function of applied magnetic field and frequency of the
driving voltage usually yields resonant responses in the cur-
rent [13,20,26–28,30], which allow one to extract the field-
dependent level structure of the (1,1)-(0,2) subspace. How-
ever, the detailed manifestation of the current resonances as a
function of the driving frequency, driving power, and magnetic
field differs a lot from one experiment to another, ranging
from dips to peaks, with varying line shapes [19,31].

In order to develop a detailed understanding of the resonant
EDSR response in the leakage current, we consider several
possible underlying mechanisms: (i) Assuming a driving on
one of the gates that controls the on-site electrostatic poten-
tial in one of the dots, such as sketched in Fig. 1(a), the
oscillating signal yields a periodic modulation of the energy
splitting between the (1,1) and (0,2) charge states [45,46].
Exchange effects that are mediated by the SOI-induced non-
spin-conserving tunnel coupling can effectively translate this
modulation into oscillating spin-dependent couplings within
the (1,1) subspace, which, when on resonance, can induce spin
flips. (ii) The periodic change in the potential landscape due to
the oscillating gate voltage also results in the wave functions
of the localized carriers to change periodically. Combined
with the strong SOI, this translates directly into a periodic
effective magnetic field coupling to the spin of the carriers,
enabling a spin resonance [7,11]. The magnitude and direction
of this field depend on the details of the SOI. (iii) Another
similar possible mechanism is based on the hyperfine cou-
pling of the carriers to the randomly polarized nuclear spin
ensembles in the two dots, relevant for host materials with
significant fractions of spinful nuclei. To good approxima-
tion, this coupling results in an effective (random) quasistatic
“nuclear field” coupling to the spin of the carriers, its details
depending on the actual spin polarization of the nuclei and
the carrier wave function. A periodic change of that wave
function will thus lead to a periodically changing nuclear field,
which can also induce spin rotations [47]. (iv) Finally, also
for the case of artificial SOI induced by a slanting magnetic
field [9] a small periodic change of the carriers’ location di-
rectly translates to an oscillating magnetic field acting on their
spin.
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Altogether, we thus need to consider the effects on the
spin blockade of (1) a periodic modulation of the on-site
potentials combined with SOI and (2) an oscillating effective
on-site magnetic field. Previous similar theoretical studies of
EDSR in the spin-blockade regime focused on mechanism (i)
in the strong-driving limit [45,46,48] or on mechanism (ii)
in the absence of both SOI and coherent interdot coupling
[49–52]. Other related studies focus on a lifting of the Pauli
spin blockade in the presence of SOI and hyperfine coupling
but without an external driving of the system [53,54]. Here, we
want to focus on the weak-driving limit, where the amplitude
of the driving-induced effective oscillating magnetic field in
the (1,1) subspace is always smaller than the level splittings
we want to probe.

III. MODEL

Hamiltonian. Since all relevant dynamics take place
in the (1,1)-(0,2) subspace, we only need to consider
the four (1,1) spin states, for which we use the basis
{|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉}, and the (0,2) singlet state |S02〉.
Choosing the spin quantization axis along the direction of
the magnetic field we have B = Bẑ, and assuming that the
quantum dots have different g factors gi due to the strong SOI,
we thus write the Hamiltonian as

H5 =

⎛
⎜⎜⎜⎝

Bs 0 0 0 t∗
1

0 Ba 0 0 t2
0 0 −Ba 0 −t∗

2
0 0 0 −Bs t1
t1 t∗

2 −t2 t∗
1 −E0

⎞
⎟⎟⎟⎠, (1)

where we have defined Bs ≡ 1
2 (g1 + g2)μBB and Ba ≡

1
2 (g1 − g2)μBB, with μB the Bohr magneton, and we did not
include the effects of the driving yet. All relevant details
of the electrostatic tuning of the double dot are captured in
E0, which describes the energy splitting between the (1,1)
and (0,2) charge states in a Hubbard-like description of the
system [55–58]. One effect of SOI is also included in this
Hamiltonian: The tunneling elements ti can account for both
spin-conserving and spin-flip interdot tunneling. This allows
for transitions from the charge state (1,1) to (0,2) even when
the carriers in the (1,1) state do not form a spin singlet. In the
absence of SOI, we would write t1 = 0 and assume t2 to be
real.

The source and drain leads are electron reservoirs, the
effect of which can be included in the five-level dynamics
described by H5 via an escape rate �: When the system is
in the state |S02〉, one carrier leaves the doubly occupied dot
to the drain at a rate � and subsequently one of the four (1,1)
states is refilled from the source, with equal probabilities. In
this picture, the leakage current through the system is given
by I = �PS02 , where the carrier charge has been set to 1 and
PS02 is the average probability for the system to be in the state
|S02〉.

In Fig. 2 we show a sketch of the level structure and the
tunneling processes we thus describe. In the presence of a
magnetic field, the four (1,1) basis states are split in energy
and all four are coupled to |S02〉, which decays to (0,1) with
a rate �, after which one of the (1,1) states is immediately
refilled again. The resonances that are usually probed in

FIG. 2. Level structure of the relevant (1,1) and (0,2) states in
the presence of a magnetic field. Due to spin-orbit interaction, all
four (1,1) eigenstates are coupled to the (0,2) singlet. The system is
driven with an oscillating voltage applied to one of the gates [see
Fig. 1(a)], which can be tuned into resonance with one of the single-
spin transitions, such as the one on the right dot, indicated in green.

experiment are within the (1,1) subspace, such as the one
indicated in red which corresponds to a spin resonance on the
second dot.

Driving. We include the electric driving of the system by
adding a time-dependent term to the Hamiltonian,

H (α)
5 (t ) = H5 + A cos(ωt )V (α)

drive, (2)

where A and ω characterize the amplitude and frequency of
the driving, respectively. The subscript α ∈ {d,z,x} labels the
different driving mechanisms we investigate:

V (d)
drive = |S02〉〈S02|, (3)

V (z)
drive = |↑↑〉〈↑↑| − |↑↓〉〈↑↓| + |↓↑〉〈↓↑| − |↓↓〉〈↓↓|, (4)

V (x)
drive = |↑↑〉〈↑↓| + |↑↓〉〈↑↑| + |↓↑〉〈↓↓| + |↓↓〉〈↓↑|. (5)

The first term, Eq. (3), results in E0 → E0 − A cos(ωt ) and
thus incorporates mechanism (i) into our Hamiltonian, where
the EDSR is driven by an oscillating interdot detuning. The
other mechanisms rely on an oscillating effective magnetic
field on the dots, in some cases randomly oriented, which we
can include via the second or third term, Eqs. (4) and (5).
In both these terms we focused on the oscillating field that
couples to the second dot, but the same theory can be used to
describe a resonance on the first dot, simply by swapping the
dot labels The two terms allow us to investigate the difference
between the oscillating field being parallel or perpendicular
to the applied static field, where we consider a perpendicular
field along the x direction, without loss of generality.

Reduction to a three-level problem. Due to the strong SOI,
the two dots have typically substantially different effective g
factors [13,26,27,31]. We thus assume the energy levels of the
four (1,1) basis states used in Eq. (1) to be well separated and,
therefore, we can study each of the single-spin resonances
independently. This allows us to reduce the dimensionality
of the Hamiltonian from five to three, while still capturing
all the essential physics of the specific resonance under in-
vestigation [45,46]. Depending on which spin resonance we
want to describe, the reduced three-dimensional basis reads
{|↑↑〉, |↑↓〉, |S02〉}, {|↑↓〉, |↓↓〉, |S02〉}, {|↑↑〉, |↓↑〉, |S02〉}, or
{|↓↑〉, |↓↓〉, |S02〉}, and in all cases the projected three-level
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Hamiltonian becomes

H3 =
⎛
⎝ B 0 q1

0 −B q2

q∗
1 q∗

2 −E0

⎞
⎠, (6)

where B, q1, and q2 are different for each of the four pos-
sible subspaces. Labeling the basis states used in (6) as
{|1〉, |2〉, |S〉}, we see that the three driving terms of interest
now read V (d)

drive = |S〉〈S|, V (z)
drive = |1〉〈1| − |2〉〈2|, and V (x)

drive =
|1〉〈2| + |2〉〈1|, and we can construct our full time-dependent
three-level Hamiltonian as

H (α)
3 (t ) = H3 + A cos(ωt )V (α)

drive. (7)

We embed this subsystem in a transport setup in a similar way
as before: We assume that the state |S〉 decays with a rate �,
after which one of the two (1,1) states is refilled with equal
probability.

The general approach to find the average current through
the driven system will be to find the steady-state solution of a
Lindblad equation for the density matrix,

dρ

dt
= −i

[
H (α)

3 (t ), ρ
] + �[ρ], (8)

where we have set h̄ = 1 and

�[ρ] = 1

2
�

⎛
⎝ ρss 0 −ρ1s

0 ρss −ρ2s

−ρs1 −ρs2 −2ρss

⎞
⎠, (9)

which describes the decay of the state |S〉 to the drain at a rate
� with the consequent annihilation of the coherences ρis, and
the subsequent refilling of the two (1,1) states. The steady-
state solution for ρss gives the average occupancy of the (0,2)
charge state and, thus, the leakage current via I = �ρss.

Consistent with most experiments, we will assume the
energy � to be larger than all other energy scales except E0,
which is allowed to be comparable to �. Based on our assump-
tion of weak driving, which amounts to the regime A 
 ω (for
“magnetic” driving) or A 
 ω�2/q2 (for “detuning” driving),
we will restrict our investigations to the first harmonic, i.e.,
where the driving frequency matches the energy difference
between the two (1,1) states, ω ≈ 2B.

We will now first present numerical evaluations of the aver-
age leakage current, based on solving Eq. (8) in steady state,
for the three different driving terms. Then we will proceed
to derive approximate analytic expressions for the leakage
current for the three types of driving, and compare those to
the numerical results.

IV. NUMERICAL RESULTS

Due to the oscillating nature of the Hamiltonian, a true
equilibrium solution to the Lindblad equation does not exist.
Instead, we look for a time-averaged steady-state solution.
To this end we expand the density matrix in Fourier modes
ρ(t ) = ∑

n ρ (n)einωt , resulting in

∑
n

einωt d

dt
ρ (n) =

∑
n

einωt
{−i[H (α)

3 (t ), ρ (n)]

+�[ρ (n)] − inωρ (n)
}
. (10)

FIG. 3. Numerically calculated current resonances for the three
different EDSR mechanisms. We plot δI = (I − I0)/I0 as a function
of the frequency detuning δ = ω − 2B, i.e., we subtract the back-
ground current I0 far away from the resonance and normalize the
signal to I0. We further used E0 = 50 μeV, q1 = 3 μeV, q2 = 2 μeV,
B = 3 μeV and � = 150 μeV. We set the driving amplitude A =
0.5 μeV for z driving, A = 0.02 μeV for x driving, and A = 20 μeV
for d driving.

The harmonic time dependence of H (α)
3 transforms into a

time-independent coupling between ρ (n) and ρ (n±1), thereby
in principle facilitating an evaluation of the Fourier com-
ponents ρ (n) in equilibrium by solving dρ (n)/dt = 0. The
time-averaged steady-state density matrix is then ρ (0) and the
current follows as I = �ρ (0)

ss .
For our numerical simulations, we truncate Eq. (10) at

n = ±10, after making sure that the results do not change
significantly when more modes are included. The resulting
set of equations is supplemented with the boundary condi-
tions Tr{ρ (0)} = 1 and Tr{ρ (n)} = 0 for all n �= 0 and can then
easily be solved. We investigate the resulting current profile
for the three different EDSR mechanisms as a function of
the driving frequency ω ≈ 2B for fixed values of the external
magnetic field and the amplitude of the driving. We note here
that, although we focus in this work on the single-photon
resonance, our simulations also reproduce the behavior of the
multiphoton resonances observed in Ref. [31] and explained
in [45], including the alternating sign of the response.

In Fig. 3 we show typical numerical results for the three
mechanisms. In the figure we indeed see both resonant peaks
and dips appearing in the current, similar to what is typically
observed in experiment. We further note that different driving
mechanisms give rise to qualitatively different resonant line
shapes: We find an asymmetric dip in the current when the
driving effectively couples to the (1,1) states via Bz, a similar
but reversed asymmetric dip when the driving couples mostly
to E0, and a peak in the current when the driving couples via
Bx. These numerical results will serve to assess the validity
of the analytical expressions obtained below. The following
sections contain a further analytic investigation of the shape
of the current profile and its dependence on the type of driving
and the system parameters.

V. ANALYTICAL RESULTS

The method with which we choose to evaluate the cur-
rent analytically is different for the cases of detuning driving
and magnetic driving. The reason is that the oscillations in
the effective SOI- or hyperfine-induced magnetic fields due
to the periodic electric detuning of the dots are typically
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much smaller than B. This allows us to start with separating
timescales, making use of the assumption that � is large, and
isolate the slow dynamics in the (1,1) subspace, to which
we can apply perturbation theory in A/ω. In contrast, when
driving the detuning, the oscillating terms that realize spin
rotations in the (1,1) space arise from exchange coupling to
|S〉, which relies on coherence between the two subspaces;
separating timescales is thus not an option in this case.

A. Effective magnetic driving

We thus start in this case by separating the timescales of the
“slow” 2 × 2 block of the density matrix describing the (1,1)
subspace and the other “fast” elements, which evolve on the
timescale �−1. Assuming that the five elements involving |S〉
reach steady state instantaneously on the slow timescale, we
can integrate out their dynamics, resulting in a Lindblad equa-
tion for the 2 × 2 subspace. Introducing a matrix notation, we
write

dρ

dt
= [

M + A cos(ωt )V (α)
drive

]
ρ, (11)

where the density matrix is now written as a vector,

ρ = (ρ11ρ12ρ21ρ22)T . (12)

The 4 × 4 matrix M contains the time-independent part of
the Lindblad equation and A cos(ωt )V (α)

drive, with α ∈ {z, x},
contains the terms due to the driving. We refer to Appendix
A for an explicit expression for the matrices used.

We then expand the density matrix again in Fourier modes,
ρ(t ) = ∑

n einωtρ(n), which, after dividing out common factors
of einωt , yields

dρ(n)

dt
= [M − inω]ρ(n) + A

2
V (α)

drive[ρ(n−1) + ρ(n+1)]. (13)

After truncating this expression at some maximal ±n, it can be
solved to find the steady-state solution for the Fourier compo-
nents of ρ. From this solution the corresponding fast element
ρ (0)

ss can be calculated, and the leakage current follows again
as I = �ρ (0)

ss For our analytic investigations we will make use
of the weak-driving assumption A 
 ω, which suggests that
including only the lowest Fourier components n = −1, 0, 1
can already yield a good result.

1. Oscillating effective field along x̂

We first explore the behavior of the current when the driv-
ing results in an oscillating effective magnetic field along a
perpendicular direction, and without loss of generality we take
the x direction. Using V (x)

drive in Eq. (13) we then find for the
leakage current close to resonance the following approximate
expression, valid in the limits �  A, B, q1,2 and ω  A:

I

I0
= 1 +

(
q2

1 − q2
2

2q1q2

)2
A2

A2 + γ 2 + (δ + ε2 − ε1)2
, (14)

where δ = ω − 2B and we introduced

γ = 2�(q2
1 + q2

2 )

4E2
0 + �2

, (15)

FIG. 4. Current profile for a driving in the magnetic field along
the x direction. The dashed green curve is the solution from Eq. (14).
The solid blue curve is the numerical solution. In this figure we have
used a larger amplitude than in Fig. 3, A = 0.2 μeV, to better display
the shape of the curve. The rest of the parameters are E0 = 50 μeV,
q1 = 3 μeV, q2 = 2 μeV, B = 3 μeV, and � = 150 μeV.

the average effective escape rate from the two (1,1) states. The
background leakage current is approximately

I0 = γ

(
2q1q2

q2
1 + q2

2

)2

, (16)

and results from only considering the effective escape rates
from |1〉 and |2〉 via |S〉, which are approximately γ1,2 =
4q2

1,2�/(4E2
0 + �2). Note how for symmetric couplings q1 =

q2 the background current is simply γ .
From Eq. (14) we see that in this case the response always

appears as a peak in the current. Indeed, the driving term in
the Hamiltonian acts along σx in the two-level (1,1) subspace,
resulting in a resonant Rabi driving of the two states. If the es-
cape rates γ1 and γ2 differ significantly, then a driving-induced
mixing of the two states will always lead to a slightly en-
hanced current by reducing the importance of the “bottleneck”
state with the lowest escape rate. For this reason the resonant
response scales with (q2

1 − q2
2 )2 ∝ (γ1 − γ2)2. The width of

the peak contains a contribution from the power broadening
due to the Rabi driving as well as from the lifetime broadening
of the two levels. In Fig. 4 we compare our approximate
analytic expression to the numerical results obtained before
and we see that the simple expression (14) captures both the
peak height and linewidth reasonably well.

2. Oscillating effective field along ẑ

Now we switch to driving that effectively results in an
oscillating field along ẑ. Using the same approximations and
notation as before, we then find for the leakage current close
to resonance

I

I0
= 1 − A2

4B2

γ 2 + (ε2 − ε1)2 + 2(ε2 − ε1)δ

γ 2 + (δ + ε2 − ε1)2
, (17)

where we further introduced the energies

ε1,2 = 4E0q2
1,2

4E2
0 + �2

, (18)

which are the exchange-induced shifts of the (1,1) levels.
When the tunnel couplings are equal, q1 = q2, Eq. (17)

yields a Lorentzian dip at resonance [see Fig. 5(a)], where we
compare the approximate analytic result with our numerical
simulations. The dip in the current around δ = 0 can be un-
derstood by realizing that the resonant driving now allows for
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FIG. 5. Current profile for a driving in the magnetic field along
the z direction with an electrostatic offset E0 = 50 μeV. The green
dashed curves are obtained from Eq. (17). Numerical results (solid
blue) are added for comparison. (a) For equal couplings q1 = q2 =
2.5 μeV we observe a symmetric dip in the current. (b) When the
couplings are different, q1 = 3 μeV and q2 = 2 μeV, the dip shows
a slight asymmetry. (c) Increasing the energy E0 = 120 μeV and fur-
ther biasing the couplings, q1 = 3 μeV and q2 = 1 μeV, creates an
asymmetric shape in the current with a peak that is more prominent
than the dip. For this plot we have used the same parameters as in
Fig. 3: B = 3 μeV, A = 0.5 μeV, and � = 150 μeV.

sequential elastic photon-assisted transitions |1〉 → |S〉 → |2〉
(and vice versa), which slightly reduces the probability over
time to end up in the decaying state |S〉. When the two tunnel
couplings become different, q1 �= q2, we see that Eq. (17)
no longer describes a Lorentzian, but becomes asymmetric,
showing both regions with increased and decreased current
as compared to the background [see Figs. 5(b) and 5(c)].
We interpret this as being the result of competition between
the mechanism outlined above (resulting in a decrease of the
current) and the enhancement of the current caused by the
coherent mixing of the two (1,1) states for unequal couplings,
as explained in the previous section, where the Rabi driving is
now mediated via the exchange coupling.

Figure 5 shows that in all cases our simple analytic ex-
pressions match all features of the line shape very well.
Comparing these results with those of Sec. V A 1, we see that
our analytic insight can thus indeed reveal qualitative infor-
mation about the mechanisms underlying the EDSR observed
in an experiment, based on analyzing the line shape of the
resonant current response.

B. Effective electric driving

In the previous sections we took the 3 × 3 master equation
of Eq. (8) and separated the system into the (1,1) subspace
with slow dynamics, containing the driving, and the remaining
state |S〉 with fast dynamics, set by the decay rate �. How-

ever, when the driving couples most strongly to the energy
of |S〉, such separation of timescales does not work because
the driving element now lies within the fast subspace. In this
case we evaluate the current by first calculating the transition
rates �i j between the states i, j in the set {1, 2, S}. We then set
up a classical master equation for the steady-state occupation
probabilities pn of the three levels,

−
∑

f

� f n pn +
∑

i

�ni pi = 0, (19)

which, together with the boundary condition
∑

n pn = 1,
yields a solution from which we can calculate the current as
I = �ps [59].

We evaluate the rates �i j using Fermi’s golden-rulelike ap-
proach, similar to that used in Ref. [45], where we expand the
resulting oscillating occupation probabilities to lowest order
in A/� (see Appendix B for the details). This yields a current
that we can write as

I

I0
= 1 − 4A2

4E2
0 + �2

[
2E2

0

4E2
0 + �

γ 2
1 + γ 2

2

γ 2 + δ2

− 4E2
0 + �2

16�2

(γ1 − γ2)2

γ 2 + δ2
+ 4E2

0 − �2

4E2
0 + �2

(ε2 − ε1)δ

γ 2 + δ2

]
,

(20)

again assuming the limit �  A, B, q1,2. In Fig. 6 we compare
this approximate analytic result with our numerical simula-

FIG. 6. Current profile for a driving in the detuning of the out-
going quantum dot. The dashed green curves are obtained from
Eq. (20), and the numerical results (solid blue) are added for compar-
ison. (a) A difference in the couplings, q1 = 3 μeV and q2 = 2 μeV,
and large static detuning E0 = 50 μeV makes the dip in the current
asymmetric. (b) When E0 is small, the dip becomes a peak. In this
case we have used E0 = 5 μeV, and the same couplings q1 and
q2 as before. (c) Equal couplings, q1 = q2 = 2.5 μeV and a large
E0 = 50 μeV yield a much more symmetric dip. The rest of the
parameters are B = 3 μeV, A = 20 μeV, and � = 150 μeV, as in
Fig. 3.
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tions. We again find that for a large range of parameters our
analytic expression captures the line shape of the response
very well. Similar to the case of effective magnetic driving
along ẑ, we find a symmetric dip in the current when the
two tunnel couplings are equal, which develops for unequal
couplings into an asymmetric line shape that can both look
more like a peak or a dip. The mechanisms underlying this
behavior must also be similar to the case of magnetic driving
along ẑ: In both cases the driving enables photon-assisted
tunneling between the (1,1) and (0,2) subspaces, which is
indeed in contrast with the case of magnetic driving along
x̂, where photon-assisted processes are mainly enabled within
the (1,1) subspace.

VI. DISCUSSION

We have studied a model to characterize EDSR exper-
iments and to understand the line shapes of the resulting
current resonances when performed in a double quantum dot
tuned to the regime of Pauli spin blockade. The model as-
sumes a system with large intrinsic or artificial SOI, its main
effects in the quantum dot system being (i) the emergence
of non-spin-conserving tunnel couplings between the (1,1)
and the (0,2) subspaces and (ii) electric driving of the system
resulting effectively in oscillating local magnetic fields.

Our analysis shows that the underlying nature of the
SOI-mediated driving changes qualitatively the shape of the
resonant current response. When we assume the SOI to mainly
result in an oscillating effective magnetic field along x̂, then
Eq. (14) as well as Fig. 4 show that this mostly results in
an increase of the current at resonance, but only a significant
one when the two states at resonance have different coupling
strengths to the outgoing (0,2) state. Indeed, this type of
driving induces Rabi rotations within the (1,1) subspace, and
a difference between the two escape rates γ1 and γ2 of the
(1,1) states can cause this mixing to increase the current by
opening up the “bottleneck” formed by the (1,1) state with
the slowest escape rate. When the driving results in an os-
cillating effective field along ẑ and the system is brought into
resonance, photon-assisted transitions between the (1,1) states
and the (0,2) state result in a slight decrease of the current, as
seen from in Eq. (17) and shown in Fig. 5(a). For different
couplings, q1 �= q2, a mechanism similar to the one discussed
above and this one compete, resulting in an asymmetric line
shape that can resemble both a peak and a dip, as shown in
Figs. 5(b) and 5(c).

Considering these qualitative differences between the cases
of the resulting driving field being parallel or perpendicular
to the static background field, our results could thus be used
to obtain information about the direction of the (effective)
SOI fields in the system, based on the line shape of the
EDSR response. For example, if we compare the EDSR line
shapes reported in Refs. [19,21], we see that the resonance
in Ref. [19] [Fig. 2(a)] looks more symmetric than the one in
Ref. [21] [Fig. 3(c)], which could indicate that Ref. [19] has an
effective SOI field closer to being perpendicular to the applied
field than Ref. [21] (which, at first sight, could be consistent
with the higher quality of the Rabi oscillations observed in
Ref. [19]).

A driving that mainly couples to the detuning between
the (1,1) and (0,2) subspaces produces line shapes similar to
the case of effective magnetic driving along ẑ, based on a
similar competition between a reduced population of |S〉 and
a mixing-induced increased escape from the (1,1) state when
q1 �= q2. Indeed, the currents described by Eqs. (17) and (20)
have a similar form. There is, nevertheless, a difference: When
we consider an oscillating field along ẑ, the mechanism that
produces an increase of the current is weak, whereas when
we consider oscillations in the detuning, this results in an
oscillating exchange energy that effectively couples the two
(1,1) states in a similar way as when we consider an oscillating
magnetic field along x̂. This effect is much stronger than
the mechanism that blocks the current and thus dominates,
producing the much more prominent peak of Fig. 6(b).

Our analytical results, validated by the good agreement
with the numerics, give insight into the connection between
EDSR-induced current resonances and the underlying physi-
cal mechanisms. The simple, yet detailed relation between the
line shapes and the intrinsic or effective system parameters
that we present in this paper thus provides a means to extract
valuable information about the system. In a standard EDSR
experiment, from which usually only spectroscopic informa-
tion is obtained, our results could be used to gain additional
knowledge about the intricate details of the underlying SOI in
the system and its effective manifestation.
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APPENDIX A: TIME-EVOLUTION MATRICES

The matrix M used in Eqs. (11) and (13) reads explicitly as

M =

⎛
⎜⎝

−θ11� 2iθ12E0 −2iθ12E0 θ22�

−θ12(2E0 + i�) −2iB 0 θ12(2E0 − i�)
θ12(2E0 − i�) 0 2iB∗ −θ12(2E0 + i�)

θ11� −2iθ12E0 2iθ12E0 −θ22�

⎞
⎟⎠, (A1)

with B = B + θ11(E0 − i
2�) − θ22(E0 + i

2�), where we introduced the notation

θαβ = 2qαqβ

4E2
0 + �2

, (A2)
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and the two driving matrices read as

Vz
drive =

⎛
⎜⎝

0 0 0 0
0 2i 0 0
0 0 −2i 0
0 0 0 0

⎞
⎟⎠ and Vx

drive =

⎛
⎜⎝

0 i −i 0
i 0 0 −i

−i 0 0 i
0 −i i 0

⎞
⎟⎠. (A3)

Without loss of generality for the three-level setup, we assumed both q1 and q2 to be real from here on.

APPENDIX B: CALCULATION OF TRANSITION RATES

We now present our calculation of the transition rates �i f

between the three levels under effective driving along the
detuning, assuming that the singlet decay rate � is the largest
energy scale involved. We derive a Fermi’s golden rule for
the time-dependent unperturbed Hamiltonian, which we then
expand close to resonance ω ≈ 2B to leading order in A/�.

We split the Hamiltonian into two parts, H = H0(t ) + H1,

H0(t ) = B|1〉〈1| − B|2〉〈2|
− [E0 − A cos(ωt )]|S〉〈S| (B1)

and

H1 = q1|1〉〈S| + q2|2〉〈S| + H.c., (B2)

where we will treat H1 as a perturbation.
We then transform to a time-dependent interaction picture

where the perturbation Hamiltonian becomes

H̃1(t ) = q1e−i
∫ t

0 dt ′ [ES (t ′ )−E1(t ′ )]|1〉〈S|
+ q2e−i

∫ t
0 dt ′ [ES (t ′ )−E2(t ′ )]|2〉〈S| + H.c., (B3)

with En(t ) the time-dependent eigenenergies set by (B1). In
this picture the matrix elements of the time-evolution operator
can formally be expressed as

〈 f |U (t, 0)|i〉 = 〈 f |i〉

− i
∫ t

0
dt1〈 f |H1|i〉e−i

∫ t1
0 dt2 [Ei (t2 )−E f (t2 )]

−
∫ t

0
dt2

∫ t2

0
dt1

∑
k

〈 f |H1|k〉〈k|H1|i〉

× e−i
∫ t1

0 dt3
∫ t2

0 dt4 [Ei (t3 )−Ek (t3 )+Ek (t4 )−E f (t4 )]

+ O(q3
1,2), (B4)

from which we can calculate transition rates as

�i f = d

dt
|〈 f |U (t, 0)|i〉|2. (B5)

First we will focus on the transition rate �12, that is, the rate
from the state |1〉 to |2〉. This will also allow us to show how
we include the effect of the escape rate � into our expressions.
The lowest-order process contributing to this rate has both
its forward- and backward-propagating time-evolution opera-
tor in (B5) of second order in q1,2. Explicitly, the approach
outlined above yields for this contribution to the transition

probability |〈2|U (t, 0)|1〉|2 the expression

q2
1q2

2

∫ t

0
dt4

∫ t4

0
dt3

∫ t

0
dt2

∫ t2

0
dt1

× e−i(B+E0 )(t1−t3 )e−i(B−E0 )(t2−t4 )

× e−i(A/ω)[− sin(ωt1 )+sin(ωt2 )+sin(ωt3 )−sin(ωt4 )]. (B6)

The six possible relative orderings of the times in this expres-
sion are illustrated by the diagrams shown in Fig. 7, where
the blue (red) arrows depict forward-propagating (backward-
propagating) time evolution.

We first focus on diagrams (a)–(d), which describe the
sequential process |1〉 → |S〉 → |2〉. Indeed, all four diagrams
contain a “full” transition from |1〉 to |S〉, after which the
system remains in |S〉 for some time [e.g., t2 − t3 in diagram
(a)], followed by a transition to |2〉.

We then account for the decay of the singlet state |S〉 by
including a factor e−(1/2)�(t2−t1 )e−(1/2)�(t4−t3 ) in the integrand,
which is the same factor that would result from adding an
imaginary part to the eigenenergy ES (t ) → ES (t ) − i

2�. In
other words, one could say that we switched to a perturbative
expansion of a Lindblad equation instead of a Schrödinger
equation, where we included decay of the element |S〉〈S| with
rate � (indicated with dark gray in the diagrams) and decay
of the interference terms |S〉〈n| and |n〉〈S| with rate �/2 (light
gray).

(a) (b)

(c) (d)

(e) (f)

FIG. 7. All possible time orderings in Eq. (B6) where the blue
(red) arrow represents forward (backward) propagation. The different
shadings indicate the different effective decay rates we included in
the evaluation.
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Using that diagrams (b), (d), and (f) are the complex con-
jugate of (a), (c), and (e) this finally yields for (a) and (b) the
expression

(a) + (b)

= 2q2
1q2

2Re

{∫ t

0
dt4

∫ t4

0
dt2

∫ t2

0
dt3

∫ t3

0
dt1

× e−i(B+E0 )(t1−t3 )e−i(B−E0 )(t2−t4 )

× e−i(A/ω)[− sin(ωt1 )+sin(ωt2 )+sin(ωt3 )−sin(ωt4 )]

× e−(1/2)�(t3−t1 )e−�(t2−t3 )e−(1/2)�(t4−t2 )
}
. (B7)

We introduce the time-difference coordinates τi j = ti − t j

and, since � is the largest energy scale involved, we anticipate
that the integrand vanishes rapidly for increasing τ31, τ23, or
τ42. We then complete our set of coordinates with the average
time σ = 1

4 (t1 + t2 + t3 + t4), transform the integral to the
new coordinate system, linearize the oscillating exponentials
in the small time differences,

A

ω
[− sin(ωt1) + sin(ωt2) + sin(ωt3) − sin(ωt4)]

≈ A(τ31 − τ42) cos(ωσ ), (B8)

and extend the upper limit of integration for the difference
coordinates to infinity, for convenience. This finally yields the
approximate expression

(a) + (b)

= 2q2
1q2

2Re

{∫ t

0
dσ

∫ ∞

0
dτ42

∫ ∞

0
dτ23

∫ ∞

0
dτ31

× e[iB+iE0−iA cos(ωσ )−(1/2)�]τ31

× e[iB−iE0+iA cos(ωσ )−(1/2)�]τ42 e−�τ23

}
, (B9)

which can be evaluated easily. The contribution of diagrams
(c) and (d) follows in a similar manner, and we find for the
total contribution of the first four diagrams

�
(a)–(d)
12 = 16q2

1q2
2�

164− + 82+�2 + �4
, (B10)

using the notation 2
± = B2 ± [E0 − A cos(ωt )]2. Assuming

B 
 E0 for simplicity (which is in accordance with all
regimes we investigate in the main text), this yields to lowest
order in A/�

�
(a)–(d)
12 ≈ 16q2

1q2
2�

(4E2
0 + �2)2

. (B11)

This result can be understood since these four diagrams de-
scribe sequential tunneling: Transitions from |1〉 to |S〉 happen
with a rate γ1, after which a transition from |S〉 to |2〉 rapidly
follows, before |S〉 decays, with a probability γ2/�. The total
rate is thus expected to be approximately γ1γ2/�, which is
identical to the result (B11).

We now proceed to investigate diagrams (e) and (f), which
contain a period of time τ (marked green in Fig. 7) during
which the states |1〉 and |2〉 interfere, resulting in a coherence
factor of the form e±i2Bτ due to their energy difference of 2B.
In the presence of harmonic driving, these coherence factors

can thus result in a resonant response, when ω ≈ 2B. In order
to capture the correct line shape of this response, we need
to include decoherence between the levels |1〉 and |2〉, in our
model dominated by escape to the drain lead with rates γ1 and
γ2, respectively.

Using again that diagrams (e) and (f) are each other’s
complex conjugate, we thus write

(e) + (f)

= 2q2
1q2

2Re

{ ∫ t

0
dt4

∫ t4

0
dt3

∫ t3

0
dt2

∫ t2

0
dt1

× e−i(B+E0 )(t1−t3 )e−i(B−E0 )(t2−t4 )

× e−i(A/ω)[− sin(ωt1 )+sin(ωt2 )+sin(ωt3 )−sin(ωt4 )]

× e−(1/2)�(t2−t1 )e−γ (t3−t2 )e−(1/2)�(t4−t3 )
}
. (B12)

Now there are only two time differences that will always be
small, τ21 and τ43, and we complement these two coordinates
with the averages σ21 = 1

2 (t2 + t1) and σ43 = 1
2 (t4 + t3). Then,

following the same steps as before, we arrive at

(e) + (f)

= 2q2
1q2

2Re

{ ∫ t

0
dσ43

∫ σ43

0
dσ21

∫ ∞

0
dτ43

∫ ∞

0
dτ21

× ei2B(σ43−σ21 )eiE0(τ21−τ43 )

× e−iA[cos(ωσ21 )τ21−cos(ωσ43 )τ43]

× e−(�/2)(τ21+τ43 )e−γ (σ43−σ21 )
}
, (B13)

where we used σ43 − 1
2τ43 ≈ σ43. Integrating over the two

time differences and taking the time derivative yields a con-
tribution to the transition rate of

�
(e),(f)
12 = 2q2

1q2
2Re

{ ∫ t

0
dσ21 e(i2B−γ )(t−σ21 )

× 1

E0 + i �
2 + A cos(ωσ21)

1

E0 − i �
2 + A cos(ωt )

}
.

(B14)

We then expand both fractions in small A/�, yielding

1

E0 ± i �
2 + A cos(ωt )

≈ 1

E0 ± i �
2

− A(eiωt + e−iωt )

2(E0 ± i �
2 )2

. (B15)

Focusing on the single-photon resonance where ω ≈ 2B we
discard all time-dependent terms except the one proportional
to A2eiω(σ21−t ) (effectively thus using a rotating wave approxi-
mation), which results in

�
(e),(f)
12 = 8q2

1q2
2

4E2
0 + �2

Re

{∫ t

0
dτ ei2Bτ−γ τ

}

+ 8A2q2
1q2

2

(4E2
0 + �2)2

Re

{ ∫ t

0
dτ ei(2B−ω)τ−γ τ

}
, (B16)

which converges for t � γ −1 to

�
(e),(f)
12 ≈ 8q2

1q2
2

4E2
0 + �2

γ

4B2 + γ 2
+ 8A2q2

1q2
2

(4E2
0 + �2)2

γ

δ2 + γ 2
,

(B17)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 8. All possible time orderings for the two processes in-
cluded in Eq. (B19). Only diagrams (g) and (h) can contribute to
a resonant response due to finite interference between time spent in
the states |1〉 and |2〉.

where we used the notation δ = ω − 2B again.
Combining Eqs. (B11) and (B17) we find the total rate,

�12 ≈ 16q2
1q2

2�

(4E2
0 + �2)2

(
1 + q2

1 + q2
2

4B2 + γ 2
+ A2

2�

γ

δ2 + γ 2

)
.

(B18)

The opposite rate �21 follows from swapping q1 ↔ q2 and
changing the signs of B and ω, which leaves the expression
unchanged, indicating that the rates are equal, within the ap-
proximations used.

Now we consider the transition rates �1S and �2S . The
dominating contributions are simply γ1,2, which follow from
second-order perturbation theory in q1,2. Focusing on the rate
�1S , we see that the next correction is of fourth order and
yields contributions to the transition probability stemming
from two different processes,

− 2q2
1q2

2Re

{∫ t

0
dt4

∫ t4

0
dt3

∫ t3

0
dt2

∫ t

0
dt1

× (
e−i(B+E0 )(t1−t2 )e−i(−B−E0 )(t4−t3 )

× e−i(A/ω)[− sin(ωt1 )+sin(ωt2 )−sin(ωt3 )+sin(ωt4 )]

+ e−i(B+E0 )(t1−t2 )e−i(B−E0 )(t4−t3 )

× e−i(A/ω)[− sin(ωt1 )+sin(ωt2 )−sin(ωt3 )+sin(ωt4 )]
)}

, (B19)

where the minus sign in front is due to the fact that both the
first-order contribution to U (t, 0) and the third-order contri-
bution to U (t, 0)† come with a factor −i. All possible time
orderings in (B19) are indicated in Fig. 8; the first term within

(a) (b)

FIG. 9. Two fourth-order diagrams that in principle can yield a
resonant response in the transition rate �S1.

the brackets in (B19) corresponds to diagrams (a)–(d) and the
second one to (e)–(h). We then see that all six first diagrams
(a)–(f) present a small correction to the (second-order) rate γ1

and will not yield a resonant response; we therefore neglect
their small contribution and focus solely on diagrams (g) and
(h),

(g) + (h) = − 4q2
1q2

2Re

{ ∫ t

0
dσ41

∫ σ41

0
dσ32

∫ ∞

0
dτ32

× e(−i2B−γ )(σ41−σ32 )

× e[−iE0+iA cos(ωσ32 )−(1/2)�]τ32

}

× Re

{∫ ∞

0
dτ41e[iE0−iA cos(ωσ41 )−(1/2)�]τ41

}
,

(B20)

where we made the same approximations as before. This
finally yields a contribution to the transition rate of

�
(g),(h)
1S = 8q2

1q2
2�

4[E0 − A cos(ωt )]2 + �2

× Re

{∫ t

0
dσ32

e(−i2B−γ )(t−σ32 )

−iE0 + iA cos(ωσ32) − 1
2�

}
.

(B21)

We then again expand to lowest order in A/�, keeping
only the time-dependent terms that contribute to the resonant
response and discard all the nonresonant contributions, which
present a small correction to the second-order rate γ1. This
yields for t � γ −1 the total rate

�1S ≈ γ1 − 64q2
1q2

2A2E0�[4E0�γ + (4E2
0 − �2)δ]

(4E2
0 + �2)4(δ2 + γ 2)

. (B22)

The correction to the rate �2S follows again by swapping
q1 ↔ q2 and changing the signs of B and ω, now yielding a
slightly different expression,

�2S ≈ γ2 − 64q2
1q2

2A2E0�[4E0�γ − (4E2
0 − �2)δ]

(4E2
0 + �2)4(δ2 + γ 2)

. (B23)

Finally, we can consider the transition rates �S1 and �S2.
The structure of the corresponding diagrams is similar to those
shown in Fig. 8; in Fig. 9 we show the two contributions to
�S1 that in principle can yield a resonant response. Closer
inspection of the structure of these diagrams reveals that these
contributions add up to a correction to the rate that is equal to
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�
(g),(h)
1S evaluated above, thus yielding

�S1 ≈ − 64q2
1q2

2A2E0�
[
4E0�γ + (

4E2
0 − �2

)
δ
]

(
4E2

0 + �2
)4

(δ2 + γ 2)
, (B24)

�S2 ≈ − 64q2
1q2

2A2E0�
[
4E0�γ − (

4E2
0 − �2

)
δ](

4E2
0 + �2

)4
(δ2 + γ 2)

. (B25)

Since |S〉 also decays to the drain lead with rate �, the impor-
tance of �S1 and �S2 for the total dynamics of the three-level
system is a factor ∼q2

1,2/�
2 smaller than that of the resonant

corrections in the rates �1S and �2S . For this reason we can
neglect �S1 and �S2.
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Schäffler, J.-J. Zhang, and G. Katsaros, A germanium hole spin
qubit, Nat. Commun. 9, 3902 (2018).

[22] N. W. Hendrickx, D. P. Franke, A. Sammak, G. Scappucci, and
M. Veldhorst, Fast two-qubit logic with holes in germanium,
Nature (London) 577, 487 (2020).

[23] F. N. Froning, L. C. Camenzind, O. A. van der Molen, A. Li,
E. P. Bakkers, D. M. Zumbühl, and F. R. Braakman, Ultrafast
hole spin qubit with gate-tunable spin-orbit switch functional-
ity, Nat. Nanotechnol. 16, 308 (2021).

[24] A. Pfund, I. Shorubalko, K. Ensslin, and R. Leturcq, Spin-
state mixing in InAs double quantum dots, Phys. Rev. B 76,
161308(R) (2007).

[25] A. Pfund, I. Shorubalko, K. Ensslin, and R. Leturcq, Suppres-
sion of Spin Relaxation in an InAs Nanowire Double Quantum
Dot, Phys. Rev. Lett. 99, 036801 (2007).

[26] M. D. Schroer, K. D. Petersson, M. Jung, and J. R. Petta, Field
Tuning the g Factor in InAs Nanowire Double Quantum Dots,
Phys. Rev. Lett. 107, 176811 (2011).

[27] S. Nadj-Perge, V. S. Pribiag, J. W. G. van den Berg, K. Zuo,
S. R. Plissard, E. P. A. M. Bakkers, S. M. Frolov, and L. P.
Kouwenhoven, Spectroscopy of Spin-Orbit Quantum Bits in
Indium Antimonide Nanowires, Phys. Rev. Lett. 108, 166801
(2012).

085421-11

https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1038/nature08812
https://doi.org/10.1103/RevModPhys.75.1
https://doi.org/10.1103/RevModPhys.79.1217
https://doi.org/10.1103/RevModPhys.85.961
https://doi.org/10.1038/nature05065
https://doi.org/10.1103/PhysRevB.74.165319
https://doi.org/10.1103/PhysRevLett.98.097202
https://doi.org/10.1103/PhysRevLett.96.047202
https://doi.org/10.1103/PhysRevApplied.15.044042
https://doi.org/10.1126/science.1148092
https://doi.org/10.1038/nphys1053
https://doi.org/10.1038/nature09682
https://doi.org/10.1038/nnano.2012.160
https://doi.org/10.1103/PhysRevLett.113.267601
https://doi.org/10.1063/1.4945592
https://doi.org/10.1038/s41534-018-0059-1
https://doi.org/10.1038/ncomms13575
https://doi.org/10.1103/PhysRevLett.120.137702
https://doi.org/10.1038/nnano.2013.5
https://doi.org/10.1038/s41467-018-06418-4
https://doi.org/10.1038/s41586-019-1919-3
https://doi.org/10.1038/s41565-020-00828-6
https://doi.org/10.1103/PhysRevB.76.161308
https://doi.org/10.1103/PhysRevLett.99.036801
https://doi.org/10.1103/PhysRevLett.107.176811
https://doi.org/10.1103/PhysRevLett.108.166801


ARNAU SALA AND JEROEN DANON PHYSICAL REVIEW B 104, 085421 (2021)

[28] S. M. Frolov, J. Danon, S. Nadj-Perge, K. Zuo, J. W. W. van
Tilburg, V. S. Pribiag, J. W. G. van den Berg, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Suppression of Zeeman Gra-
dients by Nuclear Polarization in Double Quantum Dots, Phys.
Rev. Lett. 109, 236805 (2012).

[29] K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, Current
Rectification by Pauli Exclusion in a Weakly Coupled Double
Quantum Dot System, Science 297, 1313 (2002).

[30] E. A. Laird, C. Barthel, E. I. Rashba, C. M. Marcus, M. P.
Hanson, and A. C. Gossard, A new mechanism of electric dipole
spin resonance: Hyperfine coupling in quantum dots, Semicond.
Sci. Technol. 24, 064004 (2009).

[31] J. Stehlik, M. D. Schroer, M. Z. Maialle, M. H. Degani, and J. R.
Petta, Extreme Harmonic Generation in Electrically Driven
Spin Resonance, Phys. Rev. Lett. 112, 227601 (2014).

[32] C. Fasth, A. Fuhrer, L. Samuelson, V. N. Golovach, and D.
Loss, Direct Measurement of the Spin-Orbit Interaction in a
Two-Electron InAs Nanowire Quantum Dot, Phys. Rev. Lett.
98, 266801 (2007).

[33] R. Ferdous, E. Kawakami, P. Scarlino, M. P. Nowak, D. R.
Ward, D. E. Savage, M. G. Lagally, S. N. Coppersmith,
M. Friesen, M. A. Eriksson, L. M. K. Vandersypen, and R.
Rahman, Valley dependent anisotropic spin splitting in silicon
quantum dots, npj Quantum Inf. 4, 26 (2018).

[34] R. M. Jock, N. T. Jacobson, P. Harvey-Collard, A. M. Mounce,
V. Srinivasa, D. R. Ward, J. Anderson, R. Manginell, J. R.
Wendt, M. Rudolph, T. Pluym, J. K. Gamble, A. D. Baczewski,
W. M. Witzel, and M. S. Carroll, A silicon metal-oxide-
semiconductor electron spin-orbit qubit, Nat. Commun. 9, 1768
(2018).

[35] P. Harvey-Collard, N. T. Jacobson, C. Bureau-Oxton, R. M.
Jock, V. Srinivasa, A. M. Mounce, D. R. Ward, J. M. Anderson,
R. P. Manginell, J. R. Wendt, T. Pluym, M. P. Lilly, D. R.
Luhman, M. Pioro-Ladrière, and M. S. Carroll, Spin-Orbit In-
teractions for Singlet-Triplet Qubits in Silicon, Phys. Rev. Lett.
122, 217702 (2019).

[36] F. N. M. Froning, M. J. Rančić, B. Hetényi, S. Bosco, M. K.
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